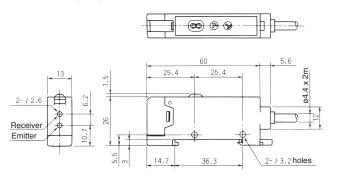
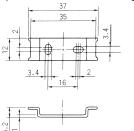
Fiber Optic Analog: SA1C-FK


Fiber Optic: SA1C-FK


- High-speed, miniature photoelectric sensors with analog (4 20mA) and digital output
- Senses gradual color changes
- Available in both red and green LEDs
- Through-beam and reflected-light sensing available
- Ideal for either color mark applications or simple presence and absence applications requiring analog output
- Compact size allows for DIN rail mounting
- Fiber optic units available to address specific application needs
- Simple to install
- IP66 protection rating

Built on the foundation of SA1C-F, SA1C-FK is ideal for either color mark applications or simple presence and absence applications requiring analog output.

Featuring analog and digital output, this sensor comes in through-beam or reflected-light sensing styles.

Panel Mounting Bracket (attachment) Not required for DIN Rail mounting

Mounting Hole Layout

Fiber Optic: SA1C-FK

(when using a panel mounting bracket)

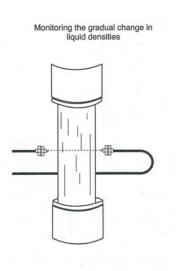
Specifications

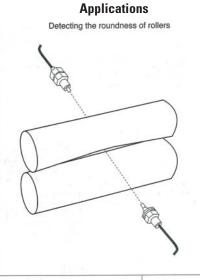
opcomeations		SA1C-FK3	SA1C-FK3G
Limbt Course Flowers	Red LED	√	-
Light Source Element	Green LED	-	V
Sensing Distance	Depends on the fiber unit (see page 173)	√	$\sqrt{}$
Power Voltage	12 to 24V DC (Operating voltage: 10 to 30V DC) ripple 10% maximum	√	$\sqrt{}$
Current Draw	80mA maximum	√	√
Analog Current Output	4 to 20mA, 5V DC maximum ¹	√	$\sqrt{}$
Digital Output	NPN open collector 30V DC, 100mA maximum,1.5V maximum with short circuit protection	√	√
Operation Mode	Dark ON (connect MODE line to GND line) Light ON (connect MODE line to power line)	√	$\sqrt{}$
Response	0.5ms maximum ²	√	√
Indicator	Operation LED: Red, Stable LED: Green	√	$\sqrt{}$
Detectable Object	Translucent object, opaque object	√	V
Hysteresis	20% maximum (using reflex fiber unit)	√	$\sqrt{}$
Sensitivity	4-turn adjustment	√	√
Operation Point Control	1 turn	√	$\sqrt{}$
Receiver Element	Photo diode	√	√
Operating Temperature	−25 to +55°C (performance will be adversely affected if the sensor becomes coated with ice)	√	$\sqrt{}$
Storage Temperature	-30 to $+70$ °C (performance will be adversely affected if the sensor becomes coated with ice)	√	√
Operating Humidity	35 to 85% RH (avoid condensation)	√	$\sqrt{}$
Extraneous Light Immunity	Sunlight: 10,000 lux maximum; Incandescent light: 3,000 lux (at the receiver)	√	√
Noise Resistance	Normal mode: 500V (50ns to 1µs, 100Hz: Using a noise simulator) Common mode: 300V (50ns to 1µs, 100Hz: Using a noise simulator)	√	V
Insulation Resistance	Between live and dead parts: $20M\Omega$ minimum, with 500V DC megger	√	V
Dielectric Strength	Between live and dead parts: 1,000V, 1 minute	√	$\sqrt{}$
Vibration Resistance	Damage limits: 10 to 55Hz; Single amplitude: 0.75mm 20 cycles in each of 3 axes	√	√
Shock Resistance	Damage limits: 500 m/sec ² 10 cycles in each of 3 axes	√	$\sqrt{}$
Degree of Protection	IP66—IEC Pub 529	√	√
Cable	Cable type: Ø4.4mm 5-core vinyl cabtyre cable 0.2mm2, 6'-6-3/4" (2m) long	√	$\sqrt{}$
Material	Housing: PBT	√	V
Accessories	Mounting bracket, adjusting screwdriver, load resistor (249 Ω) for converting analog amperage to voltage (1 to 5V)	√	V
Interference Prevention	Up to 2 units can be installed in close proximity. For analog output, interference prevention is not possible.	√	V
Weight	Approximately 75g	$\sqrt{}$	$\sqrt{}$

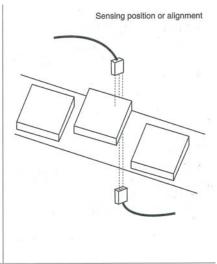
[.] Analog current output specification is based on the power voltage range from 12 to 24V DC ($\pm 10\%$). Use the attached resistor (249 Ω , 1/4W) as a load resistance for converting analog output to voltage.

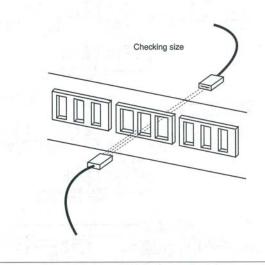
^{2.} Response time for analog current output is between 10% and 90% of the rise or fall of the voltage signal when using a 249Ω resistor.

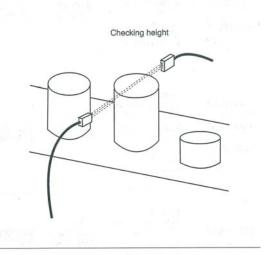
Part Numbers

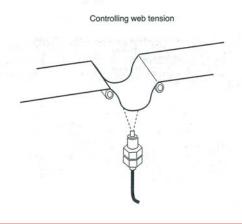

Function	Light Source Element	Output	Part Number
	Red LED	A L V V NOV	SA1C-FK3
	Green LED	Analog output + NPN output	SA1C-FK3G

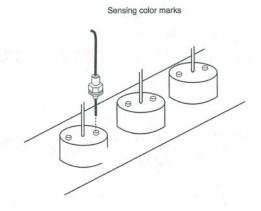

For information on accessories, see page 171.




Function is determined by the fiber optic unit used.


