Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

MITSUBISHI MICROCOMPUTERS

M35076-XXXSP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

DESCRIPTION

The M35076-XXXSP is a character pattern display control IC can display on the digital camera, the digital video, the digital television, the CRT display, the liquid crystal display and the plasma display. It can display 2 pages (24 characters × 12 lines per 1 page) at the same time. It uses a silicon gate CMOS process and it housed in a 20-pin shrink DIP package (M35076-XXXSP). For M35076-001SP that is a standard ROM version of M35076-XXXSP respectively, the character pattern is also mentioned.

FEATURES

ILAIONEO
● Screen composition
● Number of characters displayed
Character composition
Characters available 0 page:256 characters
1 page:256 characters
● Character sizes available
Display locations available
Horizontal direction
Vertical direction
Blinking Character units
Cycle : division of vertical synchronization signal into 32 or 64
Duty : 25%, 50%, or 75%
Data input By the 16-bit serial input function
By the I ² C-BUS serial input function(at VDD=5V only)
 Coloring for ROM character
Character color 8 colors (Character unit)
Background coloring8 colors (Character unit)
Border (shadow) coloring 8 colors (RGB output)
Specified by register
Raster coloring 8 colors (RGB output)
Specified by register
• Blanking Character size blanking
Border size blanking
Matrix-outline blanking
All blanking (all raster area)
Output ports

8 shared output ports (toggled between RGB output)

External clock mode 1 Fosc = 6.3 MHz to 40 MHz Horizontal synchronous input frequency

Display input frequency range

Display RAM erase functionDisplay oscillation stop function

• Display input frequency range

Horizontal synchronous input frequency

<VDD=5V>

<VDD=3V>

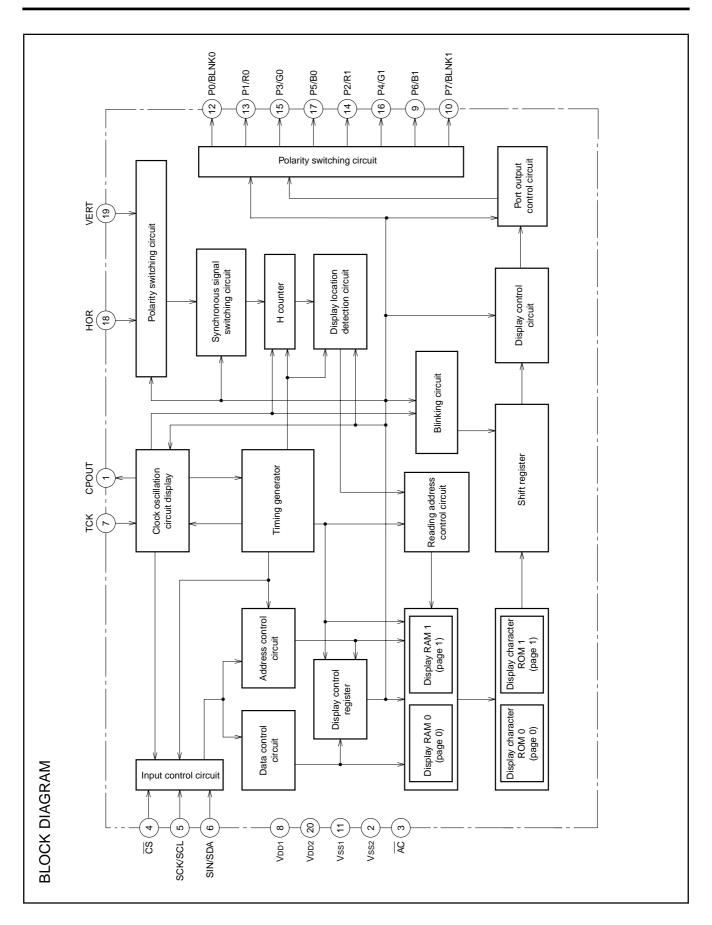
Horizontal synchronous input frequency
 H.sync = 15 kHz to 60 kHz

...... H.sync = 15 kHz to 130 kHz

APPLICATION

Digital camera, Digital video, Digital television, CRT display, Liquid crystal display, Plasma display

PIN CONFIGURATION (TOP VIEW) $\mathsf{CPOUT} \leftarrow \boxed{1}$ VDD2 2 19 ← VERT Vss2 $\overline{AC} \rightarrow \boxed{3}$ 18 ← HOR $\overline{CS} \rightarrow \boxed{4}$ 17 → P5/B0 16 → P4/G1 SCK/SCL → 5 SIN/SDA ↔ 6 15 → P3/G0 TCK → 7 14 → P2/R1 VDD1 8 13 → P1/R0 $12 \rightarrow P0/BLNK0$ P6/B1 ← 9 P7/BLNK1 ← 10 Vss1 **Outline 20P4B**


MITSUBISHI MICROCOMPUTERS M35076-XXXSP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

PIN DESCRIPTION

Pin Number	Symbol	Pin name	Input/ Output	Function
1	CPOUT	Filter output	Output	Filter output. Connect loop filter to this pin.
2	VSS2	Earthing pin	-	Connect to GND.
3	ĀC	Auto-clear input	Input	When "L", this pin resets the internal IC circuit. Hysteresis input. Built-in pull-up resistor.
4	ĊŚ	Chip select input	Input	<at 16-bit="" communication="" serial="" the=""> Chip select pin. Set this pin to "L" level at serial data transfer. Hysteresis input. Built-in pull-up resistor.</at>
				<at i<sup="" the="">2C-BUS serial communication> Set this pin to "H" level.</at>
5	SCK/SCL	Clock input	Input	<at 16-bit="" communication="" serial="" the=""> SIN pin serial data is taken in when SCK rises at CS pin "L" level. Hysteresis input.</at>
				<at communication="" i²c-bus="" serial="" the=""> SDA pin serial data is taken in synchronized with SCL.</at>
6	SIN/SDA	Data input	Input	<at 16-bit="" communication="" serial="" the=""> This is the pin for serial input of display control register and display RAM data. Hysteresis input.</at>
		Data I/O	I/O	<at i<sup="" the="">2C-BUS serial communication> Hysteresis input. This is the pin for serial input of display control register and display RAM data. Also this pin output acknowledge signal.</at>
7	тск	External clock	Input	This is the pin for external clock input.
8	VDD1	Power pin	-	Please connect to +5V with the power pin.
9	P6/B1	Port P6 output	Output	This pin can be toggled between port pin output and B1 signal output.
10	P7/BLNK1	Port P7 output	Output	This pin can be toggled between port pin output and BLNK1 signal output.
11	Vss1	Earthing pin	-	Please connect to GND using circuit earthing pin.
12	P0/BLNK0	Port P0 output	Output	This pin can be toggled between port pin output and BLNK0 signal output.
13	P1/R0	Port P1 output	Output	This pin can be toggled between port pin output and R0 signal output.
14	P2/R1	Port P2 output	Output	This pin can be toggled between port pin output and R1 signal output.
15	P3/G0	Port P3 output	Output	This pin can be toggled between port pin output and G0 signal output.
16	P4/G1	Port P4 output	Output	This pin can be toggled between port pin output and G1 signal output.
17	P5/B0	Port P5 output	Output	This pin can be toggled between port pin output and B0 signal output.
18	HOR	Horizontal synchro- nous signal input	Input	This pin inputs the horizontal synchronous signal. Hysteresis input.
19	VERT	Vertical synchro- nous signal input	Input	This pin inputs the vertical synchronous signal. Hysteresis input.
20	VDD2	Power pin	_	Please connect to +5V with the power pin.

MEMORY CONSTITUTION

Address 00016 to 11F16 are assigned to the display RAM, address 12016 to 12816 are assigned to the display control registers. The internal circuit is reset and all display control registers (address 12016 to 12816) are set to "0" when the \overline{AC} pin level is "L". And then, RAM is not erased and be undefinited. This memory is consisted of 2

pages: page 0 memory and page 1 memory (their addresses are common), page controlled by DAF bit of each address when writing data. For detail, see "Data input". Memory constitution is shown in Figure 1 and 2.

Addresses	DAF	DAE	DAD	DAC	DAB	DAA	DA9	DA8	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0		
00016	0	ВВ	BG	BR	BLINK	В	G	R	C7	C6	C5	C4	C3	C2	C1	C0		
00116	0	ВВ	BG	BR	BLINK	В	G	R	C7	C6	C5	C4	C3	C2	C1	C0		
	:	1 1	ackgroui coloring	nd	Blink- ing	Chai	Character color						Character code					
11E16	0	ВВ	BG	BR	BLINK	В	G	R	C7	C6	C5	C4	С3	C2	C1	C0		
11F16	0	ВВ	BG	BR	BLINK	В	G	R	C7	C6	C5	C4	C3	C2	C1	C0		
12016	0	EXCK0	DISV2	DIVS1	DIVS0	DIV10	DIV9	DIV8	DIV7	DIV6	DIV5	DIV4	DIV3	DIV2	DIV1	DIV0		
12116	0	RSEL0	PTD7	PTD6	PTD5	PTD4	PTD3	PTD2	PTD1	PTD0	PTC5	PTC4	PTC3	PTC2	PTC1	PTC0		
12216	0	RSEL1	SPACE2	SPACE1	SPACE0	HP10	HP9	HP8	HP7	HP6	HP5	HP4	HP3	HP2	HP1	HP0		
12316	0	EXCK1	TEST3	TEST2	TEST1	TEST0	VP9	VP8	VP7	VP6	VP5	VP4	VP3	VP2	VP1	VP0		
12416	0	TEST9	PTC67	TEST4	DSP11	DSP10	DSP9	DSP8	DSP7	DSP6	DSP5	DSP4	DSP3	DSP2	DSP1	DSP0		
12516	0	TEST10	VSZ1H1	VSZ1H0	VSZ1L1	VSZ1L0	V1SZ1	V1SZ0	LIN9	LIN8	LIN7	LIN6	LIN5	LIN4	LIN3	LIN2		
12616	0	POPUP	VSZ2H1	VSZ2H0	VSZ2L1	VSZ2L0	V18SZ1	V18SZ0	LIN17	LIN16	LIN15	LIN14	LIN13	LIN12	LIN11	LIN10		
12716	0	MODE0	TEST12	HSZ20	TEST11	HSZ10	BETA14	TEST8	TEST7	TEST6	FB	FG	FR	RB	RG	RR		
12816	0	MODE1	BLINK2	BLINK1	BLINK0	DSPON	STOP	RAMERS	SYAD	BLK1	BLK0	POLH	POLV	VMASK	B/F	BCOL		

Fig. 1 Memory constitution (page 0 memory)

MITSUBISHI MICROCOMPUTERS M35076-XXXSP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

Addresses	DAF	DAE	DAD	DAC	DAB	DAA	DA9	DA8	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
00016	1	ВВ	BG	BR	BLINK	В	G	R	C7	C6	C5	C4	C3	C2	C1	C0
00116	1	BB	BG	BR	BLINK	В	G	R	C7	C6	C5	C4	C3	C2	C1	C0
		1 1	ackgrou coloring	nd	Blink- ing	Chai	racter co	olor			Cl	naracter	code			
11E16	1	ВВ	BG	BR	BLINK	В	G	R	C7	C6	C5	C4	С3	C2	C1	C0
11F16	1	BB	BG	BR	BLINK	В	G	R	C7	C6	C5	C4	C3	C2	C1	C0
12016	1	-	_	_	_	_	_	-	-	_	_	_	_	_	_	-
12116	1	-	_	_	_	-	-	-	-	_	_	_	_	_	_	-
12216	1	-	SPACE2	SPACE1	SPACE0	HP10	HP9	HP8	HP7	HP6	HP5	HP4	HP3	HP2	HP1	HP0
12316	1	_	TEST3	VJT	TEST1	TEST0	VP9	VP8	VP7	VP6	VP5	VP4	VP3	VP2	VP1	VP0
12416	1	-	_	TEST4	DSP11	DSP10	DSP9	DSP8	DSP7	DSP6	DSP5	DSP4	DSP3	DSP2	DSP1	DSP0
12516	1	-	VSZ1H1	VSZ1H0	VSZ1L1	VSZ1L0	V1SZ1	V1SZ0	LIN9	LIN8	LIN7	LIN6	LIN5	LIN4	LIN3	LIN2
12616	1	-	VSZ2H1	VSZ2H0	VSZ2L1	VSZ2L0	V18SZ1	V18SZ0	LIN17	LIN16	LIN15	LIN14	LIN13	LIN12	LIN11	LIN10
12716	1	-	TEST12	HSZ20	TEST11	HSZ10	BETA14	TEST8	TEST7	TEST6	FB	FG	FR	RB	RG	RR
12816	1	-	BLINK2	BLINK1	BLINK0	DSPON	TEST13	RAMERS	SYAD	BLK1	BLK0	_	_	_	_	BCOL

Fig. 2 Memory constitution (page 1 memory)

Note: Page 0 and page 1 registers are found in their respective pages. For example, HP10 to HP0 of the page 0 memory sets the horizontal display start position of page 0, whereas HP10 to HP0 (same register name) of the page 1 memory sets the horizontal display start position of page 1. Also, registers common to both page 0 and page 1 are found only in the page 0 memory. For example, PTC0 is the control register of the P0 pin and is found only in the page 0 memory.

