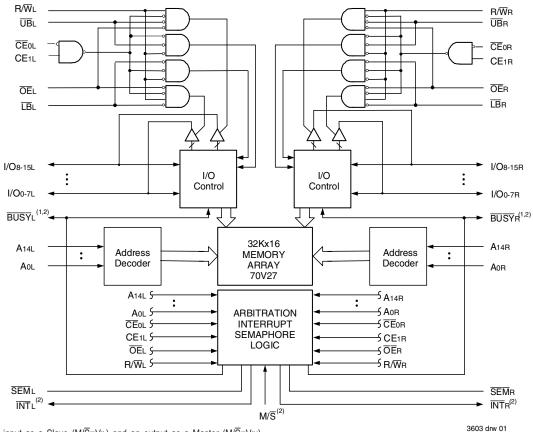


HIGH-SPEED 3.3V 32K x 16 DUAL-PORT STATIC RAM


IDT70V27S/L

Features:

- True Dual-Ported memory cells which allow simultaneous access of the same memory location
- High-speed access
 - Commercial: 15/20/25/35/55ns (max.)
 - Industrial: 20/35ns (max.)
- Low-power operation
 - IDT70V27S
 - Active: 500mW (typ.)
 - Standby: 3.3mW (typ.)
 - IDT70V27L
 - Active: 500mW (typ.)
 - Standby: 660µW (typ.)
- Separate upper-byte and lower-byte control for bus matching capability
- Dual chip enables allow for depth expansion without external logic

- IDT70V27 easily expands data bus width to 32 bits or more using the Master/Slave select when cascading more than one device
- **↑** M/S = VIH for BUSY output flag on Master, M/S = VIL for BUSY input on Slave
- Busy and Interrupt Flags
- On-chip port arbitration logic
- Full on-chip hardware support of semaphore signaling between ports
- Fully asynchronous operation from either port
- LVTTL-compatible, single 3.3V (±0.3V) power supply
- Available in 100-pin Thin Quad Flatpack (TQFP), and 144pin Fine Pitch BGA (fpBGA)
- Industrial temperature range (-40°C to +85°C) is available for selected speeds
- Green parts available, see ordering information

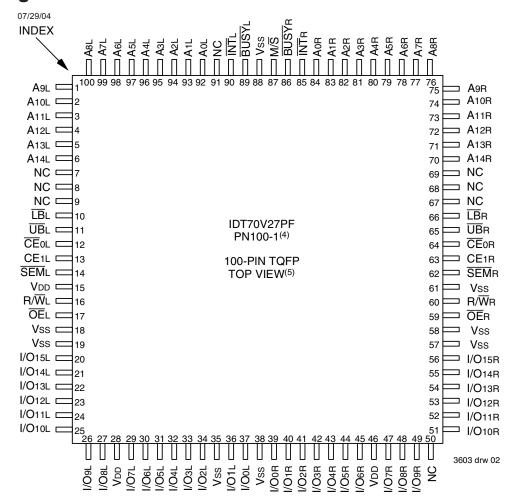
Functional Block Diagram

NOTES:

- 1) \overline{BUSY} is an input as a Slave (M/ \overline{S} =VIL) and an output as a Master (M/ \overline{S} =VIH).
- 2) BUSY and INT are non-tri-state totem-pole outputs (push-pull).

SEPTEMBER 2012

Description:


The IDT70V27 is a high-speed 32K x 16 Dual-Port Static RAM, designed to be used as a stand-alone 512K-bit Dual-Port RAM or as a combination MASTER/SLAVE Dual-Port RAM for 32-bit and wider word systems. Using the IDT MASTER/SLAVE Dual-Port RAM approach in 32-bit or wider memory system applications results in full-speed, error-free operation without the need for additional discrete logic.

The device provides two independent ports with separate control, address, and I/O pins that permit independent, asynchronous access for

reads or writes to any location in memory. An automatic power down feature controlled by the chip enables ($\overline{\text{CE}}_0$ and CE₁) permits the on-chip circuitry of each port to enter a very low standby power mode.

Fabricated using CMOS high-performance technology, these devices typically operate on only 500mW of power. The IDT70V27 is packaged in a 100-pin Thin Quad Flatpack (TQFP) and a 144-pin Fine Pitch BGA (fp BGA).

Pin Configurations^(1,2,3)

NOTES:

- 1. All VDD pins must be connected to power supply.
- 2. All Vss pins must be connected to ground supply.
- 3. Package body is approximately 14mm x 14mm x 1.4mm.
- 4. This package code is used to reference the package diagram.
- 5. This text does not indicate orientation of the actual part-marking.

Pin Configurations^(1,2,3) (con't.)

07/29/04

A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13
NC	A 8L	A 5L	A1L	ĪNTL	Vss	BUSYR	A1R	A5R	NC	NC	NC
B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
NC	NC	A6L	A 2L	NC	M/S	ĪNTR	A2R	A6R	NC	NC	NC
C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13
A 9L	NC	A7L	A3L	NC	NC	NC	A3R	A 7R	A9R	A10R	A 11R
D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13
A13L	A12L	A11L	A4L	A ₀ L	BUSYL	A ₀ R	A4R	A8R	A12R	A13R	A14R
E2	E3	E4						E10	E11	E12	E13
NC	NC	NC							NC	NC	LBR
F2	F3	F4						F10	F11	F12	F13
CE ₁ L	CE ₀ L	ŪBL		IDT70V27BF BF144-1 ⁽⁴⁾ 144-Pin fpBGA					Œ0R	CE1R	SEMR
G2	G3	G4							G11	G12	G13
VDD	VDD	NC							NC	Vss	Vss
H2	Н3	H4		To	op View	(5)		H10	H11	H12	H13
R/WL	ŌĒL	NC						NC	ŌĒR	R/WR	Vss
J2	J3	J4						J10	J11	J12	J13
I/O15L	I/O14L	I/013L						I/O13R	I/O14R	I/O15R	Vss
K2	КЗ	K4	K5	K6	K7	K8	K9	K10	K11	K12	K13
NC	NC	NC	I/O6L	I/O3L	I/Oor	I/O3R	I/O6R	I/O11R	NC	NC	I/O12R
L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13
I/O10L	NC	NC	I/O5L	I/O2L	Vss	VDD	I/O5R	NC	NC	NC	I/O10R
M2	М3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13
NC	NC	VDD	I/O4L	Vss	I/OoL	I/O2R	I/O4R	I/O7R	I/O8R	NC	I/O9R
N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	N12	N13
NC	I/O8L	I/O7L	NC	I/O1L	VDD	I/O1R	NC	VDD	NC	NC	NC
	NC B2 NC C2 A9L D2 A13L E2 NC F2 CE1L G2 VDD H2 R/WL J2 I/O15L K2 NC L2 I/O10L M2 NC N2	NC A8L B2 B3 NC C2 C2 D3 A13L A12L E2 E3 NC TS F2 F3 CE1L TS G2 VDD H2 H3 R/WL TOEL J2 J3 I/O15L I/O14L K2 K3 NC NC L2 L3 I/O10L NC M2 M3 NC NC N2 N3	NC A8L A5L B2 B3 B4 A6L C2 C3 C4 A7L D2 D3 D4 A11L E2 B3 C4 A11L E2 E3 C4 A11L E2 E3 C4 NC F2 C5 NC NC G2 G3 C4 NC H2 H3 H4 NC J2 J3 J/O14L J/O13L K2 K3 K4 NC L2 L3 L4 NC L2 L3 L4 NC M2 M3 M4 VDD N2 NC NC NC	NC A8L A5L A1L B2 B3 B4 B5 NC NC A6L C5 A9L NC A7L A3L D2 D3 D4 D5 A13L A12L A11L A4L E2 E3 E4 NC F2 F3 F4 UBL G2 VDD B4 NC J2 J3 H4 NC J2 J3 J4 I/O13L K2 K3 K4 K5 NC NC NC I/O6L L2 L3 L4 L5 I/O10L NC NC NC M2 M3 M4 M5 NC NC NC I/O4L	NC A8L A5L A1L INTL B2 B3 B4 B5 B6 NC C2 C3 C4 C5 C6 NC A9L NC A7L A3L NC D6 A0L D2 D3 D4 D5 D6 A0L A0L E2 E3 R4 NC A4L A0L A0L E2 F3 F4 NC NC NC B B0 B0	NC A8L A5L A1L INTL Vss B2 B3 B4 B5 B6 B7 NC NC A6L C5 C6 C7 MS NC A7L A3L NC NC D2 D3 D4 D5 D6 D7 A13L A12L A11L A4L A0L BUSYL E2 E3 E4 NC NC BUSYL F2 F3 F4 UBL BUSYL G2 G3 F4 NC NC H2 H3 H4 NC NC J2 J3 J/O15L J/O14L J/O13L K2 K3 K4 K5 K6 K7 NC NC NC J/O6L J/O3L J/O0R L2 L3 L4 L5 L6 L7 J/O10L NC NC NC J/O4L V	NC A8L A5L A1L INTL Vss BUSYR B2 B3 B4 A6L A2L B6 B7 B8 INTR C2 C3 C4 C5 C6 C7 C8 A9L NC A7L A3L NC NC NC D2 D3 D4 D5 D6 D7 D8 A13L A12L A11L A4L A0L BUSYL A0R E2 E3 F4 NC NC IDT70V27BF A0R F2 CE1L F3 F4 UBL IDT70V27BF BF144-1(4) A0R G2 VDD F4 NC IDT70V27BF BF144-1(4) A1L A1L IDT70V27BF BF144-1(4) A1L A1L	NC	NC A8L A5L A1L ĪNTL Vss BUSYR A1R A5R B2 B3 B4 B5 B6 B7 B8 B9 B10 C2 C3 C4 C5 C6 C7 C8 C9 C10 A9L NC A7L A3L NC NC NC A3R A7R D2 D3 D4 D5 D6 D7 D8 D9 D10 A13L A12L A11L A4L A0L BUSYL D8 D9 D10 A43R A8R A9R A9R A4R A8R E2 E3 E4 NC NC BEJUSYL B09 D10 F2 F3 F4 UBL D8 A0R A4R A8R BF144-14-10 NC NC NC NC BF144-14-10 NC NC H2 H3 H4 NC NC <td> NC</td> <td> NC</td>	NC	NC