Fiber Optic: SA1C-FK





Universal Sensors

Accessories

Reflectors

Reflectors			
Appearance	Item	Use with	Part Number
	200 x 300mm self-adhesive reflective tape		S94000600 (model RT3870)
	200 x 300mm self-adhesive reflective tape		S94000900 (model RT3970)
575356¥	60 x 40mm self-adhesive reflective tape		S94000604 (model RT3970)
	Ø 23mm prismatic reflector with Ø 31mm support		S940700023 (model R1)
	Ø 48mm prismatic reflector with Ø 63mm support		S940700048 (model R2)
	18 x 54mm prismatic reflector with 22 x 82mm support		S940700972 (model R3)
	47x 47mm prismatic reflector with 51.5 x 61mm support		95A151010 (model R4)
	Ø 75mm prismatic reflector with Ø 82mm support	S62	S940700075 (model R5)
	36 x 55mm prismatic reflector with 40.5 x 60mm support		95A151020 (model R6)
	38 x 40mm microprism reflector with 51 x 60.7mm support		95A151050 (model R7)
	9.7 x 19mm microprism reflector with 13.8 x 23mm support		95A151060 (model R8)
	Ø 23mm prismatic reflector with Ø 25mm self-adhesive support		95A151080 (model R9)
	36 x 176mm prismatic reflector with 41 x 181mm support		S19120000 (model R10)
	146 x 15mm prismatic reflector with 150 x 18mm support		95A155050 (model R11)

Reflectors

Appearance	Item	Use with	Part Number
	Ø 48mm prismatic reflector with Ø 63mm support	S51, S60,	95A151090 (model R20)
	Ø 48mm prismatic reflector with CH.52mm hexagon support	S62	S940710048 (model S12)
	Standard reflector		IAC-R5
	Small reflector		IAC-R6
西	Large reflector	SA1E	IAC-R8
	Narrow (rear/side mounting)		IAC-R7M
	Narrow (rear mounting)		IAC-R7B
	Tape (35 x 40mm)		IAC-RS1
	Tape (70 x 80mm)		IAC-RS2

Brackets

Appearance	Item	Use with	Part Number
	M18/14 mounting bracket		95ACC5230 (model ST-5010)
0>	M18 mounting bracket		95ACC5240 (model ST-5011)
0	M18 mounting bracket		95ACC5250 (model ST-5012)
	M18 mounting bracket	951	95ACC5270 (model ST-5017)
	M18/14 adjustable mounting support (sen- sor not included)	mounting support (sen-	
	M18 jointed support		95ACC5220 (model JOINT-18)
	support with micromet- ric regulation for M18 tubular		95ACC1380 (model MICRO-18)

Brackets Part Appearance Item Use with Number G5000001 (model Front protection MEK-PROOF) 1pc adjustable support 895000006 (model S51 for M18 tubular SWING-18) 2 pcs fixed support for 95ACC1370 M18 tubular (model SP-40) 95ACC5350 (model Protection bracket with JOINT-60) jointed support S60 95ACC1320 S60 mounting bracket (model ST-504) 95ACC5310 Protection bracket (model ST-5018) 95ACC5320 Protection bracket (model ST-5019) 95ACC5330 Mounting bracket (model ST-5020) S60, S62, S65 95ACC5340 Mounting bracket (model ST-5021) 95ACC2410 Protection bracket (model ST-5053) S62 95ACC2420 Protection bracket (model ST-5054) Vertical mounting SA9Z-K01 bracket Horizontal mounting SA9Z-K02 bracket Cover mounting SA9Z-K03 bracket Reflector mounting SA1E IAC-L2 bracket Reflector mounting IAC-L3 bracket

Reflector mounting

bracket

Slits

Appearance	Item	Slit Size	Use with	Part Number	Min. Order Oty
		0.5mm x 18mm		SA9Z-S06	
	Vertical slit	1.0mm x 18mm		SA9Z-S07	
	OTTE	2.0mm x 18mm		SA9Z-S08	
		0.5mm x 6.5mm		SA9Z-S09	
	Horizontal slit	1.0mm x 6.5mm	SA1E	SA9Z-S10	2
	OTT	2.0mm x 6.5mm		SA9Z-S11	
	Round slit	ø0.5mm		SA9Z-S12	
		ø1.0mm		SA9Z-S13	
		ø2.0mm		SA9Z-S14	

Air Blower Mounting Blocks

Appearance	Item	Use with	Part Number
	Air blower mounting block	SA1E	SA9Z-A02

Connector Cables (for connector model sensors)

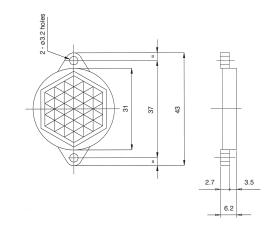
Appearance	Number of Core Wires	Type & Length	Use with	Part No.
SM TEN	4	Straight, 5m	S51, S60,	CS-A1-02-G-05
•	4	Right angle, 5m	S62	CS-A2-02-G-05
		Straight, 2m		SA9Z-CM8K-4S2
	,	Straight, 5m	0445	SA9Z-CM8K-4S5
	4	Right angle, 2m	SA1E	SA9Z-CM8K-4L2
		Right angle, 5m		SA9Z-CM8K-4L5
		2m		SA9C-CA4D2
photo not available	4	5m	SA1C-F	SA9C-CA4D5
	4	2m	3A16-F	SA9C-CA4D2S
		5m		SA9C-CA4D5S

photo not available

IAC-L5

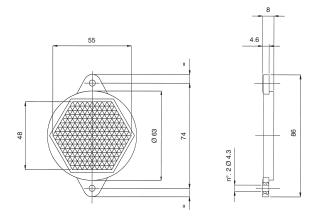
Diffuse-Reflected Light Fiber Optic Units - SA9F

Appearance	Part Number	Description	Use with	Range
	SA9F-DS31 No sleeve SA9F-DS32 3.54" (90mm) sleeve SA9F-DS33 1.77" (45mm) sleeve	Straight: Two fibers ø1mm (0.04") Threaded mount: ø6mm (M6) Detects: ø0.03mm (0.0012") minimum object	SA1C-FK3 SA1C-FK3G SA1C-F	60mm (2.36") 7mm (0.28")
	SA9F-DC31 No sleeve SA9F-DC32 3.54" (90mm) sleeve SA9F-DC33 1.77" (45mm) sleeve (All three not compatible with green LED)	Coiled: Two fibers ø1mm (0.04") Threaded mount: ø6mm (M6) Detects: ø0.03mm (0.0012") minimum object	SA1C-FK3 SA1C-FK3G SA1C-F	25mm (0.98") —
	SA9F-DT11 No sleeve SA9F-DT12 3.54" (90mm) sleeve SA9F-DT13 1.77" (45mm) sleeve (All three not compatible with green LED)	Straight: Two fibers ø0.5mm (0.02") Threaded mount: ø3mm (M3) Detects: ø0.03mm (0.0012") minimum object	SA1C-FK3 SA1C-FK3G SA1C-F	20mm (0.78") —
	SA9F-DD31	Coaxial: Core ø1mm (0.04") + 16 fibers: ø0.26mm (0.01") Threaded mount: ø6mm (M6) Detects: ø0.03mm (0.0012") minimum object	SA1C-FK3 SA1C-FK3G SA1C-F	60mm (2.36") 7mm (0.28")
	SA9F-DM74 1 row = 32 fibers SA9F-DM75 2 rows = 16 each (Not compatible with green LED)	Multicore: 32 fibers ø0.26mm (0.010") Detects: ø0.06mm (0.0024") minimum object	SA1C-FK SA1C-FK3G SA1C-F (not compatible with SA9F-DM75, SA9F-DM76)	60mm (2.36") 4mm (0.16")
	SA9F-DH21 No sleeve SA9F-DH22 3.54" (90mm) sleeve (Both not compatible with green LED)	Heat-resistant glass: Two fibers ø0.7mm (0.03") Threaded mount: ø4mm (M4) Detects: ø0.03mm (0.0012") minimum object	SA1C-FK3 SA1C-FK3G SA1C-F	27mm (1.06") —