SCREEN CONSTITUTION

The screen lines and rows are determined from each address of the display RAM (page 0 and page 1 are common). The screen constitution is shown in Figure 3.

Row Line	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	00016	00116	00216	00316	00416	00516	00616	00716	00816	00916	00A16	00B16	00C16	00D16	00E16	00F16	01016	01116	01216	01316	01416	01516	01616	01716
2	01816	01916	01A16	01B ₁₆	01C16	01D16	01E ₁₆	01F16	02016	02116	02216	02316	02416	02516	02616	02716	02816	02916	02A16	02B16	02C16	02D16	02E16	02F16
3	03016	03116	03216	03316	03416	03516	03616	03716	03816	03916	03A16	03B ₁₆	03C16	03D16	03E ₁₆	03F16	04016	04116	04216	04316	04416	04516	04616	04716
4	04816	04916	04A16	04B16	04C16	04D16	04E16	04F16	05016	05116	05216	05316	05416	05516	05616	05716	05816	05916	05A16	05B16	05C16	05D16	05E16	05F16
5	06016	06116	06216	06316	06416	06516	06616	06716	06816	06916	06A16	06B ₁₆	06C16	06D16	06E16	06F16	07016	07116	07216	07316	07416	07516	07616	07716
6	07816	07916	07A16	07B ₁₆	07C16	07D16	07E ₁₆	07F16	08016	08116	08216	08316	08416	08516	08616	08716	08816	08916	08A16	08B16	08C16	08D16	08E ₁₆	08F16
7	09016	09116	09216	09316	09416	09516	09616	09716	09816	09916	09A16	09B16	09C16	09D16	09E16	09F16	0A016	0A116	0A216	0A316	0A416	0A516	0A616	0A716
8	0A816	0A916	0AA16	0AB16	0AC16	0AD16	0AE16	0AF16	0B016	0B116	0B216	0B316	0B416	0B516	0B616	0B716	0B816	0B916	0BA16	0BB16	0BC16	0BD16	0BE16	0BF16
9	0C016	0C116	0C216	0C316	0C416	0C516	0C616	0C716	0C816	0C916	0CA16	0CB16	0CC16	0CD16	0CE16	0CF16	0D016	0D116	0D216	0D316	0D416	0D516	0D616	0D716
10	0D816	0D916	0DA16	0DB16	0DC16	0DD16	0DE16	0DF16	0E016	0E116	0E216	0E316	0E416	0E516	0E616	0E716	0E816	0E916	0EA16	0EB16	0EC16	0ED16	0EE16	0EF16
11	0F016	0F116	0F216	0F316	0F416	0F516	0F616	0F716	0F816	0F916	0FA16	0FB16	0FC16	0FD16	0FE16	0FF16	10016	10116	10216	10316	10416	10516	10616	10716
12	10816	10916	10A16	10B ₁₆	10C16	10D16	10E ₁₆	10F16	11016	11116	11216	11316	11416	11516	11616	11716	11816	11916	11A16	11B ₁₆	11C ₁₆	11D ₁₆	11E ₁₆	11F ₁₆

^{*} The hexadecimal numbers in the boxes show the display RAM address.

Fig. 3 Screen constitution

DISPLAY RAM

Address 00016 to 11F16

	Danistan		Contents	Domanic
DA	Register	Status	Function	Remarks
0	60	0	Set the displayed ROM character code.	Set display character
"	C0	1	Set the displayed ROM character code.	Set display character
,		0	To write data into page 0 (Note 2), select the data from the ROM	
1	C1	1	characters (256 types) for page 0 and set the character code. To write data into page 1, do the same from the ROM characters (256	
		0	types) for page 1.	
2	C2	1		
		0		
3	C3	1		
		0		
4	C4	1		
		0		
5	C5	1		
		0		
6	C6	1		
		0		
7	C7	1		
		0	B G R Color	
8	R	1	0 0 0 Black	Set character color (character unit)
		0	0 0 1 Red 0 1 0 Green	
9	G	1	0 1 1 Yellow	
			1 0 0 Blue 1 0 1 Magenta	
А	В	0	1 1 0 Cyan	
		0	Do not blink.	Set blinking
В	BLINK	1	Blinking	See register BLINK2 to BLINK0 (ad-
		0		dress128 ₁₆)
С	BR	1	BB BG BR Color 0 0 0 Black	Set character background (character unit)
			0 0 1 Red 0 1 0 Green	, , , , ,
D	BG	0	0 1 1 Yellow	
		1	1 0 0 Blue 1 0 1 Magenta	
E	BB	0	1 1 0 Cyan	
		1	1 1 1 White	

Notes 1. The display RAM is undefined state at the $\overline{\mbox{AC}}$ pin.

2. The display RAM consists of 2 pages, page 0 and page 1 (common address). The page in which data is written is controlled by the DAF bit. When set to "0", data is written into page 0, whereas when set to "1", data is written into page 1.

REGISTERS DESCRIPTION

(1) Address 120₁₆

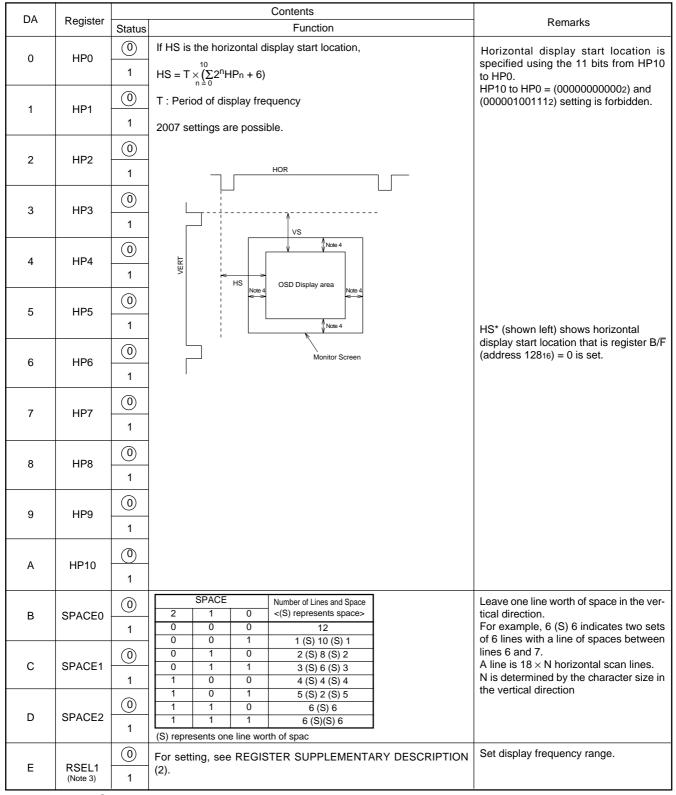
	Danistan		Contents	Describe
DA	Register	Status	Function	Remarks
0	DIV0 (Note 3)	1	Set division value (multiply value) of horizontal oscillation frequency.	Set display frequency by division value (multiply value) setting. For details, see REGISTER SUPPLE-
1	DIV1 (Note 3)	1	$N1 = \sum_{n=0}^{10} (DIVn \times 2^n)$	MENTARY DESCRIPTION (1). Also, set the display frequency range by
2	DIV2 (Note 3)	1	N1 : division value (multiply value)	registers DIVS0, DIVS1(address 12016), RSEL0(address 12116) and RSEL1(address 12216) in accordance with the display frequency.
3	DIV3 (Note 3)	1		Any of this settings above is required only when EXCK1 = 0, EXCK0 = 1 and
4	DIV4 (Note 3)	1		EXCK1 = 1, EXCK0 = 1.
5	DIV5 (Note 3)	1		
6	DIV6 (Note 3)	1		
7	DIV7 (Note 3)	1		
8	DIV8 (Note 3)	1		
9	DIV9 (Note 3)	1		
А	DIV10 (Note 3)	1		
В	DIVS0 (Note 3)	① 1	For setting, see REGISTER SUPPLEMENTARY DESCRIPTION (2).	Set display frequency range.
С	DIVS1 (Note 3)	1		
D	DISV2 (Note 3)	1		
E	EXCK0 (Note 3)	1	EXCK1 EXCK0 Display clock input 0 0 External clock mode 1 0 1 Internal clock mode 1 0 Do not set 1 1 External clock mode 2	Display clock setting See REGISTER SUPPLEMENTARY DESCRIPTION (1) EXCK1 : address12316

- 2. The page in which data is written is controlled by the DAF bit. When set to "0", data is written into page 0, whereas when set to "1", data is written into page 1.
- 3. Registers marked with (Note 3) are found only in page 0, therefore the register value does not change when the DAF bit is set to "1".

(2) Address 121₁₆

DA	Register		Contents	Domorko
DA	Register	Status	Function	Remarks
0	PTC0	0	P0 output (port P0).	P0 pin output control.
	(Note 3)	1	BLNK0 output.	
1	PTC1	0	P1 output (port P1).	P1 pin output control.
	(Note 3)	1	R0 signal output.	
2	PTC2	0	P2 output (port P2).	P2 pin output control.
	(Note 3)	1	R1 signal output.	
3	PTC3	0	P3 output (port P3).	P3 pin output control.
	(Note 3)	1	G0 signal output.	
4	PTC4	0	P4 output (port P4).	P4 pin output control.
	(Note 3)	1	G1 signal output.	
5	PTC5	0	P5 output (port P5).	P5 pin output control.
	(Note 3)	1	B0 signal output.	
6	PTD0	0	"L" output or negative polarity output (BLNK0 output).	P0 pin data control.
	(Note 3)	1	"H" output or positive polarity output (BLNK0 output).	
7	PTD1	0	"L" output or negative polarity output (R0 signal output).	P1 pin data control.
	(Note 3)	1	"H" output or positive polarity output (R0 signal output).	
8	PTD2	0	"L" output or negative polarity output (R1 signal output).	P2 pin data control.
	(Note 3)	1	"H" output or positive polarity output (R1 signal output).	
9	PTD3	0	"L" output or negative polarity output (G0 signal output).	P3 pin data control.
9	(Note 3)	1	"H" output or positive polarity output (G0 signal output).	
A	PTD4	0	"L" output or negative polarity output (G1 signal output).	P4 pin data control.
Α	(Note 3)	1	"H" output or positive polarity output (G1 signal output).	
_	PTD5	0	"L" output or negative polarity output (B0 signal output).	P5 pin data control.
В	(Note 3)	1	"H" output or positive polarity output (B0 signal output).	
	PTD6	0	"L" output or negative polarity output (B1 signal output).	P6 pin data control.
С	(Note 3)	1	"H" output or positive polarity output (B1 signal output).	
-	PTD7	0	"L" output or negative polarity output (BLNK1 signal output).	P7 pin data control.
D	(Note 3)	1	"H" output or positive polarity output (BLNK1 signal output).	
	RSEL0	0	For setting, see REGISTER SUPPLYMENTARY DESCRIPTION	Set display frequency range.
E	(Note 3)	1	(2).	

