

Low Voltage, 300 MHz Quad 2:1 Mux Analog HDTV Audio/Video Switch

ADG794

FEATURES

Bandwidth: 300 MHz

Low insertion loss and on resistance: 5 Ω typical

On resistance flatness: 0.68 Ω typical Single 3 V/5 V supply operation

Low quiescent supply current: 1 nA typical

Fast switching times:

t_{ON}, 7 ns t_{OFF}, 5 ns

TTL/CMOS compatible

APPLICATIONS

RGB switches HDTV DVD-R

Audio/video switches

GENERAL DESCRIPTION

The ADG794 is a monolithic CMOS device comprising four 2:1 multiplexer/demultiplexers with high impedance outputs. The CMOS process provides low power dissipation yet gives high switching speed and low on resistance. The on resistance variation is typically less than 1.2 Ω over the input signal range.

The bandwidth of the ADG794 is typically 300 MHz and this, coupled with low distortion (typically 0.68%), makes the part suitable for switching analog audio/video signals.

The ADG794 operates from a single 3.3 V/5 V supply and is TTL logic compatible. The switches are controlled by the logic inputs IN and $\overline{\text{EN}}$ as shown in Table 4. The $\overline{\text{EN}}$ pin allows the user to disable all switches.

FUNCTIONAL BLOCK DIAGRAM

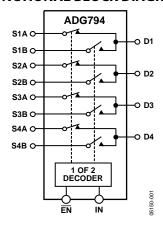


Figure 1.

These switches conduct equally well in both directions when on. In the off condition, signal levels up to the supplies are blocked. The ADG794 switches exhibit break-before-make switching action.

The ADG794 is available in a 16-pin QSOP package.

PRODUCT HIGHLIGHTS

- 1. Wide bandwidth: 300 MHz.
- 2. Ultralow power dissipation.
- 3. Crosstalk is typically -70 dB at 10 MHz.
- 4. Off isolation is typically -65 dB at 10 MHz.

ADG794

TABLE OF CONTENTS

Specifications	3
Single Supply	3
Absolute Maximum Ratings	5
ESD Caution	5
Pin Configuration and Function Descriptions	6
Terminology	7

Typical Performance Characteristics	8
Typical Application	8
Test Circuits	9
Outline Dimensions	1
Ordering Guide1	1

REVISION HISTORY

10/04—Revision 0: Initial Version

SPECIFICATIONS

SINGLE SUPPLY

 V_{DD} = 5 V \pm 10%, GND = 0 V. All specifications T_{MIN} to T_{MAX} , unless otherwise noted.

Table 1.

	B Version ¹				
Parameter	25°C	T_{MIN} to T_{MAX}	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		0 to 2.5	V		
On Resistance (R _{ON})	5		Ω typ	$V_D = 0 \text{ V to } 1 \text{ V; } I_S = -10 \text{ mA; Figure } 6$	
	7	8	Ω max		
On Resistance Match between Channels (ΔR _{ON})	0.4		Ω typ	$V_D = 0 \text{ V to } 1 \text{ V; } I_S = -10 \text{ mA}$	
		1.2	Ω max		
On Resistance Flatness (R _{FLAT(ON)})	0.7		Ω typ	$V_D = 0 \text{ V to } 1 \text{ V; } I_S = -10 \text{ mA}$	
		1.35	Ω max		
LEAKAGE CURRENTS					
Source Off Leakage, Is (Off)	±0.001		nA typ	$V_S = 3 \text{ V/1 V}$; $V_D = 1 \text{ V/3 V}$; Figure 7	
Drain Off Leakage, I _D (Off)	±0.001		nA typ	$V_S = 3 \text{ V/1 V; } V_D = 1 \text{ V/3 V; Figure 7}$	
Channel On Leakage, ID, Is (On)	±0.001		nA typ	$V_D = V_S = 3 \text{ V/1 V}$; Figure 8	
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.4	V min		
Input Low Voltage, V _{INL}		0.8	V max		
Input Current					
I _{INL} or I _{INH}	0.001		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$	
		±0.1	μA max		
Digital Input Capacitance, C _{IN}		3	pF typ		
DYNAMIC CHARACTERISTICS ²					
$t_{ON}, t_{ON} (\overline{EN})$	7		ns typ	$C_L = 35 \text{ pF}; R_L = 50 \Omega$	
		14	ns max	$V_S = 2 V$; Figure 9	
t_{OFF} , t_{OFF} (\overline{EN})	5		ns typ	$C_L = 35 \text{ pF; } R_L = 50 \Omega$	
		8	ns max	$V_S = 2 V$; Figure 9	
Break-Before-Make Time Delay, t _D	3		ns typ	$C_L = 35 \text{ pF}; R_L = 50 \Omega$	
•		1	ns min	$V_{S1} = V_{S2} = 2 \text{ V}$; Figure 10	
Off Isolation	-65		dB typ	$f = 10$ MHz; $R_L = 50$ Ω; Figure 12	
Channel-to-Channel Crosstalk	-70		dB typ	f = 10 MHz; R _L = 50 Ω; Figure 13	
Bandwidth –3 dB	300		MHz typ	$R_L = 50 \Omega$; Figure 11	
Distortion	0.7		% typ	$R_L = 100 \Omega$	
Charge Injection	6		pC typ	$C_L = 1 \text{ nF; } V_S = 0 \text{ V; Figure } 14$	
C _s (Off)	6		pF typ		
C _D (Off)	7.5		pF typ		
C_D , C_S (On)	13.5		pF typ		
POWER REQUIREMENTS				$V_{DD} = 5.5 \text{ V}$; digital inputs = 0 V or V_{DD}	
I _{DD}	0.001		μA typ		
		1	μA max		

