

MM

8-Bit Magnitude Comparator (Equality Detector)

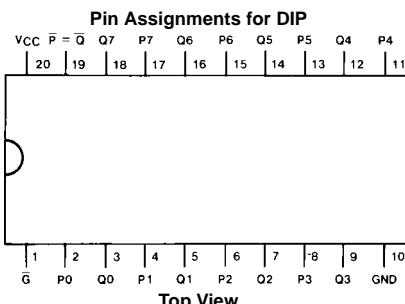
General Description

The MM74HC688 equality detector utilizes advanced silicon-gate CMOS technology to compare bit for bit two 8-bit words and indicates whether or not they are equal. The $\overline{P} = \overline{Q}$ output indicates equality when it is LOW. A single active low enable is provided to facilitate cascading of several packages and enable comparison of words greater than 8 bits.

This device is useful in memory block decoding applications, where memory block enable signals must be generated from computer address information.

The comparator's output can drive 10 low power Schottky equivalent loads. This comparator is functionally and pin compatible to the 74LS688. All inputs are protected from damage due to static discharge by diodes to V_{CC} and ground.

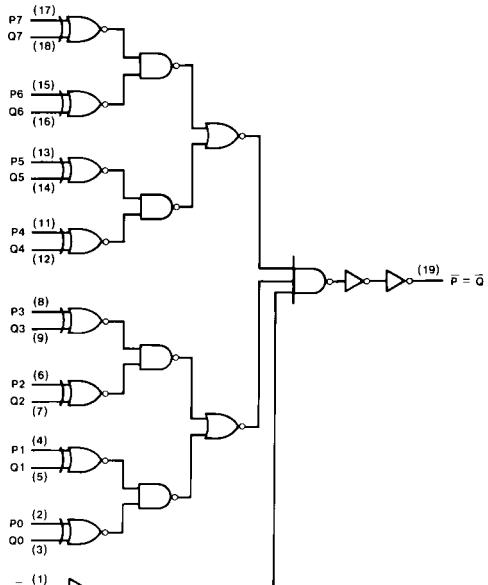
Features


- Typical propagation delay: 20 ns
 - Wide power supply range: 2–6V
 - Low quiescent current: 80 μ A (74 Series)
 - Large output current: 4 mA (74 Series)
 - Same as HC521

Ordering Code:

Order Number	Package Number	Package Description
MM74HC688WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74HC688SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC688MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC688N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


Connection Diagram

Truth Table

Inputs		P = Q
Data	Enable	
P, Q	\bar{G}	
P = Q	L	L
P > Q	L	H
P < Q	L	H
X	H	H

Logic Diagram

Absolute Maximum Ratings^(Note 1) **Recommended Operating Conditions**

(Note 2)

			Min	Max	Units
Supply Voltage (V_{CC})	-0.5 to +7.0V				
DC Input Voltage (V_{IN})	-1.5 to V_{CC} +1.5V	Supply Voltage (V_{CC})	2	6	V
DC Output Voltage (V_{OUT})	-0.5 to V_{CC} +0.5V	DC Input or Output Voltage (V_{IN} , V_{OUT})	0	V_{CC}	V
Clamp Diode Current (I_{IK} , I_{OK})	± 20 mA	Operating Temperature Range (T_A)	-40	+85	°C
DC Output Current, per pin (I_{OUT})	± 25 mA	Input Rise or Fall Times			
DC V_{CC} or GND Current, per pin (I_{CC})	± 50 mA	(t_r , t_f) V_{CC} = 2.0V	1000	ns	
Storage Temperature Range (T_{STG})	-65°C to +150°C	V_{CC} = 4.5V	500	ns	
Power Dissipation (P_D) (Note 3)	600 mW	V_{CC} = 6.0V	400	ns	
S.O. Package only	500 mW				
Lead Temperature (T_L) (Soldering 10 seconds)	260°C				

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics ^(Note 4)