^{3.} Registers marked with (Note 3) are found only in page 0, therefore the register value does not change when the DAF bit is set to "1".

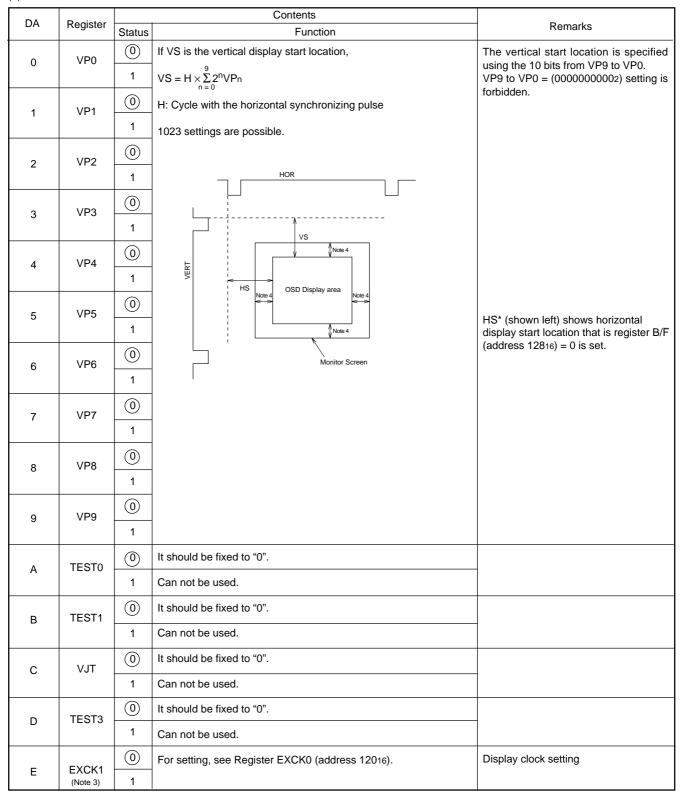


^{2.} The page in which data is written is controlled by the DAF bit. When set to "0", data is written into page 0, whereas when set to "1", data is written into page 1.

M35076-XXXSP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

(3) Address 122₁₆


- 2. The page in which data is written is controlled by the DAF bit. When set to "0", data is written into page 0, whereas when set to "1", data is written into page 1.
- 3. Registers marked with (Note 3) are found only in page 0, therefore the register value does not change when the DAF bit is set to "1".
- 4. Set up the horizontal and vertical display start location so that display range may not exceed it.
 - Set the character code "FF₁₆" (blank without background) for the display RAM of the part which the display range exceeds.

M35076-XXXSP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

(4) Address 123₁₆

- 2. The page in which data is written is controlled by the DAF bit. When set to "0", data is written into page 0, whereas when set to "1", data is written into page 1.
- 3. Registers marked with (Note 3) are found only in page 0, therefore the register value does not change when the DAF bit is set to "1".
- 4. Set up the horizontal and vertical display start location so that display range may not exceed it.
 - Set the character code "FF16" (blank without background) for the display RAM of the part which the display range exceeds.

(5) Address 124₁₆

DA	Register				Contents		Remarks
	rtogiotoi	Status			Function		Remarks
0	DSP0	0	The display r screen is set	node (blai line-by-lir	nking mode) for line ne, using DSPn (n :	Sets the display mode of line 1.	
1	DSP1	0	The display r BLK1 and BL	mode is de ⊾K0 (addre	etermined by the co ess 12816). Settings	Sets the display mode of line 2.	
		1					
2	DSP2	0	BLK1 0	BLK0 0	DSPn= "0" Matrix-outline border	DSPn= "1" Matrix-outline	Sets the display mode of line 3.
		1	0	0	Character Border	Border Matrix-outline	
3	DSP3	0	1	1	Matrix-outline	Character egister BCOL = "0")	Sets the display mode of line 4.
		1				3	
4	DSP4	0	For detail, se	e DISPLA	Y FORM1(1).		Sets the display mode of line 5.
		1					
5	DSP5	0					Sets the display mode of line 6.
		1					
6	DSP6	0					Sets the display mode of line 7.
		1					
7	DSP7	0					Sets the display mode of line 8.
		1					
8	DSP8	0					Sets the display mode of line 9.
		1					
9	DSP9	0					Sets the display mode of line 10.
		1					
Α	DSP10	0					Sets the display mode of line 11.
		1					
В	DSP11	1					Sets the display mode of line 12.
С	TEST4	0	It should be f	ixed to "0"			
C	112014	1	Can not be u	sed.			
<u> </u>	DTCGZ	0			7 output (port P7).		P6 pin and P7 pin output control.
D	PTC67 (Note 3)	1	B1 output an	d BLNK o	utput.		
E	TEST9	0	Set to "0" in i	nternal clo	ock mode.		
_	(Note 3)	1	Set to "1" in 6	external cl	ock mode.		

- 2. The page in which data is written is controlled by the DAF bit. When set to "0", data is written into page 0, whereas when set to "1", data is written into page 1.
- 3. Registers marked with (Note 3) are found only in page 0, therefore the register value does not change when the DAF bit is set to "1".

(6) Address 125₁₆

DA	Danistan		Contents	
DA	Register	Status	Function	Remarks
0	LIN2	0	The vertical dot size for line n in the character dot lines (18 vertical lines) is set using LINn (n = 2 to 17).	Character size setting in the vertical direction for the 2nd line.
1	LIN3	0	Dot size can be selected between 2 types for each dot line.	Character size setting in the vertical direction for the 3rd line.
2	LIN4	0	For dot size, see the below registers. Line 1 and lines 2 to 12 can be set independent of one another. LINn = "0" LINn = "1"	Character size setting in the vertical direction for the 4th line.
3	LIN5	① 1	1st line Refer to VSZ1L0 Refer to VSZ1H0 and VSZ1H1 2nd to 12th Refer to VSZ2L0 Refer to VSZ2H0 line and VSZ2L1 and VSZ2H1	Character size setting in the vertical direction for the 5th line.
4	LIN6	1	inte and vozzti and vozztii	Character size setting in the vertical direction for the 6th line.
5	LIN7	1		Character size setting in the vertical direction for the 7th line.
6	LIN8	1		Character size setting in the vertical direction for the 8th line.
7	LIN9	1		Character size setting in the vertical direction for the 9th line.
8	V1SZ0	① 1	H: Cycle with the horizontal synchronizing pulse V1SZ1 V1SZ0 Vertical direction size 0 0 1H/dot	Character size setting in the vertical direction for the 1st line. (display monitor 1 to 12 line)
9	V1SZ1	1	0 1 2H/dot 1 0 3H/dot 1 1 4H/dot	
Α	VSZ1L0	0 1	H: Cycle with the horizontal synchronizing pulse VSZ1L1 VSZ1L0 Vertical direction size 0 0 1H/dot	Character size setting in the vertical direction (display monitor 1 line) at "0" state in register LIN2 to LIN17
В	VSZ1L1	1	0 1 2H/dot 1 0 3H/dot 1 1 4H/dot	(address 12516, 12616).
С	VSZ1H0	1	H: Cycle with the horizontal synchronizing pulse VSZ1H1 VSZ1H0 Vertical direction size 0 0 1H/dot	Character size setting in the vertical direction (display monitor 1 line) at "1" state in register LIN2 to LIN17
D	VSZ1H1	1	0 1 2H/dot 1 0 3H/dot 1 1 4H/dot	(address 12516, 12616).
E	TEST10	0	It should be fixed to "0".	
	(Note 3)	1	Can not be used.	

- 2. The page in which data is written is controlled by the DAF bit. When set to "0", data is written into page 0, whereas when set to "1", data is written into page 1.
- 3. Registers marked with (Note 3) are found only in page 0, therefore the register value does not change when the DAF bit is set to "1".

(7) Address 126₁₆

DA	Pogiator		Contents	
<i>DA</i>	Register	Status	Function	Remarks
0	LIN10	0		Character size setting in the vertical
O	LINIO	1	The vertical dot size for line n in the character dot lines (18 vertical lines) is set using LINn (n = 2 to 17).	direction for the 10th line.
		0	11163) 13 36t d3llig Elivii (11 – 2 to 17).	
1	LIN11	1	Dot size can be selected between 2 types for each dot line.	Character size setting in the vertical direction for the 11th line.
		0	For dot size, see the below registers. Line 1 and lines 2 to 12 can	Character size setting in the vertical
2	LIN12	1	be set independent of one another.	direction for the 12th line.
2	LINIAO	0	LINn = "0" LINn = "1" 1ct line Refer to VSZ1L0 Refer to VSZ1H0	Character size setting in the vertical
3	LIN13	1	and VSZ1L1 and VSZ1H1	direction for the 13th line.
		0	2nd to 12th Refer to VSZ2L0 Refer to VSZ2H0 line and VSZ2L1 and VSZ2H1	
4	LIN14			Character size setting in the vertical direction for the 14th line.
		0		
5	LIN15	1		Character size setting in the vertical direction for the 15th line.
		0		
6	LIN16	1		Character size setting in the vertical direction for the 16th line.
		0		Character size potting in the vertical
7	LIN17	1		Character size setting in the vertical direction for the 17th line.
8	V18SZ0	0	H: Cycle with the horizontal synchronizing pulse	Character size setting in the vertical
	1.0020	1	V18SZ1 V18SZ0 Vertical direction size	direction for the 18th line. (display monitor 1 to 12 line)
		0	0 0 1H/dot 0 1 2H/dot	(4.4)
9	V18SZ1	1	1 0 3H/dot 1 1 4H/dot	
Α	VSZ2L0	0	H: Cycle with the horizontal synchronizing pulse VSZ2L1 VSZ2L0 Vertical direction size	Character size setting in the vertical direction (display monitor for 2 to 12
		1	0 0 1H/dot	line) at "0" state in register LIN2 to
В	VSZ2L1	0	0 1 2H/dot 1 0 3H/dot	LIN17 (address 12516, 12616).
		1	1 1 4H/dot	
С	VSZ2H0	0	H: Cycle with the horizontal synchronizing pulse	
C	VSZZNU	1	VSZ2H1 VSZ2H0 Vertical direction size	Character size setting in the vertical direction (display monitor for 2 to 12
		0	0 0 1H/dot 0 1 2H/dot	line) at "0" state in register LIN2 to
D	VSZ2H1	1	1 0 3H/dot 1 1 4H/dot	LIN17 (address 12516, 12616).
E	POPUP	0	Page 1 priority display	Sets the priority page for when 2 pages are displayed at the same time. The setting is
E	(Note 3)	1	Page 0 priority display	effective only when the standard display mode is set as MODE0 = "0" , MODE1 = "0". See "DISPLAY FORM 2" .