 $^{^1}$ Temperature range for B Version is -40°C to $+85^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

ADG794

 V_{DD} = 3 V \pm 10%, GND = 0 V. All specifications T_{MIN} to T_{MAX} , unless otherwise noted.

Table 2.

	В	Version ¹			
Parameter	25°C	T_{MIN} to T_{MAX}	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		0 to 1.5	V		
On Resistance (R _{ON})	7		Ω typ	$V_D = 0 \text{ V to } 1 \text{ V; } I_S = -10 \text{ mA; Figure } 6$	
	9.5	11	Ω max		
On Resistance Match between Channels (ΔR_{ON})	0.3		Ω typ	$V_D = 0 \text{ V to } 1 \text{ V; } I_S = -10 \text{ mA}$	
		0.9	Ω max		
On Resistance Flatness (R _{FLAT(ON)})	2.6		Ω typ	$V_D = 0 \text{ V to } 1 \text{ V; } I_S = -10 \text{ mA}$	
		5	Ω max		
LEAKAGE CURRENTS					
Source Off Leakage, Is (Off)	±0.001		nA typ	$V_S = 2 \text{ V/1 V; } V_D = 1 \text{ V/2 V; Figure 7}$	
Drain Off Leakage, I _D (Off)	±0.001		nA typ	$V_S = 2 \text{ V/1 V}$; $V_D = 1 \text{ V/2 V}$; Figure 7	
Channel On Leakage, ID, IS (On)	±0.001		nA typ	$V_D = V_S = 2 \text{ V/1 V}$; Figure 8	
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.0	V min		
Input Low Voltage, V _{INL}		0.4	V max		
Input Current					
I _{INL} or I _{INH}	0.001		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
		±0.1	μA max		
Digital Input Capacitance, C _{IN}		3	pF typ		
DYNAMIC CHARACTERISTICS ²					
t_{ON} , t_{ON} (\overline{EN})	8		ns typ	$C_L = 35 \text{ pF}; R_L = 50 \Omega$	
		16	ns max	V _s = 1.5 V; Figure 9	
t_{OFF} , t_{OFF} (\overline{EN})	6		ns typ	$C_L = 35 \text{ pF}; R_L = 50 \Omega$	
		10	ns max	V _s = 1.5 V; Figure 9	
Break-Before-Make Time Delay, t _D	3		ns typ	$C_L = 35 \text{ pF; } R_L = 50 \Omega$	
		1	ns min	$V_{S1} = V_{S2} = 1.5 \text{ V}$; Figure 10	
Off Isolation	-65		dB typ	f = 10 MHz; R∟ = 50 Ω; Figure 12	
Channel-to-Channel Crosstalk	-70		dB typ	$f = 10$ MHz; $R_L = 50$ Ω; Figure 13	
Bandwidth –3 dB	300		MHz typ	$R_L = 50 \Omega$; Figure 11	
Distortion	2.6		% typ	$R_L = 100 \Omega$	
Charge Injection	4		pC typ	$C_L = 1 \text{ nF; } V_S = 0 \text{ V; Figure } 14$	
C _s (Off)	6		pF typ		
C_D (Off)	7.5		pF typ		
C_D , C_S (On)	13.5		pF typ		
POWER REQUIREMENTS				$V_{DD} = 3.3 \text{ V}$; digital inputs = 0 V or V_{DD}	
I_{DD}	0.001		μA typ		
		1	μA max		

