

IS41C16105C

IS41LV16105C

1Mx16

16Mb DRAM WITH FAST PAGE MODE

FEBRUARY 2012

FEATURES

- TTL compatible inputs and outputs; tristate I/O
- Refresh Interval:
 - 1,024 cycles/16 ms
- Refresh Mode:
 - $\overline{\text{RAS}}$ -Only, $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ (CBR), and Hidden
- JEDEC standard pinout
- Single power supply:
 - $5V \pm 10\%$ (IS41C16105C)
 - $3.3V \pm 10\%$ (IS41LV16105C)
- Byte Write and Byte Read operation via two $\overline{\text{CAS}}$
- Industrial Temperature Range -40°C to 85°C

DESCRIPTION

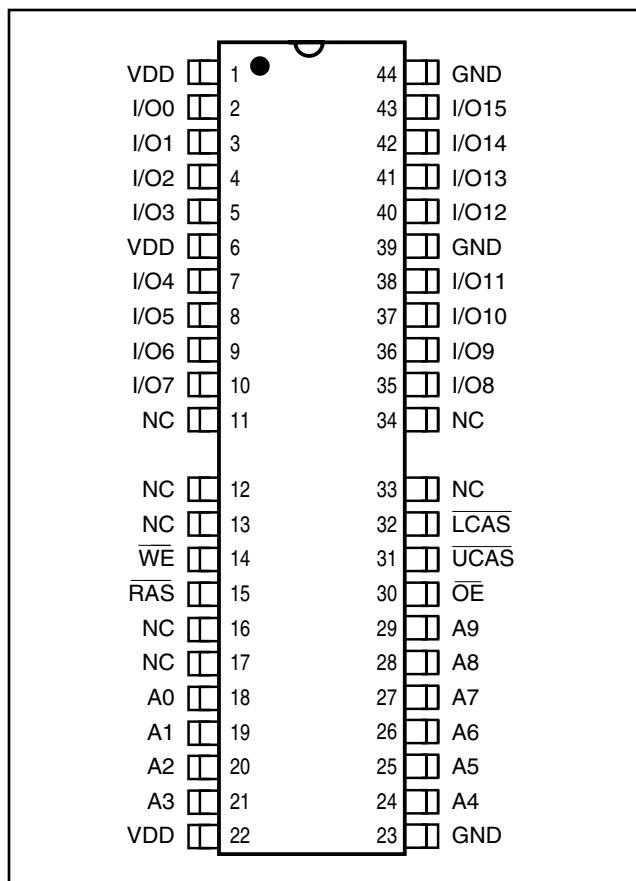
The *ISSI* IS41C16105C and IS41LV16105C are 1,048,576 x 16-bit high-performance CMOS Dynamic Random Access Memories. Fast Page Mode allows 1,024 random accesses within a single row with access cycle time as short as 20 ns per 16-bit word. It is asynchronous, as it does not require a clock signal input to synchronize commands and I/O.

These features make the IS41C16105C and IS41LV16105C ideally suited for high-bandwidth graphics, digital signal processing, high-performance computing systems, and peripheral applications that run without a clock to synchronize with the DRAM.