- 2. The page in which data is written is controlled by the DAF bit. When set to "0", data is written into page 0, whereas when set to "1", data is written into page 1.
- 3. Registers marked with (Note 3) are found only in page 0, therefore the register value does not change when the DAF bit is set to "1".

(8)	Address	12716
-----	---------	-------

(8) Addres	SS 12/16			
DA	Register		Contents	Remarks
	rtogistor	Status	Function	Remarks
0	RR	1	RB RG RR Color 0 0 0 Black 0 0 1 Red	Sets the raster color of all blankings.
1	RG	0 1	0 1 0 Green 0 1 1 Yellow 1 0 0 Blue 1 0 1 Magenta	
2	RB	0 1	1 1 0 Cyan 1 1 1 White	
3	FR	0 1	FB FG FR Color 0 0 0 Black 0 0 1 Red	Sets the blanking color of the Border size, or the shadow size.
4	FG	1	0 1 0 Green 0 1 1 Yellow 1 0 0 Blue 1 0 1 Magenta	
5	FB	1	1 1 0 Cyan 1 1 1 White	
6	TEST6	0	It should be fixed to "0". Can not be used.	
7	TEST7	0	It should be fixed to "0". Can not be used.	
8	TEST8	0	It should be fixed to "0". Can not be used.	
9	BETA14	0	Matrix-outline display (12 × 18 dot)	
		1	Matrix-outline display (14 × 18 dot)	
А	HSZ10	1	HSZ10 Horizontal direction size 0 1T/dot 1 2T/dot	Character size setting in the horizontal direction for the first line. T: Display frequency cycle
В	TEST11	0	It should be fixed to "0". Can not be used.	
С	HSZ20	0	HSZ20 Horizontal direction size 0 1T/dot 1 2T/dot	
D	TEST12	0	It should be fixed to "0". Can not be used.	Character size setting in the horizontal direction for the 2nd line to 12th line. T: Display frequency cycle
E	MODE0 (Note 3)	0	MODE1 MODE0 Output system Display mode 0 0 1 system Standard.(Note4) 0 1 1 system AND 1 0 2 system — 1 1 1 system OR	Sets the RGB signal output system and the display mode for when 2 pages are displayed at the same time. See "DISPLAY FORM 2". MODE1(address12816).

Notes 1. The mark around the status value means the reset status by the "L" level is input to AC pin.

2. The page in which data is written is controlled by the DAF bit. When set to "0", data is written into page 0, whereas when set to "1", data is written into page 1.

^{3.} Registers marked with (Note 3) are found only in page 0, therefore the register value does not change when the DAF bit is set to "1".
4. 2 way settings are available by POPUP (address 12616).

(9) Address 128₁₆

DA	Register	Status	Contents Function	Remarks
		0	Blanking of BLK0, BLK1	Sets all raster blanking
0	BCOL	1	All raster blanking	-
	D/E	0	Synchronize with the leading edge of horizontal synchronization.	Synchronize with the front porch or
1	B/F (Note 3)	1	Synchronize with the trailing edge of horizontal synchronization.	back porch of the horizontal synchronazation signal.
2	\/A A A O I	0	Do not mask by VERT input signal	Set mask at phase comparison
2	VMASK (Note 3)	1	Mask by VERT input signal	operating.
3	POLV	0	VERT pin is negative polarity	Set VERT pin polarity.
	(Note 3)	1	VERT pin is positive polarity	-
4	POLH	0	HOR pin is negative polarity	Set HOR pin polarity.
	(Note 3)	1	HOR pin is positive polarity	
5	BLK0	0	BLK1 BLK0 Blanking mode	Set blanking mode.
	DLNU	1	0 0 Matrix-outline size	See "DISPLAY SHAPE 2".
6	BLK1	0	0 1 Character size 1 0 Border size	
	DEIXI	1	1 1 Matrix-outline size (When DSPn (address 12416) = "0")	
7	SYAD	0	Border display of character	See "DISPLAY FORM1 (2)".
	OTAB	1	Shadow display of character	
8	RAMERS	0	RAM not erased	When register RAMERS is set to "1",do not stop the display clock.
		1	RAM erased	There is no need to reset because there is no register for this bit.
9	STOP	0	Oscillation of clock for display	It is a test bit (TEST13) in the page 1
		1	Stop the oscillation of clock for display	register, therefore fix it to "0".
Α	DSPON	0	Display OFF	
		1	Display ON	
В	BLINK0	0	BLINK Duty	Set blinking duty ratio.
		1	0 0 Blinking OFF	
С	BLINK1	0	0 1 25% 1 0 50%	
		1	1 1 75%	
D	BLINK2	0	Divided into 64 of vertical synchronous signal	Set blinking frequency.
		1	Divided into 32 of vertical synchronous signal	
E	MODE1	0	For setting, see MODE0 (address 12716).	Sets the RGB signal output system and the display mode for when 2
(Note 3)		1		pages are displayed at the same time.

- 2. The page in which data is written is controlled by the DAF bit. When set to "0", data is written into page 0, whereas when set to "1", data is written into page 1.
- 3. Registers marked with (Note 3) are found only in page 0, therefore the register value does not change when the DAF bit is set to "1".

REGISTER SUPPLEMENTARY DESCRIPTION

- (1) Setting external clock input and display frequency mode Setting external clock input and display frequency mode (by use of EXCK0 (12016), EXCK1 (12316) and DIV10 to DIV0 (12016), as explained here following.
 - (a) When (EXCK1, EXCK0) = (0, 0)External clock mode 1
 Fosc = 6.3 to 80 MHz (VDD = 4.75 to 5.25 V)
 Fosc = 6.3 to 40 MHz (VDD = 2.50 to 3.50 V)
 Input from the TCK pin a constant-period continuous external clock that synchronizes with the horizontal synchronous signal. And input from HOR pin a constant period continuous horizontal synchronous signal.
 Never stop inputting the clock while displaying.
 Do not have to set a display frequency because the clock just as it is entered from outside is used as the display clock.
 - (b) When (EXCK1, EXCK0) = (0, 1)Internal clock mode Fosc = 20 to 110 MHz (VDD = 4.75 to 5.25 V)
 Clock input from the TCK pin is unnecessary. The multiply clock of the internally generated horizontal synchronous signal is used as the display clock.
 The display frequency is set by setting the multiply value of the horizontal synchronous frequency (of the display frequency) in DIV10 to DIV0 (address 12016). Also, set the display frequency range. (See the next page.)
 Display frequency is calculated using the below expression.

Display frequency = Horizontal synchronous frequency x

Multiply value

- (c) When (EXCK1, EXCK0) = (1, 0) Setting disabled
- (d) When (EXCK1, EXCK0) = (1, 1)External clock mode 2 Fosc = 20 to 110 MHz (VDD = 4.75 to 5.25 V) Input from the TCK pin a constant-period continuous external clock that synchronizes with the horizontal synchronous signal. And input from HOR pin a constant-period continuous horizontal synchronous signal.

Never stop inputting the clock while displaying. An internal clock which is in sync with the external input clock is used as the display clock.

Because the display frequency equals the external clock frequency, set N1 (division value) that satisfies the below expressions to DIV10 to DIV0 (address 12016) for make the display frequency is equal to the external clock frequency.

N1 = external clock frequency / horizontal synchronous frequency

$$N1 = \sum_{n=0}^{10} 2^n DIV_n$$

Also, set the display frequency range. (See the next page.)

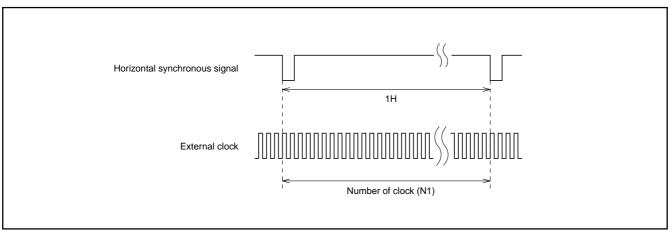


Fig. 4 Example of external clock input

(2) To set display frequency range

Whenever setting display frequency (when EXCK1 = "0", EXCK0 = "1", or EXCK1 = "1", EXCK0 = "1"), always set the display frequency range in accordance with the display frequency. This range is set from DIVS0, DIVS1, DIVS2 (address 12016), RSEL0 address 12116) and RSEL1 (address 12216). Frequency ranges are given here below.

RSEL1	RSEL0	DIVS2	DIVS1	DIVS0	Display frequency range(MHz)
1	1	0	0	0	100.0 to 110.0
1	0	0	0	0	_
0	1	0	0	0	92.0 to 100.0
0	0	0	0	0	73.0 to 92.0
1	1	0	0	1	66.5 to 73.0
1	0	0	0	1	_
0	1	0	0	1	61.0 to 66.5
0	0	0	0	1	49.0 to 61.0
1	1	0	1	0	_
1	0	0	1	0	_
0	1	0	1	0	45.5 to 49.0
0	0	0	1	0	36.5 to 45.5
1	1	0	1	1	33.5 to 36.5
1	0	0	1	1	_
0	1	0	1	1	30.5 to 33.5
0	0	0	1	1	24.5 to 30.5
1	1	1	0	0	_
1	0	1	0	0	_
0	1	1	0	0	23.0 to 24.5
0	0	1	0	0	20.0 to 23.0

(3) Notes on setting display frequency

To change external clock (display) frequency or horizontal synchronization frequency, always use the following procedures.

To set EXCK1 = "0", EXCK0 = "1"

- (a) Turn the display OFF. ... DSPON (address 12816) = "0"
- (b) Set the display frequency. ... Set from DIV10 to DIV0, DIVS0, DIVS1, DIVS2 (address 12016), RSEL0 (address 12116) and RSEL1 (address 12216).
- (c) Wait 20 ms while the horizontal synchronization signal is being input.
- (d) Turn the display ON. ... DSPON (address 12816) = "1"

To set EXCK1 = "1", EXCK0 = "1"

- (a) Turn the display OFF. ... DSPON (address 12816) = "0"
- (b) Set the display frequency. ... Set from DIV10 to DIV0, DIVS0, DIVS1, DIVS2 (address 12016), RSEL0 (address 12116) and RSEL1 (address 12216).
- (c) Wait 20 ms while the horizontal synchronization signal and external clock are being input.
- (d) Turn the display ON. ... DSPON (address 12816) = "1"

DISPLAY FORM 1

M35076-XXXSP has the following four display forms.

(1) Blanking mode

Character size

: Blanking same as the character size.

Border size

: Blanking the background as a size from character.

Matrix-outline size

: Blanking the background 12×18 dot.

All blanking size

: When set register BCOL to "1", all raster area is blanking.

The display mode and blanking mode can be set line-by-line, as follows, from registers BCOL, BLK1, BLK0 (address 12816), DSP0 to DSP11 (address 12416).

