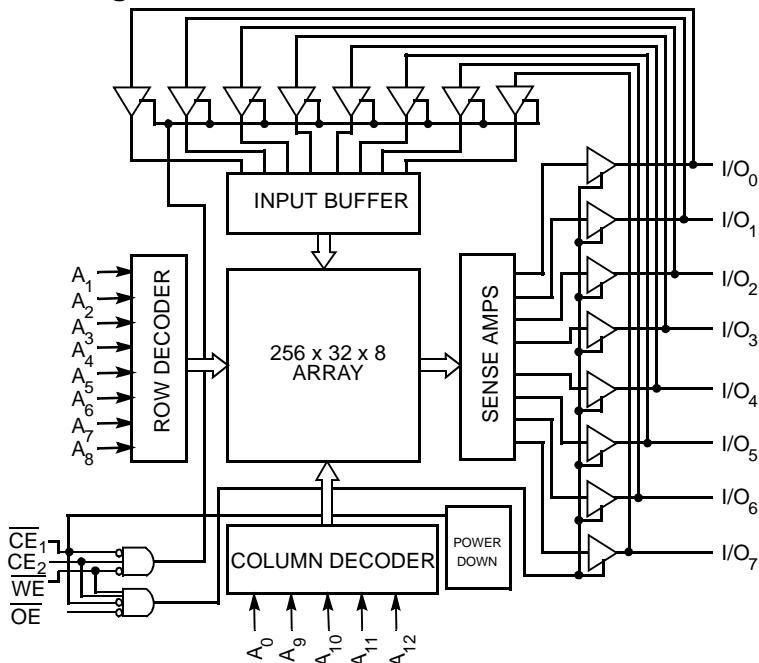


CYPRESS**CY7C186****8Kx8 Static RAM**

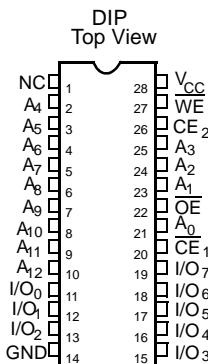
Features

- **High speed**
— 20 ns
- **Low active power**
— 605 mW
- **Low standby power**
— 110 mW
- **CMOS for optimum speed/power**
- **Easy memory expansion with \overline{CE}_1 , \overline{CE}_2 , and \overline{OE} features**
- **TTL-compatible inputs and outputs**
- **Automatic power-down when deselected**

Functional Description


The CY7C186 is a high-performance CMOS static RAM organized as 8192 words by 8 bits. Easy memory expansion is

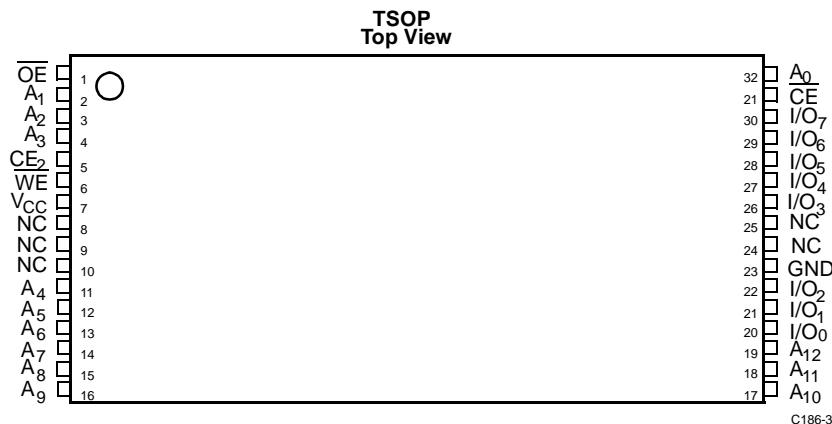
provided by an active LOW chip enable (\overline{CE}_1), an active HIGH chip enable (\overline{CE}_2), and active LOW output enable (\overline{OE}) and three-state drivers. The device has an automatic power-down feature (\overline{CE}_1), reducing the power consumption by over 80% when deselected. The CY7C186 is in a 600-mil-wide PDIP package and a 32-pin TSOP (std. pinout).