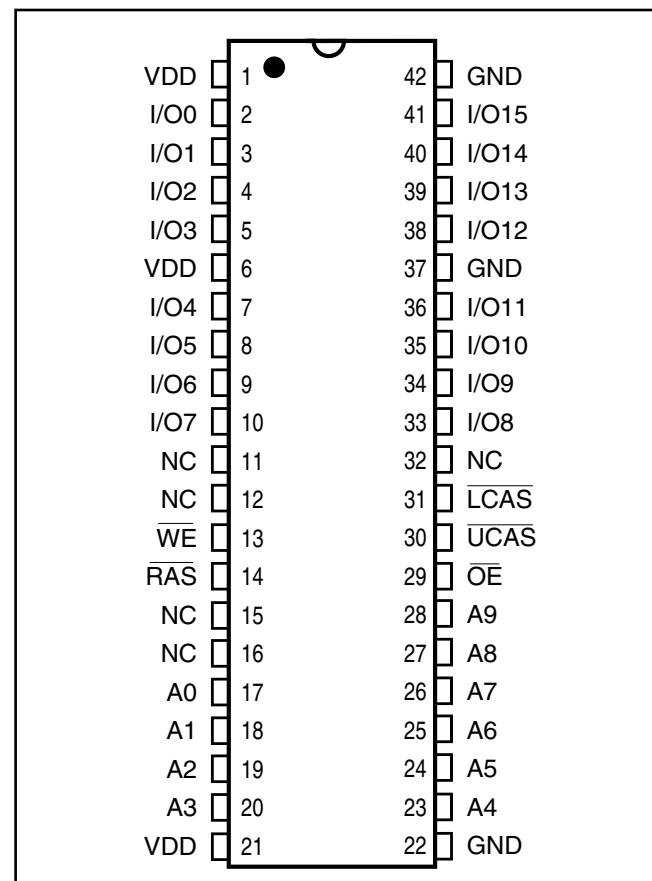
The IS41C/LV16105C is packaged in a 42-pin 400-mil SOJ and 400-mil 50/44-pin TSOP (Type II).

KEY TIMING PARAMETERS

Parameter	-50	Unit
Max. $\overline{\text{RAS}}$ Access Time (t_{RAC})	50	ns
Max. $\overline{\text{CAS}}$ Access Time (t_{CAC})	13	ns
Max. Column Address Access Time (t_{AA})	25	ns
Min. Fast Page Mode Cycle Time (t_{PC})	20	ns
Min. Read/Write Cycle Time (t_{RC})	84	ns

