

IrDA Infrared communication Module

RPM871-H7

RPM871-H7 is an infrared communication module for IrDA Ver. 1.2 (Low Power). The infrared LED, PIN photo diode, waveform shaping LSI are all integrated into a single package. This module is designed with power down function and low current consumption at stand-by mode. The ultra small package makes it a perfect fit for mobile devices.

●Features

- 1) Applied to IrDA version 1.2. (Low Power)
- 2) Designed for low power consumption at stand-by for receiving (Typ.73 μ A).
- 3) Suitable for sets driven by battery due to power down control function.
- 4) Power supply voltage range : 2.6V~3.6V
- 5) Constant LED load resistance can change communication range. (Approx. 20~60cm)

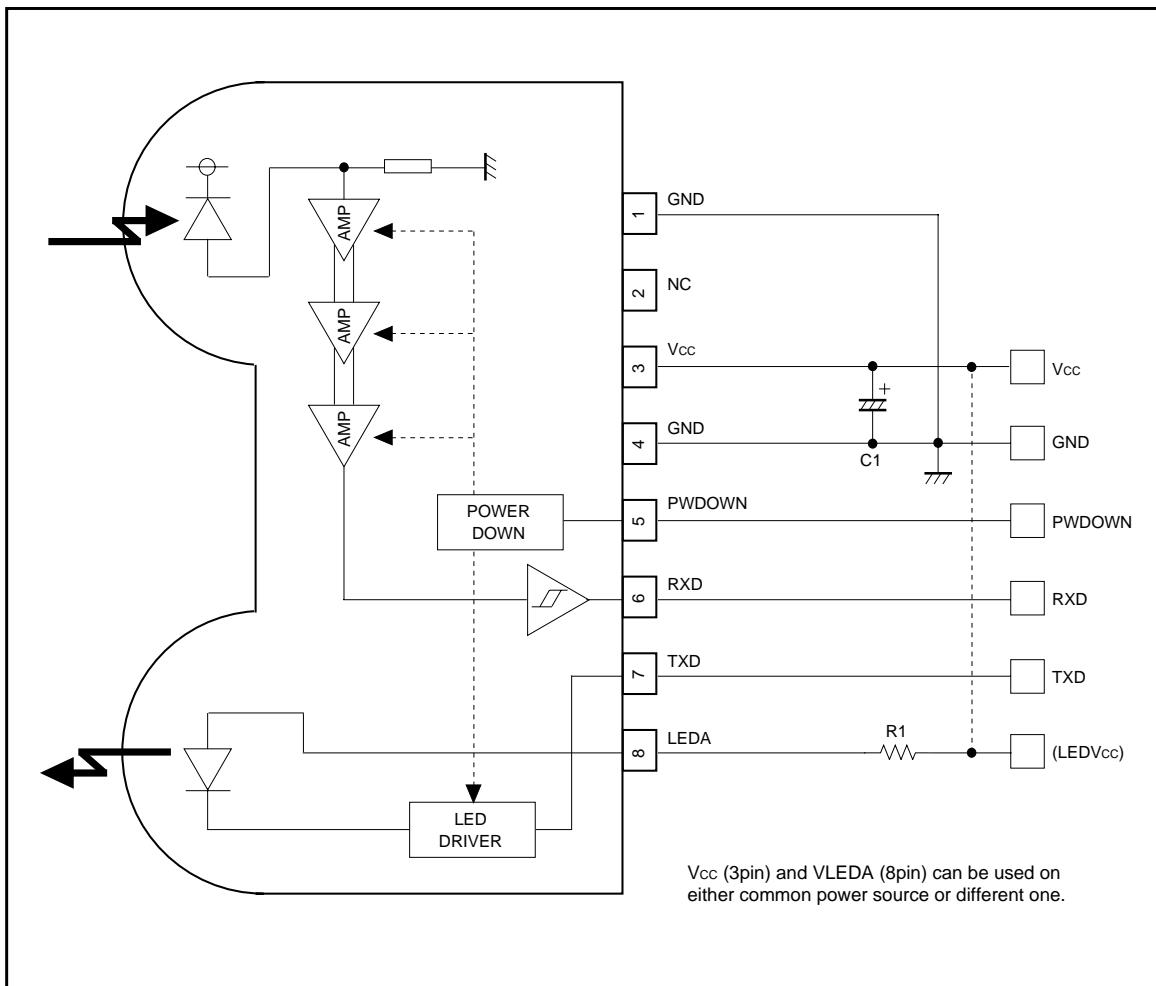
●Applications

Cellular phones, PDAs, etc.