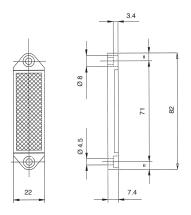


Miscellaneous Accessories

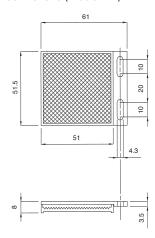
Description	Use with		Part Number	
Fiber cutter	All fiber units except heat resistant	HxLxD: 23x 45 x 8mm (0.91" x 1.77" x 0.31") Included with fiber units; order replacement only	SA9Z-F01	
Set of 2 easy-insert adaptors	SA9F-TT, SA9F-TL, SA9F-DT, and SA9F-DL	ø2.2 x 24mm long (ø0.087" (OD) x 0.945") Included with applicable fiber optic units; order replacement set only	SA9Z-F02	
	SA1C-F through-beam fiber	unit only		
Lens attachment	Sensing ranges: Standard s SA9F-TS21: 1.3m (4' – 3-3/1 SA9F-TC21: 1m (3' – 3-3/8" SA9F-TM21: 1.05m (3' – 5-3	16")) 0.1m (3.94")		
cens attachment for long-range detection of opaque objects, minimum size: Ø 0.14" (3.5mm)	Sensing ranges: Standard s SA9F-TS21: 0.135m (5.31") SA9F-TC21: 0.1m (3.94") SA9F-TM21: 0.13m (5.12")	peed green LED:	SA9Z-F11	
	Sensing ranges: High-speed red LED: SA9F-TS21: 0.4m (5.75") SA9F-TC21: 0.3m (1.81") SA9F-TM21: 0.38m (4.96")			
	SA1C-F through-beam fiber unit only		SA9Z-F12	
Side view attachment to rotate axis by 90° for detection of opaque objects,	Sensing ranges: Standard s SA9F-TS21: 200mm (7.87") SA9F-TC21: 130mm (5.12") SA9F-TM21: 160mm (6.30")			
minimum size: Ø 0.14" (3.5mm)	Sensing ranges: High-speed SA9F-TS21: 50mm (1.97") SA9F-TC21: 35mm (1.38") SA9F-TM21: 40mm (1.57")			
Side-on attachment	SA1C-F diffuse-reflected lig	ht fiber unit only		
for narrow clearance, Range: 1.26" (32mm), for detection of transparent or opaque objects	Sensing ranges: Standard s SA9F-TS21: 35mm (1.38") SA9F-TC21: 30mm (1.81") SA9F-TM21: 35mm (1.38")	SA9Z-F13		
	SA1C-F through-beam fiber unit only			
Attachment for high-accuracy:	Sensing ranges: Standard speed red LED:			
Range: 0.4" ± 0.04" (10mm ± 1mm), for detection of transparent or opaque objects	SA9F-TS21: SA9F-TC21: SA9F-TM21: 10mm ± 1m (0.394" ± 0.		SA9Z-F14	

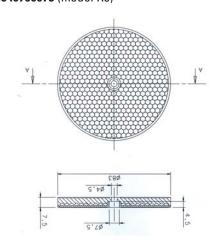

Communication & Networking

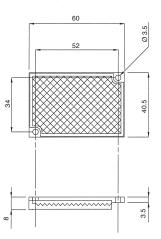
\$940700023 (model R1)



Dimensions (mm) Reflectors


S940700048 (model R2), 95A151090 (model R20)

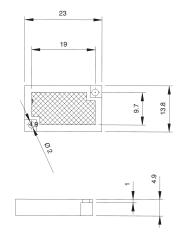

\$940700972 (model R3)

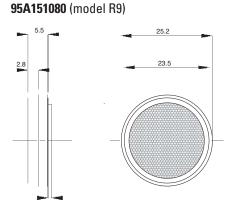

95A151010 (model R4)

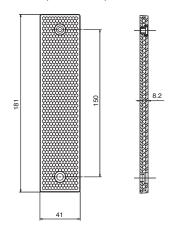
\$940700075 (model R5)



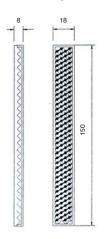
95A151020 (model R6)



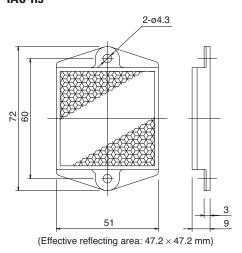

Dimensions (mm)

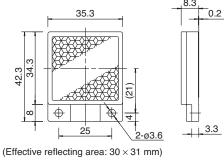


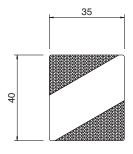
95A151060 (model R8)



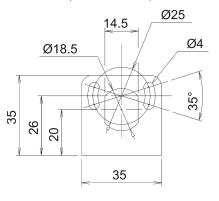
\$19120000 (model R10)


95A155050 (model R11)

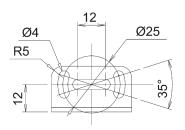

S940710048 (model S12)


IAC-R5

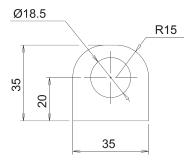
IAC-R6

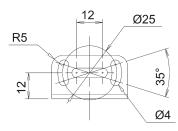


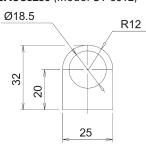

IAC-RS1

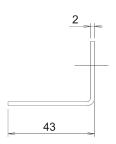


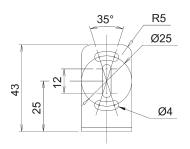
Brackets

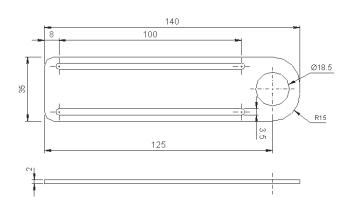

95ACC5230 (model ST-5010)