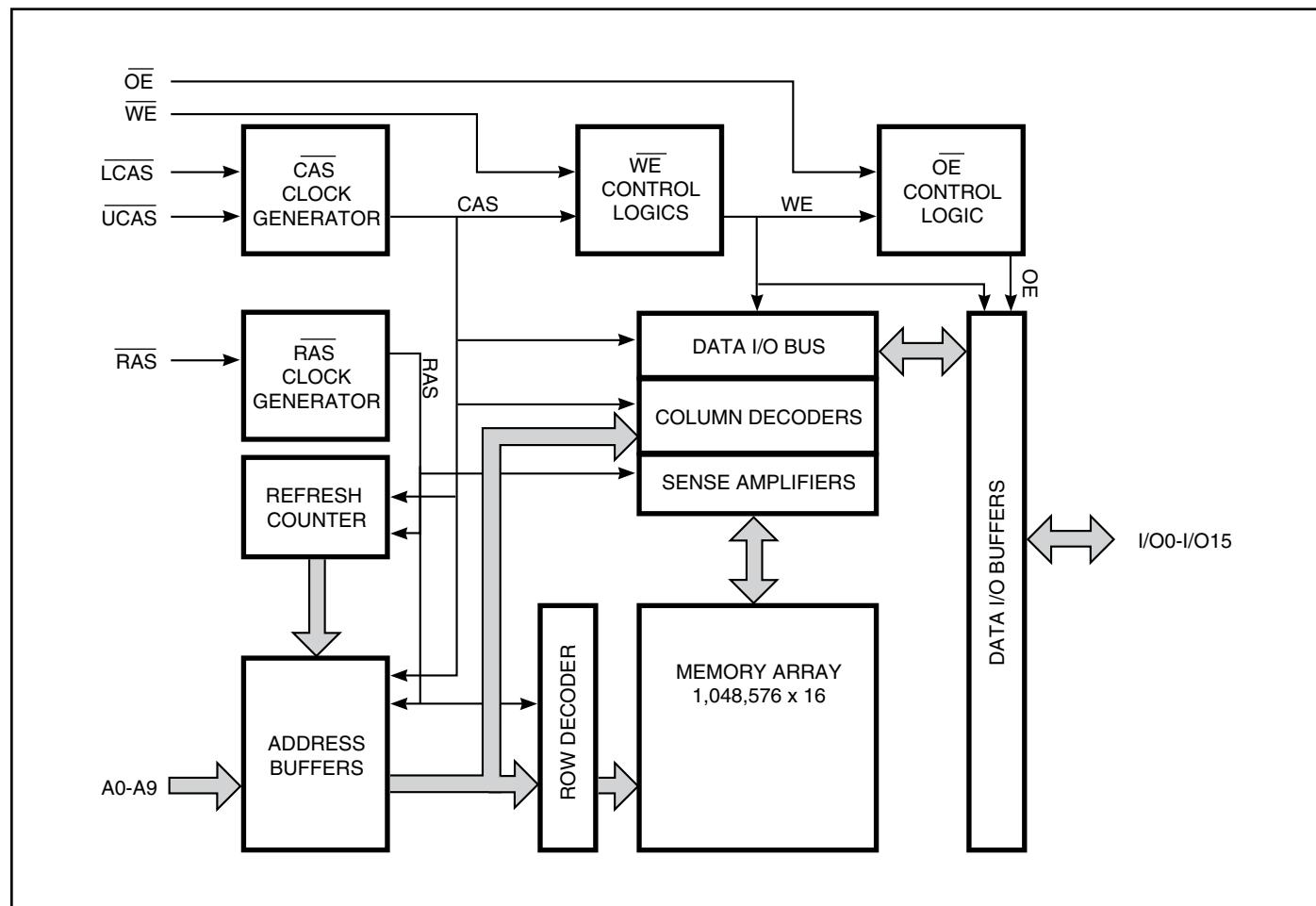

Copyright © 2012 Integrated Silicon Solution, Inc. All rights reserved. *ISSI* reserves the right to make changes to this specification and its products at any time without notice. *ISSI* assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:


- a.) the risk of injury or damage has been minimized;
- b.) the user assume all such risks; and
- c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances

PIN CONFIGURATIONS

44(50)-Pin TSOP (Type II)


42-Pin SOJ

PIN DESCRIPTIONS

A0-A9	Address Inputs
I/O0-15	Data Inputs/Outputs
WE	Write Enable
OE	Output Enable
RAS	Row Address Strobe
UCAS	Upper Column Address Strobe
LCAS	Lower Column Address Strobe
VDD	Power
GND	Ground
NC	No Connection

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE⁽⁵⁾

Function	RAS	LCAS	UCAS	WE	OE	Address tr/tc	I/O
Standby	H	X	X	X	X	X	High-Z
Read: Word	L	L	L	H	L	ROW/COL	DOUT
Read: Lower Byte	L	L	H	H	L	ROW/COL	Lower Byte, DOUT Upper Byte, High-Z
Read: Upper Byte	L	H	L	H	L	ROW/COL	Lower Byte, High-Z Upper Byte, DOUT
Write: Word (Early Write)	L	L	L	L	X	ROW/COL	DIN
Write: Lower Byte (Early Write)	L	L	H	L	X	ROW/COL	Lower Byte, DIN Upper Byte, High-Z
Write: Upper Byte (Early Write)	L	H	L	L	X	ROW/COL	Lower Byte, High-Z Upper Byte, DIN
Read-Write ^(1,2)	L	L	L	H→L	L→H	ROW/COL	DOUT, DIN
Hidden Refresh	Read ⁽²⁾	L→H→L	L	H	L	ROW/COL	DOUT
	Write ^(1,3)	L→H→L	L	L	X	ROW/COL	DOUT
RAS-Only Refresh		L	H	H	X	ROW/NA	High-Z
CBR Refresh ⁽⁴⁾		H→L	L	L	H	X	High-Z

Notes:

1. These WRITE cycles may also be BYTE WRITE cycles (either LCAS or UCAS active).
2. These READ cycles may also be BYTE READ cycles (either LCAS or UCAS active).
3. EARLY WRITE only.
4. At least one of the two CAS signals must be active (LCAS or UCAS).
5. Commands valid only after initialization.