●Absolute maximum ratings (Ta = 25°C)

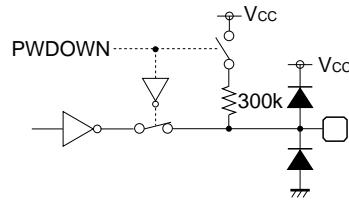
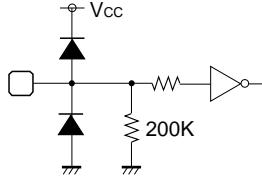
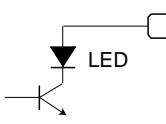
Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	-0.3~+7.0	V
Power dissipation	Pd	150*1	mW
Operating temperature range	Topr	-20~+85	°C
Storage temperature range	Tstg	-30~+100	°C
LED peak current	IFP	200*2	mA

*1 70mm×70mm, t=1.6mm, glass epoxy mounting. Derating : 2mW/°C for operation above Ta=25°C


*2 LED peak current<90 μ s. ON duty<20%

●Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Typ.	Max.	Unit
Power supply voltage	Vcc	2.6	2.8	3.6	V
	V _{LEDA}	2.6	2.8	5.5	V




Photo Link Module

●Block diagram and application circuit

Photo Link Module

● Terminal description

Pin No	Terminal	Circuit	Function
1, 4	GND		GND Pin1 and pin4 must be connected to the ground.
2	NC		This Terminal must be left open.
3	Vcc		Vcc For preventing from infection, connect a capacitor between Vcc (3pin) and GND (4pin).
5	PWDOWN		Power-down Control Terminal H : POWERDOWN L : OPERATION CMOS Logic Level Input When input is H, it will stop the receiving circuit, Pin-PD current and transmitting LED operation.
6	RXD		Receiving Data Output Terminal CMOS Logic Level Output When PWDOWN (5pin)=H, the RXD output will be pulled up to Vcc at approximately 300kΩ.
7	TXD		Transmitting Data Input Terminal H : LED (PWDOWN=L) CMOS Logic Level Input Holding TXD="H" status, LED will be turn off approximately 45μs.
8	LEDA		LED ANODE Terminal Other power source can be used difference between LEDVcc and Vcc. LED current depends on LED load resistance value.
-	Shield Case		Connect to Ground.