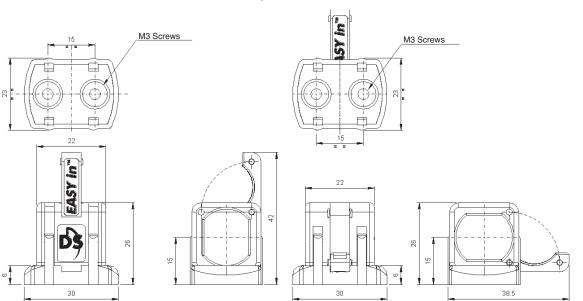



95ACC5240 (model ST-5011)

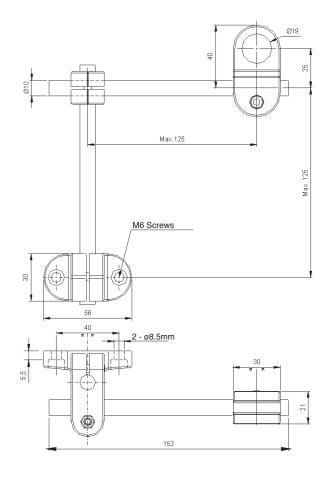


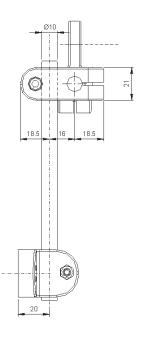



95ACC5250 (model ST-5012)



95ACC5270 (model ST-5017)



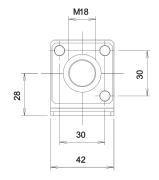


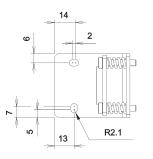
95ACC5300 (model S50-EASY-IN

95ACC5220 (model JOINT-18)

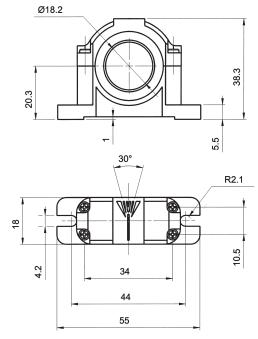
PLCs

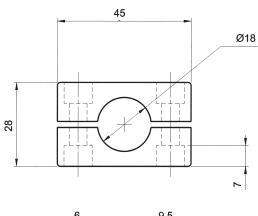
Operator Interfaces

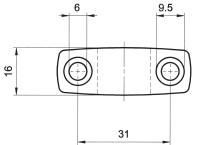

Automation Software


Power Supplies

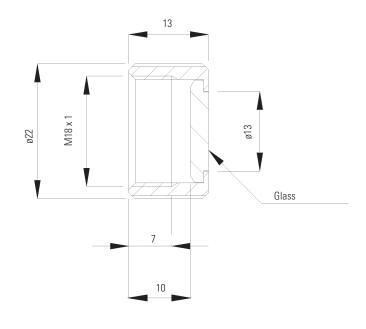
Dimensions (mm)


95ACC1380 (model MICRO-18)

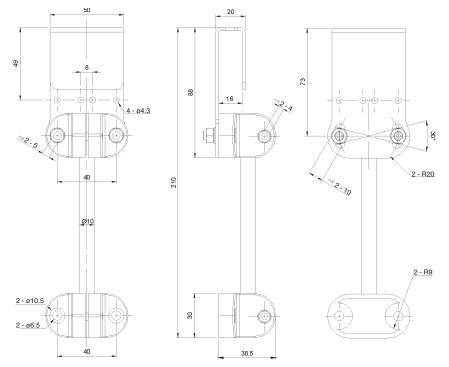




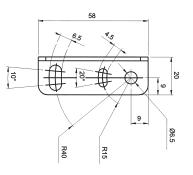
895000006 (model SWING-18)

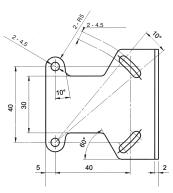


95ACC1370 (model SP-40)

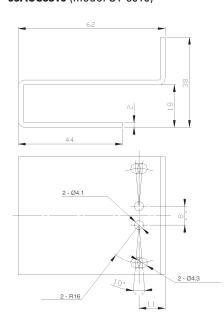


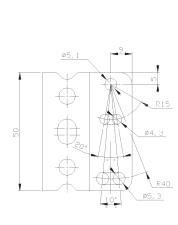
G5000001 (model MEK-PROOF)

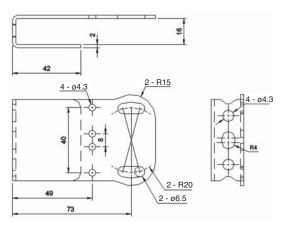




95ACC5350 (model JOINT-60)




95ACC1320 (model ST-504)

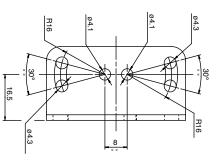


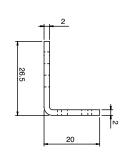
95ACC5310 (model ST-5018)

95ACC5320 (model ST-5019)

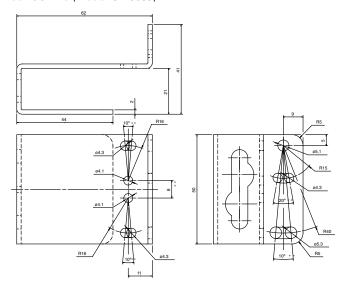
PLCs

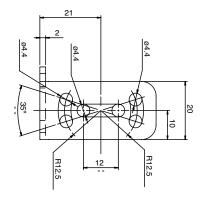
Operator Interfaces

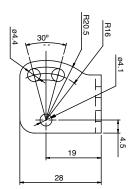


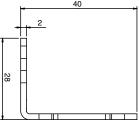

Automation Software

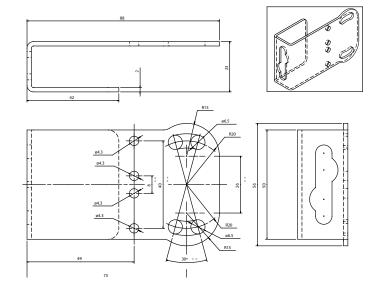
Power Supplies

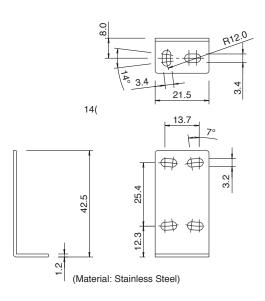

95ACC5330 (model ST-5020)



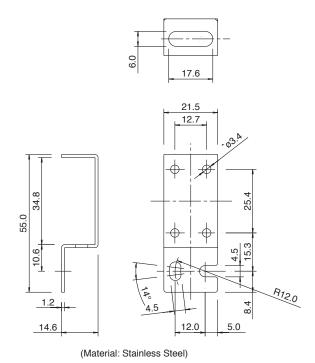



95ACC2410 (model ST-5053)