Symbol	Parameter	Conditions	V_{CC}	$T_A = 25^\circ C$		$T_A = -40$ to $85^\circ C$	$T_A = -55$ to $125^\circ C$	Units
				Typ		Guaranteed Limits		
V_{IH}	Minimum HIGH Level Input Voltage		2.0V		1.5	1.5	1.5	V
			4.5V		3.15	3.15	3.15	
V_{IL}	Maximum LOW Level Input Voltage		2.0V		0.5	0.5	0.5	V
			4.5V		1.35	1.35	1.35	
V_{OH}	Minimum HIGH Level Output Voltage	$V_{IN} = V_{IH}$ or V_{IL} $ I_{OUT} \leq 20 \mu A$	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	
V_{OL}	Maximum LOW Level Output Voltage	$V_{IN} = V_{IH}$ or V_{IL} $ I_{OUT} \leq 20 \mu A$	6.0V	6.0	5.9	5.9	5.9	V
			4.5V	4.2	3.98	3.84	3.7	
			6.0V	5.7	5.48	5.34	5.2	
		$V_{IN} = V_{IH}$ or V_{IL} $ I_{OUT} \leq 4.0 \text{ mA}$ $ I_{OUT} \leq 5.2 \text{ mA}$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	
			6.0V	0	0.1	0.1	0.1	
		$V_{IN} = V_{IH}$ or V_{IL} $ I_{OUT} \leq 4.0 \text{ mA}$ $ I_{OUT} \leq 5.2 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
			6.0V	0.2	0.26	0.33	0.4	
I_{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND	6.0V		± 0.1	± 1.0	± 1.0	μA
I_{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0V		8.0	80	160	μA

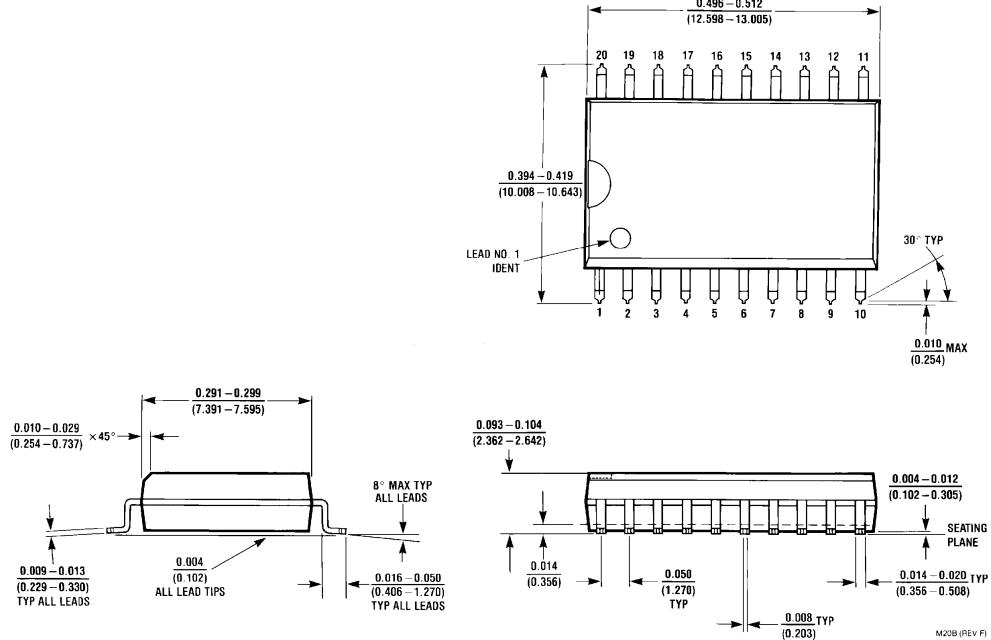
Note 4: For a power supply of 5V $\pm 10\%$ the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $V_{CC} = 5.5V$ and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Electrical Characteristics