Functional Description

The IS41C/LV16105C is a CMOS DRAM optimized for high-speed bandwidth, low power applications. During READ or WRITE cycles, each bit is uniquely addressed through the 16 address bits. These are entered ten bits (A0-A9) at a time. The row address is latched by the Row Address Strobe (RAS). The column address is latched by the Column Address Strobe (CAS). RAS is used to latch the first nine bits and CAS is used the latter nine bits.

The IS41C/LV16105C has two CAS controls, LCAS and UCAS. The LCAS and UCAS inputs internally generates a CAS signal functioning in an identical manner to the single CAS input on the other 1M x 16 DRAMs. The key difference is that each CAS controls its corresponding I/O tristate logic (in conjunction with OE and WE and RAS). LCAS controls I/O0 through I/O7 and UCAS controls I/O8 through I/O15.

The IS41C/LV16105C CAS function is determined by the first CAS (LCAS or UCAS) transitioning LOW and the last transitioning back HIGH. The two CAS controls give the IS41C16105C and IS41LV16105C both BYTE READ and BYTE WRITE cycle capabilities.

Memory Cycle

A memory cycle is initiated by bring RAS LOW and it is terminated by returning both RAS and CAS HIGH. To ensures proper device operation and data integrity any memory cycle, once initiated, must not be ended or aborted before the minimum tRAS time has expired. A new cycle must not be initiated until the minimum precharge time tRP, tCP has elapsed.

Read Cycle

A read cycle is initiated by the falling edge of CAS or OE, whichever occurs last, while holding WE HIGH. The column address must be held for a minimum time specified by tAA. Data Out becomes valid only when tRAC, tAA, tCAC and tOE are all satisfied. As a result, the access time is dependent on the timing relationships between these parameters.

Write Cycle

A write cycle is initiated by the falling edge of CAS and WE, whichever occurs last. The input data must be valid at or before the falling edge of CAS or WE, whichever occurs last.

Refresh Cycle

To retain data, 1,024 refresh cycles are required in each 16 ms period. There are two ways to refresh the memory.

1. By clocking each of the 1,024 row addresses (A0 through A9) with RAS at least once every tREF max. Any read, write, read-modify-write or RAS-only cycle refreshes the addressed row.
2. Using a CAS-before-RAS refresh cycle. CAS-before-RAS refresh is activated by the falling edge of RAS, while holding CAS LOW. In CAS-before-RAS refresh cycle, an internal 9-bit counter provides the row addresses and the external address inputs are ignored.

CAS-before-RAS is a refresh-only mode and no data access or device selection is allowed. Thus, the output remains in the High-Z state during the cycle.

Power-On

During Power-On, RAS, UCAS, LCAS, and WE must all track with VDD (HIGH) to avoid current surges, and allow initialization to continue. An initial pause of 200 μ s is required followed by a minimum of eight initialization cycles (any combination of cycles containing a RAS signal).

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Parameters	Rating	Unit
V_T	Voltage on Any Pin Relative to GND	5V 3.3V	-1.0 to +7.0 -0.5 to +4.6
V_{DD}	Supply Voltage	5V 3.3V	-1.0 to +7.0 -0.5 to +4.6
I_{OUT}	Output Current	50	mA
P_D	Power Dissipation	1	W
T_A	Industrial Temperature	-40 to +85	°C
T_{STG}	Storage Temperature	-55 to +125	°C

Note:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS (Voltages are referenced to GND.)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
V_{DD}	Supply Voltage		5V 3.3V	4.5 3.0	5.0 3.3	5.5 3.6
V_{IH}	Input High Voltage		5V 3.3V	2.4 2.0	— —	$V_{DD} + 1.0$ $V_{DD} + 0.3$
V_{IL}	Input Low Voltage		5V 3.3V	-1.0 -0.3	— —	0.8 0.8
I_{IL}	Input Leakage Current	Any input $0V \leq V_{IN} \leq V_{DD}$ Other inputs not under test = 0V		-5	5	µA
I_{IO}	Output Leakage Current	Output is disabled (Hi-Z) $0V \leq V_{OUT} \leq V_{DD}$		-5	5	µA
V_{OH}	Output High Voltage Level	$I_{OH} = -5.0$ mA $I_{OH} = -2.0$ mA	5V 3.3V	2.4 2.4	— —	V
V_{OL}	Output Low Voltage Level	$I_{OL} = 4.2$ mA $I_{OL} = 2.0$ mA	5V 3.3V	— —	0.4 0.4	V