An active LOW write enable signal (\overline{WE}) controls the writing/reading operation of the memory. When \overline{CE}_1 and \overline{WE} inputs are both LOW and \overline{CE}_2 is HIGH, data on the eight data input/output pins (I/O_0 through I/O_7) is written into the memory location addressed by the address present on the address pins (A_0 through A_{12}). Reading the device is accomplished by selecting the device and enabling the outputs, \overline{CE}_1 and \overline{OE} active LOW, \overline{CE}_2 active HIGH, while \overline{WE} remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (\overline{WE}) is HIGH. A die coat is used to insure alpha immunity.

Logic Block Diagram

Pin Configuration



Selection Guide^[1]

	7C186-20	7C186-25	7C186-35
Maximum Access Time (ns)	20	25	35
Maximum Operating Current (mA)	110	100	100
Maximum Standby Current (mA)	20/15	20/15	20/15

Notes:

1. For military specifications, see the CY7C186A datasheet.

Pin Configurations (continued)

C186-3

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature -65°C to $+150^{\circ}\text{C}$

Ambient Temperature with

Power Applied -55°C to $+125^{\circ}\text{C}$

Supply Voltage to Ground Potential -0.5V to $+7.0\text{V}$

DC Voltage Applied to Outputs
in High Z State^[2] -0.5V to $+7.0\text{V}$

DC Input Voltage^[2] -0.5V to $+7.0\text{V}$

Output Current into Outputs (LOW) 20 mA

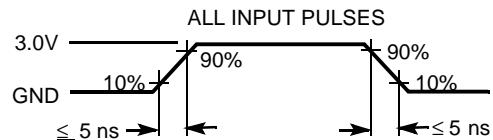
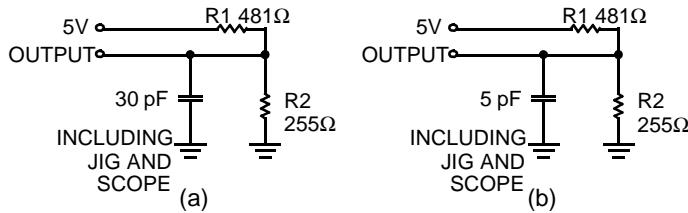
Static Discharge Voltage $>2001\text{V}$
(per MIL-STD-883, Method 3015)

Latch-Up Current $>200\text{ mA}$

Operating Range

Range	Ambient Temperature	V_{CC}
Commercial	0°C to $+70^{\circ}\text{C}$	$5\text{V} \pm 10\%$

Electrical Characteristics Over the Operating Range



Parameter	Description	Test Conditions	7C186-20		7C186-25,35		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$V_{CC} = \text{Min.}$, $I_{OH} = -4.0\text{ mA}$	2.4		2.4		V
V_{OL}	Output LOW Voltage	$V_{CC} = \text{Min.}$, $I_{OL} = 8.0\text{ mA}$		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{CC}	2.2	V_{CC}	V
V_{IL}	Input LOW Voltage ^[2]		-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Load Current	$\text{GND} \leq V_I \leq V_{CC}$	-5	+5	-5	+5	μA
I_{OZ}	Output Leakage Current	$\text{GND} \leq V_I \leq V_{CC}$, Output Disabled	-5	+5	-5	+5	μA
I_{OS}	Output Short Circuit Current ^[3]	$V_{CC} = \text{Max.}$, $V_{OUT} = \text{GND}$		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$V_{CC} = \text{Max.}$, $I_{OUT} = 0\text{ mA}$		110		100	mA
I_{SB1}	Automatic \overline{CE}_1 Power-Down Current	$\text{Max. } V_{CC}, \overline{CE}_1 \geq V_{IH},$ $\text{Min. Duty Cycle}=100\%$		20		20	mA
I_{SB2}	Automatic \overline{CE}_1 Power-Down Current	$\text{Max. } V_{CC}, \overline{CE}_1 \geq V_{CC} - 0.3\text{V},$ $V_{IN} \geq V_{CC} - 0.3\text{V} \text{ or } V_{IN} \leq 0.3\text{V}$		15		15	mA