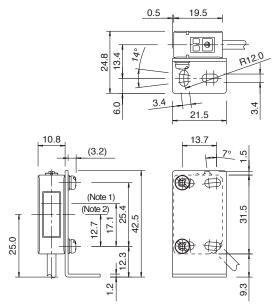

95ACC5340 (model ST-5021)



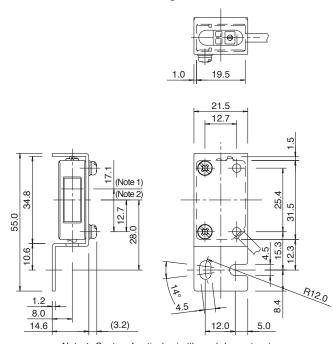
95ACC2420 (model ST-5054)



Dimensions (mm)


SA9Z-K01

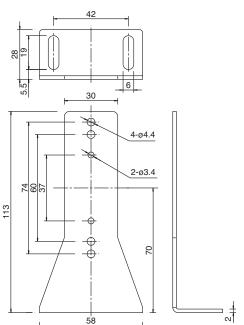
SA9Z-K02


SA1E with SA9Z-K01 Mounting Bracket

Note 1: Center of optical axis (through-beam type)

Note 2: Center of optical axis (polarized retro-reflective,
diffuse reflective, and small-beam reflective type)

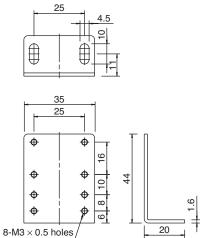
SA1E with **SA9Z-K02** Mounting Bracket



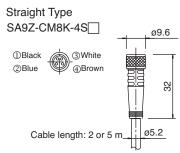
Note 1: Center of optical axis (through-beam type)

Note 2: Center of optical axis (polarized retro-reflective,
diffuse reflective, and small-beam reflective type)

Reflector Mounting Brackets

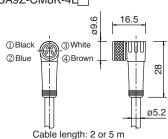

IAC-L2

Accessories


Material: SPCC (zinc chromate plating, black)

IAC-L3

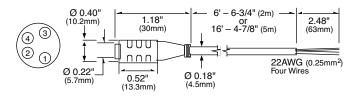
Material: SPCC (zinc plating)


Connector Cable (one side connector)

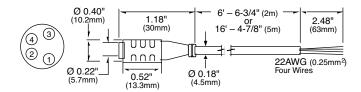
Note: Dielectric strength when installed on the switch

Between live part and mounting bracket: 1000V AC (except between live part and clamping ring)

Right-angle Type SA9Z-CM8K-4L

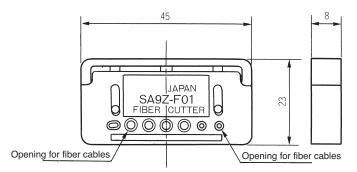


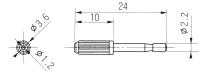
Note: Dielectric strength when installed on the switch


Between live part and mounting bracket: 1000V AC (except between live part and clamping ring)

Cables for SA1C-F

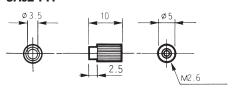
SA9C-CA4D2, SA9C-CA4D5


SA9C-CA4D2S, SA9C-CA4D5S

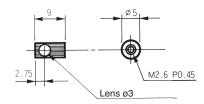


Miscellaneous Accessories

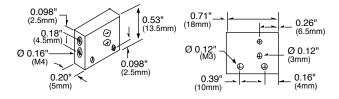
SA9Z-F01



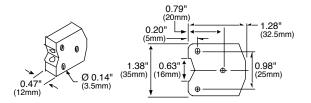
SA9Z-F02


Attachments for Fiber Optic Sensor SA1C-F

SA9Z-F11

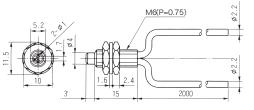

Fiber Optic		Distance (mm)			
Model	SA1C-F*	SA1C-F*G	SA1C-F1*		
SA9F-TS21	1300	135	400		
SA9F-TC21	1000	100	300		
SA9F-TM21	1050	130	380		

SA9Z-F12

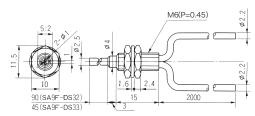


Fiber Optic	Distance (mm)		
Model	SA1C-F*	SA1C-F1*	
SA9F-TS21	200	50	
SA9F-TC21	130	35	
SA9F-TM21	160	40	

SA9Z-F13



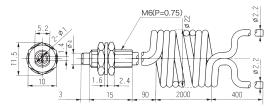
SA9Z-F14



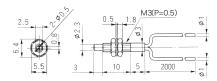
Diffuse-Reflective Light Fiber Optic Units

SA9F-DS31

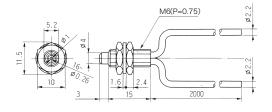
SA9F-DS32, SA9F-DS33

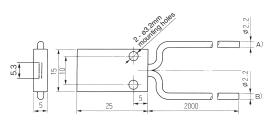

PLCs

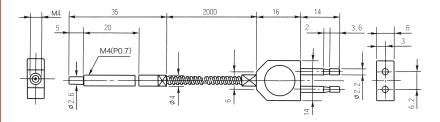
Operator Interfaces


Automation Software

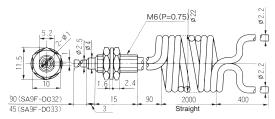
Dimensions (mm)

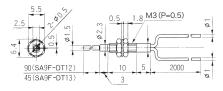

Diffuse-Reflective Light Fiber Optic Units con't SA9F-DC31

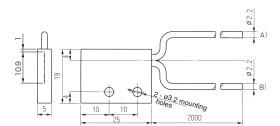

SA9F-DT11

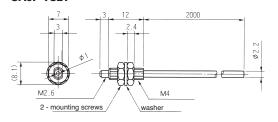

SA9F-DD31

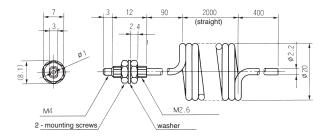
SA9F-DM75

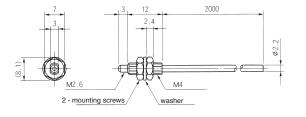

SA9F-DH21

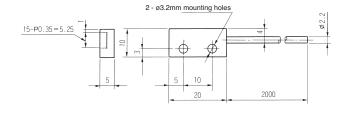

SA9F-DH22


SA9F-DC32, SA9F-DC33

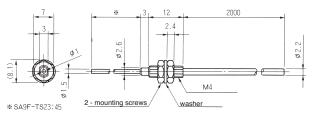

SA9F-DT12, SA9F-DT13


SA9F-DM74

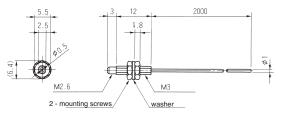

Diffuse-Reflective Light Fiber Optic Units con't SA9F-TS21


SA9F-TC21

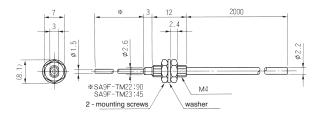
SA9F-TM21

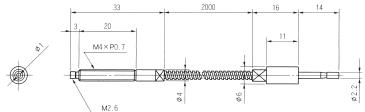


SA9F-TM74



Dimensions (mm)


SA9F-TS23


SA9F-TT11

SA9F-TM22, SA9F-TM23

SA9F-TH21

General Information

Specifications

Do not operate a sensor under any conditions exceeding these specifications.

Do not operate a sensor under current and voltage conditions other than those for which the individual sensor is rated.

Do not exceed the recommended operating temperature and humidity. Although sensors are rated for operation below 0°C, this specification does not imply that performance characteristics will remain constant under prolonged freezing conditions. Continued exposure and the accompanying frost, ice, dew, and condensation which accumulate on the optical surface will adversely affect sensor performance.

To maintain performance characteristics, do not exceed vibration and shock resistance ratings while operating a sensor. In addition, avoid impacts to the sensor housing which are severe enough to adversely affect the waterproof characteristics.

IEC (International Electrotechnical Commission) Ratings

Sensors rated IP67 are resistant to moisture when occasionally immersed in water. Sensors rated IP64 through IP66 are resistant to moisture when occasionally subjected to splashing or when located in the vicinity of turbulent waters. These ratings do not imply that a sensor is intended for use under continual high-pressure water spray. Avoid such applications to maintain optimal sensor performance.

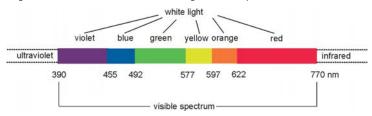
Sensors rated IP64 through IP67 are dust-tight and water-tight. For best performance, avoid using any sensor in an area where it will be subjected to heavy particle blasts and where dust, water, or steam will accumulate on the optical surface.

Start-up

Do not test the housing for dielectric strength and insulation resistance, since the housing is connected to the electronic circuit ground of a sensor. Do not perform dielectric strength and insulation resistance tests on electrical systems without disconnecting photoelectric sensors, as such testing may result in damage to the sensor.

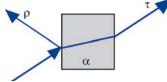
Several lines of sensors, as noted in the individual operation sections, are provided with an internal circuit to turn an output off for a specified amount of time upon power-up. This delay is normal; it prevents a transient state when turning power on.

Optimum Performance


The optical surface of each sensor must be cleaned on a regular basis for continual superior performance. Use a soft cloth dipped in isopropyl alcohol to remove dust and moisture build-up.

IMPORTANT: Do not use organic solvents (such as thinner, ammonia, caustic soda, or benzene) to clean any part of a sensor.

All sensors experience signal inconsistencies under the influence of inductive noise. Do not use sensors in close proximity to transformers, large inductive motors or generators. Avoid using sensors in direct contact with sources of excessive heat. Also avoid operation in close proximity to welding equipment.


Liaht

Visible light is electromagnetic radiation with a wavelength between 390 and 770nm. White light is composed of all the visible spectrum components in equal quantity; the predominance of a specific wavelength determines the color of the light. Light Emitting Diodes (LEDs) are the most common light used in optoelectronics.

Transmission, Absorption, Reflection

When light hits an object three things take place at the same time: reflection (ρ) , absorption (α) and transmission (τ) ; with parameters and ratios that vary according to the object themselves, which are then further

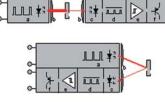
differentiated by material, surface, thickness and/or color. These elements can be detected using a photoelectric sensor.

Extraneous Light

Bright, extraneous light such as sunlight, incandescent lights, or fluorescent lights may impair the performance of sensors in detecting color or light.

Make sure that extraneous light does not exceed recommended levels found in the individual specifications sections. When 500 lux is specified, this is equal to 50 footcandles. The average factory illumination is ordinarily below this level, except in areas where visual inspection is being performed. Only in such brightly lit areas is incident light of particular concern.

Unwanted light interference can often be avoided simply by making sure that the optical receiver is not aimed directly toward a strong light source. When mounting direction cannot be adjusted, place a light barrier between all nearby light sources and the receiver.


Through-beam Sensors

With through-beam sensors, the light emitter and receiver are contained in two different housings that are mounted one in front of the other. The light beam emitted by the emitter directly hits the

receiver; each object that interrupts the heam is detected. This system is used to

obtain large signal differences (when the light directly hits the receiver and when the object interrupts the beam) with the highest Excess Gain and the largest operating distance reaching up to 50m. These sensors can operate in the harshest environmental conditions, such as in the

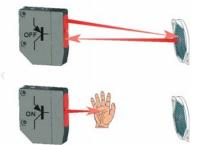
presence of dirt or dust. The disadvantage is that two units have to be wired (an emitter and receiver). The through-beam optic function operates typically in dark mode: the output is activated when the object interrupts the beam between the emitter and receiver.

It is strongly recommended to avoid using any sensor where it will be continually subjected to elements which impair performance or cause corrosive damage to the sensor. In particular, avoid strong vibrations and shocks, corrosive gases, oils and chemicals, as well as blasts of water, steam, dust or other particles.

> 233 USA: 800-262-IDEC Canada: 888-317-IDEC

Automation Software

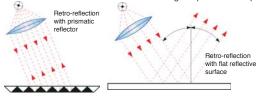
A slit attachment is available to modify the beam size of through-beam sensors. This option is recommended for detecting very small objects (near the size of the smallest object which a sensor can detect) or for eliminating light interference when sensors are mounted in close proximity.


Retro-reflective

Photoelectric sensors with this function contain both the emitter and

receiver inside the same housing. The emitted

light beam is reflected on the receiver due to a prismatic reflector; an object is detected when it interrupts the beam. Compared to the through-beam optic function, the signal difference is reduced (when the light is freely reflected by the reflector and when an object


interrupts the beam) so Excess Gain is reduced and maximum operating distances can reach 12 meters. It is necessary to operate in clean environments without dirt or dust. A retro-reflective sensor typically operates in the dark mode: output is activated when an object interrupts the light beam between the sensor and reflector.

When installing sensors which detect reflected light, make sure that unwanted light reflections from nearby surfaces, such as the floor, walls, reflective machinery or stainless steel, do not reach the optical receiver.

Also, make sure that reflected-light sensors mounted in close proximity do not cause interfering reflections. When it is not possible to maintain the recommended clearance between sensors, as noted in the individual installation sections, provide light barriers between sensors.

Prismatic Reflector

A prismatic reflector is able to reflect incident light in a parallel manner, with a reflection coefficient higher than any other object for angles less than 15°. Typically the operating distance proportionally increases according to the reflector's dimensions. The reflector can rotate the incident light's polarization plane at 90°.