DOOL DUKE DUK		BLK0	Line of D	SPn = "0"	Line of DSPn = "1"		
BCOL	BCOL BLK1		Display mode	Blanking mode	Display mode	Blanking mode	
	0	0	All matrix-outline border display	All matrix-outline size	All matrix-outline display	All matrix-outline size	
0	0	1	Character display	Character size	Border display	Border size	
0	1 0		Border display	Border size	All matrix-outline display	All matrix-outlinesize	
	1	1	All matrix-outline display	All matrix-outline size	Character display	Character size	
	0	0	All matrix-outline border display		All matrix-outline display		
_	0	1	Character display		Border display		
'	1	1 0 Border d		All blanking size	All matrix-outline display	All blanking size	
	1	1 1 All matrix-outline display			Character display		

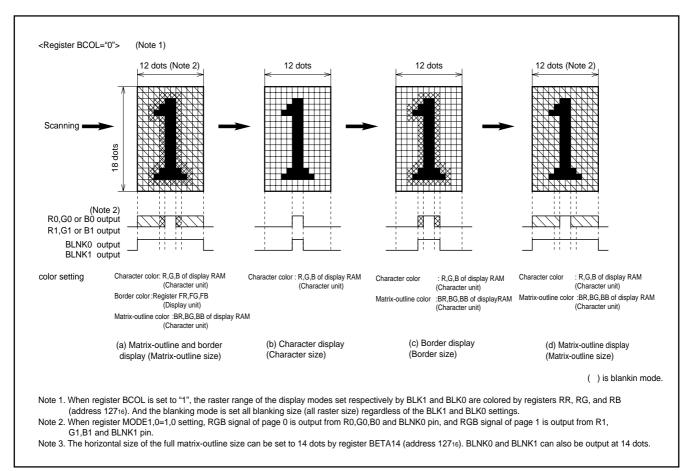


Fig. 5 Example of R0,G0,B0,BLNK0,R1,G1,B1 and BLNK1 signal output

(2) Shadow display

When border display mode, if set SYAD (address 12816) = "0" to "1", it change to shadow display mode.

Border and shadow display are shown below.

Set shadow display color by BR, BG or BB of display RAM or by register FR, FG and FB (address 12716).

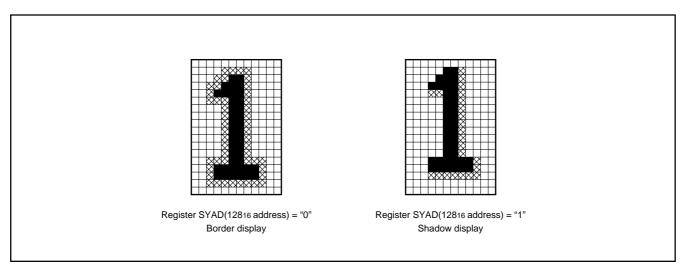


Fig. 6 Border and shadow display

DISPLAY FORM 2

This IC can display both page 0 and page 1 at the same time.

Page 0: Set the DAF bit in each addresses to "0".

Page 1: Set the DAF bit in each addresses to "1".

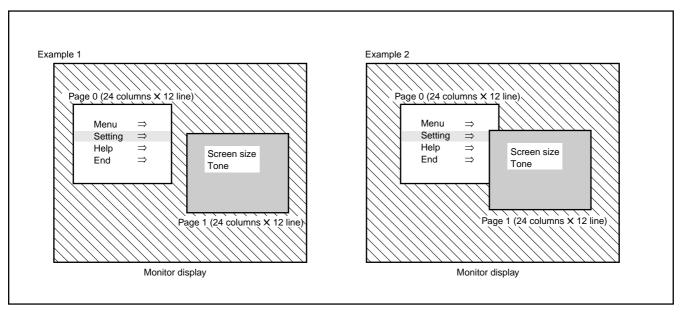


Fig. 7 Example of 2 pages display

Example 1: Display position, display size, color, etc., can be freely set for each page, and the 2 pages can be displayed on top of each other or side-by-side.

Example 2: RGB output of two pages can be outputted by one line or two lines by registers MODE0 (address 12716) and MODE1 (address 12816) and POPUP (address 12616). And, when the display range of the 2 pages overlap on the monitor screen at the time of an one-line output, they can perform the following displays. (The POPUP register is effective only when MODE0 = "0" and MODE1 = "0".)

MODE1	MODE0	POPUP	Output system	Display mode
0	0	0	1 system	Standard (Page 1 priority)
		1	1 system Standard (Page 0 priority	
0	1	_	1 system	AND
1	0	_	2 systems	_
1	1	_	1 system	OR

(1) Output system

- (a) 1 system: Output RBG signal of both of page 0 and 1 from R0,G0,B0 and BLNK0 pin (For overlapping areas, refer to below.)
- (b) 2 systems : RBG signal of page 0 is output from R0,G0,B0 and BLNK0 pin, RBG signal of page 1 is output from R1,G1,B1 and BLNK1 pin.
- (2) Display mode (Overlapping areas of Page 0 and 1)
 - (a) Standard (page 1 priority).. Page 1 has priority in overlapping areas. Page 0 is not displayed in those areas.
 - (b) Standard (page 0 priority).. Page 0 has priority in overlapping areas. Page 1 is not displayed in those areas.

 - (d) OR In overlapping areas, the RGB output of the 2 pages is OR processed and output.

Note: Set 0 (port output) to control register PTC2, PTC4 and PT67 except at 2 systems output setting (MODE1=1,MODE0=0.)

CHARACTER FONT

Images are composed on a 12 \times 18 dot matrix, and characters can be linked vertically and horizontally with other characters to allow the display the continuous symbols.

Character code FF₁₆ is fixed as a blank without background. Therefore, cannot register a character font in this code.

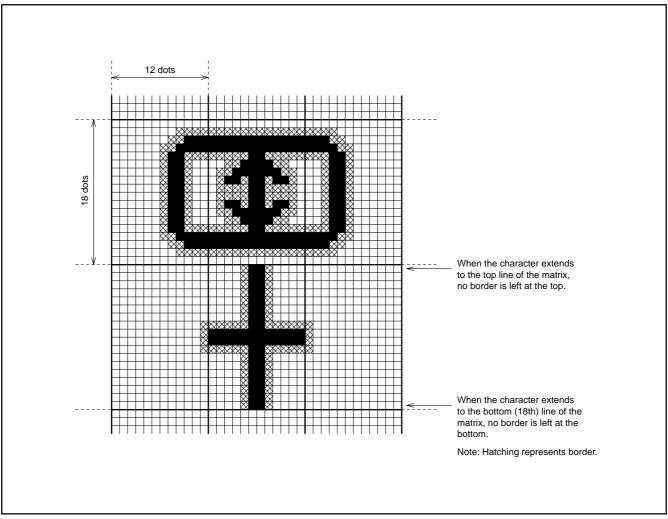


Fig. 8 Example of border display

DATA INPUT EXAMPLE

Data of display RAM and display control registers can be set by the 16-bit serial input function or the I²C-BUS serial input function. Example of data setting is shown in Figure 9 (at EXCK0 = "1", EXCK1 = "0" setting).

Data input example (M35076-XXXSP) Address/data DAE DAD DAC DAB DAA DA9 DA8 DA7 DA6 DA5 DA4 DA3 DA2 DA1 DA0 Remarks 200m sec hold System set up (Note 4) Address 12016 Address setting Frequency value setting (Note2) Data DIVS DIVS1DIVS0DIV10DIV9 DIV8 DIV7 DIV6 DIV5 DIV4 DIV3 DIV2 DIV1 DIV0 Data Output setting PTD7 RSEL0 PTD6 PTD4 PTD2 HP8 HP7 HP6 HP5 HP4 HP3 HP2 HP1 HP0 Horizontal display location setting Data RSEL HP10 HP9 Data VP9 VP8 VP7 VP6 VP5 VP4 VP3 VP2 VP1 VP0 Vertical display location setting Data O Display form setting Data Character size setting Data Character size setting Data Color, character size setting Data POLHIPOL \ Page 0 display OFF Address 12216 Address setting HP9 HP8 HP7 HP6 HP5 HP4 HP3 HP2 HP1 HP0 Horizontal display location setting Data HP10 \/P1 VP0 Data **\/P**9 VP8 **\/P7 \/P4 \/P**3 VP2 VP6 VP5 Vertical display location setting Data Display form setting Character size setting Data Data Character size setting Data Color, character size setting Data n n n n n Page 1 display OFF 200m sec hold Be stable / Waiting time Data BG C7 C5 СЗ C2 C1 C0 BB BR BLINK G C6 C4 Background Blink Character color Character setting Character code -ing coloring C0 11F₁₆ BB BR В R C7 C6 C5 C2 C1 BG G C4 C3 BI INK Address 00016 Data C0 BB ВG BR BLINK В G R C6 C5 C4 C3 C2 C1 Background Blink Character code Character color Character setting coloring -ing Data 11F₁₆ C6 C1 C0 BB BG BR BLINK В R C5 C4 C3 C2 Address 12816 Address setting Page 1 display ON Data Display form setting (Note 3) Address 12816 Address setting Page 0 display ON POLH POLV Data Display form setting (Note 3)

Notes 1: The page in which data is written is controlled by the address. To write data into page 0, set "0". To write data into page 1, set "1".

- 3: Matrix-outline display in this data.
- 4 : Secure the waiting time of 200ms after releasing AC, and set data from setting the display frequency (setting of the register).
- 5 : Set data to display RAM at internal clock (display clock) is stabilized.

Fig 9. Example of data setting

^{2:} Input a continuous clock of constant period from the TCK pin. Also, input a horizontal synchronous signal into the HOR pin and a vertical synchronous signal into the VERT pin.

M35076-XXXSP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

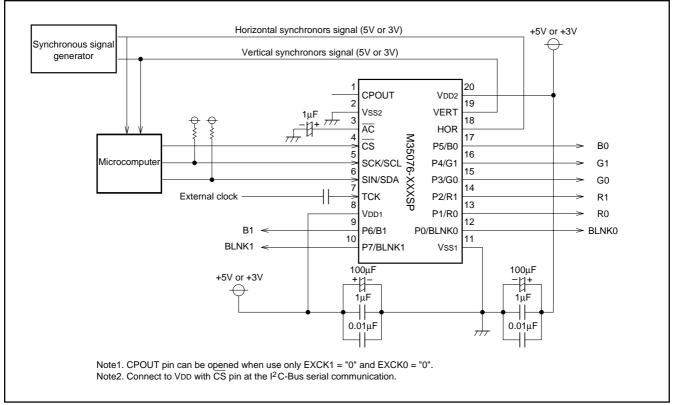


Fig 10. Example of the M35076-XXXSP peripheral circuit (External clock mode 1. At EXCK1 = "0", EXCK0 = "0")

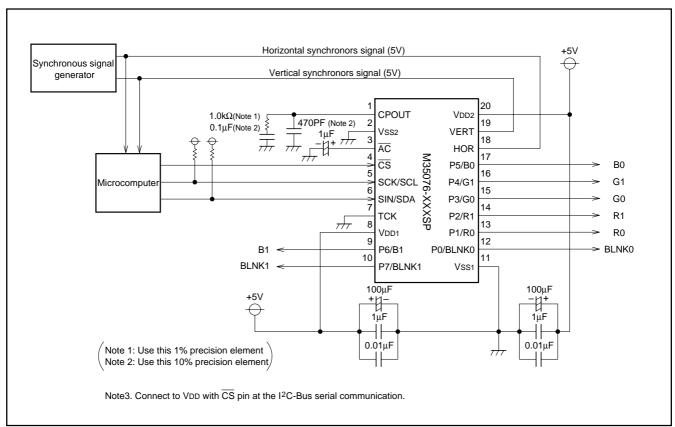


Fig 11. Example of the M35076-XXXSP peripheral circuit (Internal clock mode. At EXCK1 = "0", EXCK0 = "1")

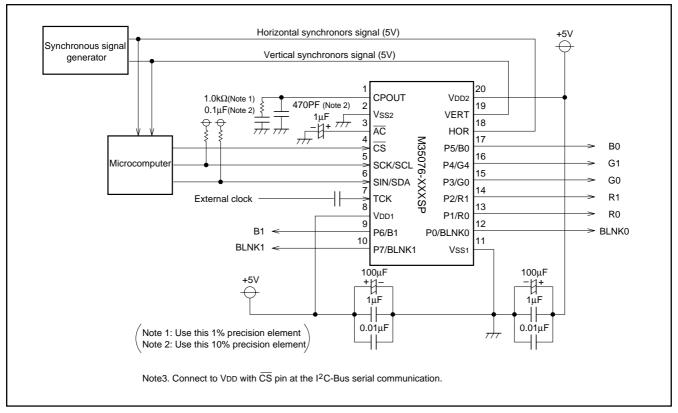


Fig 12. Example of the M35076-XXXSP circuit (External clock mode 2. At EXCK1 = "1", EXCK0 = "1")

DATA INPUT 1

- (1) The16-bit communication function
 - (a)Serial data should be input with the LSB first.
 - (b)The address consists of 16 bits.
 - (c)The data consists of 16 bits.