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$T_A = 25^{\circ}\text{C}$, $f = 1\text{ MHz}$, $V_{CC} = 5.0\text{V}$	7	pF
C_{OUT}	Output Capacitance		7	pF

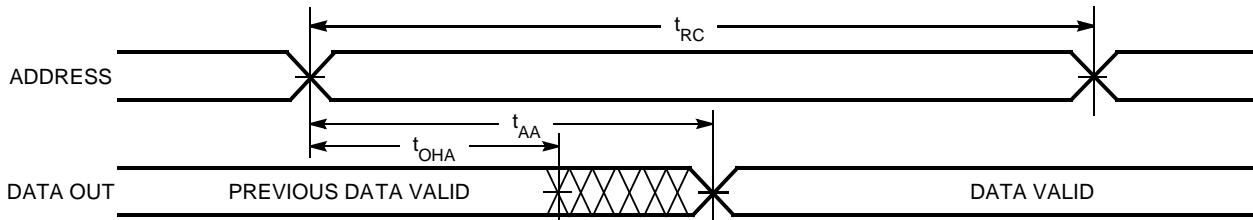
Notes:

2. Minimum voltage is equal to -3.0V for pulse durations less than 30 ns.
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.

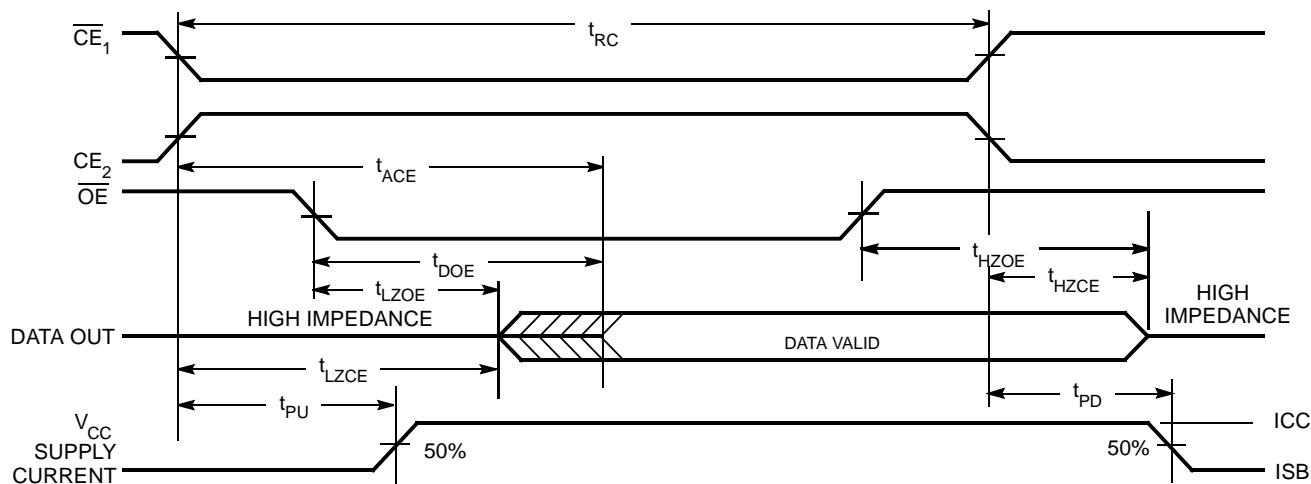
AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