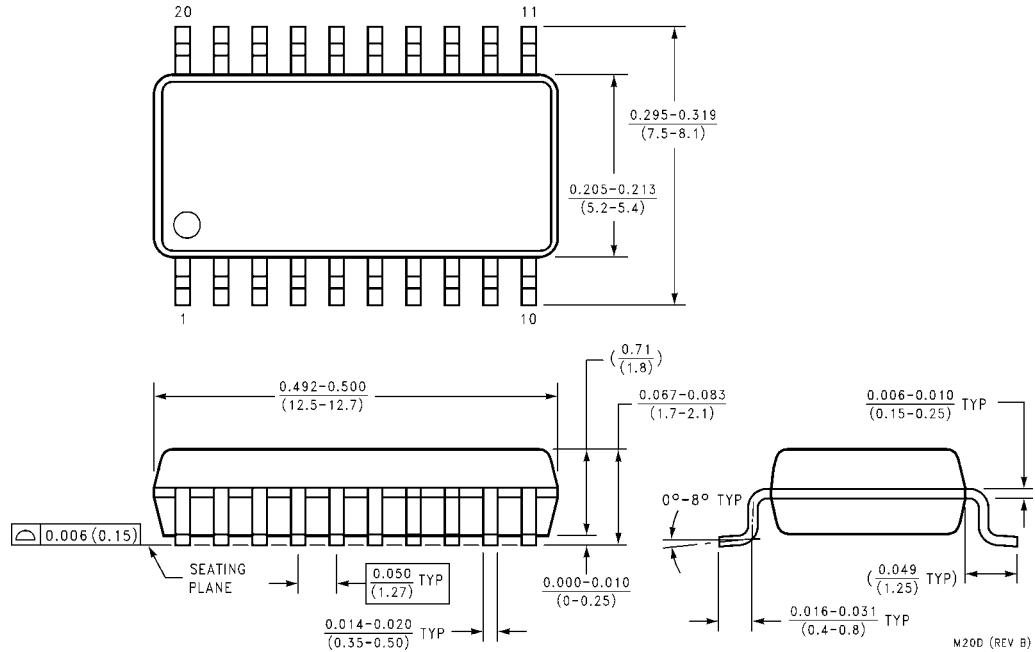
$V_{CC} = 5V$, $T_A = 25^\circ C$, $C_L = 15 \text{ pF}$, $t_r = t_f = 6 \text{ ns}$

Symbol	Parameter	Conditions	Typ	Guaranteed Limit	Units
t_{PHL}, t_{PLH}	Maximum Propagation Delay, any P or Q to Output		21	30	ns
t_{PLH}, t_{PHL}	Maximum Propagation Delay, Enable to any Output		14	20	ns