- (d)The 16 bits in the SCK after the $\overline{\text{CS}}$ signal has fallen are the address, and for succeeding input data, the address is incremented every 16 bits. Therefore, it is not necessary to in put the address from the second data.
 - Note. Stop the input to $\overline{\text{SCK}}$ pin and fix it to "H" at $\overline{\text{CS}}$ pin "H" level.

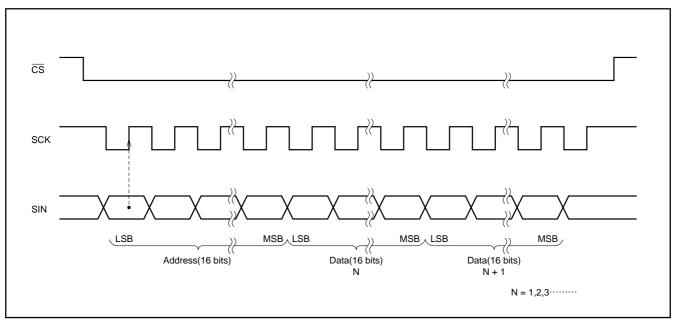


Fig.13 Serial input timing

(2)Timing requirements Data input

Symbol	Parameter		Limits			Remarks	
Cymbol	T drameter	Min.	Тур.	Max.	Unit	Remarks	
tw(SCK)	SCK width	200	_	_	ns		
tsu(CS)	CS setup time	200	_	_	ns		
th(CS)	CS hold time	2	_	_	μs	Soo Figure 14	
tsu(SIN)	SIN setup time	200	_	_	ns	See Figure 14	
th(SIN)	SIN hold time	200	_	_	ns		
tword	1 word writing time	10	_	_	μs		

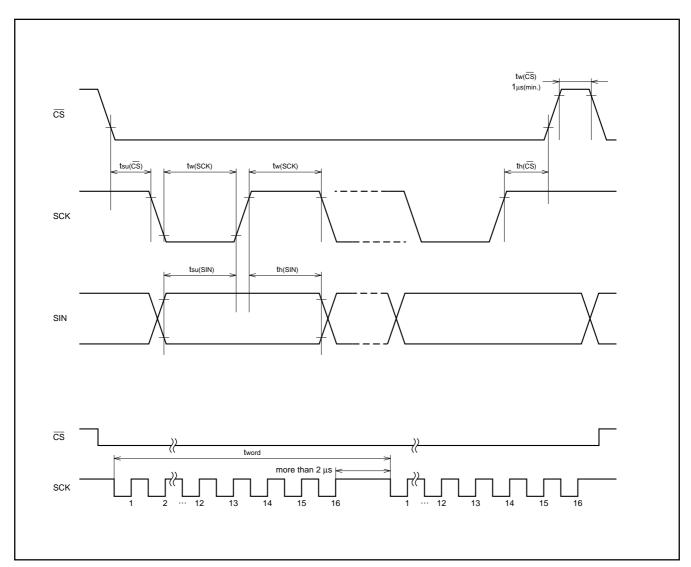


Fig. 14 Serial input timing requirements

DATA INPUT 2

(1) The I²C-Bus communication function (at VDD=5V only)

This IC has a built-in data transmission interface which utilizes 2 unidirectional buses. In communications, this IC functions as a slave reception device. Set $\overline{\text{CS}}$ pin to "H" level at the I²C-Bus serial input communication.

The IC is synchronized with the serial clock (SCL) sent from the master device and receives the data (SDA). Communications are controlled from the start/stop states. Also, always input the control byte after attaining the start state.

The below chart shows the start/stop state and control byte configuration.

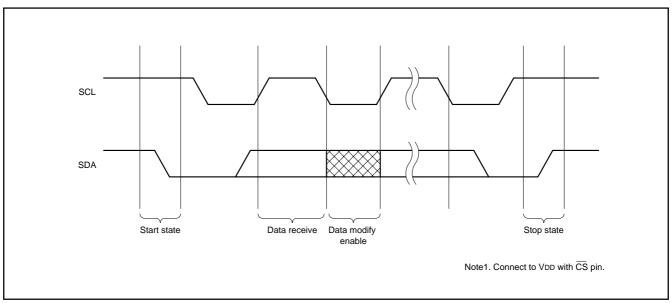


Fig. 15 Start state / Stop state

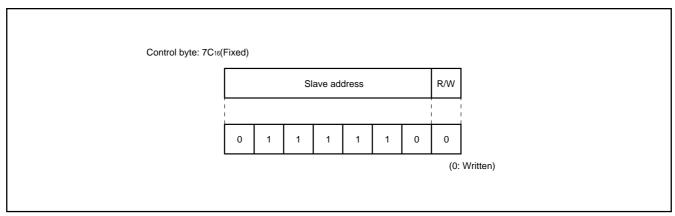


Fig. 16 Control byte configuration

- (2) Data input (Sequence)
 - (a) Addresses are consists of 16 bits.
 - (b) Data is consists of 16 bits.
 - (c) Addresses and data are communicated in 8-bit units. Input the lower 8 bits before the upper 8 bits. Make input from the MSB side.
 - (d) After the start state has been attained and the control byte (7CH) received, the next 16 bits (2 bytes) are for inputting the address. Addresses are increased in increments for every 16 bits (2 bytes) of data input thereafter. As a result, it is not necessary to input the address from the second data.

Note: During external synchronous, stop the external clock input from the TCK pin while inputting data.

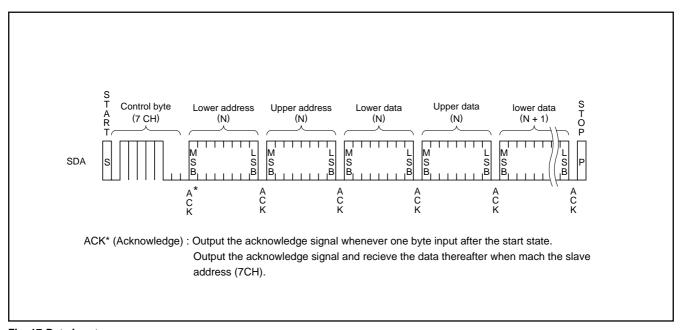


Fig. 17 Data input sequence

M35076-XXXSP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

(3) Timing requirement Data input

	Parameter		Lin				
Symbol		Тур.	mode	High-speed mode		Unit	Remarks
		Min.	Max.	Min.	Max.		
fclk	Clock frequency	0	100	0	400	KHz	
tHIGH	HIGH period of Clock	4000		600	-	ns	
tLOW	LOW period of Clock	4700	-	1300	-	ns	
tR	SDA & SCL rise time	-	1000	20+(Note) 0.1CB	300	ns	
tF	SDA & SCL fall time	_	300	20+(Note) 0.1CB	300	ns	
tHD: STA	Hold time at START status	4000	_	600	-	ns	
tsu : STA	Set up time at START status	4700	_	600	_	ns	Only at START state repeating generation
thd : DAT	Data input hold time	0	_	0	1	ns	
tsu : DAT	Data input setup time	250	_	100	-	ns	
tsu : STO	Set up time at STOP state	4000	-	600	_	ns	
tBUF	Bus release time	4700	_	1300	_	ns	Time must be re- leased bus before next transmission
tsp	Input filter / spike suppress (SDA & SCL pin)	N/A	N/A	0	50	ns	

Note. $C_B = total$ capacitance of 1 bus line.

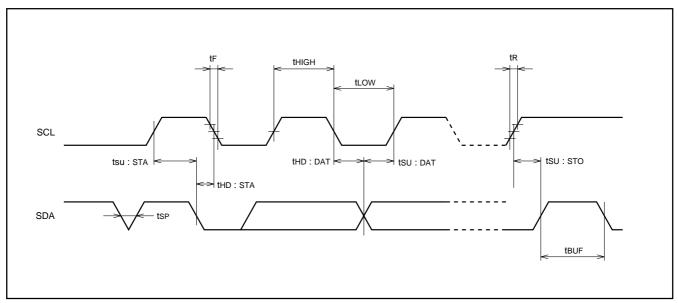


Fig. 18 Data input timing

ABSOLUTE MAXIMUM RATINGS (VDD = 5.00V, Ta = -20 to +85°C, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
VDD	Supply voltage	With respect to Vss.	-0.3 to +6.0	V
Vı	Input voltage		Vss -0.3 ≤ Vi ≤ Vdd +0.3	V
Vo	Output voltage		Vss≤Vo≤Vdd	V
Pd	Power dissipation	Ta = +25°C	+300	mW
Topr	Operating temperature		-20 to +85	°C
Tstg	Storage temperature		-40 to +125	°C

RECOMMENDED OPERATING CONDITIONS (VDD = 5.00V, Ta = -20 to +85°C, unless otherwise noted)

Symbol		Parameter			Limits		
Cyllibol		1 didilicioi	i didilielei			Max.	Unit
.,		5V		4.75	5.0	5.25	V
VDD	Supply voltage	3V		2.50	3.0	3.50	V
VIH	"H" level input voltage	AC, CS, HOR, VERT		0.8VDD	Vdd	VDD	٧
	11 lovor input voltago	SCK/SCL, SIN/SDA		0.7VDD	VDD	VDD	٧
VIL	"L" level input voltage	\overline{AC} , \overline{CS} , HOR, VERT		0	0	0.2VDD	٧
	1 1 1 1 1 1 1 1	SCK/SCL, SIN/SDA		0	0	0.3VDD	V
		External clock mode 1	VDD = 4.75 to 5.25 V	6.3	_	80.0	MHz
_	Oscillating frequency	External clock mode 1	VDD = 2.50 to 3.50 V	6.3	_	40.0	MHz
Fosc	for display	External clock mode 2	VDD = 4.75 to 5.25 V	20.0	_	110.0	MHz
		Internal clock mode	VDD = 4.75 to 5.25 V	20.0	_	110.0	MHz
H.sync	Horizontal synchronous	s signal input frequeney	VDD = 4.75 to 5.25 V	15.0	_	130.0	kHz
			VDD = 2.50 to 3.50 V	15.0	_	60.0	kHz

ELECTRICAL CHARACTERISTICS 1 VDD=5V (VDD = 5.00V, Ta = 25°C, unless otherwise noted)

Symbol Para		meter	Test conditions		Limits		Unit
Cymbol	rara	motor	Test conditions		Тур.	Max.	L
VDD	Supply voltage		Ta = -20 to +85°C	4.75	5.0	5.25	V
IDD	Supply current		VDD = 5.00V	_	40	60	mA
Vall	"I I" lovel output voltoge	P0 to P7 (Note1)	VDD = 4.75V, IOH = -0.4mA	0.5	_	_	.,
Vон	"H" level output voltage	CPOUT	VDD = 4.75V, IOH = -0.05mA	3.5			V
Vol		P0 to P7 (Note2)	VDD = 4.75V, IOL = 0.4mA				
VOL	"L" level output voltage	CPOUT	VDD = 4.75V, IOL = 0.05mA	_	_	0.4	V
		SIN/SDA	VDD = 4.75V, IOL = 3.0mA				
Rı	Pull-up resistance AC, C	S	VDD = 5.00V	10	30	100	kΩ
Vтск	External clock input widt	h	4.75V ≤ VDD ≤ 5.25V	0.6VDD	_	0.9VDD	V

Notes 1. The current from the IC must not exceed – 0.4 mA/port at any of the port pins (P0 to P7).