CAPACITANCE^(1,2)

Symbol	Parameter	Max.	Unit
C_{IN1}	Input Capacitance: A0-A9	5	pF
C_{IN2}	Input Capacitance: RAS, UCAS, LCAS, WE, OE	7	pF
C_{IO}	Data Input/Output Capacitance: I/O0-I/O15	7	pF

Notes:

1. Tested initially and after any design or process changes that may affect these parameters.
2. Test conditions: $T_A = 25^\circ\text{C}$, $f = 1$ MHz,

ELECTRICAL CHARACTERISTICS⁽¹⁾

(Recommended Operating Conditions unless otherwise noted.)

Symbol	Parameter	Test Condition	V _{DD} /Speed	Min.	Max.	Unit
I _{DD1}	Standby Current: TTL	$\overline{\text{RAS}}, \overline{\text{LCAS}}, \overline{\text{UCAS}} \geq V_{IH}$	5V	—	2	mA
			3.3V	—	2	mA
I _{DD2}	Standby Current: CMOS	$\overline{\text{RAS}}, \overline{\text{LCAS}}, \overline{\text{UCAS}} \geq V_{DD} - 0.2V$	5V	—	1	mA
			3.3V	—	1	mA
I _{DD3}	Operating Current: Random Read/Write ^(2,3,4) Average Power Supply Current	$\overline{\text{RAS}}, \overline{\text{LCAS}}, \overline{\text{UCAS}},$ Address Cycling, $t_{RC} = t_{RC}$ (min.)	5V	—	90	mA
			3.3V	—	90	mA
I _{DD4}	Operating Current: Fast Page Mode ^(2,3,4) Average Power Supply Current	$\overline{\text{RAS}} = V_{IL}, \overline{\text{LCAS}}, \overline{\text{UCAS}},$ Cycling $t_{PC} = t_{PC}$ (min.)	5V	—	30	mA
			3.3V	—	30	mA
I _{DD5}	Refresh Current: RAS-Only ^(2,3) Average Power Supply Current	$\overline{\text{RAS}}$ Cycling, $\overline{\text{LCAS}}, \overline{\text{UCAS}} \geq V_{IH}$ $t_{RC} = t_{RC}$ (min.)	5V	—	60	mA
			3.3V	—	60	mA
I _{DD6}	Refresh Current: CBR ^(2,3,5) Average Power Supply Current	$\overline{\text{RAS}}, \overline{\text{LCAS}}, \overline{\text{UCAS}}$ Cycling $t_{RC} = t_{RC}$ (min.)	5V	—	60	mA
			3.3V	—	60	mA

Notes:

1. An initial pause of 200 μ s is required after power-up followed by eight $\overline{\text{RAS}}$ refresh cycles (RAS-Only or CBR) before proper device operation is assured. The eight RAS cycles wake-up should be repeated any time the t_{REF} refresh requirement is exceeded.
2. Dependent on cycle rates.
3. Specified values are obtained with minimum cycle time and the output open.
4. Column-address is changed once each Fast page cycle.
5. Enables on-chip refresh and address counters.

AC CHARACTERISTICS^(1,2,3,4,5,6)

(Recommended Operating Conditions unless otherwise noted.)

