

Vishay General Semiconductor

Fast Switching Plastic Rectifier

Major Ratings and Characteristics

I _{F(AV)}	3.0 A
V _{RRM}	50 V to 800 V
I _{FSM}	100 A
t _{rr}	200 ns
I _R	10 μΑ
V _F	1.25 V
T _j max.	150 °C

Features

- · Fast switching for high efficiency
- Low forward voltage drop
- Low leakage current
- · High forward surge capability
- Solder Dip 260 °C, 40 seconds

3)

Mechanical Data

Case: DO-201AD, molded epoxy body Epoxy meets UL-94V-0 Flammability rating

Terminals: Matte tin plated (E3 Suffix) leads, solder-

able per J-STD-002B and JESD22-B102D **Polarity:** Color band denotes cathode end

Typical Applications

For use in fast switching rectification of power supply, inverters, converters and freewheeling diodes for consumer and Telecommunication.

(Note: These devices are not Q101 qualified. Therefore, the devices specified in this datasheet have not been designed for use in automotive or Hi-Rel applications.)

Maximum Ratings

(T_A = 25 °C unless otherwise noted)

Parameter	Symbol	GI850	GI851	GI852	GI854	GI856	GI858	Unit
Maximum repetitive peak reverse voltage	V_{RRM}	50	100	200	400	600	800	V
Maximum RMS voltage	V _{RMS}	35	70	140	280	420	560	V
Maximum DC blocking voltage	V_{DC}	50	100	200	400	600	800	V
Maximum non-repetitive peak reverse voltage	V _{RSM}	75	150	250	450	650	880	V
Maximum average forward rectified current 0.375" (9.5 mm) lead length at T_A = 90 °C	I _{F(AV)}	3.0						
Peak forward surge current 8.3 ms single half sine- wave superimposed on rated load	I _{FSM}	100						
Operating junction and storage temperature range	T_J, T_{STG}	- 50 to + 150						°C

GI850 thru GI858

Vishay General Semiconductor

Electrical Characteristics

(T_A = 25 °C unless otherwise noted)

Parameter	Test condition	Symbol	GI850	GI851	GI852	GI854	GI856	GI858	Unit
Maximum instantaneous forward voltage	at 3.0 A at 9.4 A, T _J = 175 °C	V _F	1.25 1.10						V
Maximum DC reverse current at rated DC blocking voltage	T _A = 25 °C T _A = 100 °C	I _R	150	150	200	0 250	300	500	μА
Maximum reverse recovery time	at $I_F = 1.0 \text{ A}$, $V_R = 30 \text{ V}$, $di/dt = 50 \text{ A}/\mu\text{s}$, $I_{rr} = 10 \% I_{RM}$	t _{rr}	200						ns
Maximum reverse recovery time	at $I_F = 1.0 \text{ A}$, $V_R = 30 \text{ V}$, $di/dt = 50 \text{ A}/\mu\text{s}$, $I_{rr} = 10 \% I_{RM}$	I _{RM(REC)}	2.0						A
Typical junction capacitance	at 4.0 V, 1 MHz	CJ	28						pF

Thermal Characteristics

 $(T_A = 25 \, ^{\circ}C \text{ unless otherwise noted})$

Parameter	Symbol	GI850	GI851	GI852	GI854	GI856	GI858	Unit
Typical thermal resistance (1)	$R_{ hetaJA} \ R_{ hetaJL}$			2 8	^			°C/W

Notes:

(1) Thermal resistance from junction to ambient and from junction to lead at 0.375" (9.5 mm) lead length, with both leads equally heat sink

Ratings and Characteristics Curves

(T_A = 25 °C unless otherwise noted)

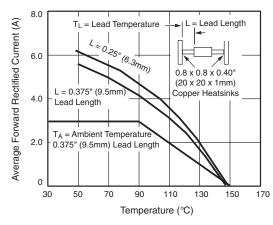


Figure 1. Forward Current Derating Curves

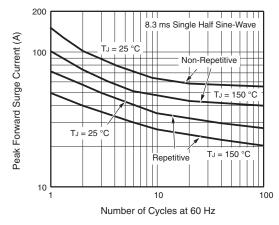


Figure 2. Maximum Peak Forward Surge Current

Document Number 88630 www.vishay.com 10-Oct-05

Vishay General Semiconductor

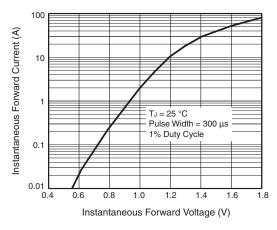


Figure 3. Typical Instantaneous Forward Characteristics

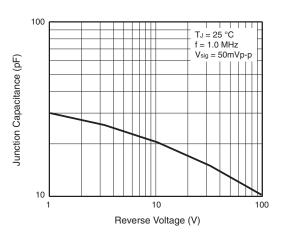


Figure 5. Typical Junction Capacitance

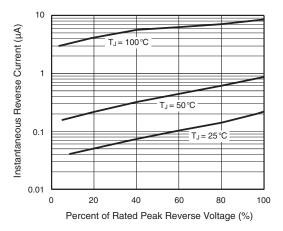
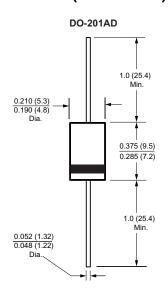



Figure 4. Typical Reverse Characteristics

Package outline dimensions in inches (millimeters)

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

www.vishay.com Revision: 08-Apr-05