3603 drw 02a

NOTES:

- 1. All $\ensuremath{\mathsf{VDD}}$ pins must be connected to power supply.
- 2. All Vss pins must be connected to ground supply.
- 3. Package body is approximately 12mm x 12mm x 1.4mm.
- 4. This package code is used to reference the package diagram.5. This text does not indicate orientation of the actual part-marking.

Pin Names

Left Port	Right Port	Names			
∇E0L, CE1L	Œ0R, CE1R	Chip Enable			
R/WL	R/WR	Read/Write Enable			
ŌĒL	ŌĒR	Output Enable			
A0L - A14L	A0R - A14R	Address			
I/O0L - I/O15L	I/O0R - I/O15R	Data Input/Output			
SEML	SEMR	Semaphore Enable			
ŪB∟	Ū B R	Upper Byte Select			
<u>∏</u> BL	LB R	Lower Byte Select			
ĪNTL	ĪNTR	Interrupt Flag			
BUSYL	BUSYR	Busy Flag			
M	/ S	Master or Slave Select			
V	DD	Power (3.3V)			
V	ss	Ground (0V)			

3603 tbl 01

High-Speed 3.3V 32K x 16 Dual-Port Static RAM Truth Table I – Chip Enable (1,2,3)

CE	Œ	CE1	Mode
VIL		Vн	Port Selected (TTL Active)
L	<u><</u> 0.2V	≥VDD -0.2V	Port Selected (CMOS Active)
	V⊩	X	Port Deselected (TTL Inactive)
	X	VIL	Port Deselected (TTL Inactive)
Н	≥VDD -0.2V	X	Port Deselected (CMOS Inactive)
	X	<u><</u> 0.2V	Port Deselected (CMOS Inactive)

NOTES: 3603 tbl 02

- 1. Chip Enable references are shown above with the actual \overline{CE}_0 and CE_1 levels, \overline{CE} is a reference only.
- 2. Port "A" and "B" references are located where $\overline{\text{CE}}$ is used.
- 3. "H" = VIH and "L" = VIL

Truth Table II - Non-Contention Read/Write Control

		Inpu	uts ⁽¹⁾			Out	puts	
CE(2)	R/W	Œ	ŪB	ĪΒ	SEM	I/O8-15	I/O ₀₋₇	Mode
Н	Χ	Х	Х	Х	Н	High-Z	High-Z	Deselected: Power-Down
Х	Χ	Х	Н	Н	Н	High-Z	High-Z	Both Bytes Deselected
L	L	Х	L	Н	Н	DATAN	High-Z	Write to Upper Byte Only
L	L	Χ	Н	L	Н	High-Z	DATAIN	Write to Lower Byte Only
L	L	Х	L	L	Н	DATAN	DATAIN	Write to Both Bytes
L	Н	L	L	Н	Н	DATAout	High-Z	Read Upper Byte Only
L	Н	L	Н	L	Н	High-Z	DATAout	Read Lower Byte Only
L	Н	L	L	L	Н	DATAout	DATA out	Read Both Bytes
Х	Χ	Н	Χ	Х	Χ	High-Z	High-Z	Outputs Disabled

NOTES: 3603 tbl 03

A0L — A14L ≠ A0R — A14R.
 Refer to Chip Enable Truth Table.

Truth Table III - Semaphore Read/Write Control

		Inpu	ıts ⁽¹⁾			Outputs		
<u>C</u> E ⁽²⁾	R/W	ŌĒ	ŪB	LB	SEM	I/O8-15	I/O ₀₋₇	Mode
Н	Н	L	Х	Х	L	DATAout	DATAout	Read Data in Semaphore Flag
Χ	Н	L	Н	Н	L	DATAout	DATAout	Read Data in Semaphore Flag
Н	↑	Х	Х	Χ	L	DATAN	DATAIN	Write I/Oo into Semaphore Flag
Χ	↑	Χ	Н	Н	L	DATAIN	DATAIN	Write I/O ₀ into Semaphore Flag
L	Χ	Χ	L	Χ	L			Not Allowed
L	Х	Х	Х	L	L			Not Allowed

NOTES: 3603 tbl 04

- 1. There are eight semaphore flags written to I/Oo and read from all the I/Os (I/Oo-I/O15). These eight semaphore flags are addressed by Ao-A2.
- 2. Refer to Chip Enable Truth Table.

Absolute Maximum Ratings(1)

Symbol	Rating	Commercial & Industrial	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	٧
TBIAS	Temperature Under Bias	-55 to +125	°C
Tstg	Storage Temperature	-65 to +150	°C
ЮИТ	DC Output Current	50	mA

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS
 may cause permanent damage to the device. This is a stress rating only and
 functional operation of the device at these or any other conditions above those
 indicated in the operational sections of this specification is not implied. Exposure
 to absolute maximum rating conditions for extended periods may affect
 reliability.
- 2. VTERM must not exceed VDD + 0.3V for more than 25% of the cycle time or 10ns maximum, and is limited to \leq 20mA for the period of VTERM \geq VDD + 0.3V.