Polarized Retro-reflective

In presence of critical detection of objects with very reflective surfaces, such as shiny metals or mirrored glass, retroreflex sensors with polarized filters have to be used. In polarized retroreflex sensors, the emis-

sion light is polarized on a vertical plane, while the reception is obtained only through a polarized filter on a horizontal plane. A prismatic reflector rotates the light plane at a right angle, while the light reflected from the object maintains polarization plane unvaried and is blocked by the filter placed on the receiver. Consequently, only the light reflected by the prismatic reflector is received.

Retro-reflective for Transparent Objects

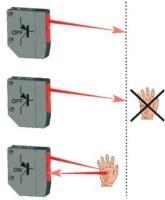
For detection of transparent objects, such as PET bottles or Mylar sheets, a low-hysteresis retro-reflective sensor (capable of detecting small signal differences) can be used. These sensors detect small

signal differences that the light undergoes when it passes through a transparent object.

Diffuse Proximity

Photoelectric sensors with this function contain both the emitter and receiver inside the same housing. The emitted light beam is reflected on to the receiver directly by the object, which is detected without the

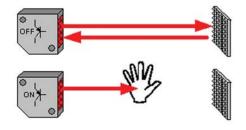
need of prismatic reflectors. Proximity sensors represent the most economic and fastest mounting solution. However, they work with weaker signals compared to retro-reflective sensors. Excess Gain is reduced and operating distance, depending on the object's reflection degree, can only reach 2 meters.


A proximity sensor normally operates in light mode: the output is activated when an object enters the detection area and reflects light emitted by the sensor.

Background Suppression

Background suppression sensors allow the operator to precisely set the maximum detection distance. The operating distance adjustment is not

based upon the receiver's sensitivity, but is obtained through optic triangulation, mechanically acting on the lenses or photoelements angle or electronically using PSD (Position-Sensitive Detectors) receiving systems. Consequently the detection of an object is independent of other objects behind (or in the background), which are suppressed. Moreover, due to this adjustment method, all objects can be detected at the same distance independent of their color.



Distance Sensors

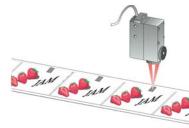
Distance sensors supply an analog signal of 0-10V or 4-20mA proportional to the measurement of the distance between the emitting optics and the target.

The main technologies involved are optic triangulation and time-of-flight. The first allows very precise measurements on short distances, while the second is ideal for medium and long distances.

Slot Sensors

A slot sensor is a version of a through-beam retro-reflective sensor, where the emitter and receiver are

placed opposite each other on the inside of an U-shaped housing. Any target that passes through the internal slot interrupts the beam and is detected. Due to their construction, slot sensors are great for applications with short operating distances. The most typical slot sensor applications are hole or teeth detection on gears, label detection, or edge control and continuity of sheets or tapes. The emission is generally infrared light; however visible red or green


emission versions are available and able to detect references such as registration marks, that present color contrasts on transparent film.

Contrast Sensors

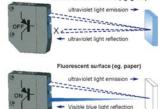
Contrast sensors (also defined as color mark readers) present a proximity function but, instead of detecting only the presence or absence of an object, they are able to distinguish between two

surfaces. This accomplished by detecting the contrast produced by the different reflection degrees. In this manner a dark reference mark (low reflection) can be detected due to the contrast with a lighter surface (high reflection), or vice versa. In the presence of colored surfaces, the contrast is highlighted using an LED, typically red or

green. For general purposes a white light is used because the full light spectrum detects the majority of contrasts. White light emission is obtained through lamps, or LEDs in most sensors, enabling the detection of very slight contrasts due to different surface treatments, even of the same material and color.

Contrast sensors are mainly used in automatic packaging machines for registration mark detection to synchronize folding, cutting and welding.

Contrast on White Background			
Mark Color	Red LED	Green LED	White LED
Red	no	medium	medium
Orange	low	medium	medium
Yellow	low	low	medium
Green	high	no	medium
Blue	high	medium	high
Violet	medium	high	high
Brown	low	medium	high
Black	high	high	high
Gray	medium	medium	medium
White	no	no	yes


Luminescence Sensors

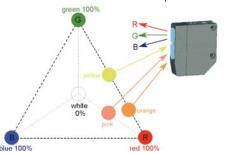
'Luminescence' is defined as visible light emission from fluorescent or phosphorous substances, due to electromagnetic radiation absorption. Luminescence sensors emit ultraviolet light, which is reflected at a

General Information

higher wavelength (minor energy) on a fluorescent surface, shifting into the visible light spectrum. Ultraviolet light emission is obtained using special lamps, or LEDs in sensors. UV emission is modulated and the visible light reception is synchronized. Maximum immunity against external interferences, such as reflections caused by very shiny surfaces, is

obtained. In addition, fluorescent targets, invisible to the human eye, can be detected. Luminescence sensors are used in various industries: detecting labels on glass or mirrors in pharmaceutical and cosmetic fields; selecting tiles marked with fluorescent marks in the ceramic industry; determining the presence of fluorescent glues on paper for automatic packaging; distinguishing cutting and sewing guides in textile manufacturing; checking fluorescent paints or lubricants in mechanical production.

Color Sensors



The color of an object depends on all the color components of the incident light which are being reflected, eliminating those which have been absorbed. The dominant color is defined as 'hue' and depends on

the reflected light's wavelength. 'Saturation' indicates the pureness of the color with respect to white and is represented as a percentage. Hue and saturation together are defined as 'chromaticity'.

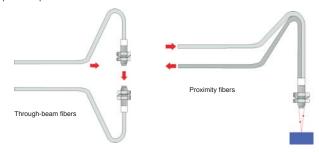
are defined as 'chromaticity'.

Color or chromatic sensors have a proximity function with generally three RGB LEDs for light emission. The color of

an object is identified according to the different reflection coefficients obtained with red (R), green (G) and blue (B) light emissions. More simply, yellow can be identified by R=50% G=50% B=0% reflections; orange by R=75% G=25% B=0% reflections; pink by R=50% G=0% B=0% reflections; but possible combinations are really infinite. Color sensors operate only on reflection ratios and are not influenced by light intensity, defined as 'brilliance 'or 'luminance'. There is a wide range of applications, ranging from quality and process controls, to automatic material handling for identification, orientation and selection of objects according to color.

Fiber Optic Sensors

Universal functions of through-beam and proximity sensors, as well as application functions ranging from contrast and luminescence to color detection, can be obtained using fiber optic sensors. The optical fibers


can be thought of as cables that transport light and can be used to place the sensor's optics in small spaces, or to detect very small objects.

An optical fiber is composed of cylindrical glass (or a plastic core), surrounded by Teflon or Silicon coating. The difference between the core and the coating refraction indexes allows the light to be diffused inside the fiber in a guided manner. The coating is covered by a plastic or metal sheath, which has an exclusively mechanical protection function. Fibers with a glass core and metal sheath are suitable for very high temperature uses, or for particular mechanical requirements. Plastic fibers, offering great adaptability, are the most diffused in all

Sensors

applications. Plastic optic fibers have a standard 2.2mm external diameter and generally have a cylindrical threaded metal head on the end used for mechanical mounting. These fibers are usually 1 and 2 meters in length as reductions in performance become significant with lengths over 5 meters. Plastic optic fibers can be shortened using a special fiber-cutting tool, but, it can only be used a limited number of times. Cutting the fiber with a non-sharp or non-perpendicular blade will reduce operating distance. High temperature, extra-flexible or high efficiency plastic optic fibers are also available.

Laser Sensors

A LA

A LASER (Light Amplification by Stimulated Emission of Radiation) is an electronic device, such as a diode, that converts an energy source into a very thin and concentrated light beam, suitable for detecting

very small objects or to reach very long operating distances. With reference to the safety of laser radiation (according to the EN60825-1 European standard)

class 1 requires that the laser device is safe under reasonable operating conditions and is not dangerous for people in any situation; while class 2 states that the eye cannot be protected just by looking away or blinking, thus precautions must be adopted to avoid staring into the beam.

IMPORTANT: Always consider safety when installing a laser sensor of any kind. Make sure that the laser beam cannot inadvertently shine into the eyes of people passing by or working in the vicinity. See safety information on page 232.

Mounting

Mounting brackets and hardware are included with sensors, where applicable. Use the hardware for mounting, along with washers and spring washers or lock nuts. Do not overtighten hardware. Overtightening causes damage to the housing and will adversely affect the waterproof characteristics of the sensor.

Best results can be obtained when the sensor is mounted so that the object sensed is in the center of the beam, rather than when the object is located near the edges of the sensing window. In addition, the most reliable sensing occurs when the majority of the objects being sensed are well within the sensing range, rather than at the extreme near and far limits.

Wiring

Avoid running high-voltages or power lines in the same conduit with sensor signal lines. This prevents inaccurate results or damage from induced noise. Use a separate conduit when the influence of power lines or electromagnetic equipment may occur, particularly when the distance of the wiring is extended.

IMPORTANT: Connect the sensor cables and wires as noted in the individual Wiring sections. Failure to connect as shown in wiring diagrams will result in damage to the internal circuit.

When extending sensor cables and wires, make sure to use cables equal or superior to that recommended in the individual specifications sections.

When wiring terminals, be sure to prevent contact between adjoining terminals. When using ring or fork lug terminals, use the insulated sleeve style only. Each sensor terminal can accept only one ring or fork lug terminal.

Power Supply

Noise resistance characteristics are improved when a sensor is grounded to the 0V power terminal. If the 0V power terminal is not at ground potential, use a ceramic $0.01\mu F$ capacitor which can withstand 250V AC minimum.

When using a switching power supply, be sure to ground the FG terminal to eliminate high-frequency noise. The power supply should include an insulating transformer, not an autotransformer.

The compact PS5R-A power supply is the perfect companion item for most IDEC sensors. This power supply is only 1.77" (45mm) wide, 3.15" (80mm) tall, and 2.76" (70mm) deep. Call an IDEC representative for more details.

Part Number	Output Ratings
PS5R-A12	12V DC, 0.62A
PS5R-A24	24V DC, 0.32A

Miscellaneous

Strong magnetic fields may detract from the accuracy of the sensing measurements. Avoid mounting a sensor directly to machinery, since the housing is connected to the electronic circuit ground of the sensor. If it is necessary to mount a sensor on machinery, use the insulating plate and sleeve provided.

Attenuation: Reduction of beam intensity as a result of environmental factors such as dust, humidity, steam, etc.

Dark on: Output energized when light is not detected by the receiving element. For through-beam sensors, light from the projector is not detected by the receiver when an object is present. For reflected light sensors, light is not detected when it is not reflected from an object surface.

Diffuse-reflected light sensors: Sensors that detect all scattered and reflected light. Light reflected from nearby surfaces, as well as the intended object surface, is detected. Diffuse-reflected light sensors are often called "proximity switches," since they switch when any object is near. Also use to detect color contrast when colors reflect light intensity differently (green LED recommended for this application).

EEPROM: Acronym which stands for electronically erasable, programmable, read only memory.

Excess gain: Ratio of optical power available at a given projector-to-receiver range divided by the minimum optical power required to trigger the receiver.

Extraneous light: Incident light received by a sensor, not related to the presence or absence of an object being detected. Extraneous light is usually unwanted background light such as sunlight and incandescent lamps in close proximity.

ΔE: The measurement of color difference as a three-variable function, located on an XYZ axis of light, hue, and chroma values.

Hysteresis: The lag in response shown by an object in reacting to changes in the forces affecting it. Operating point and release point at different levels. For solid state sensors, this is accomplished electrically. For mechanical switches, it results from storing potential energy before the transition occurs.

Light on: Output energized when light is detected by the receiving element. For through-beam sensors, light from the projector is detected by the receiver when an object is not present. For reflected light sensors, light is detected when it is reflected from an objects surface.

Linearity: The measure of the extent to which a certain response is directly proportional to the applied excitation.

NPN/PNP: Types of open collector transistors. NPN is a sink transistor; output on establishes negative potential difference. PNP is a source transistor; output on establishes positive potential difference.

Polarizing: Filtering out all reflected light except that which is projected in one plane only. Polarized retro-reflected light sensors detect the light from cornercube type reflectors when an object is not present.

Reflected-light sensors: Sensors with the projector and receiver in one housing. Light is projected by the light source, and reflected light is received by the optical surface. Includes diffuse-reflected, retro-reflected, limited-reflected, and spot-reflected sensors.

Repeatability: Ability of a sensor to reproduce output readings consistently when the same value is applied consecutively, in the same direction, for a specified number of cycles, or for a specified time duration.

Resolution: Overall dimension of the smallest object which can be detected (when sensing the presence of an object) or smallest increment of distance which can be distinguished with reliable results (when sensing the position of an object).

Response time: Time elapsed between input and output. Total response time is the sum of object detection, amplifier response, and output response times.

Retro-reflective: This type of reflected light sensor uses a special reflector to return projected light when an object is not present. Sensor detects the presence of an object when the light is reflected differently.

Through-beam sensors: Sensors with a separate projector and receiver. The light source from the projector is detected by the receiver, except when an object is present.

Transient: Undesirable surge of current (many times larger than normal current) for a very short period, such as during the start-up of an inductive motor.

USA: 800-262-IDEC Canada: 888-317-IDEC