 $^{^1}$ Temperature range for B Version is -40°C to $+85^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Table 3.	
Parameters	Ratings
V _{DD} to GND	−0.3 V to +6 V
Analog, Digital Inputs ¹	-0.3 V to $V_{DD} + 0.3$ V or 30 mA, whichever occurs first
Continuous Current, S or D	100 mA
Peak Current, S or D	300 mA (pulsed at 1 ms, 10% duty cycle max)
Operating Temperature Range	
Industrial (B Version)	-40°C to +85°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
QSOP Package, Power Dissipation	566 mW
θ_{JA} Thermal Impedance	149.97°C/W
Lead Temperature, Soldering	
Vapor Phase (60 s)	215°C
Infrared (15 s)	220°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

Table 4. Truth Table

EN	IN	D1	D2	D3	D4	Function
1	Χ	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Disable
0	0	S1A	S2A	S3A	S4A	IN = 0
0	1	S1B	S2B	S3B	S4B	IN = 1

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

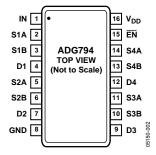


Figure 2. Pin Configuration

Table 5. Pin Function Descriptions

Pin Number	Mnemonic	Description
1	IN	Logic Control Input. The logic level at this input controls the operation of the multiplexers (see Table 4).
2	S1A	A-Side Source Terminal of MUX1. Can be an input or output.
3	S1B	B-Side Source Terminal of MUX1. Can be an input or output.
4	D1	Drain Terminal of MUX1. Can be an input or output.
5	S2A	A-Side Source Terminal of MUX2. Can be an input or output.
6	S2B	B-Side Source Terminal of MUX2. Can be an input or output.
7	D2	Drain Terminal of MUX2. Can be an input or output.
8	GND	Ground Reference.
9	D3	Drain Terminal of MUX3. Can be an input or output.
10	S3B	B-Side Source Terminal of MUX3. Can be an input or output.
11	S3A	A-Side Source Terminal of MUX3. Can be an input or output.
12	D4	Drain Terminal of MUX4. Can be an input or output.
13	S4B	B-Side Source Terminal of MUX4. Can be an input or output.
14	S4A	A-Side Source Terminal of MUX4. Can be an input or output.
15	EN	MUX Enable Logic Input. Enables or disables the multiplexers (see Table 4).
16	V _{DD}	Positive Power Supply Voltage.

TERMINOLOGY

 \mathbf{V}_{DD}

Most positive power supply potential.

 \mathbf{I}_{DD}

Positive supply current.

GND

Ground (0 V) reference.

S

Source terminal. Can be either an input or an output.

 \mathbf{D}

Drain terminal. Can be either an input or an output.

IN

Logic control input.

 $V_D(V_S)$

Analog voltage on terminals D, S.

Ron

Ohmic resistance between D and S.

R_{FLAT (ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured.

 ΔR_{ON}

On resistance match between any two channels.

Is (Off)

Source leakage current with the switch off.

I_D (Off)

Drain leakage current with the switch off.

 $I_D, I_S(On)$

Channel leakage current with the switch on.

 V_{INI}

Maximum input voltage for Logic 0.

 V_{INH}

Minimum input voltage for Logic 1.

 $I_{\rm INL}\left(I_{\rm INH}\right)$

Input current of the digital input.

Cs (Off)

Off switch source capacitance. Measured with reference to ground.

C_D (Off)

Off switch drain capacitance. Measured with reference to ground.

 C_D , C_S (On)

On switch capacitance. Measured with reference to ground.

 C_{IN}

Digital input capacitance.

ton

Delay time between the 50% and the 90% points of the digital input and switch on condition.

toff

Delay time between the 50% and the 90% points of the digital input and switch off condition.

 t_{BBM}

On or off time measured between the 80% points of both switches when switching from one to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during on/off switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

-3 dB Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

THD + N

The ratio of the harmonic amplitudes plus noise of a signal to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS

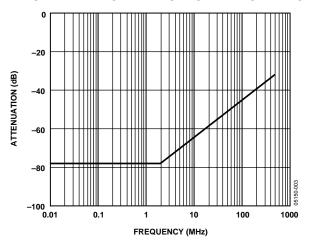
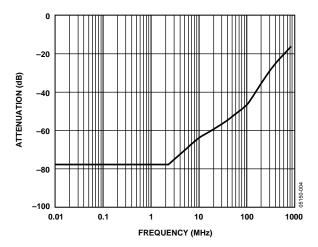
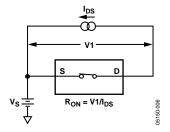


Figure 3. Off Isolation vs. Frequency




Figure 4. Crosstalk vs. Frequency

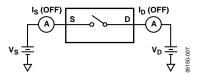

TYPICAL APPLICATION

Figure 5. Audio/Video Switch

TEST CIRCUITS

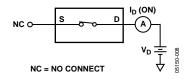


Figure 6. On Resistance

Figure 7. Off Leakage

Figure 8. On Leakage

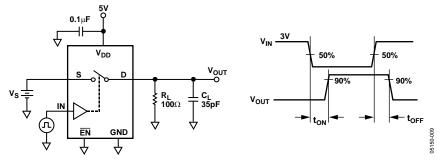


Figure 9. Switching Times

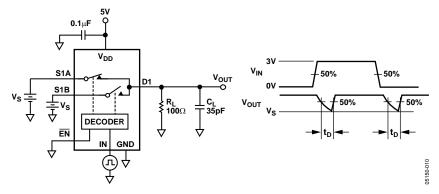


Figure 10. Break-Before-Make Time Delay

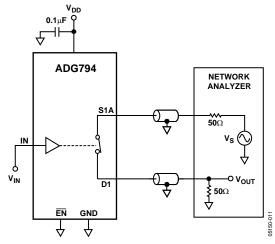


Figure 11. Bandwidth

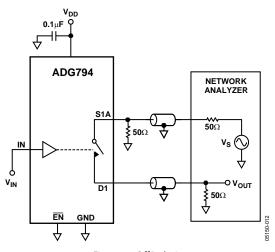


Figure 12. Off Isolation

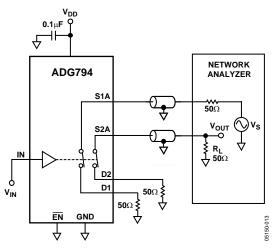


Figure 13. Channel-to-Channel Crosstalk

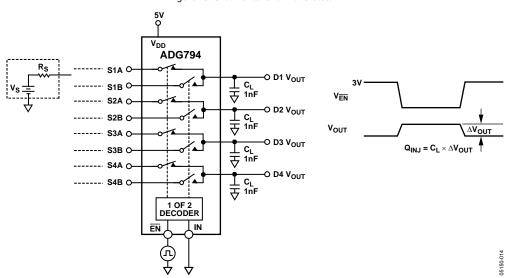
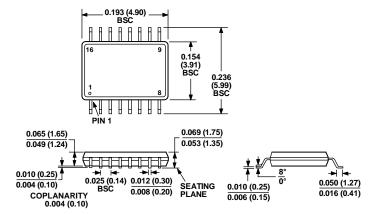



Figure 14. Charge Injection

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-137AB

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Figure 15. 16-Lead Shrink Small Outline Package [QSOP] (RQ-16) Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG794BRQZ ¹	−40°C to +85°C	16-Lead Shrink Small Outline Package (QSOP)	RQ-16
ADG794BRQZ-500RL7 ¹	−40°C to +85°C	16-Lead Shrink Small Outline Package (QSOP)	RQ-16
ADG794BRQZ-REEL ¹	−40°C to +85°C	16-Lead Shrink Small Outline Package (QSOP)	RQ-16
ADG794BRQZ-REEL7 ¹	-40°C to +85°C	16-Lead Shrink Small Outline Package (QSOP)	RQ-16

 $^{^{1}}$ Z = Pb-free part.

ADG794			

NOTES