Capacitance⁽¹⁾

(TA = +25°C, f = 1.0mhz)TQFP ONLY

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 0V	9	pF
Соит ⁽²⁾	Output Capacitance	Vout = 0V	10	pF

NOTES:

- This parameter is determined by device characterization but is not production tested.
- 2. Cout also reference Ci/o.

Maximum Operating Temperature and Supply Voltage⁽¹⁾

Grade	Ambient Temperature	GND	VDD
Commercial	0°C to +70°C	0V	3.3V <u>+</u> 0.3V
Industrial	-40°C to +85°C	0V	3.3V <u>+</u> 0.3V

NOTES:

NOTES:

3603 tbl 05

1. This is the parameter TA. This is the "instant on" case temperature.

Recommended DC Operating Conditions⁽¹⁾

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD	Supply Voltage	3.0	3.3	3.6	٧
Vss	Ground	0	0	0	V
V⊪	Input High Voltage	2.0	_	V _{DD} +0.3V ⁽²⁾	V
VIL	Input Low Voltage	-0.3 ⁽¹⁾	_	0.8	V

3603 tbl 07

3603 tbl 06

- 1. $V_{IL} \ge -1.5V$ for pulse width less than 10ns.
- 2. VTERM must not exceed VDD + 0.3V.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (VDD = 3.3V ± 0.3V)

			70V27S		70V		
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Unit
lu	Input Leakage Current ⁽¹⁾	V_{DD} = 3.6V, V_{IN} = 0V to V_{DD}	_	10	_	5	μΑ
I LO	Output Leakage Current	\overline{CE} = ViH, Vout = 0V to Vpb	_	10	_	5	μA
Vol	Output Low Voltage	loL = 4mA	_	0.4	_	0.4	V
Vон	Output High Voltage	IOH = -4mA	2.4	_	2.4	_	V

NOTE:

1. At V_{DD} ≤ 2.0V, input leakages are undefined.

3603 tbl 09

High-Speed 3.3V 32K x 16 Dual-Port Static RAM

DC Electrical Characteristics Over the Operating
Temperature and Supply Voltage Range^(1,6) (VDD = 3.3V ± 0.3V)

		Supply Voltage		,	70V2 Com'l	7X15	70V2 Com'l	7X20	70V27X25 Com'l Only		
Symbol	Parameter	Test Condition	Versi	on	Typ. ⁽²⁾	Max.	Typ. ⁽²⁾	Max.	Typ. ⁽²⁾	Max.	Unit
IDD	Dynamic Operating Current	CE = V _I L, Outputs Disabled SEM = V _I H	COM'L	S L	170 170	260 225	165 165	255 220	145 145	245 210	mA
(Both Ports Active	(Both Ports Active)	f = f _{MAX} ⁽³⁾	IND'L	S L			 165	230			mA mA
ISB1	(Both Ports - TTL Level SEMR = SEML = VIH	COM'L	S L	44 44	70 60	39 39	60 50	27 27	50 40	mA	
	inputs)	$f = f_{MAX}^{(3)}$	IND'L	S L			39	 55			
ISB2	Standby Current (One Port - TTL Level Inputs)	CE"A" = V _{IL} and CE" _{B"} = V _{IH} (5) Active Port Outputs Disabled,	COM'L	S L	115 115	160 145	105 105	155 140	90 90	150 135	mA mA
	in pate)	$\frac{f=f_{MA}X^{(3)}}{SEMR} = \frac{1}{SEML} = V_{IH}$	IND'L	S L	—	_ _	 105	 150			
ISB3	Full Standby Current (Both Ports - All CMOS Level Inputs)	Both Ports CEL and CER ≥ VDD - 0.2V	COM'L	S L	1.0 0.2	6 3	1.0 0.2	6 3	1.0 0.2	6 3	mA
	Civios Level Inputs)	$VIN \ge VDD - 0.2V$ or $VIN \le 0.2V$, $f = 0^{(4)}$ $\overline{SEMR} = \overline{SEML} \ge VDD - 0.2V$	IND'L	S L	_ _	_ _	0.2	6			
ISB4	Full Standby Current (One Port - All CMOS	$\overline{\text{CE}}$ "A" $\leq 0.2\text{V}$ and $\overline{\text{CE}}$ "B" $\geq \text{V}_{\text{DD}} - 0.2\text{V}^{(5)}$	COM'L	S L	115 115	155 140	105 105	150 135	90 90	145 130	mA
Level Inputs)		IND'L	S L			 105	 145				

3603 tbl 10a

NOTES:

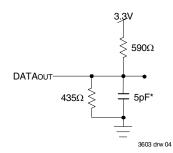
- 1. 'X' in part numbers indicates power rating (S or L).
 2. VDD = 3.3V, $TA = +25^{\circ}C$, and are not production tested. IDD DC = 90mA (Typ.)
- 3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRc, and using "AC Test Conditions" of input levels of GND to 3V.
- 4. f = 0 means no address or control lines change.
- 5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
- 6. Refer to Chip Enable Truth Table.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range^(1,6) (VDD = 3.3V ± 0.3V)

					70V27X35 Com'l & Ind		70V27X55 Com'l Only		
Symbol	Parameter	Test Condition	Version		Typ. ⁽²⁾	Max.	Typ. ⁽²⁾	Max.	Unit
ldd	Dynamic Operating Current (Both Ports Active)	$\overline{\overline{CE}}$ = V _{IL} , Outputs Disabled $\overline{\overline{SEM}}$ = V _{IH}	COM'L	S L	135 135	235 190	125 125	225 180	mA
		$f = f_{MAX}^{(3)}$	IND'L	S L	— 135	 235			
	Standby Current (Both Ports - TTL Level	CEL = CER = VIH SEMR = SEML = VIH	COM'L	S L	22 22	45 35	15 15	40 30	mA
	Inputs)	$f = f_{MAX}^{(3)}$	IND'L	S L	 22	<u>45</u>			
ISB2	Standby Current (One Port - TTL Level Inputs)	$\overline{CE}^*A^* = V_{IL}$ and $\overline{CE}^*B^* = V_{IH}^{(5)}$ Active Port Outputs Disabled,	COM'L	S L	85 85	140 125	75 75	140 125	mA
	iiip dio)	$\frac{f=f_{MAX}^{(3)}}{SEMR} = \overline{SEML} = V_{IH}$	IND'L	S L	— 85	140			
ISB3	Full Standby Current (Both Ports - All CMOS Level Inputs)	Both Ports $\overline{CE}L$ and $\overline{CE}R \ge VDD - 0.2V$ $VIN \ge VDD - 0.2V$ or	COM'L	S L	1.0 0.2	6 3	1.0 0.2	6 3	mA
	inpuis)	$V_{\text{IN}} \leq 0.2V$, $f = 0^{(4)}$ $\overline{\text{SEMR}} = \overline{\text{SEML}} \geq V_{\text{DD}} - 0.2V$	IND'L	S L	0.2	6		_ _	
ISB4	Full Standby Current (One Port - All CMOS	$\overline{CE}^*A^* \le 0.2V$ and $\overline{CE}^*B^* \ge V_{DD} - 0.2V^{(5)}$	COM'L	S L	85 85	135 120	75 75	135 120	mA
Level Inputs)	Level lipuis)		IND'L	S L	85	135	_	_	

NOTES:

1. 'X' in part numbers indicates power rating (S or L).


- 2. VDD = 3.3V, TA = +25°C, and are not production tested. IDD DC = 90mA (Typ.)
- 3. At f = fmax, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/trc, and using "AC Test Conditions" of input levels of GND to 3V.
- 4. f = 0 means no address or control lines change.
- 5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
- 6. Refer to Chip Enable Truth Table.