Photo Link Module

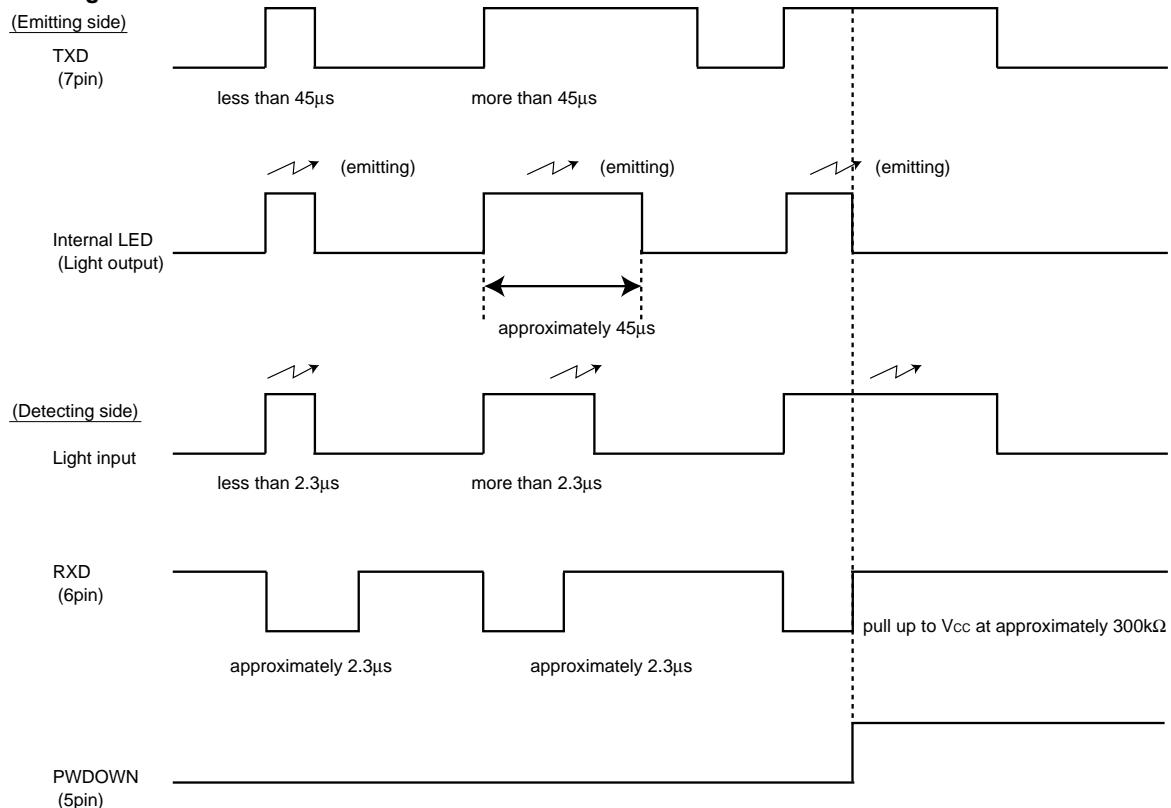
●Electrical characteristics (Unless otherwise noted, $V_{CC}=2.8V$, $V_{LEDVCC}=2.8V$, $T_a = 25^{\circ}C$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Consumption current1	I_{CC1}	—	73	99	μA	Stand-by for receiving At no input light
Consumption current2	I_{CC2}	—	0.01	0.2	μA	PWDOWN PIN High At no input light
Transmission rate		2.4	—	115.2	kbps	
PWDOWN INPUT High voltage	V_{PDH}	$V_{CC}-0.55$	—	—	V	
PWDOWN INPUT Low voltage	V_{PDL}	—	—	0.55	V	
PWDOWN INPUT High current	I_{PDH}	-1.0	0	1.0	μA	$PWDOWN=V_{CC}$ [V]
PWDOWN INPUT Low current	I_{PDL}	-1.0	0	1.0	μA	$PWDOWN=0$ [V]
<Transmitter>						
TXD INPUT High voltage	V_{TXH}	$V_{CC}-0.55$	—	—	V	
TXD INPUT Low voltage	V_{TXL}	—	—	0.55	V	
TXD INPUT High current	I_{TXH}	7	14	28	μA	$TXD=V_{CC}$ [V]
TXD INPUT Low current	I_{TXL}	-1.0	0	1.0	μA	$TXD=0$ [V]
LED ANODE current	I_{LEDA}	—	144	—	mA	$R_1=7.5$ [Ω]
<Receiver>						
RXD OUTPUT High voltage	V_{RXH}	$V_{CC}-0.5$	—	—	V	$IRXH=-50\mu A$
RXD OUTPUT Low voltage	V_{RXL}	—	—	0.4	V	$IRXL=200\mu A$
RXD OUTPUT rise time	t_{RR}	—	70	—	ns	$C_L=15pF$
RXD OUTPUT fall time	t_{FR}	—	30	—	ns	$C_L=15pF$
RXD OUTPUT pulse width	t_{wRXD}	1.5	2.3	3.6	μs	$C_L=15pF$, 2.4~115.2kbps
Receiver latency time	t_{RT}	—	100	300	μs	

●Optical characteristics (Unless otherwise noted, $V_{CC}=2.8V$, $V_{LEDVCC}=2.8V$, $T_a = 25^{\circ}C$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Peak wave length	λ_P	850	870	900	nm	
Intensity1	I_{E1}	14.4	36	93.6	mW/Sr	$-15^{\circ} \leq \theta_L \leq 15^{\circ}$ $R_1=7.5$ [Ω]
Half-angle	$\theta_{L/2}$	—	± 18	± 30	deg	
Rise time / Fall time	t_{R}/t_f	—	—	100	ns	10%~90%
Optical over shoot		—	—	25	%	
Edge jitter	T_j	-40	—	40	ns	
Irradiance in angular	E_e	0.0068	—	500	mW/cm^2	$-15^{\circ} \leq \theta_L \leq 15^{\circ}$
INPUT Half-Angular	$\theta_{D/2}$	± 15	—	—	deg	
Maximum emitting time	t_{LEDmax}	10	45	96	μs	$TXD=V_{CC}$

1. This product is not designed for protection against radioactive rays.


2. This product dose not include laser transmitter.

3. This product includes one PIN photo diode.

4. This product dose not include optical load.

Photo Link Module

●Timing chart

●Attached components

Recommended values

Part symbol	Recommended value	Notice
C1	1μF, tantalum or ceramic Ex.) TCFG1A105M8R (ROHM)	Bigger capacitance is recommended with much noise from power supply
R1	7.5Ω±5%, 1/4W (VLEDVcc=2.8V)	More than 60cm distance, more than 4[μW/cm ²] at detecting side. (vs ver1.0)
		More than 46cm distance, more than 6.8[μW/cm ²] at detecting side. (vs RPM871-H7)

In case of using R1 with different condition from the above, formula is as follows :

LED resistance value : R1[Ω], LED average consumption current : ILED[mA], Supply voltage : VLEDVcc[V],

Link distance : d[cm] (Including LED's distribution within ±15deg)

$$R1 = T \times (VLEDVcc - 1.45) / d^2 - 3.5 \text{ [Ω]}$$

$$ILED = \text{Duty} \times (VLEDVcc - 1.36) / (R1 + 2.5) \text{ [A]}$$

Duty : LED duty at emitting

T : 17300 (vs. RPM871-H7), 29400 (vs. ver1.0)

* Please set up to be ILED / Duty < 200[mA] (Duty < 20%)

Photo Link Module

●Notes

1) LEDVcc (8pin) and Vcc (3pin)

- Other power source can be used difference between LEDVcc and Vcc.

2) Caution in designing board lay-out

To get maximum potential from RPM871-H7, please keep in mind following instruction.

- The line of RXD (6pin) should be connected at backside via through hole close to RPM871-H7 pin lead. Better not to be close to photo diode side (1pin).

⇒ This is to minimize feedback supplied to photo diode from RXD.

- As for C1 between 3-4 pin should be placed close to RPM871-H7.

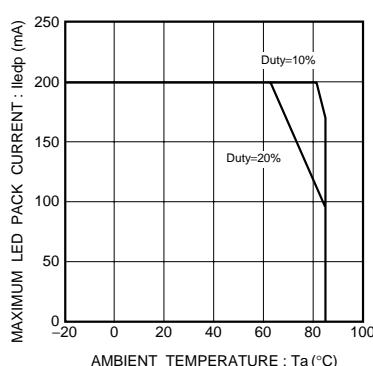
- Better to be placed more than 1.0cm in radius from photo diode (pin1 side) and also away from the parts which generates noise, such as DC / DC converter.

3) Others

- Please be sure to set up the TXD (7pin) input to be "L" (under 0.55V) except transmitting data (for < 90μsec. on duty < 20%).

- Power down current might increase if exposed by strong light (ex. direct sunlight) at power down mode.

- Please use by the signal format which is specified by IrDA Ver1.2 (2.4k~115.2kbps). There might be an error if used by different signal format.


- Dust or dirt on lens portion may affect the characteristics, so pay sufficient attention.

4) LED current derating and ambient temperature

The relation between LED peak current and maximum ambient temperature is shown below.

We recommend you to use within the range as indicated in below.

a) When glass-epoxy board (70×70×1.6mm) mounted.

b) RPM871-H7

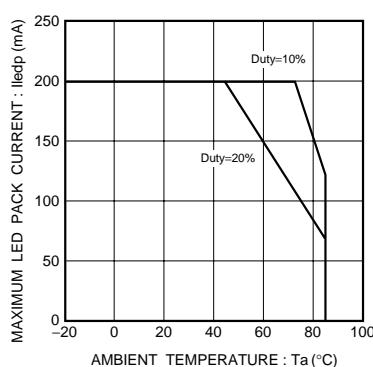
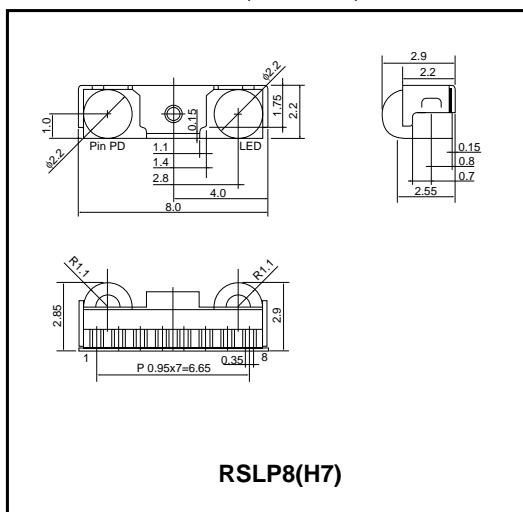



Photo Link Module

●External dimensions (Units : mm)