2. The current flowing into the IC must not exceed 0.4 mA/port at any of port pins (P0 to P7).

ELECTRICAL CHARACTERISTICS 2 VDD=3V (VDD = 3.00V, Ta = 25°C, unless otherwise noted)

Symbol	Parameter	Test conditions		Unit		
Cyrribor	i didilicici	rest conditions		Тур.	Max.	Onic
VDD	Supply voltage	Ta = -20 to +85°C	2.50	3.00	3.50	V
IDD	Supply current	VDD = 3.00V	_	20	30	mA
Vон	"H" level output voltage P0 to P7 (Note1)	VDD = 2.70V, IOH = -0.1mA	2.30	_	_	V
VoL	"L" level output voltage P0 to P7 (Note2)	VDD = 2.70V, IOH = 0.1mA	_	_	0.4	٧
Rı	Pull-up resistance AC, CS	VDD = 3.00V	30	_	150	kΩ
VTCK	External clock input width	2.20V ≤ VDD ≤ 3.50V	0.7VDD	_	Vdd	V

Notes 1. The current from the IC must not exceed -0.1 mA/port at any of the port pins (P0 to P7).

^{2.} The current flowing into the IC must not exceed 0.1 mA/port at any of port pins (P0 to P7).

NOTE FOR SUPPLYING POWER

(1) Timing of power supplying to \overline{AC} pin

The internal circuit of M35076-XXXSP is reset when the level of the auto clear input pin \overline{AC} is "L". This pin in hysteresis input with the pull-up resistor.

The timing about power supplying of \overline{AC} pin is shown in Figure 19.

After supplying the power (VDD and Vss) to M35076-XXXSP and the supply voltage becomes more than 0.8 \times VDD, it needs to keep VIL time; tw of the \overline{AC} pin for more than 1ms.

Start inputting from microcomputer after \overline{AC} pin supply voltage becomes more than $0.8 \times \text{VDD}$ and keeping 200ms wait time.

(2)Timing of power supplying to VDD1 and VDD2.

Supply power to VDD1 and VDD2 at the same time.

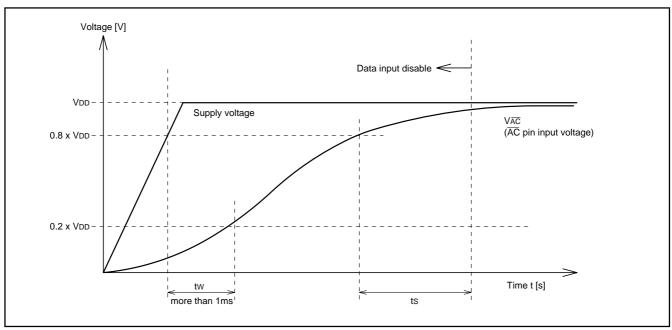
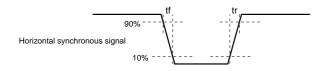


Fig. 19 Timing of power supplying to \overline{AC} pin

PRECAUTION FOR USE


Notes on noise and latch-up

In order to avoid noise and latch-up, connect a bypass capacitor ($\approx 0.1 \mu F$) directly between the VDD1 pin and Vss1 pin, and the VDD2 pin and Vss2 pin using a heavy wire.

Note for waveform timing of the horizontal signals to the HOR pin Set horizontal synchronous signal edge* waveform timing to under 5ns and input to HOR pin.

Set only the side which set by $B/\overline{\!F}$ register waveform timing under 5ns and input to HOR pin.

*: Set front porch edge or back porch edge by B/F register.

DATA REQUIRED FOR MASK ROM ORDERING

Please send the following data for mask orders.

- (1) M35076-XXXSP mask ROM order confirmation form
- (2) 20P4B mark specification form
- (3) ROM data: EPROMs or floppy disks

*In the case of EPROMs, thres sets of EPROMs are required per pattern.

*In the case of floppy disks, 3.5-inch 2HD disk (1BM format) is required per pattern.

MITSUBISHI MICROCOMPUTERS M35076-XXXSP

SCREEN CHARACTER and PATTERN DISPLAY CONTROLLERS

STANDARD ROM TYPE: M35076-001SP

M35076-001SP is a standard ROM type of M35076-XXXSP. The character patterns for 0 page are fixed to the contents of Figure 20 to 23, the character patterns for page 1 are fixed to the contents of Figure 24 to 27.

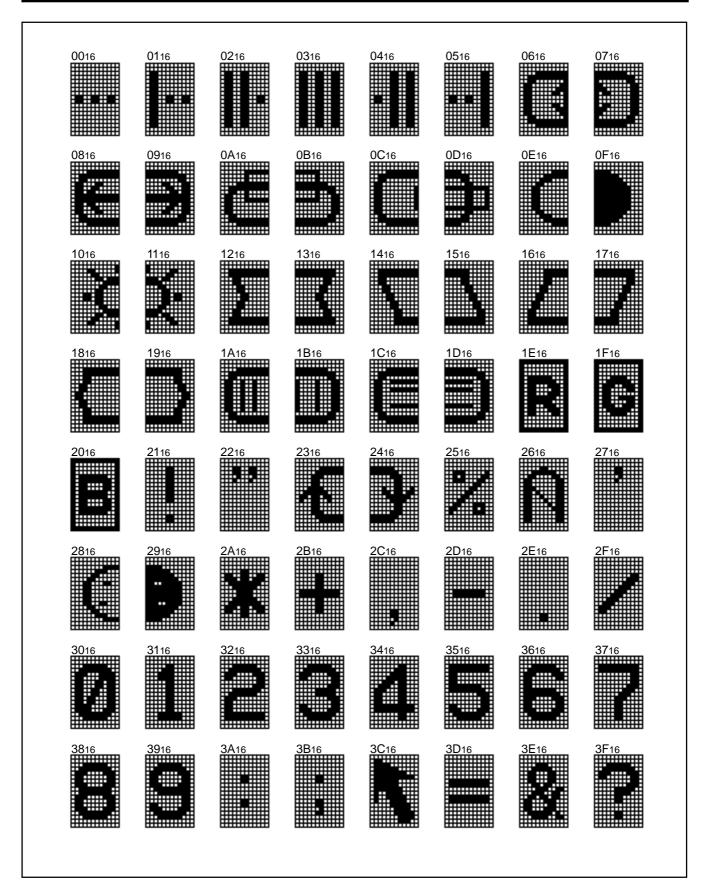


Fig. 20 M35076-001SP character pattern for page 0 (1)

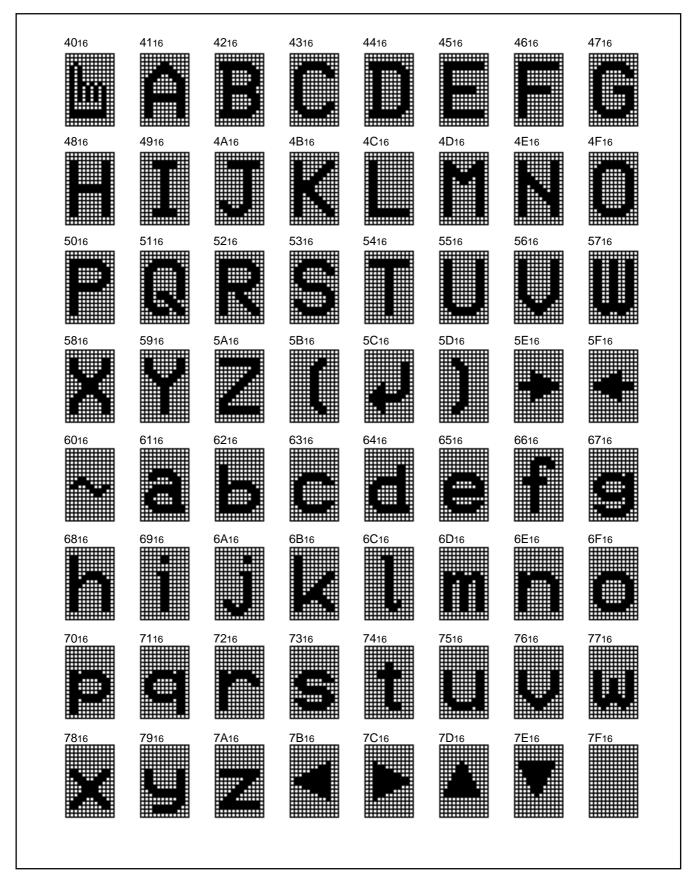


Fig. 21 M35076-001SP character pattern for page 0 (2)

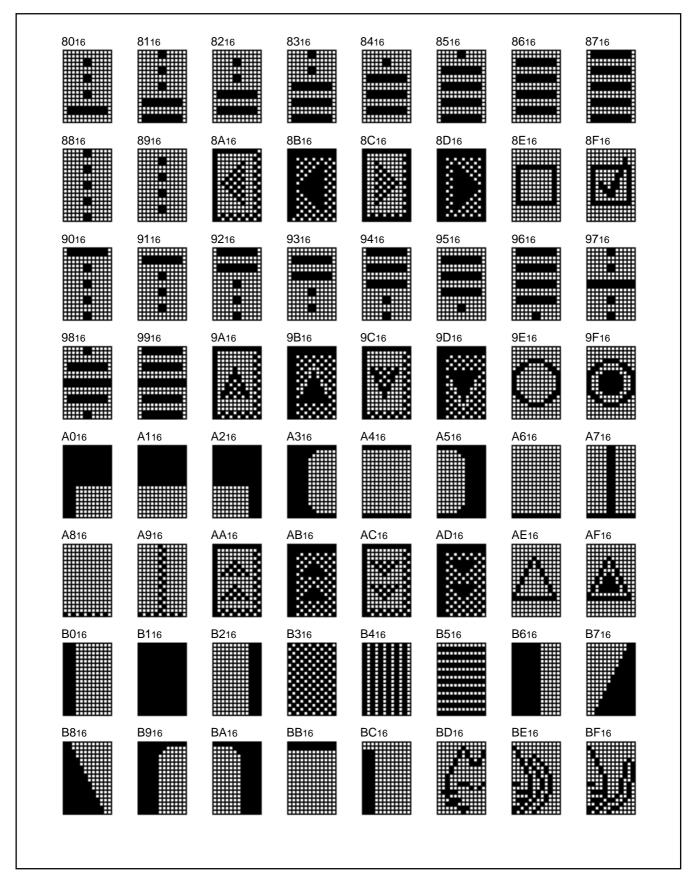


Fig. 22 M35076-001SP character pattern for page 0 (3)