AC Test Conditions

Input Pulse Levels	GND to 3.0V						
Input Rise/Fall Times	3ns Max.						
Input Timing Reference Levels	1.5V						
Output Reference Levels	1.5V						
Output Load	Figures 1 and 2						

3.3V \$ 590Ω

DATAOUT
BUSY
INT
435Ω
30pF

3603 tbl 10b

Figure 1. AC Output Test Load

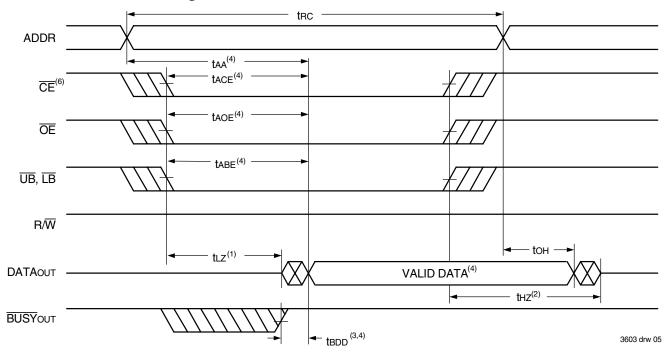
Figure 2. Output Test Load (for tLz, tHz, twz, tow) *Including scope and jig

3603 tbl 11

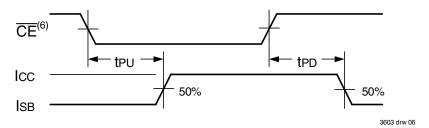
AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽⁴⁾

_		70V27X15 Com'l Only		_	27X20 & Ind	70V27X25 Com'l Only		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYC	ELE							
trc	Read Cycle Time	15	_	20	_	25	_	ns
taa	Address Access Time		15		20		25	ns
tace	Chip Enable Access Time ⁽³⁾		15	_	20	_	25	ns
tabe	Byte Enable Access Time ⁽³⁾		15	_	20	_	25	ns
taoe	Output Enable Access Time		10	_	12	_	15	ns
tон	Output Hold from Address Change	3	_	3	_	3	_	ns
tLZ	Output Low-Z Time ^(1,2)	3	_	3	_	3	_	ns
tHZ	Output High-Z Time ^(1,2)	_	12	_	12	_	15	ns
tpu	Chip Enable to Power Up Time ^(2,5)	0	_	0		0	_	ns
tPD	Chip Disable to Power Down Time ^(2,5)	_	15		20	_	25	ns
tsop	Semaphore Flag Update Pulse (OE or SEM)	10	_	10		15	_	ns
tsaa	Semaphore Address Access Time		15		20		35	ns

3603 tbl 12a


			70V27X35 7 Com'l & Ind Co			
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
READ CYC	CLE					
trc	Read Cycle Time	35		55		ns
taa	Address Access Time		35		55	ns
tace	Chip Enable Access Time ⁽³⁾		35		55	ns
tabe	Byte Enable Access Time ⁽³⁾	_	35	_	55	ns
taoe	Output Enable Access Time	_	20		30	ns
tон	Output Hold from Address Change	3		3		ns
tız	Output Low-Z Time ^(1,2)	3		3		ns
tHZ	Output High-Z Time ^(1,2)	_	20	_	25	ns
tpu	Chip Enable to Power Up Time ^(2,5)	0		0		ns
tPD	Chip Disable to Power Down Time ^(2,5)		45		50	ns
tsop	Semaphore Flag Update Pulse (OE or SEM)	15		15		ns
tsaa	Semaphore Address Access Time		45		65	ns

NOTES:


- $1. \ \ Transition \ is \ measured \ 0mV \ from \ Low \ or \ High-impedance \ voltage \ with \ Output \ Test \ Load \ (Figure \ 2).$
- This parameter is guaranteed by device characterization, but is not production tested.
 To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE= VIH and SEM = VIL.
- 4. 'X' in part numbers indicates power rating (S or L).
- 5. Refer to Chip Enable Truth Table.

3603 tbl 12b

Waveform of Read Cycles⁽⁵⁾

Timing of Power-Up Power-Down

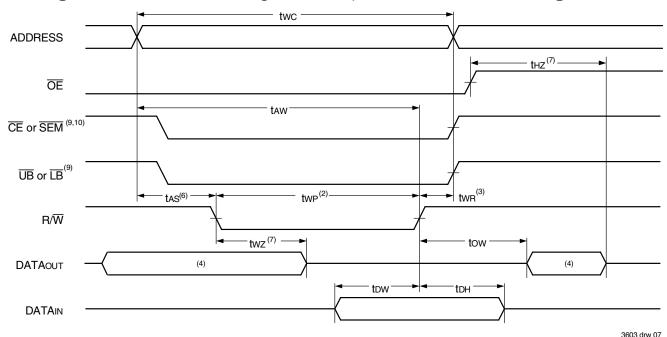
NOTES:

- 1. Timing depends on which signal is asserted last: $\overline{\text{CE}}$, $\overline{\text{OE}}$, $\overline{\text{LB}}$, or $\overline{\text{UB}}$.
- 2. Timing depends on which signal is de-asserted first: \overline{CE} , \overline{OE} , \overline{LB} , or \overline{UB} .
- 3. tedd delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY has no relation to valid output data.
- 4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.
- 5. SEM = VIH.
- 6. Refer to Chip Enable Truth Table.

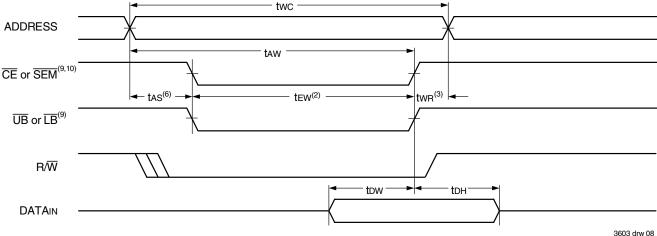
AC Electrical Characteristics Over the Operating Temperature and Supply Voltage⁽⁵⁾

			27X15 I Only	-	?7X20 & Ind	70V27X25 Com'l Only		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
WRITE CY	CLE							
twc	Write Cycle Time	15		20		25		ns
tew	Chip Enable to End-of-Write ⁽³⁾	12		15		20		ns
taw	Address Valid to End-of-Write	12	_	15		20	_	ns
tas	Address Set-up Time ⁽³⁾	0	_	0	_	0	_	ns
twp	Write Pulse Width	12	_	15	_	20	_	ns
twr	Write Recovery Time	0		0		0		ns
tow	Data Valid to End-of-Write	10		15		15		ns
tHZ	Output High-Z Time (1,2)	_	10	_	10		15	ns
tон	Data Hold Time (4)	0	_	0	_	0	_	ns
twz	Write Enable to Output in High-Z (1,2)	_	10	_	10	_	15	ns
tow	Output Active from End-of-Write (1.2.4)	0	_	0		0	_	ns
tswrd	SEM Flag Write to Read Time	5	_	5		5	_	ns
tsps	SEM Flag Contention Window	5		5		5	_	ns