Symbol	Parameter	-50		-60		Units
		Min.	Max.	Min.	Max.	
t _{RC}	Random READ or WRITE Cycle Time	84	—	104	—	ns
t _{TRAC}	Access Time from <u>RAS</u> ^(6, 7)	—	50	—	60	ns
t _{CAC}	Access Time from <u>CAS</u> ^(6, 8, 15)	—	13	—	15	ns
t _{AA}	Access Time from Column-Address ⁽⁶⁾	—	25	—	30	ns
t _{TRAS}	<u>RAS</u> Pulse Width	50	10K	60	10K	ns
t _{RP}	<u>RAS</u> Precharge Time	30	—	40	—	ns
t _{CAS}	<u>CAS</u> Pulse Width ⁽²⁶⁾	8	10K	10	10K	ns
t _{CP}	<u>CAS</u> Precharge Time ^(9, 25)	9	—	9	—	ns
t _{CSH}	<u>CAS</u> Hold Time ⁽²¹⁾	38	—	40	—	ns
t _{TRCD}	<u>RAS</u> to <u>CAS</u> Delay Time ^(10, 20)	12	37	14	45	ns
t _{TASR}	Row-Address Setup Time	0	—	0	—	ns
t _{TRAH}	Row-Address Hold Time	8	—	10	—	ns
t _{TASC}	Column-Address Setup Time ⁽²⁰⁾	0	—	0	—	ns
t _{TCAH}	Column-Address Hold Time ⁽²⁰⁾	8	—	10	—	ns
t _{TAR}	Column-Address Hold Time (referenced to <u>RAS</u>)	30	—	40	—	ns
t _{TRAD}	<u>RAS</u> to Column-Address Delay Time ⁽¹¹⁾	10	25	12	30	ns
t _{TRAL}	Column-Address to <u>RAS</u> Lead Time	25	—	30	—	ns
t _{TRPC}	<u>RAS</u> to <u>CAS</u> Precharge Time	5	—	5	—	ns
t _{TRSH}	<u>RAS</u> Hold Time ⁽²⁷⁾	8	—	10	—	ns
t _{TRHCP}	<u>RAS</u> Hold Time from <u>CAS</u> Precharge	37	—	37	—	ns
t _{TCLZ}	<u>CAS</u> to Output in Low-Z ^(15, 29)	0	—	0	—	ns
t _{TCRP}	<u>CAS</u> to <u>RAS</u> Precharge Time ⁽²¹⁾	5	—	5	—	ns
t _{TOD}	Output Disable Time ^(19, 28, 29)	3	15	3	15	ns
t _{TOE}	Output Enable Time ^(15, 16)	—	13	—	15	ns
t _{TOED}	Output Enable Data Delay (Write)	20	—	20	—	ns
t _{TOEHC}	<u>OE</u> HIGH Hold Time from <u>CAS</u> HIGH	5	—	5	—	ns
t _{TOEP}	<u>OE</u> HIGH Pulse Width	10	—	10	—	ns
t _{TOES}	<u>OE</u> LOW to <u>CAS</u> HIGH Setup Time	5	—	5	—	ns
t _{TRCS}	Read Command Setup Time ^(17, 20)	0	—	0	—	ns
t _{TRRH}	Read Command Hold Time (referenced to <u>RAS</u>) ⁽¹²⁾	0	—	0	—	ns
t _{TRCH}	Read Command Hold Time (referenced to <u>CAS</u>) ^(12, 17, 21)	0	—	0	—	ns
t _{WCH}	Write Command Hold Time ^(17, 27)	8	—	10	—	ns

AC CHARACTERISTICS (Continued)^(1,2,3,4,5,6)

(Recommended Operating Conditions unless otherwise noted.)