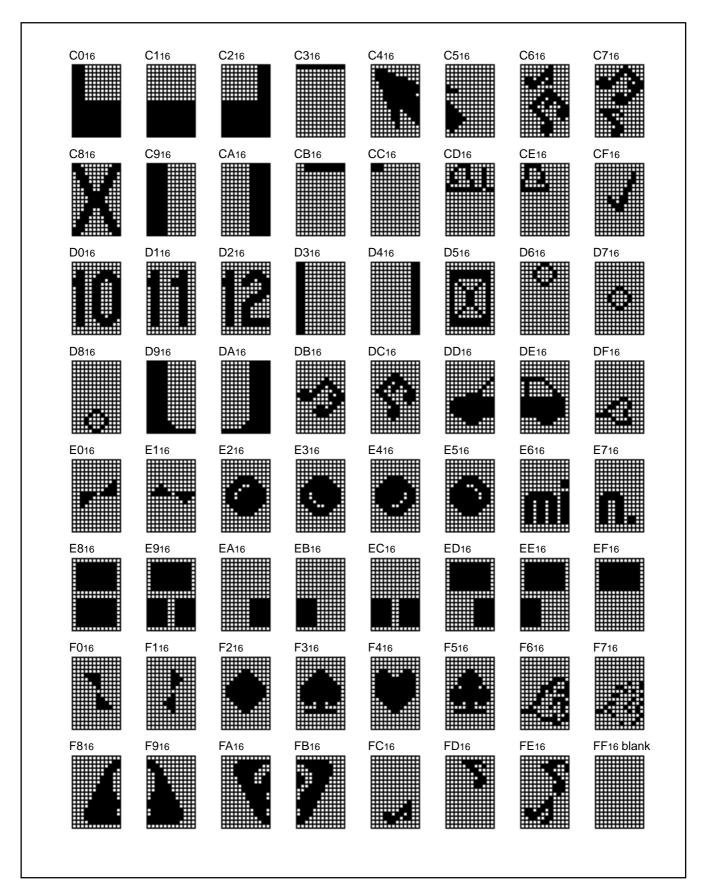


Fig. 23 M35076-001SP character pattern for page 0 (4)

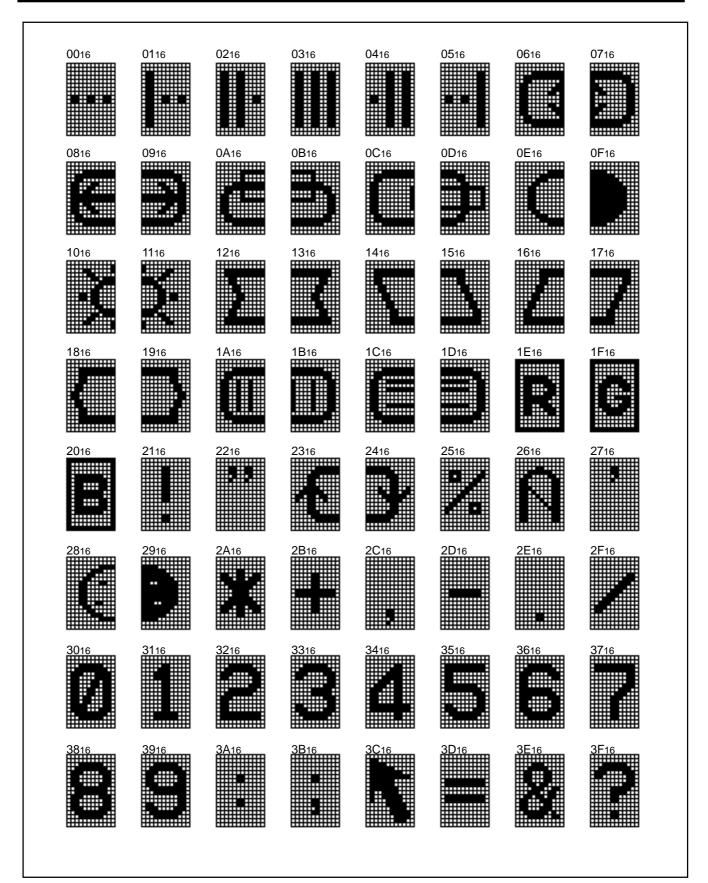


Fig. 24 M35076-001SP character pattern for page 1 (1)

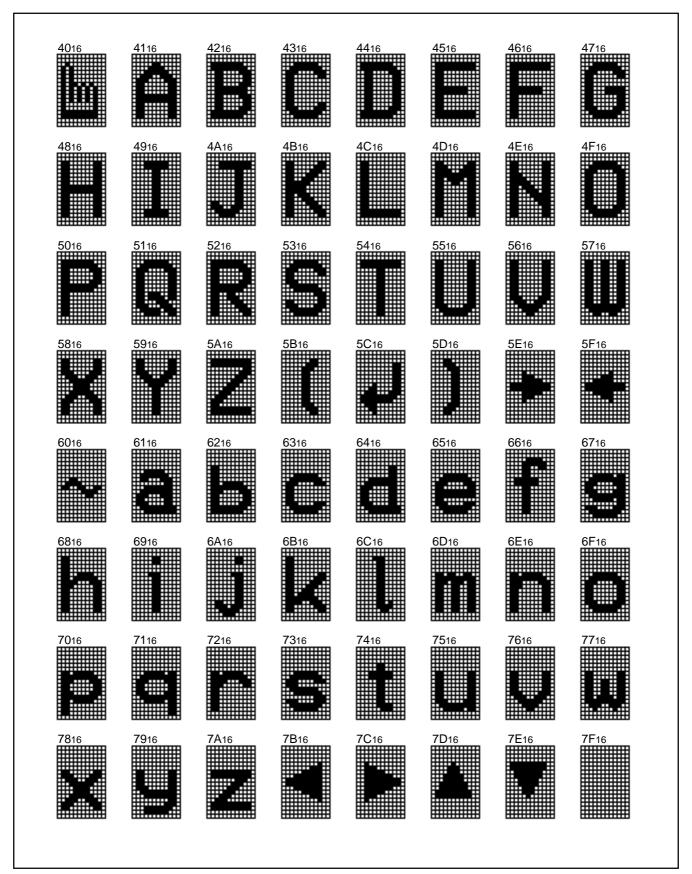


Fig. 25 M35076-001SP character pattern for page 1 (2)

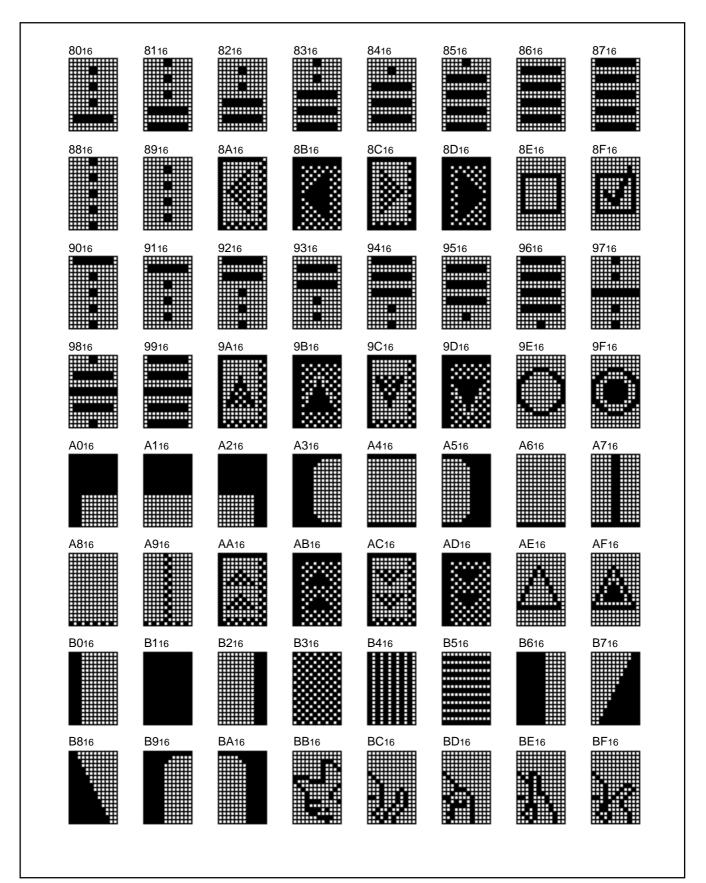


Fig. 26 M35076-001SP character pattern for page 1 (3)

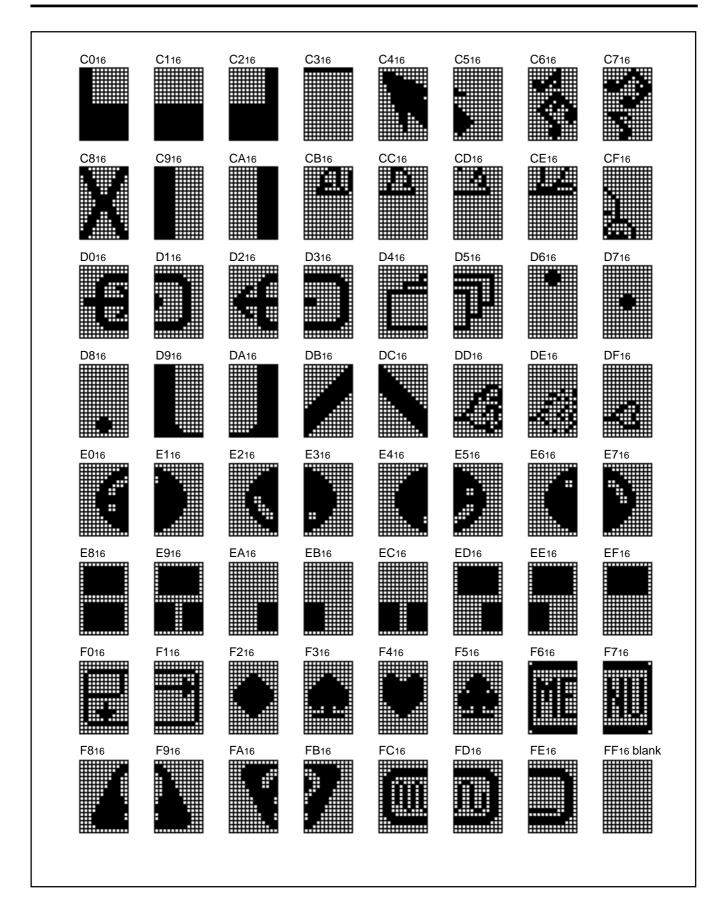
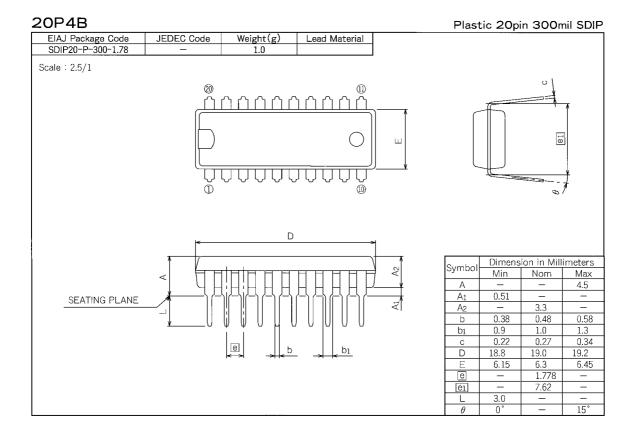



Fig. 27 M35076-001SP character pattern for page 1 (4)

PACKAGE OUTLINE

Renesas Technology Corp.

Nippon Bldg., 6-2, Otemachi 2-chome, Chiyoda-ku, Tokyo, 100-0004 Japan

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- Notes regarding these materials

 These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

 Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

 The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishical.pics.com).

 When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

 Mitsubishi Electric Corpora

- destination.
 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
 Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

Rev. No.	Revision Description	Rev. date
1.0	First Edition	0203
		-