3603 tbl 13a

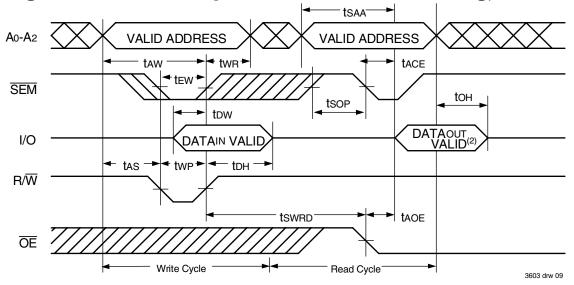

			27X35 & Ind	70V27X55 Com'l Only		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
WRITE CY	CLE					
twc	Write Cycle Time	35	_	55		ns
tew	Chip Enable to End-of-Write ⁽³⁾	30		45		ns
taw	Address Valid to End-of-Write	30		45		ns
tas	Address Set-up Time ⁽³⁾	0		0		ns
twp	Write Pulse Width	25		40		ns
twr	Write Recovery Time	0	_	0	_	ns
tow	Data Valid to End-of-Write	20		30		ns
tHZ	Output High-Z Time (1,2)	_	20	_	25	ns
tон	Data Hold Time ⁽⁴⁾	0		0		ns
twz	Write Enable to Output in High-Z (1,2)		20		25	ns
tow	Output Active from End-of-Write (1.2.4)	0		0		ns
tswrd	SEM Flag Write to Read Time	5	_	5	_	ns
tsps	SEM Flag Contention Window	5	_	5		ns

NOTES


3603 tbl 13b

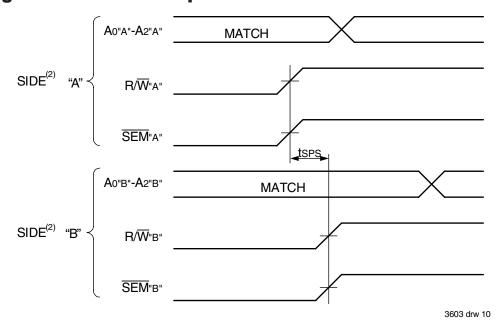
- 1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).
- $2. \quad \text{This parameter } \underline{\text{is guaranteed }} \underline{\text{by device characterization, but is }} \underline{\text{not production tested.}}$
- 3. To access RAM \overrightarrow{CE} = VIL and \overrightarrow{SEM} = VIH. To access semaphore, \overrightarrow{CE} = VIH and \overrightarrow{SEM} = VIL. Either condition must be valid for the entire tew time. Refer to Chip Enable Truth Table.
- 4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tow values will vary over voltage and temperature, the actual tDH will always be smaller than the actual tow.
- 5. 'X' in part numbers indicates power rating (S or L).

Timing Waveform of Write Cycle No. 1, R/W Controlled Timing^(1,5,8)


Timing Waveform of Write Cycle No. 2, $\overline{\text{CE}}$, $\overline{\text{UB}}$, $\overline{\text{LB}}$ Controlled Timing^(1,5)

NOTES:

- 1. R/ \overline{W} or \overline{CE} or \overline{UB} and \overline{LB} must be HIGH during all address transitions.
- 2. A write occurs during the overlap (tew or twp) of a LOW $\overline{\text{CE}}$ and a LOW R/\overline{W} for memory array writing cycle.
- 3. twn is measured from the earlier of \overline{CE} or R/\overline{W} (or \overline{SEM} or R/\overline{W}) going HIGH to the end of write cycle.
- 4. During this period, the I/O pins are in the output state and input signals must not be applied.
- 5. If the $\overline{\text{CE}}$ or $\overline{\text{SEM}}$ LOW transition occurs simultaneously with or after the R/ $\overline{\text{W}}$ LOW transition, the outputs remain in the High-impedance state.
- 6. Timing depends on which enable signal is asserted last, $\overline{\text{CE}}$ or $\overline{\text{R/W}}$.
- 7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure 2)
- 8. If \overline{OE} is LOW during \overline{NW} controlled write cycle, the write pulse width must be the larger of twp or (twz + tow) to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If \overline{OE} is HIGH during an \overline{NW} controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.
- 9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. t∈W must be met for either condition.
- 10. Refer to Chip Enable Truth Table.


Timing Waveform of Semaphore Read after Write Timing, Either Side⁽¹⁾

NOTES:

- 1. $\overline{CE} = VIH \text{ or } \overline{UB} \text{ and } \overline{LB} = VIH \text{ for the duration of the above timing (both write and read cycle), refer to Chip Enable Truth Table.$
- 2. "DATAOUT VALID" represents all I/O's (I/Oo-I/O15) equal to the semaphore value.

Timing Waveform of Semaphore Write Contention(1,3,4)

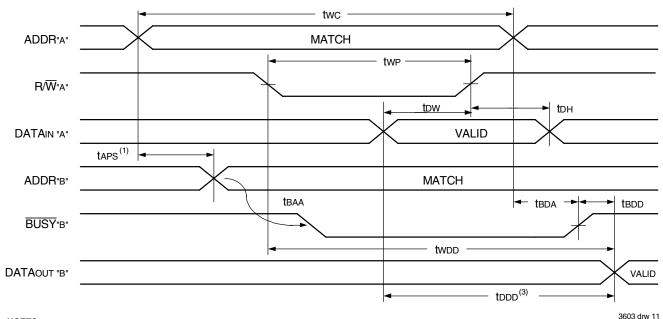
NOTES

- 1. Dor = Dol = VIL, $\overline{CE}R = \overline{CE}L = VIH$, or both $\overline{UB} \& \overline{LB} = VIH$ (refer to Chip Enable Truth Table).
- 2. All timing is the same for left and right ports. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
- 3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.
- 4. If tsps is not satisfied, there is no guarantee which side will be granted the semaphore flag.

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽⁶⁾

		70V27X15 Com'l Only			27X20 & Ind	70V27X25 Com'l Only		
Symbol	Parameter	Min.	Max.	Min. Max.		Min.	Max.	Unit
BUSY TIM	ING (M/S=Vih)							
t BAA	BUSY Access Time from Address Match		15		20		25	ns
t BDA	BUSY Disable Time from Address Not Matched		15		20		25	ns
t BAC	BUSY Access Time from Chip Enable Low		15		20		25	ns
tBDC	BUSY Disable Time from Chip Enable High		15		20		25	ns
taps	Arbitration Priority Set-up Time ⁽²⁾	5	_	5	_	5	_	ns
tBDD	BUSY Disable to Valid Data ⁽³⁾	_	17	_	35	_	35	ns
twн	Write Hold After BUSY ⁽⁵⁾	12	_	15		20		ns
BUSY TIM	ING (M/S=VIL)							
twB	BUSY Input to Write ⁽⁴⁾	0	_	0	_	0	_	ns
twн	Write Hold After BUSY ⁽⁵⁾	12	_	15	_	20	_	ns
PORT-TO-	PORT DELAY TIMING							
twdd	Write Pulse to Data Delay ⁽¹⁾	_	30	_	45		55	ns
tooo	Write Data Valid to Read Data Delay ⁽¹⁾	_	25	_	30		50	ns

3603 tbl 14a


			70V27X35 Com'l & Ind		70V27X55 Com'l Only				
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit			
BUSY TIMI	NG (M/S=Vih)								
t BAA	BUSY Access Time from Address Match	-	35		45	ns			
t BDA	BUSY Disable Time from Address Not Matched		35		45	ns			
t BAC	BUSY Access Time from Chip Enable Low		35		45	ns			
tBDC	BUSY Disable Time from Chip Enable High	_	35		45	ns			
taps	Arbitration Priority Set-up Time ⁽²⁾	5	_	5		ns			
tBDD	BUSY Disable to Valid Data ⁽³⁾	_	40	_	50	ns			
twн	Write Hold After BUSY ⁽⁵⁾	25	_	25		ns			
BUSY TIMI	NG (M/S=Vil)								
twB	BUSY Input to Write ⁽⁴⁾	0	_	0		ns			
twн	Write Hold After BUSY ⁽⁵⁾	25	_	25		ns			
PORT-TO-F	PORT-TO-PORT DELAY TIMING								
twdd	Write Pulse to Data Delay ⁽¹⁾	_	65		85	ns			
todo	Write Data Valid to Read Data Delay ⁽¹⁾		60	_	80	ns			

NOTES

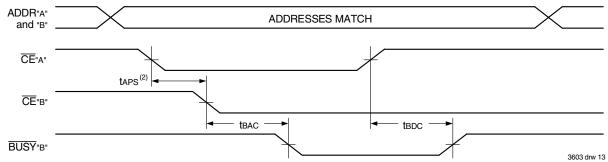
3603 tbl 14b

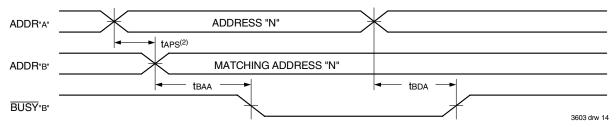
- 1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and \overline{BUSY} (M/ \overline{S} = ViH)".
- 2. To ensure that the earlier of the two ports wins.
- 3. tBDD is a calculated parameter and is the greater of 0, tWDD tWP (actual), or tDDD tDW (actual).
- 4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".
- 5. To ensure that a write cycle is completed on port "B" after contention on port "A".
- 6. 'X' in part numbers indicates power rating (S or L).

Timing Waveform of Write with Port-to-Port Read and $\overline{BUSY}^{(2,5)}$ (M/ \overline{S} = VIH)⁽⁴⁾

NOTES:

- 1. To ensure that the earlier of the two ports wins. taps is ignored for $M/\overline{S} = V_{IL}$ (SLAVE).
- 2. $\overline{\text{CE}}_{L} = \overline{\text{CE}}_{R} = \text{V}_{IL}$ (refer to Chip Enable Truth Table).
- 3. \overline{OE} = V_{IL} for the reading port.
- 4. If M/S = VIL (SLAVE), then BUSY is an input. Then for this example BUSY "A"= VIH and BUSY "B"= input is shown above.
- 5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".


Timing Waveform Write with \overline{BUSY} (M/ \overline{S} = VIL)


NOTES

- 1. twh must be met for both \overline{BUSY} input (SLAVE) and output (MASTER).
- 2. $\overline{\text{BUSY}}$ is asserted on port "B" blocking R/ $\overline{\text{W}}$ "B", until $\overline{\text{BUSY}}$ "B" goes HIGH.
- 3. twb is only for the "Slave" version.

Waveform of \overline{BUSY} Arbitration Controlled by \overline{CE} Timing $(M/\overline{S} = VIH)^{(1,3)}$

Waveform of \overline{BUSY} Arbitration Cycle Controlled by Address Match Timing (M/ \overline{S} = VIH)⁽¹⁾

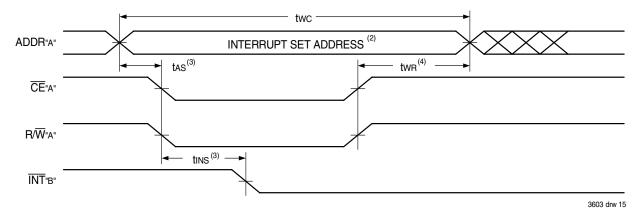
NOTES:

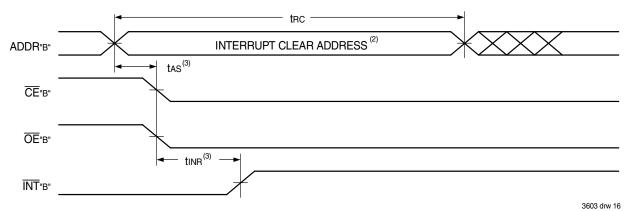
- 1. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".
- 2. If tAPS is not satisfied, the busy signal will be asserted on one side or another but there is no guarantee on which side busy will be asserted.
- 3. Refer to Chip Enable Truth Table.

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽¹⁾

	<u> </u>							
		-	7X15 'I Only		27X20 & Ind	70V27X25 Com'l Only		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
INTERRUPT	TIMING							
tas	Address Set-up Time	0	_	0		0		ns
twr	Write Recovery Time	0		0		0		ns
tins	Interrupt Set Time	_	15		20	_	25	ns
tinr	Interrupt Reset Time	_	25		20		35	ns

3603 tbl 15a


		-	27X35 & Ind	70V2 Com'l		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
INTERRUPT	TIMING					
tas	Address Set-up Time	0	_	0		ns
twr	Write Recovery Time	0		0	_	ns
tins	Interrupt Set Time	_	30	_	40	ns
tinr	Interrupt Reset Time		35	_	45	ns


3603 tbl 15b

NOTES:

1. 'X' in part numbers indicates power rating (S or L).

Waveform of Interrupt Timing^(1,5)

NOTES:

- 1. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".
- 2. See Interrupt Truth Table.
- 3. Timing depends on which enable signal $(\overline{CE} \text{ or } R\overline{W})$ is asserted last. 4. Timing depends on which enable signal $(\overline{CE} \text{ or } R\overline{W})$ is de-asserted first.
- 5. Refer to Chip Enable Truth Table.

Truth Table IV — Interrupt Flag(1,4)

	1 011011			<u> </u>						
		Left Port								
R/WL	CEL	ŌĒ L	A14L-A0L	ĪNT∟	R/WR	CE R	ŌĒ R	A 14R -A 0R	ĪNTR	Function
L	L	Х	7FFF	Х	Х	Х	Х	Х	L ⁽²⁾	Set Right INTR Flag
Х	Х	Х	Х	Х	Х	L	L	7FFF	H ⁽³⁾	Reset Right INTR Flag
Х	Х	Х	Х	L ⁽³⁾	L	L	Х	7FFE	Х	Set Left INTL Flag
Х	L	L	7FFE	H ⁽²⁾	Х	Х	Х	Х	Х	Reset Left INTL Flag

NOTES:

3603 tbl 16

- 1. Assumes $\overline{BUSY}_L = \overline{BUSY}_R = V_{IH}$.
- 2. If $\overline{BUSY}_L = V_{IL}$, then no change.
- 3. If $\overline{BUSYR} = VIL$, then no change.
- 4. Refer to Chip Enable Truth Table.

Truth Table V — Address BUSY Arbritration⁽⁴⁾

	In	puts	Out	puts	
CEL	ՇĒ R	A0L-A14L A0R-A14R	BUSYL(1)	BUSY _R (1)	Function
Х	Х	NO MATCH	Н	Н	Normal
Н	Х	MATCH	Н	Н	Normal
Х	Н	MATCH	Н	Н	Normal
L	L	MATCH	(2)	(2)	Write Inhibit ⁽³⁾

NOTES:

- 1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the IDT70V27 are push-pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.
- 2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.
- 3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored when BUSYR outputs are driving LOW regardless of actual logic level on the pin.
- 4. Refer to Chip Enable Truth Table.

Truth Table VI — Example of Semaphore Procurement Sequence (1,2)

Functions	D0 - D15 Left	D0 - D15 Right	Status
No Action	1	1	Semaphore free
Left Port Writes "0" to Semaphore	0	1	Left port has semaphore token
Right Port Writes "0" to Semaphore	0	1	No change. Right side has no write access to semaphore
Left Port Writes "1" to Semaphore	1	0	Right port obtains semaphore token
Left Port Writes "0" to Semaphore	1	0	No change. Left port has no write access to semaphore
Right Port Writes "1" to Semaphore	0	1	Left port obtains semaphore token
Left Port Writes "1" to Semaphore	1	1	Semaphore free
Right Port Writes "0" to Semaphore	1	0	Right port has semaphore token
Right Port Writes "1" to Semaphore	1	1	Semaphore free
Left Port Writes "0" to Semaphore	0	1	Left port has semaphore token
Left Port Writes "1" to Semaphore	1	1	Semaphore free

3603 tbl 18

- 1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70V27.
- 2. There are eight semaphore flags written to via I/O0 and read from all the I/O's (I/O0-I/O15). These eight semaphores are addressed by A0 A2.

Functional Description

The IDT70V27 provides two ports with separate control, address and I/O pins that permit independent access for reads or writes to any location in memory. The IDT70V27 has an automatic power down feature controlled by \overline{CE}_0 and CE1. The \overline{CE}_0 and CE1 control the on-chip power down circuitry that permits the respective port to go into a standby mode when not selected (\overline{CE} HIGH). When a port is enabled, access to the entire memory array is permitted.

Interrupts

If the user chooses the interrupt function, a memory location (mail box or message center) is assigned to each port. The left port interrupt flag $(\overline{INT}L)$ is asserted when the right port writes to memory location 7FFE (HEX), where a write is defined as $\overline{CE}_R = R/\overline{W}_R = V_{IL}$ per the Truth Table IV. The left port clears the interrupt through access of address location

7FFE when $\overline{\text{CE}}_L = \overline{\text{OE}}_L = \text{VIL}$, $R/\overline{\text{W}}$ is a "don't care". Likewise, the right port interrupt flag ($\overline{\text{INT}}_R$) is asserted when the left port writes to memory location 7FFF (HEX) and to clear the interrupt flag ($\overline{\text{INT}}_R$), the right port must read the memory location 7FFF. The message (16 bits) at 7FFE or 7FFF is user-defined since it is an addressable SRAM location. If the interrupt function is not used, address locations 7FFE and 7FFF are not used as mail boxes, but as part of the random access memory. Refer to Truth Table IV for the interrupt operation.

Busy Logic

Busy Logic provides a hardware indication that both ports of the RAM have accessed the same location at the same time. It also allows one of the two accesses to proceed and signals the other side that the RAM is "Busy". The $\overline{\text{BUSY}}$ pin can then be used to stall the access until the operation on

the other side is completed. If a write operation has been attempted from the side that receives a \overline{BUSY} indication, the write signal is gated internally to prevent the write from proceeding.

The use of \overline{BUSY} logic is not required or desirable for all applications. In some cases it may be useful to logically OR the \overline{BUSY} outputs together and use any \overline{BUSY} indication as an interrupt source to flag the event of an illegal or illogical operation. If the write inhibit function of \overline{BUSY} logic is not desirable, the \overline{BUSY} logic can be disabled by placing the part in slave mode with the $\overline{M/S}$ pin. Once in slave mode the \overline{BUSY} pin operates solely as a write inhibit input pin. Normal operation can be programmed by tying the \overline{BUSY} pins HIGH. If desired, unintended write operations can be prevented to a port by tying the \overline{BUSY} pin for that port LOW.

The BUSY outputs on the IDT70V27 RAM in master mode, are pushpull type outputs and do not require pull up resistors to operate. If these RAMs are being expanded in depth, then the BUSY indication for the resulting array requires the use of an external AND gate.

Width Expansion with BUSY Logic Master/Slave Arrays

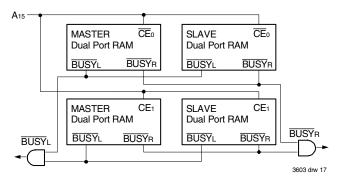


Figure 3. Busy and chip enable routing for both width and depth expansion with IDT70V27 RAMs.

When expanding an IDT70V27 RAM array in width while using \overline{BUSY} logic, one master part is used to decide which side of the RAM array will receive a \overline{BUSY} indication, and to output that indication. Any number of slaves to be addressed in the same address range as the master, use the busy signal as a write inhibit signal. Thus on the IDT70V27 RAM the \overline{BUSY} pin is an output if the part is used as a master (M/ \overline{S} pin = VIH), and the \overline{BUSY} pin is an input if the part is used as a slave (M/ \overline{S} pin = VIL) as shown in Figure 3.

If two or more master parts were used when expanding in width, a split decision could result with one master indicating BUSY on one side of the array and another master indicating BUSY on one other side of the array. This would inhibit the write operations from one port for part of a word and inhibit the write operations from the other port for the other part of the word.

The \overline{BUSY} arbitration, on a master, is based on the chip enable and address signals only. It ignores whether an access is a read or write. In a master/slave array, both address and chip enable must be valid long enough for a \overline{BUSY} flag to be output from the master before the actual write pulse can be initiated with either the R/\overline{W} signal or the byte enables. Failure to observe this timing can result in a glitched internal write inhibit signal and corrupted data in the slave.

Semaphores

The IDT70V27 is a fast Dual-Port 32K x 16 CMOS Static RAM with an additional 8 address locations dedicated to binary semaphore flags. These flags allow either processor on the left or right side of the Dual-Port RAM to claim a privilege over the other processor for functions defined by the system designer's software. As an example, the semaphore can be used by one processor to inhibit the other from accessing a portion of the Dual-Port RAM or any other shared resource.

The Dual-Port RAM features a fast access time, and both ports are completely independent of each other. This means that the activity on the left port in no way slows the access time of the right port. Both ports are identical in function to standard CMOS Static RAM and can be read from, or written to, at the same time with the only possible conflict arising from the simultaneous writing of, or a simultaneous READ/WRITE of, a non-semaphore location. Semaphores are protected against such ambiguous situations and may be used by the system program to avoid any conflicts in the non-semaphore portion of the Dual-Port RAM. These devices have an automatic power-down feature controlled by $\overline{\text{CE}}$ the Dual-Port RAM enable, and $\overline{\text{SEM}}$, the semaphore enable. The $\overline{\text{CE}}$ and $\overline{\text{SEM}}$ pins control on-chip power down circuitry that permits the respective port to go into standby mode when not selected. This is the condition which is shown in Truth Table II where $\overline{\text{CE}}$ and $\overline{\text{SEM}}$ are both HIGH.

Systems which can best use the IDT70V27 contain multiple processors or controllers and are typically very high-speed systems which are software controlled or software intensive. These systems can benefit from a performance increase offered by the IDT70V27's hardware semaphores, which provide a lockout mechanism without requiring complex programming.

Software handshaking between processors offers the maximum in system flexibility by permitting shared resources to be allocated in varying configurations. The IDT70V27 does not use its semaphore flags to control any resources through hardware, thus allowing the system designer total flexibility in system architecture.

An advantage of using semaphores rather than the more common methods of hardware arbitration is that wait states are never incurred in either processor. This can prove to be a major advantage in very high-speed systems.

How the Semaphore Flags Work

The semaphore logic is a set of eight latches which are independent of the Dual-Port RAM. These latches can be used to pass a flag, or token, from one port to the other to indicate that a shared resource is in use. The semaphores provide a hardware assist for a use assignment method called "Token Passing Allocation." In this method, the state of a semaphore latch is used as a token indicating that shared resource is in use. If the left processor wants to use this resource, it requests the token by setting the latch. This processor then verifies its success in setting the latch by reading it. If it was successful, it proceeds to assume control over the shared resource. If it was not successful in setting the latch, it determines that the right side processor has set the latch first, has the token and is using the shared resource. The left processor can then either repeatedly request that semaphore's status or remove its request for that semaphore to perform another task and occasionally attempt again to gain control of the token via the set and test sequence. Once the right side has relinquished the token, the left side should succeed in gaining control.

High-Speed 3.3V 32K x 16 Dual-Port Static RAM

The semaphore flags are active low. A token is requested by writing a zero into a semaphore latch and is released when the same side writes a one to that latch.

The eight semaphore flags reside within the IDT70V27 in a separate memory space from the Dual-Port RAM. This address space is accessed by placing a low input on the \overline{SEM} pin (which acts as a chip select for the semaphore flags) and using the other control pins (Address, \overline{OE} , and R/\overline{W}) as they would be used in accessing a standard Static RAM. Each of the flags has a unique address which can be accessed by either side through address pins A0–A2. When accessing the semaphores, none of the other address pins has any effect.

When writing to a semaphore, only data pin Do is used. If a low level is written into an unused semaphore location, that flag will be set to a zero on that side and a one on the other side (see Table VI). That semaphore can now only be modified by the side showing the zero. When a one is written into the same location from the same side, the flag will be set to a one for both sides (unless a semaphore request from the other side is pending) and then can be written to by both sides. The fact that the side which is able to write a zero into a semaphore subsequently locks out writes from the other side is what makes semaphore flags useful in interprocessor communications. (A thorough discussion on the use of this feature follows shortly.) A zero written into the same location from the other side will be stored in the semaphore request latch for that side until the semaphore is freed by the first side.

When a semaphore flag is read, its value is spread into all data bits so that a flag that is a one reads as a one in all data bits and a flag containing a zero reads as all zeros. The read value is latched into one side's output register when that side's semaphore select (\overline{SEM}) and output enable (\overline{OE}) signals go active. This serves to disallow the semaphore from changing state in the middle of a read cycle due to a write cycle from the other side. Because of this latch, a repeated read of a semaphore in a test loop must cause either signal (\overline{SEM} or \overline{OE}) to go inactive or the output will never change.

A sequence WRITE/READ must be used by the semaphore in order to guarantee that no system level contention will occur. A processor requests access to shared resources by attempting to write a zero into a semaphore location. If the semaphore is already in use, the semaphore request latch will contain a zero, yet the semaphore flag will appear as a one, a fact which the processor will verify by the subsequent read (see Table VI). As an example, assume a processor writes a zero to the left port at a free semaphore location. On a subsequent read, the processor will verify that it has written successfully to that location and will assume control over the resource in question. Meanwhile, if a processor on the right side attempts to write a zero to the same semaphore flag it will fail, as will be verified by the fact that a one will be read from that semaphore on the right side during the subsequent read. Had a sequence of READ/WRITE been

used instead, system contention problems could have occurred during the gap between the read and write cycles.

It is important to note that a failed semaphore request must be followed by either repeated reads or by writing a one into the same location. The

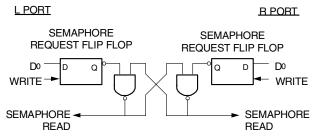
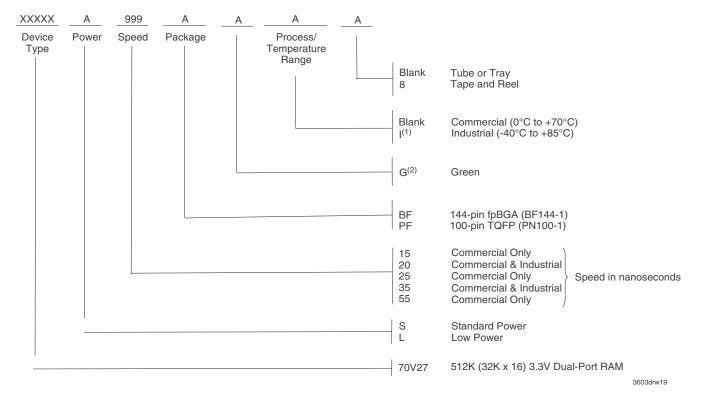


Figure 4. IDT70V27 Semaphore Logic 3603 drw 18


reason for this is easily understood by looking at the simple logic diagram of the semaphore flag in Figure 4. Two semaphore request latches feed into a semaphore flag. Whichever latch is first to present a zero to the semaphore flag will force its side of the semaphore flag low and the other side high. This condition will continue until a one is written to the same semaphore request latch. Should the other side's semaphore request latch have been written to a zero in the meantime, the semaphore flag will flip over to the other side as soon as a one is written into the first side's request latch. The second side's flag will now stay low until its semaphore request latch is written to a one. From this it is easy to understand that, if a semaphore is requested and the processor which requested it no longer needs the resource, the entire system can hang up until a one is written into that semaphore request latch.

The critical case of semaphore timing is when both sides request a single token by attempting to write a zero into it at the same time. The semaphore logic is specially designed to resolve this problem. If simultaneous requests are made, the logic guarantees that only one side receives the token. If one side is earlier than the other in making the request, the first side to make the request will receive the token. If both requests arrive at the same time, the assignment will be arbitrarily made to one port or the other.

One caution that should be noted when using semaphores is that semaphores alone do not guarantee that access to a resource is secure. As with any powerful programming technique, if semaphores are misused or misinterpreted, a software error can easily happen.

Initialization of the semaphores is not automatic and must be handled via the initialization program at power-up. Since any semaphore request flag which contains a zero must be reset to a one, all semaphores on both sides should have a one written into them at initialization from both sides to assure that they will be free when needed.

Ordering Information

NOTES:

- Industrial temperature range is available on selected TQFP packages in low power.
 For other speeds, packages and powers contact your sales office.
- 2. Green parts available. For specific speeds, packages and powers contact your local sales office.

Datasheet Document History

12/03/98: Initiated Document History Converted to new format Typographical and cosmetic changes Added fpBGA information Added 15ns and 20ns speed grades Updated DC Electrical Characteristics Added additional notes to pin configurations 04/02/99: Page 5 Fixed typo in Table III 08/01/99: Page 3 Changed package body height from 1.1mm to 1.4mm 08/30/99: Page 1 Changed 660 mW to $660 \mu\text{W}$ 04/25/00: Replaced IDT logo Page 2 Made pin correction

Changed ±200mV to 0mV in notes

Datasheet Document History continued on page 21

Datasheet Document History(cont'd)

01/12/01:	Page 1	Fixed page numbering; copyright
	Page 6	Increased storage temperature parameter
		Clarified TA Parameter
	Page 7 & 8	DC Electrical parameters-changed wording from "open" to "disabled"
		Removed Preliminary status
08/02/04:	Page 1, 4 & 20	Removed GU-108 package offering
	Page 2 & 3	Added date revision for pin configurations
	Page 2 - 7	Changed naming convention from Vcc to Vdd and from GND to Vss
	Page 5	Updated Capacitance table
	Page 6	Added I-temp for low power for 20ns speed to DC Electrical Characteristics
	Page 6 - 7	Removed I-temp for 25ns & 55ns speeds and removed I-temp for 35ns standard power
		from DC Electrical Characteristics
	Page 7	Changed Input Rise/Fall Times from 5ns to 3ns
	Page 8, 10, 13	Removed I-temp for 25ns & 55ns speeds from AC Electrical Characteristics for Read,
	& 15	Write, Busy and Interrupt
	Page 6 - 8, 10,	Removed I-temp note from all table footnotes
	13 & 15	
01/20/06:	Page 1	Added green availability to features
	Page 20	Added green indicator to ordering information
09/21/06:	Page 20	Added die stepping indcator to ordering information
10/23/08:	Page 20	Removed "IDT" from orderable part number
09/27/12:	Page 20	Added T&R indicator to and removed W stepping from ordering information
	Page 2,17 & 19	Corrected miscellaneous typo's

for SALES:

800-345-7015 or 408-284-8200

fax: 408-284-2775 www.idt.com

for Tech Support: 408-284-2794 DualPortHelp@idt.com