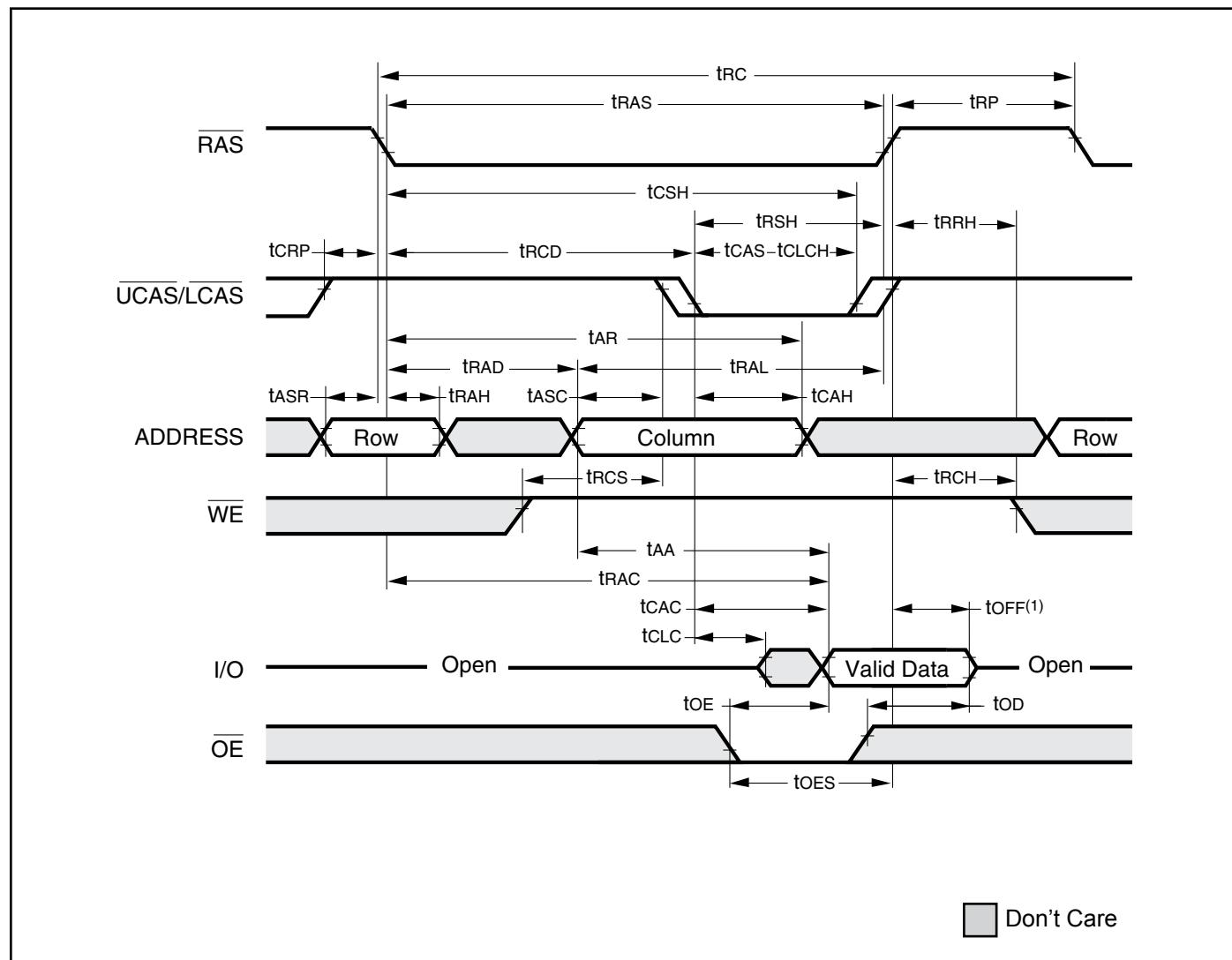
Symbol	Parameter	-50		-60		Units
		Min.	Max.	Min.	Max.	
twCR	Write Command Hold Time (referenced to <u>RAS</u>) ⁽¹⁷⁾	40	—	50	—	ns
tWP	Write Command Pulse Width ⁽¹⁷⁾	8	—	10	—	ns
tWPZ	<u>WE</u> Pulse Widths to Disable Outputs	10	—	10	—	ns
tRWL	Write Command to <u>RAS</u> Lead Time ⁽¹⁷⁾	13	—	15	—	ns
tcWL	Write Command to <u>CAS</u> Lead Time ^(17, 21)	8	—	10	—	ns
twCS	Write Command Setup Time ^(14, 17, 20)	0	—	0	—	ns
tdHR	Data-in Hold Time (referenced to <u>RAS</u>)	39	—	39	—	ns
tACH	Column-Address Setup Time to <u>CAS</u> Precharge during WRITE Cycle	15	—	15	—	ns
toEH	<u>OE</u> Hold Time from <u>WE</u> during READ-MODIFY-WRITE cycle ