

HIGH PERFORMANCE POWER FACTOR CORRECTOR**AP1662****General Description**

The AP1662 is an active power factor control IC which is designed mainly for use as a pre-converter in electronic ballast, AC-DC adapter and off-line SMPS applications.

The IC includes an internal start-up timer for stand-alone applications, a one-quadrant multiplier to realize near unity power factor and a zero current detector to ensure DCM boundary conduction operation.

The totem pole output stage is capable of driving power MOSFET with 600mA source current and 800mA sink current.

Designed with advanced BiCMOS process, the AP1662 features low start-up current, low operation current and low power dissipation. The AP1662 also has rich protection features including over-voltage protection, input under-voltage lockout with hysteresis and multiplier output clamp to limit maximum peak current.

The AP1662 meets IEC61000-3-2 standard even at one-quadrant load and THD lower than 10% at high-end line voltage and full load.

The IC is available in SOIC-8 and DIP-8 packages.

Features

- Comply with IEC61000-3-2 Standard
- Proprietary Design for Minimum THD
- Zero Current Detection Control for DCM Boundary Conduction Mode
- Adjustable Output Voltage with Precise Over-voltage Protection
- Low Start-up Current with 40 μ A Typical Value
- Low Quiescent Current with 2.5mA Typical Value
- 1% Precision Internal Reference Voltage @ $T_J=25^\circ\text{C}$
- Internal Start-up Timer
- Disable Function for Reduced Current Consumption
- Totem Pole Output with 600mA Source and 800mA Sink Current Capability
- Under-voltage Lockout with 2.5V Hysteresis

Applications

- Electronic Ballast
- AC-DC Adapter
- Off-line SMPS
- Single Stage PFC LED Driver

Figure 1. Package Types of AP1662

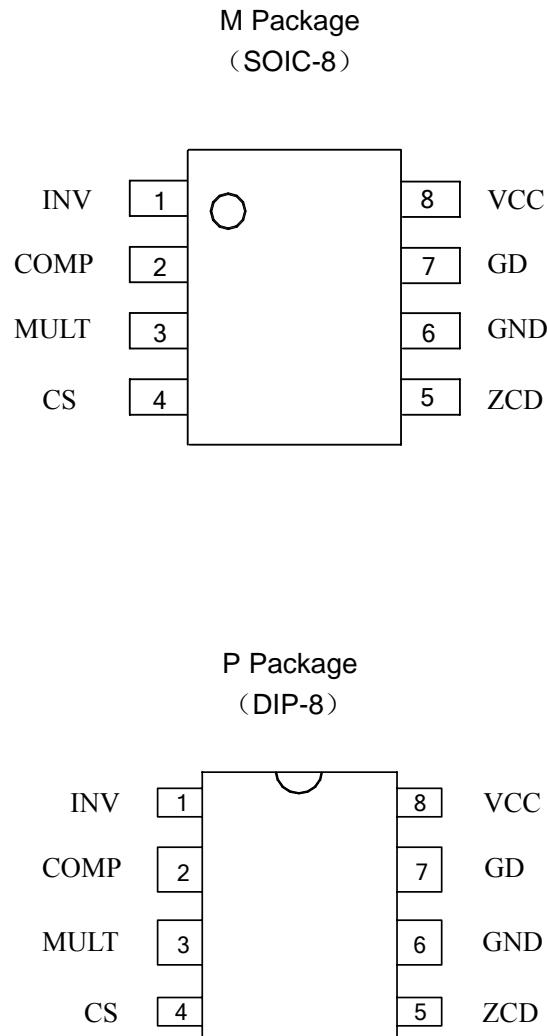

HIGH PERFORMANCE POWER FACTOR CORRECTOR**AP1662****Pin Configuration**

Figure 2. Pin Configuration of AP1662 (Top View)

HIGH PERFORMANCE POWER FACTOR CORRECTOR AP1662

Pin Description

Pin Number	Pin Name	Function
1	INV	Inverting input of the error amplifier
2	COMP	Output of the error amplifier
3	MULT	Input of the multiplier
4	CS	Input of the current control loop comparator
5	ZCD	Zero current detection input. If it is connected to GND, the device is disabled
6	GND	Ground. Current return for gate driver and control circuits of the IC
7	GD	Gate driver output
8	VCC	Supply voltage of gate driver and control circuits of the IC

Functional Block Diagram

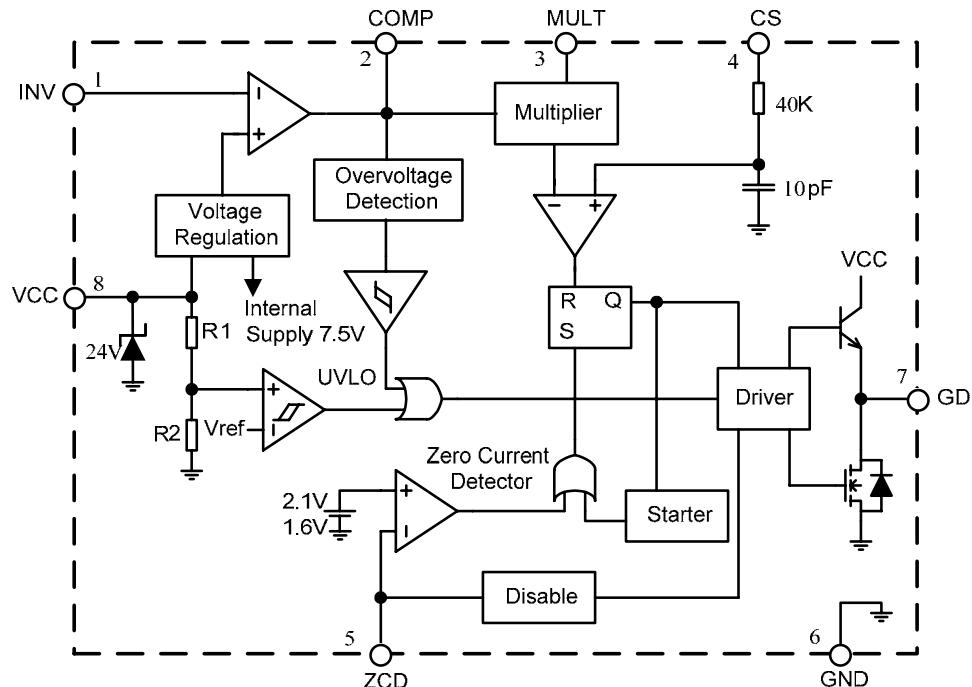
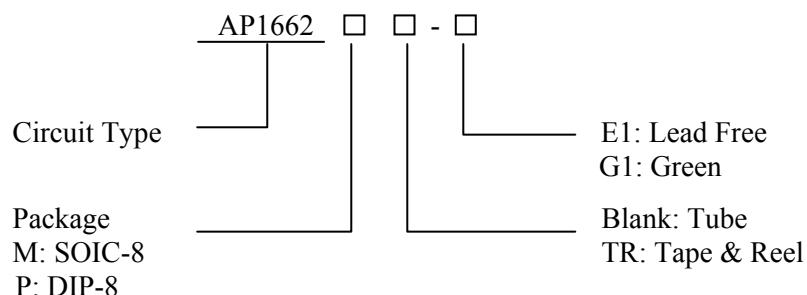



Figure 3. Functional Block Diagram of AP1662

HIGH PERFORMANCE POWER FACTOR CORRECTOR AP1662**Ordering Information**

Package	Temperature Range	Part Number		Marking ID		Packing Type
		Lead Free	Green	Lead Free	Green	
SOIC-8	-40 to 105°C	AP1662M-E1	AP1662M-G1	1662M-E1	1662M-G1	Tube
		AP1662MTR-E1	AP1662MTR-G1	1662M-E1	1662M-G1	Tape & Reel
DIP-8	-40 to 105°C	AP1662P-E1	AP1662P-G1	AP1662P-E1	AP1662P-G1	Tube

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green packages.

HIGH PERFORMANCE POWER FACTOR CORRECTOR AP1662**Absolute Maximum Ratings (Note 1)**

Parameter	Symbol	Value		Unit
Power Supply Voltage	V _{CC}	Self-limited		V
Operating Supply Current	I _{CC}	30		mA
Input/Output of Error Amplifier, Input of Multiplier	V _{INV} , V _{COMP} , V _{MULT}	-0.3 to 7		V
Current Sense Input	V _{CS}	-0.3 to 7		V
Zero Current Detector Input	I _{ZCD}	Source	-50	mA
		Sink	10	
Power Dissipation and Thermal characteristics @ T _A =50°C	P _{TOT}	DIP-8	1	W
		SOIC-8	0.65	
Thermal Resistance (Junction to Ambient)	R _{θJA}	DIP-8	100	°C/W
		SOIC-8	150	
Operating Junction Temperature	T _J	-40 to 150		°C
Storage Temperature Range	T _{STG}	-65 to 150		°C
Lead Temperature (Soldering, 10 Seconds)	T _{LEAD}	260		°C
ESD (Human Body Model)	V _{ESD(HBM)}	3000		V
ESD (Machine Model)	V _{ESD(MM)}	200		V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

HIGH PERFORMANCE POWER FACTOR CORRECTOR

AP1662

Electrical Characteristics

$V_{CC}=12V$, $T_J=-25^{\circ}C$ to $125^{\circ}C$, $C_0=1nF$, unless otherwise specified.

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit	
Under Voltage Lockout Section							
Turn-on Threshold	V_{CC-ON}	V_{CC} Rising	11	12	13	V	
Turn-off Threshold	V_{CC-OFF}	V_{CC} Falling	8.7	9.5	10.3	V	
Hysteresis	V_{CC-HYS}		2.2	2.5	2.8	V	
V_{CC} Operating Range	V_{CC}	After turn-on	10.3		22	V	
Zener Voltage	V_Z	$I_{CC}=20mA$	22	24		V	
Total Supply Current Section							
Start-up Current	$I_{START-UP}$	$V_{CC}=11V$ before turn-on		40	70	μA	
Operating Supply Current	I_{CC}	Frequency=70kHz		3.5	5	mA	
		In OVP condition $V_{INV}=2.7V$		1.4	2.2		
Quiescent Current	I_Q	After turn on		2.5	3.75	mA	
Quiescent Current	I_Q	$V_{ZCD} \leq 150mV$, $V_{CC} > V_{CC-OFF}$			2.2	mA	
		$V_{ZCD} \leq 150mV$, $V_{CC} < V_{CC-OFF}$	20	50	90	μA	
Error Amplifier Section							
Voltage Feedback Input Threshold	V_{INV}	$T_J=25^{\circ}C$	2.465	2.5	2.535	V	
		$10.3V < V_{CC} < 20V$	2.44		2.56		
Line Regulation		$V_{CC}=10.3V$ to $20V$		2	5	mV	
Input Bias Current	I_{INV}	$V_{INV}=0$ to $3V$		-0.1	-1	μA	
Voltage Gain	G_V	Open Loop	60	80		dB	
Gain Bandwidth	G_B			1		MHz	
Output Voltage	Upper Clamp Voltage	V_{COMP-H}	$I_{SOURCE}=0.5mA$	5.15	5.55	5.85	V
	Lower Clamp Voltage	V_{COMP-L}	$I_{SINK}=0.5mA$	2.1	2.25	2.4	
Output Current	Source Current	I_{COMP-H}	$V_{COMP}=4V$, $V_{INV}=2.4V$	-2	-4	-8	mA
	Sink Current	I_{COMP-L}	$V_{COMP}=4V$, $V_{INV}=2.6V$	2.5	4.5		

HIGH PERFORMANCE POWER FACTOR CORRECTOR AP1662

Electrical Characteristics (Continued)

$V_{CC}=12V$, $T_J=-25^{\circ}C$ to $125^{\circ}C$, $C_0=1nF$, unless otherwise specified.

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Multiplier Section						
Linear Input Voltage Range	V_{MULT}		0 to 3	0 to 3.5		V
Output Maximum Slope	$\Delta V_{CS}/\Delta V_{MULT}$	V_{MULT} : 0 to 0.5V, V_{COMP} =Upper Clamp Voltage	1.65	1.9		
Gain	k	$V_{MULT}=1V$, $V_{COMP}=4V$	0.6	0.75	0.9	1/V
Current Sense Section						
Input Bias Current	I_{CS}	$V_{CS}=0V$			-1	μA
Current Sense Offset Voltage	$V_{CS-OFFSET}$	$V_{MULT}=0V$ $V_{MULT}=2.5V$		30		mV
Current Sense Reference Clamp	$V_{CS-CLAMP}$	V_{COMP} = Upper Clamp Voltage, $V_{MULT} = 2.5V$	1.6	1.7	1.8	
Delay to Output	$t_{d(H-L)}$			200	350	ns
Zero Current Detection Section						
Arming Voltage (positive-going edge)	V_{ZCDA}	(Note 2)		2.1		V
Triggering Voltage (negative-going edge)	V_{ZCDT}	(Note 2)		1.6		V
Upper Clamp Voltage	V_{ZCD-H}	$I_{ZCD}=20\mu A$	4.5	5.1	5.9	V
		$I_{ZCD}=3mA$	4.7	5.2	6.1	
Lower Clamp Voltage	V_{ZCD-L}	$I_{ZCD} = -3mA$	0.3	0.65	1	V
Source Current Capability	I_{ZCD-SR}		-2.5		-10	mA
Sink Current Capability	I_{ZCD-SN}		3			mA
Sink Bias Current	I_{ZCD-B}	$1V \leq V_{ZCD} \leq 4.5 V$		2		μA
Disable Threshold	$V_{ZCD-DIS}$		150	200	250	mV
Disable Hysteresis	$V_{ZCD-HYS}$			100		mV
Restart Current After Disable	$I_{ZCD-RES}$	$V_{ZCD} < V_{DIS}$, $V_{CC} > V_{CC-OFF}$	-80	-120		μA

Note 2: Limits over the full temperature are guaranteed by design, but not tested in production.

HIGH PERFORMANCE POWER FACTOR CORRECTOR AP1662**Electrical Characteristics (Continued)**

$V_{CC}=12V$, $T_J=-25^{\circ}C$ to $125^{\circ}C$, $C_O=1nF$, unless otherwise specified.

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Drive Output Section						
Dropout Voltage	V_{OH}	$I_{GD-SOURCE}=200mA$		2.5	3	V
		$I_{GD-SOURCE}=20mA$		2	2.8	
	V_{OL}	$I_{GD-SINK}=200mA$		0.9	1.9	
Output Voltage Rise Time	t_R			40	80	ns
Output Voltage Fall Time	t_F			30	70	ns
Output Clamp Voltage	$V_{O-CLAMP}$	$I_{GD-SOURCE}=5mA$ $V_{CC}=20V$	9	11	13	V
UVLO Saturation	V_{OS}	$V_{CC}=0$ to V_{CC-ON} , $I_{SINK}=10mA$			1.1	V
Output Over Voltage Section						
OVP Triggering Current	I_{OVP}		35	40	45	μA
Static OVP Threshold	V_{OVP_TH}		2.1	2.25	2.4	V
Starter						
Start Timer Period	t_{START}		75	130	300	μs

HIGH PERFORMANCE POWER FACTOR CORRECTOR AP1662

Typical Performance Characteristics

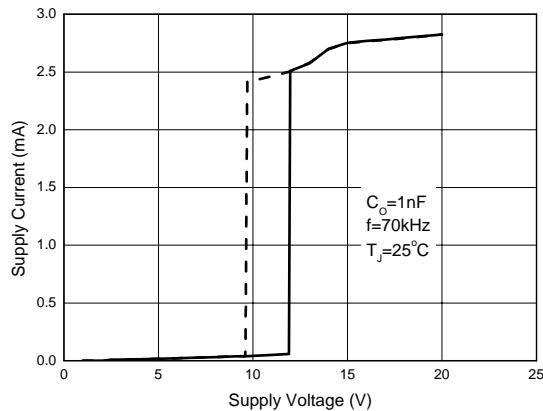
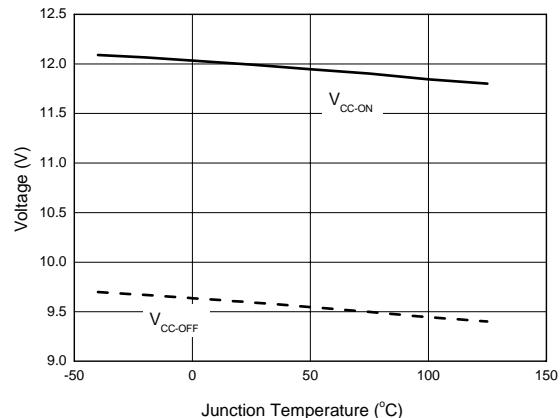
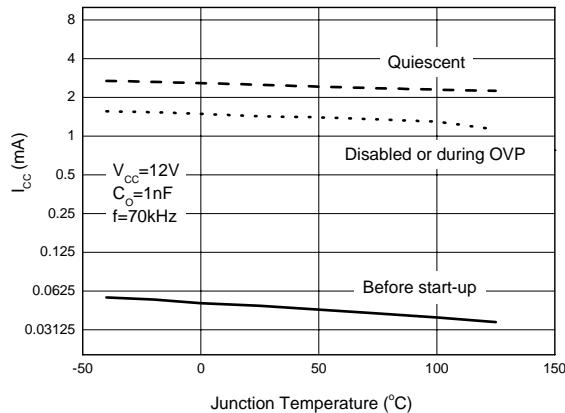
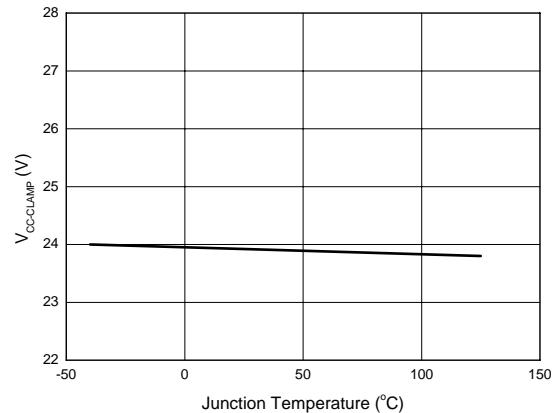
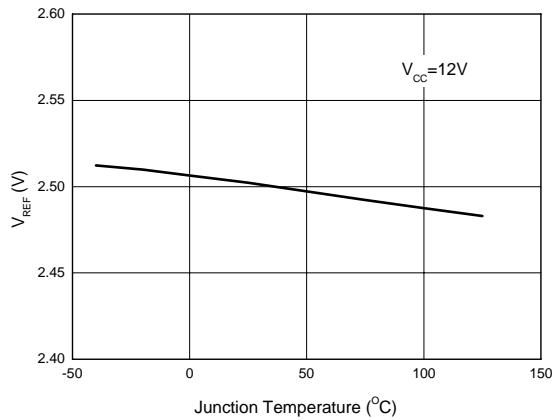
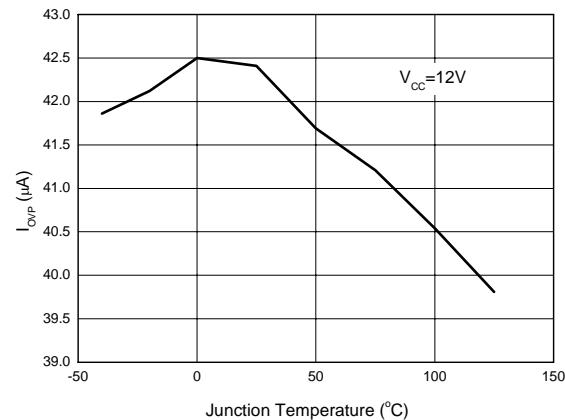
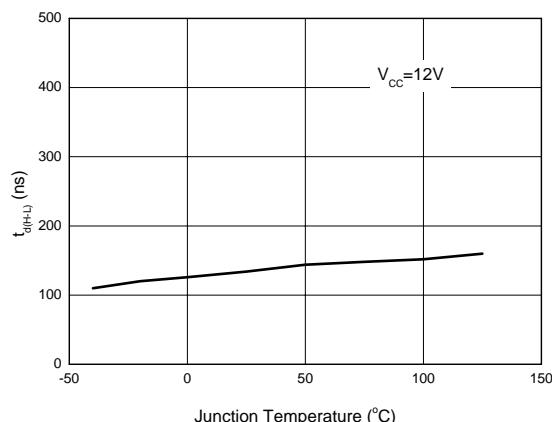
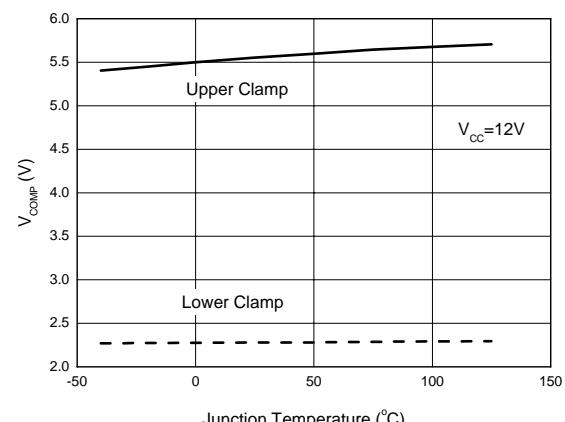
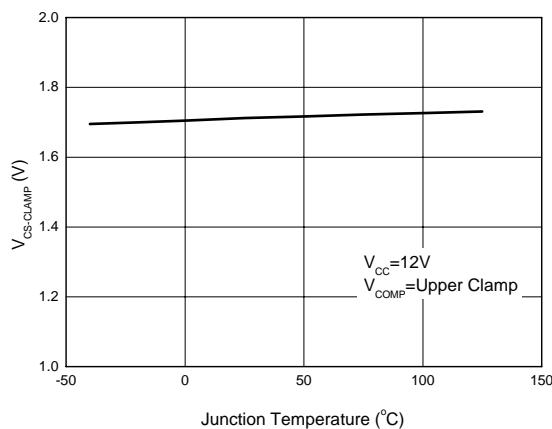
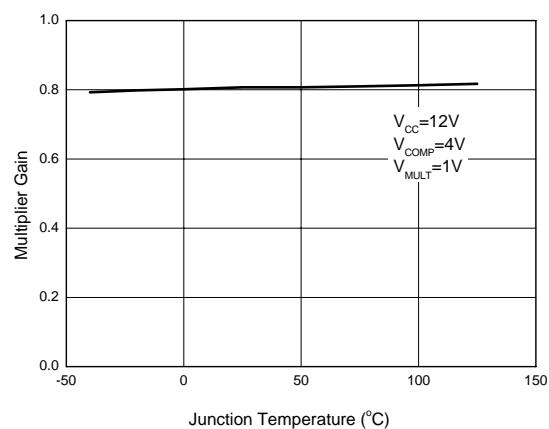
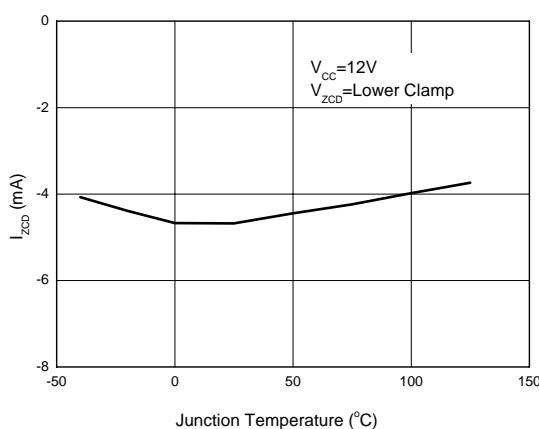
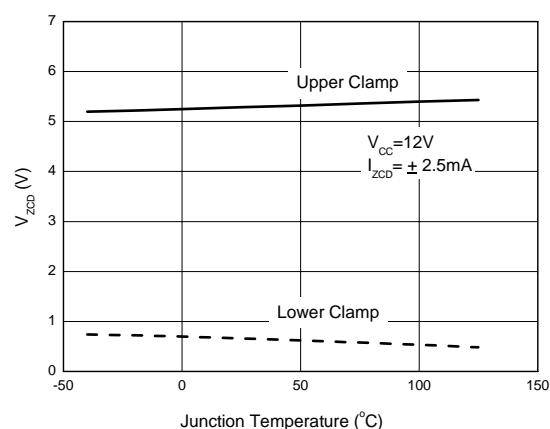









Figure 4. Supply Current vs. Supply Voltage

Figure 5. Start-up & UVLO vs. T_J

Figure 6. I_{CC} Consumption vs. T_J

Figure 7. V_{CC} Zener Voltage vs. T_J





HIGH PERFORMANCE POWER FACTOR CORRECTOR AP1662

Typical Performance Characteristics (Continued)

Figure 8. Feedback Reference Voltage vs. T_J

Figure 9. OVP Current vs. T_J

Figure 10. Delay-to-Output vs. T_J

Figure 11. E/A Output Clamp Levels vs. T_J

HIGH PERFORMANCE POWER FACTOR CORRECTOR AP1662

Typical Performance Characteristics (Continued)

Figure 12. $V_{CS-CLAMP}$ vs. T_J

Figure 13. Multiplier Gain vs. T_J

Figure 14. ZCD Source Capability vs. T_J

Figure 15. ZCD Clamp Levels vs. T_J

HIGH PERFORMANCE POWER FACTOR CORRECTOR AP1662

Typical Performance Characteristics (Continued)

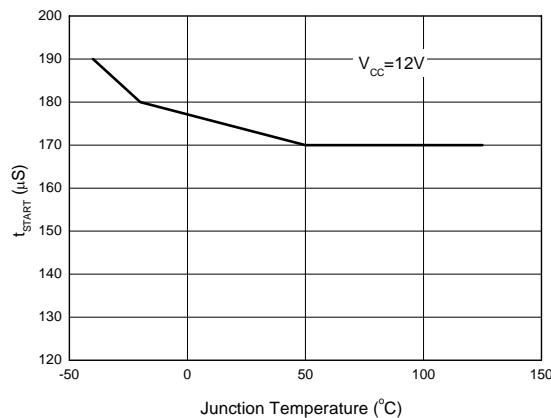
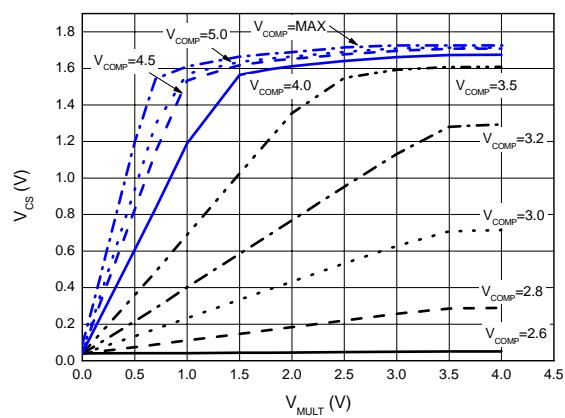



Figure 16. Start-up Timer vs. T_j

Figure 17. Multiplier Characteristics

Figure 18. Gate-driver Output Low Saturation

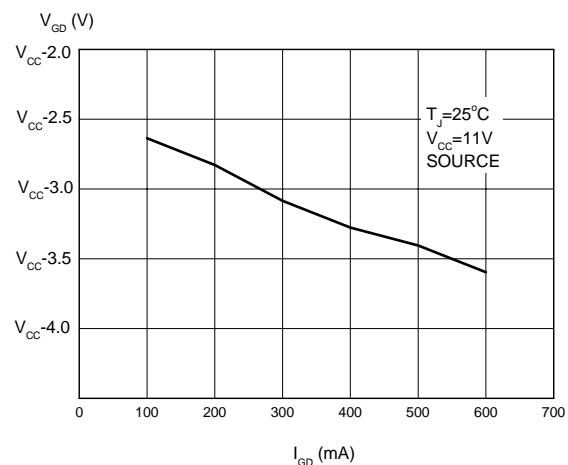
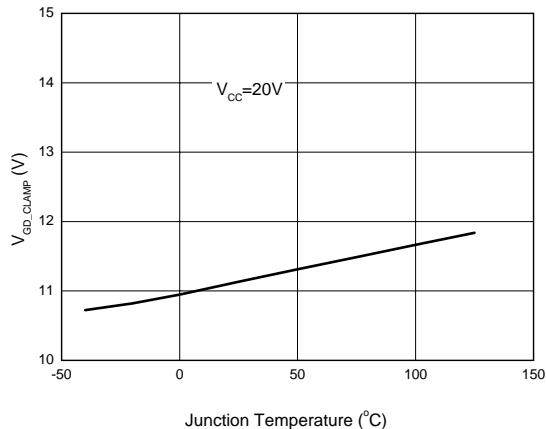
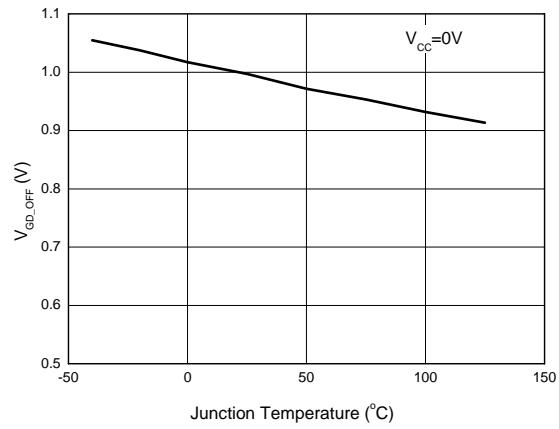




Figure 19. Gate-driver Output High Saturation

HIGH PERFORMANCE POWER FACTOR CORRECTOR AP1662**Typical Performance Characteristics (Continued)**Figure 20. Gate-driver Clamp vs. T_J Figure 21. UVLO Saturation vs. T_J

HIGH PERFORMANCE POWER FACTOR CORRECTOR

AP1662

Functional Block Description

AP1662 is a high performance power factor correction controller which operates in DCM boundary conduction mode. The PFC converter's switch will be turned on when the inductor current reduces to zero and turned off when the sensed inductor current reaches the required reference which is decided by the output of multiplier.

Error Amplifier and Over-Voltage Protection

The error amplifier regulates the PFC output voltage. The internal reference on the non-inverting input of the error amplifier is 2.5V. The error amplifier's inverting input (INV) is connected to an external resistor divider which senses the output voltage. The output of error amplifier is one of the two inputs of multiplier. A compensation loop is connected outside between INV and the error amplifier output. Normally, the compensation loop bandwidth is set very low to realize high power factor for PFC converter.

To make the over voltage protection fast, the internal OVP function is added. If the output over voltage happens, excess current will flow into the output pin of the error amplifier through the feedback compensation capacitor. (see Figure 22) The AP1662 monitors the current flowing into the error amplifier output pin. When the detected current is higher than $40\mu A$, the dynamic OVP is triggered. The IC will be

disabled and the drive signal is stopped. If the output over voltage lasts so long that the output of error amplifier goes below 2.25V, static OVP will take place. Also the IC will be disabled until the output of error amplifier goes back to its linear region. R1 and R2 (see Fig. 22) will be selected as below:

$$\frac{R1}{R2} = \frac{V_o}{2.5V} - 1$$

$$R1 = \frac{\Delta V_{OVP}}{40\mu A}$$

Multiplier

The multiplier has two inputs. One (Pin 3) is the divided AC sinusoidal voltage which makes the current sense comparator threshold voltage vary from zero to peak value. The other input is the output of error amplifier (Pin 2). In this way, the input average current wave will be sinusoidal as well as reflects the load status. Accordingly a high power factor and good THD are achieved. The multiplier transfer character is designed to be linear over a wide dynamic range, namely, 0V to 3V for Pin 3 and 2V to 5.8V for Pin 2. The relationship between the multiplier output and inputs is described as below equation:

$$V_{CS} = k \times (V_{COMP} - 2.5) \times V_{MULT}$$

where V_{CS} (Multiplier output) is the reference for the current sense, k is the multiplier gain, V_{COMP} is the voltage on pin 2 (error amplifier output) and V_{MULT} is the voltage on pin 3.

Current Sense/Current Sense Comparator

The PFC switch's turn-on current is sensed through an external resistor in series with the switch. When the sensed voltage exceeds the threshold voltage (the multiplier output), the current sense comparator will become low and the external MOSFET will be turned off. This insures a cycle-by-cycle current mode control operation. The maximum current sense reference is 1.8V. The max value usually happens at startup process or abnormal conditions such as short load.

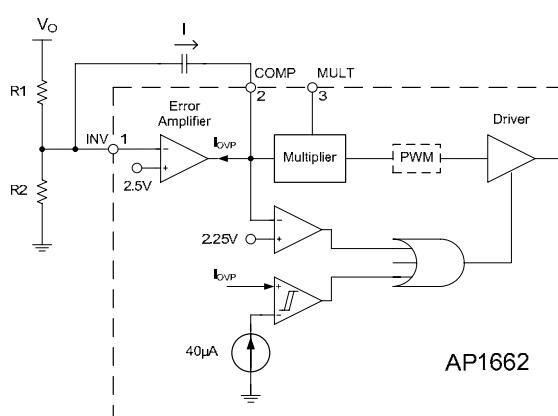


Figure 22. Error Amplifier and OVP Block

HIGH PERFORMANCE POWER FACTOR CORRECTOR

AP1662

Functional Block Description
(Continued)

Zero Current Detection

AP1662 is a DCM boundary conduction current mode PFC controller. Usually, the zero current detection (ZCD) voltage signal comes from the auxiliary winding of the boost inductor. When the

ZCD pin voltage decreases below 1.6V, the gate drive signal becomes high to turn on the external MOSFET. 500mV of hysteresis is provided to avoid false triggering. The ZCD pin can be used for disabling the IC. Making its voltage below 0.15V or short to the ground will disable the device thus reduce the IC supply current consumption.

Typical Application

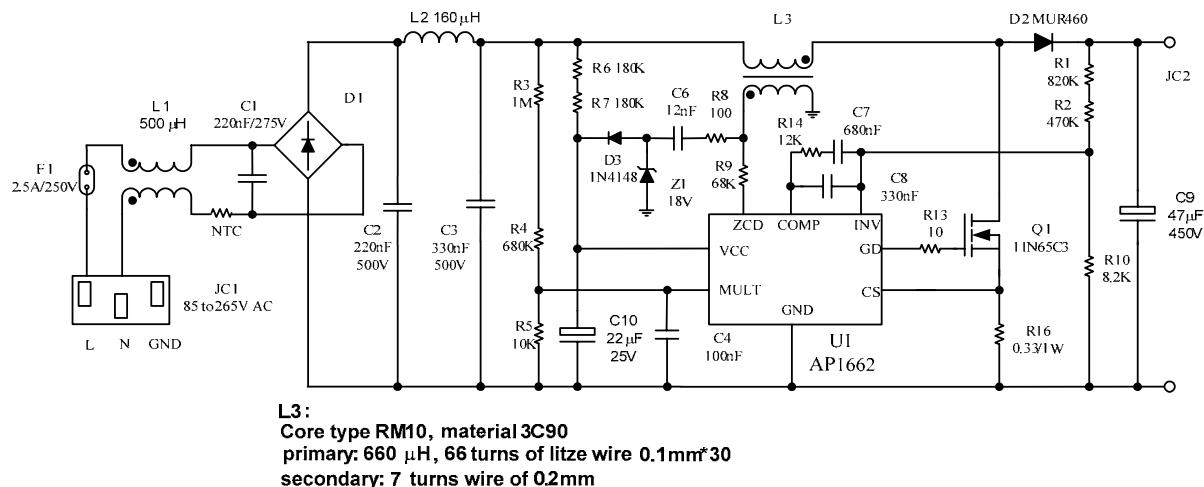
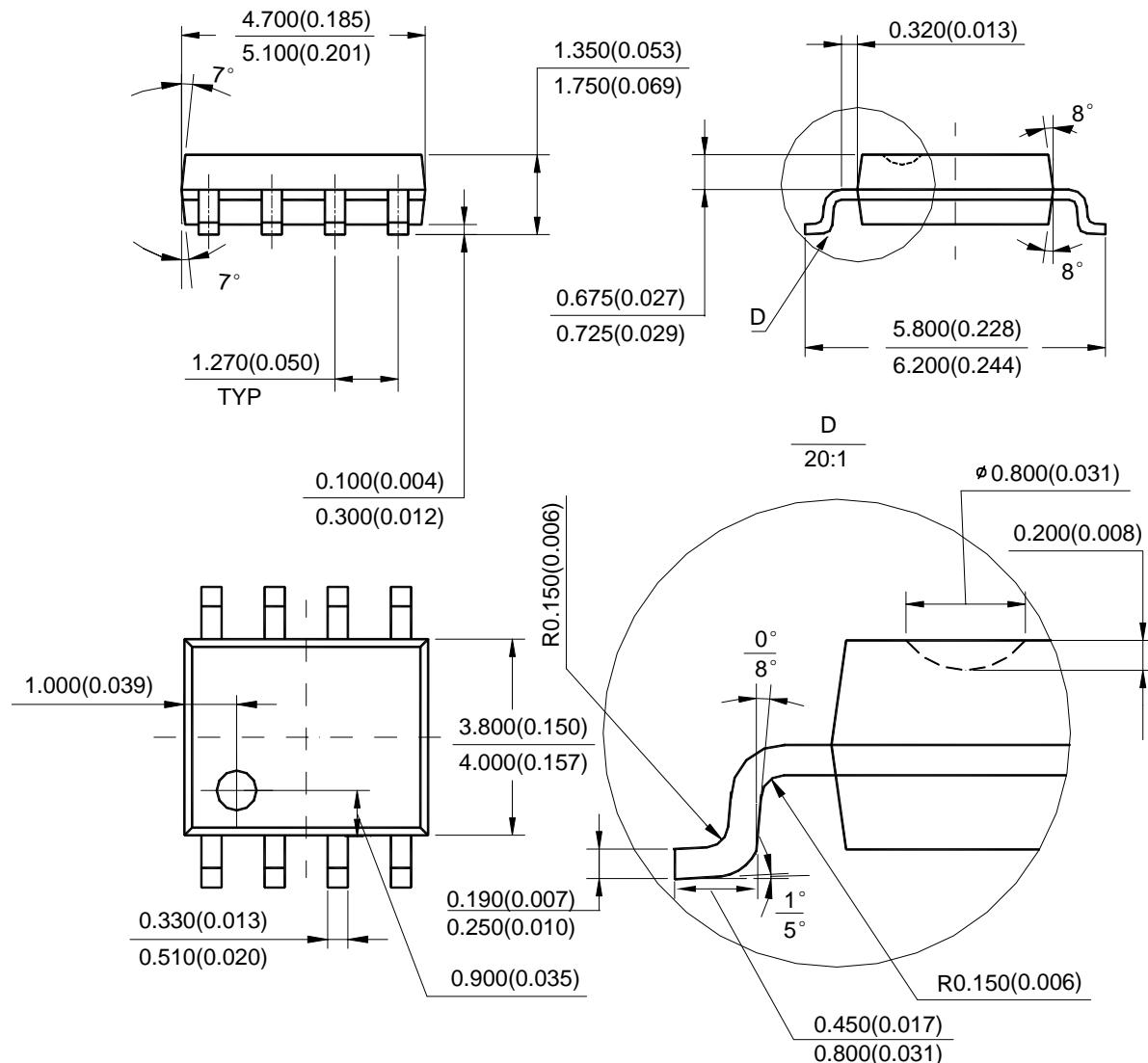


Figure 23. 85 to 265V Wide Range Input 90W PFC Demo Board Electrical Schematic Circuit

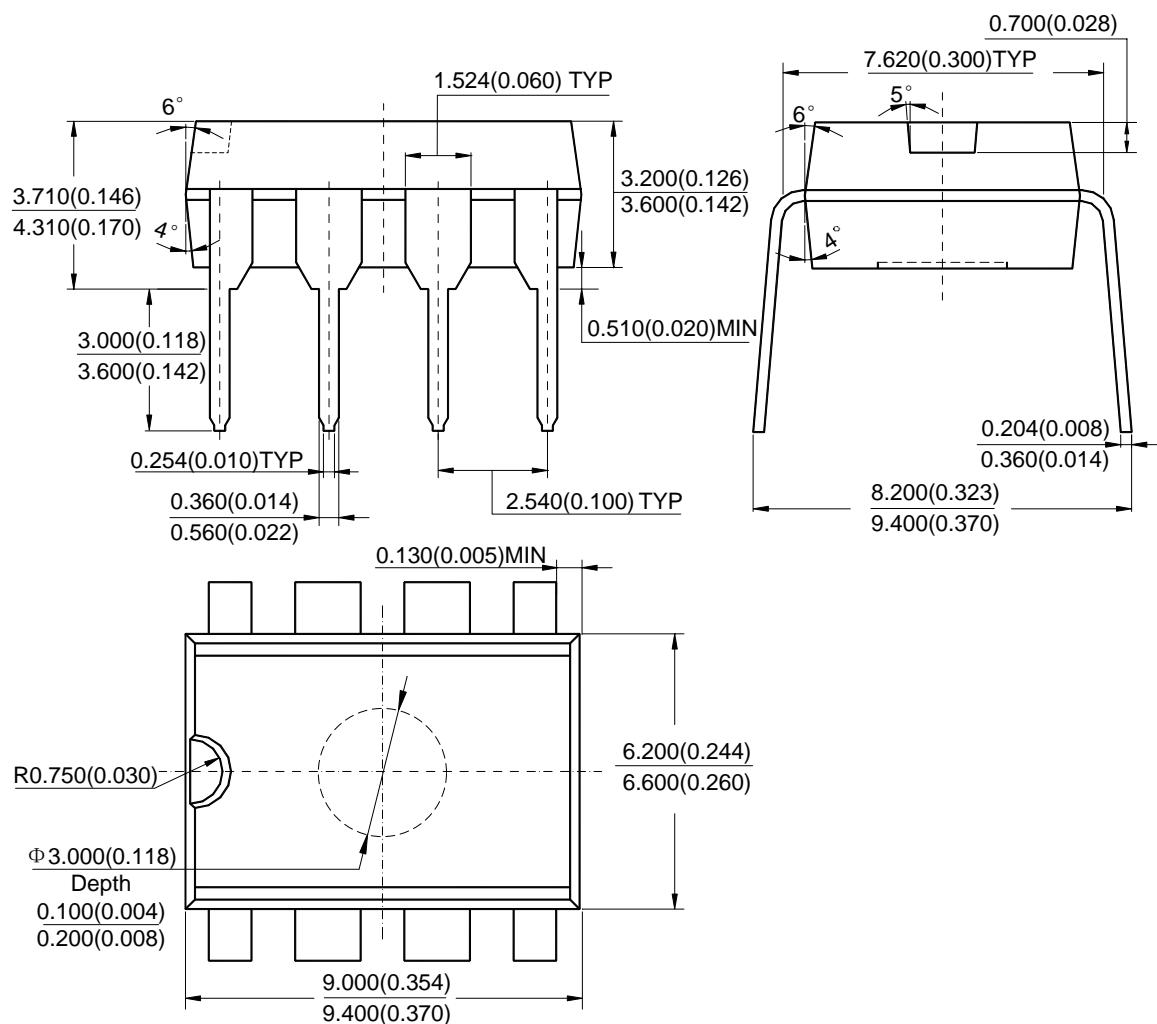

HIGH PERFORMANCE POWER FACTOR CORRECTOR

AP1662

Mechanical Dimensions

SOIC-8

Unit: mm(inch)


Note: Eject hole, oriented hole and mold mark is optional.

HIGH PERFORMANCE POWER FACTOR CORRECTOR AP1662

Mechanical Dimensions (Continued)

DIP-8

Unit: mm(inch)

Note: Eject hole, oriented hole and mold mark is optional.

BCD Semiconductor Manufacturing Limited

<http://www.bcdsemi.com>

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China
Tel: +86-21-24162266, Fax: +86-21-24162277

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd.

800 Yi Shan Road, Shanghai 200233, China
Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office
Unit A Room 1203, Skyworth Bldg., Gaoxin Ave. I.S., Nanshan District, Shenzhen,
China
Tel: +86-755-8826 7951
Fax: +86-755-8826 7865

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited
4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,
Taiwan
Tel: +886-2-2656 2808
Fax: +886-2-2656 2806

USA Office

BCD Semiconductor Corp.
30920 Huntwood Ave. Hayward,
CA 94544, USA
Tel: +1-510-324-2988
Fax: +1-510-324-2788