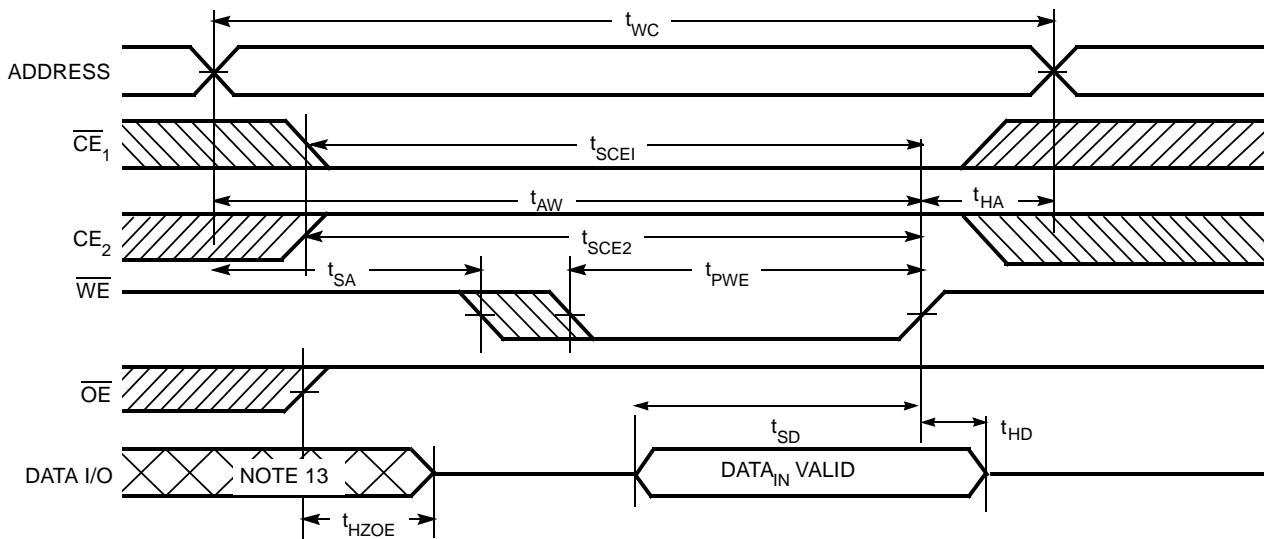
Switching Characteristics Over the Operating Range^[5]


Parameter	Description	7C186-20		7C186-25		7C186-35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	20		25		35		ns
t_{AA}	Address to Data Valid		20		25		35	ns
t_{OHA}	Data Hold from Address Change	5		5		5		ns
t_{ACE1}	\overline{CE}_1 LOW to Data Valid		20		25		35	ns
t_{ACE2}	CE_2 HIGH to Data Valid		20		25		35	ns
t_{DOE}	\overline{OE} LOW to Data Valid		9		12		15	ns
t_{LZOE}	\overline{OE} LOW to Low Z	3		3		3		ns
t_{HZOE}	\overline{OE} HIGH to High Z ^[6]		8		10		10	ns
t_{LZCE1}	\overline{CE}_1 LOW to Low Z ^[7]	5		5		5		ns
t_{LZCE2}	CE_2 HIGH to Low Z	3		3		3		ns
t_{HZCE}	\overline{CE}_1 HIGH to High Z ^[6, 7] CE_2 LOW to High Z		8		10		10	ns
t_{PU}	\overline{CE}_1 LOW to Power-Up	0		0		0		ns
t_{PD}	\overline{CE}_1 HIGH to Power-Down		20		20		20	ns
WRITE CYCLE ^[8]								
t_{WC}	Write Cycle Time	20		25		35		ns
t_{SCE1}	\overline{CE}_1 LOW to Write End	15		20		20		ns
t_{SCE2}	CE_2 HIGH to Write End	15		20		20		ns
t_{AW}	Address Set-Up to Write End	15		20		25		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		ns
t_{PWE}	\overline{WE} Pulse Width	15		15		20		ns
t_{SD}	Data Set-Up to Write End	10		10		12		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
t_{HZWE}	\overline{WE} LOW to High Z ^[6]		7		7		8	ns
t_{LZWE}	\overline{WE} HIGH to Low Z	5		5		5		ns