AC Electrical Characteristics

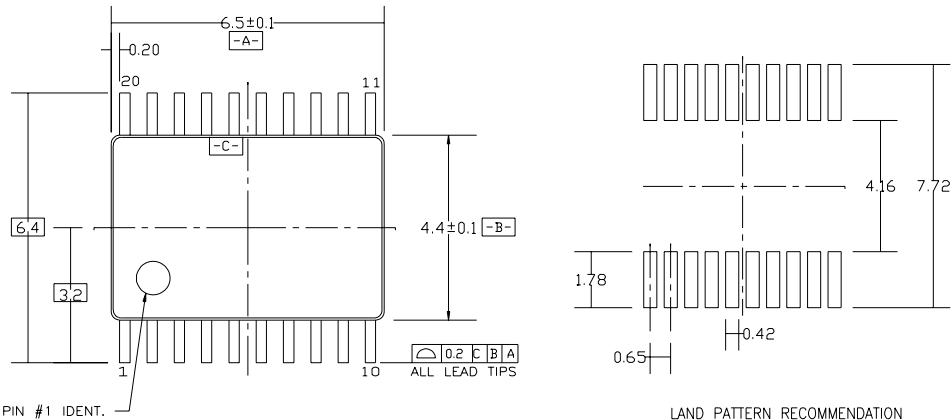

$V_{CC} = 2.0V$ to $6.0V$, $C_L = 50 \text{ pF}$, $t_r = t_f = 6 \text{ ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	V _{CC}	T _A = 25°C		T _A = -40 to 85°C	T _A = -55 to 125°C	Units
				Typ	Guaranteed Limits			
t_{PHL}, t_{PLH}	Maximum Propagation Delay, P or Q to Output		2.0V	60	175	220	263	ns
			4.5V	22	35	44	53	
			6.0V	19	30	38	45	
t_{PHL}, t_{PLH}	Maximum Propagation Delay, Enable to Output		2.0V	45	120	150	180	ns
			4.5V	15	24	30	36	
			6.0V	13	20	25	30	
t_{THL}, t_{TLH}	Maximum Output Rise and Fall Time		2.0V	30	75	95	110	ns
			4.5V	8	15	19	22	
			6.0V	7	13	16	19	
C_{PD}	Power Dissipation Capacitance (Note 5)			45				pF
C_{IN}	Maximum Input Capacitance			5	10	10	10	pF

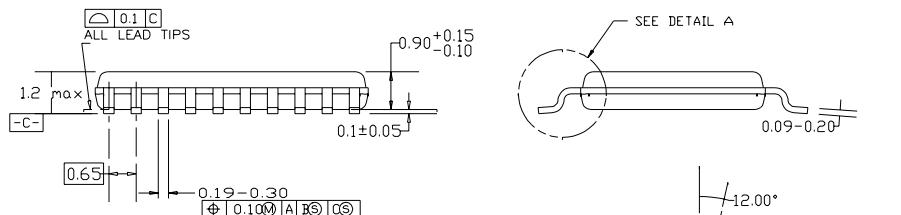

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

Physical Dimensions

inches (millimeters) unless otherwise noted

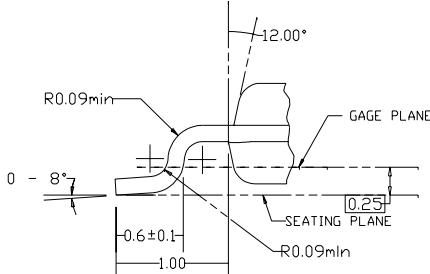


20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
Package Number M20B


20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package Number M20D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

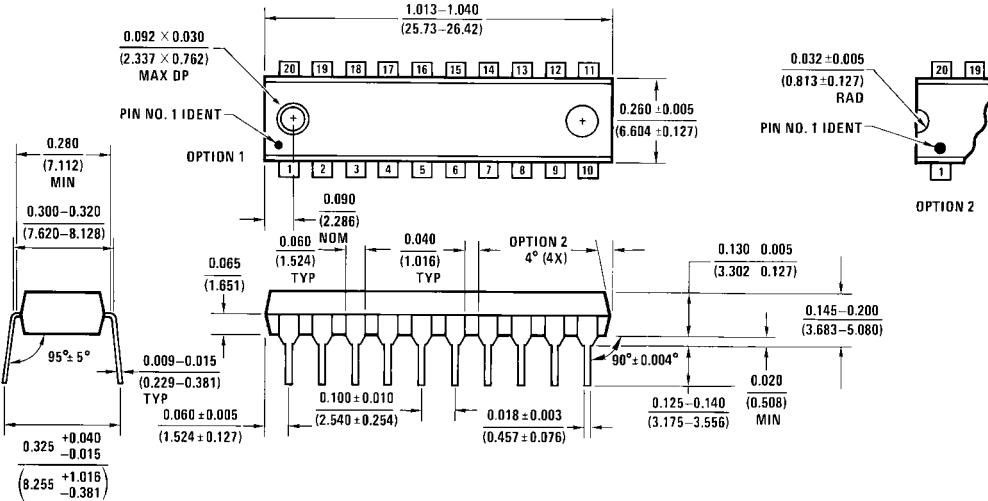
PIN #1 IDENT.


LAND PATTERN RECOMMENDATION

DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AC, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.



DETAIL A

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package Number MTC20

MM74HC688 8-Bit Magnitude Comparator (Equality Detector)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

N20A (REV G)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Package Number N20A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com