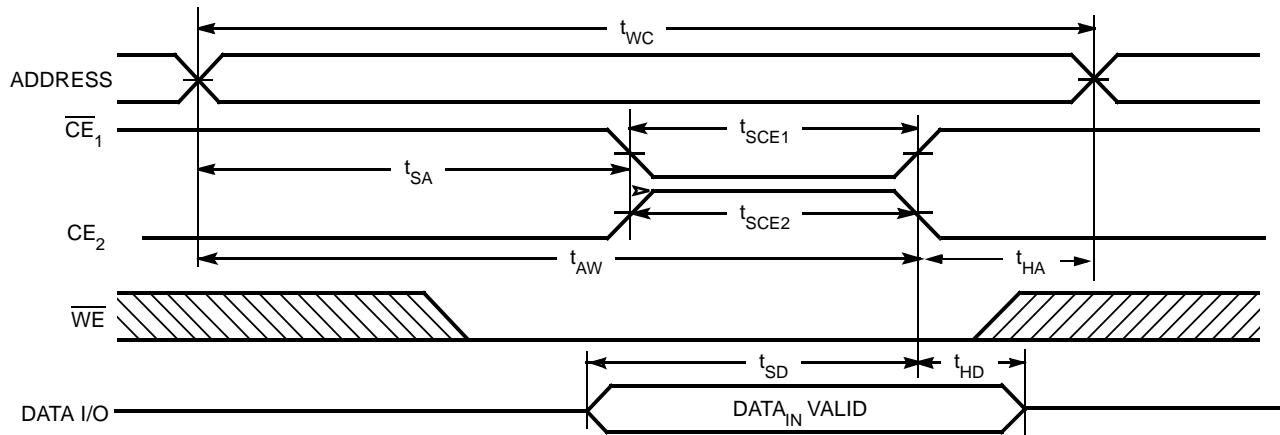
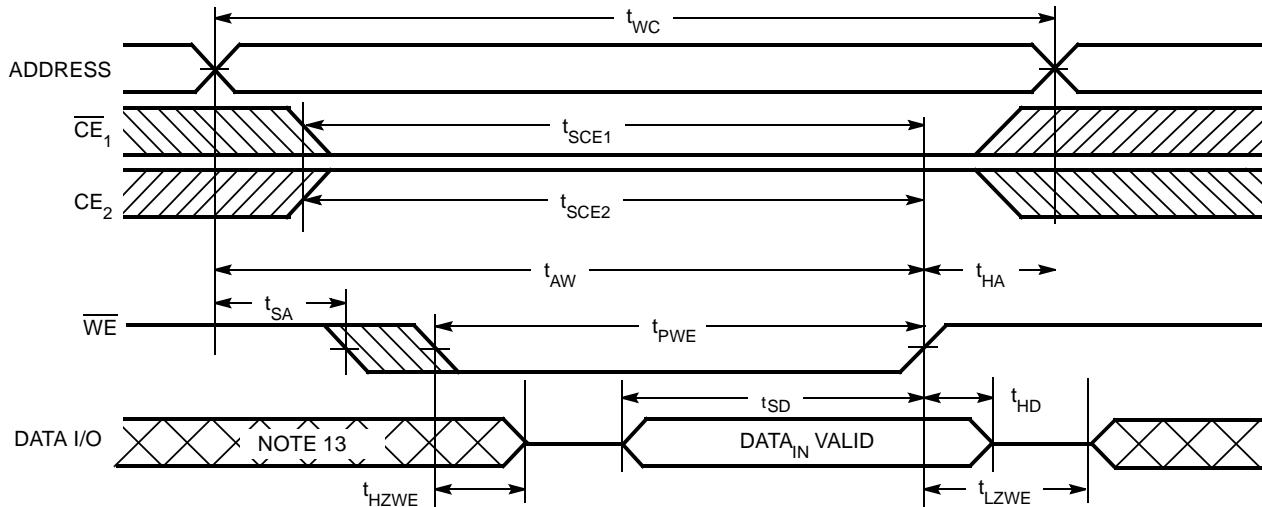
Notes:


- Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- t_{HZOE} , t_{HZCE} , and t_{LZWE} are specified with $C_L = 5$ pF as in part (b) of AC Test Loads. Transition is measured ± 500 mV from steady-state voltage.
- At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} for any given device.
- The internal write time of the memory is defined by the overlap of CE_1 LOW, CE_2 HIGH, and WE LOW. All signals must be active to initiate a write, and any signal can terminate a write by going inactive. The data input set-up and hold timing should be referenced to the trailing edge of the signal that terminates the write.

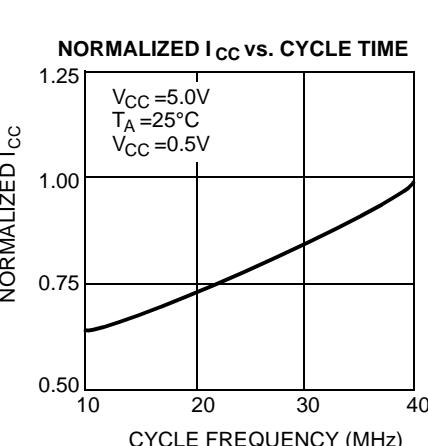
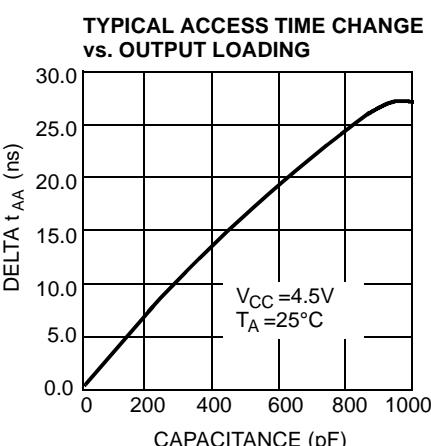
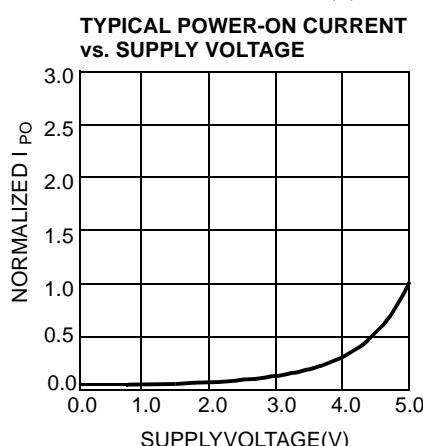
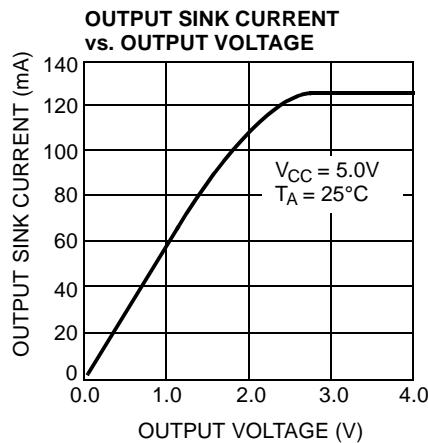
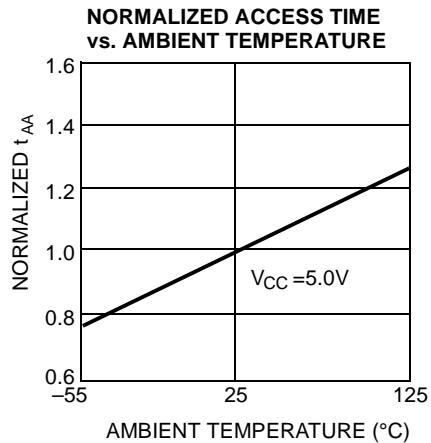
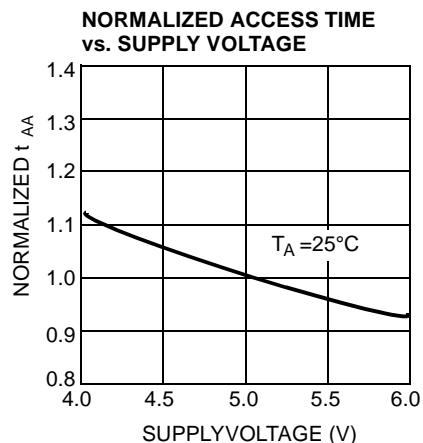
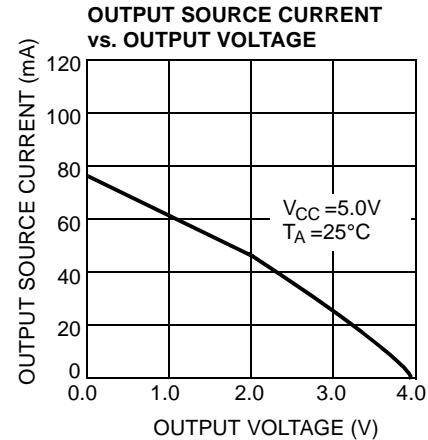
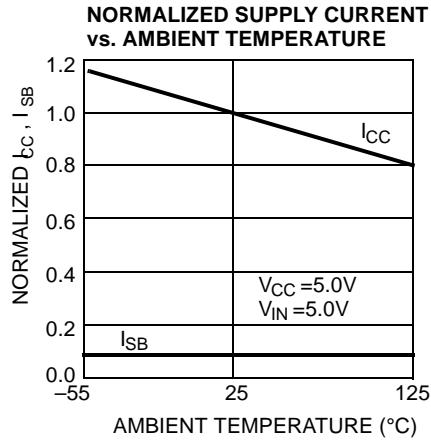
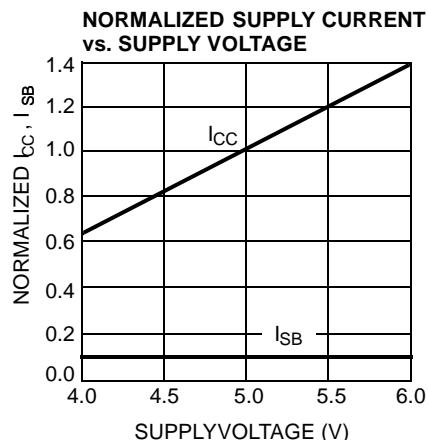
Switching Waveforms


Read Cycle No. 1^[9]

Read Cycle No. 2^[10, 11]

Write Cycle No. 1 (\overline{WE} Controlled)^[11, 12]

Notes:

9. Device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$. $CE_2 = V_{IH}$.
10. WE is HIGH for read cycle.
11. Data I/O is High Z if $OE = V_{IH}$, $\overline{CE}_1 = V_{IH}$, or $\overline{WE} = V_{IL}$.
12. Address valid prior to or coincident with CE_1 transition LOW and CE_2 transition HIGH.
13. During this period, the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\text{CE}}$ Controlled)^[11, 12, 14]

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[11, 14]

Notes:

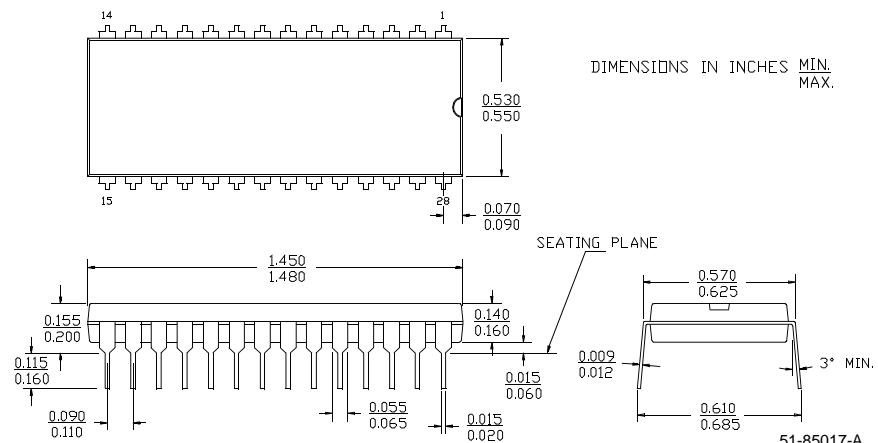
14. If $\overline{\text{CE}}_1$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state.

Typical DC and AC Characteristics

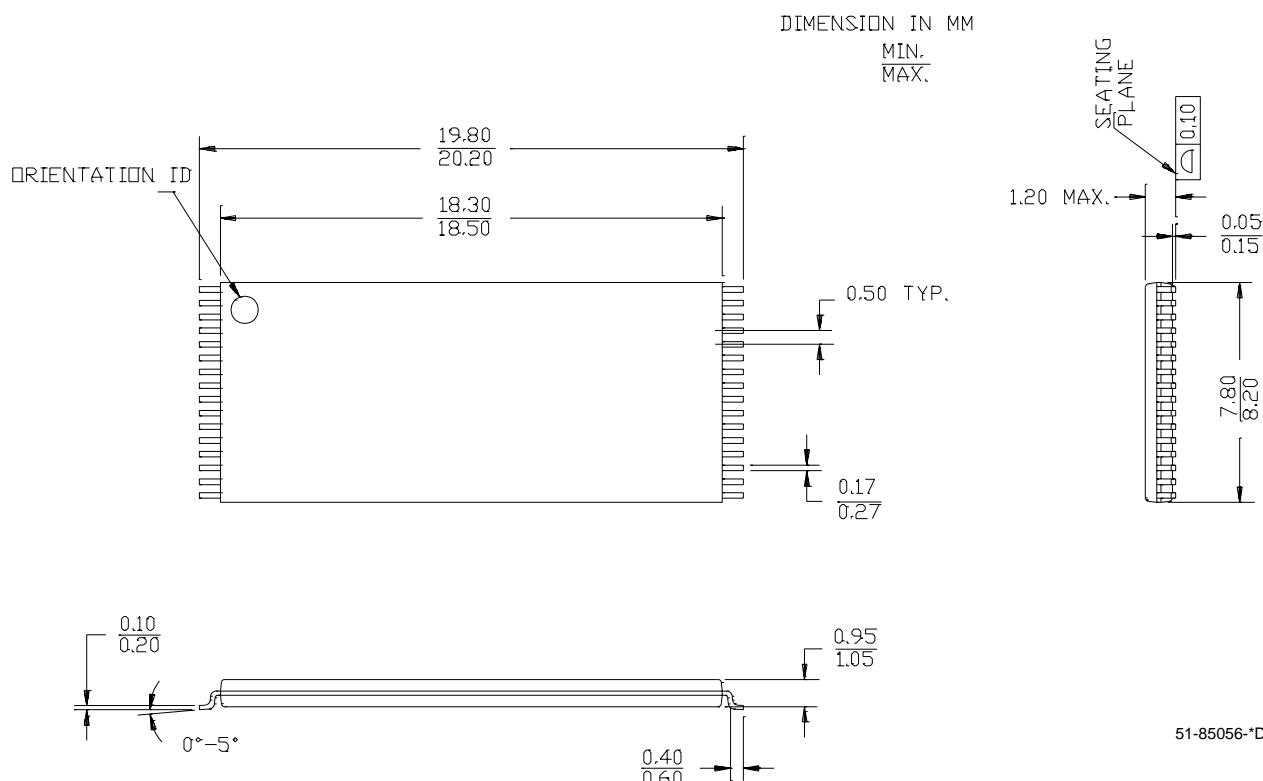
Truth Table

CE ₁	CE ₂	WE	OE	Input/Output	Mode
H	X	X	X	High Z	Deselect/Power-Down
X	L	X	X	High Z	Deselect
L	H	H	L	Data Out	Read
L	H	L	X	Data In	Write
L	H	H	H	High Z	Deselect

Address Designators


Address Name	Address Function	DIP Pin Number	TSOP Pin Number
A4	X3	2	11
A5	X4	3	12
A6	X5	4	13
A7	X6	5	14
A8	X7	6	15
A9	Y1	7	16
A10	Y4	8	17
A11	Y3	9	18
A12	Y0	10	19
A0	Y2	21	32
A1	X0	23	2
A2	X1	24	3
A3	X2	25	4

Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
20	CY7C186-20PC	P15	28-Lead (600-Mil) Molded DIP	Commercial
	CY7C186-20ZC	Z32	32-Lead Thin Small Outline Package	
25	CY7C186-25PC	P15	28-Lead (600-Mil) Molded DIP	Commercial
35	CY7C186-35PC	P15	28-Lead (600-Mil) Molded DIP	Commercial

Package Diagrams

28-Lead (600-Mil) Molded DIP P15

32-Lead Thin Small Outline Package Type I (8x20 mm) Z32

CY7C186

Document Title: CY7C186 8Kx8 Static RAM
Document Number: 38-05280

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	114447	3/26/02	DSG	Change from Spec number: 38-00240 to 38-05280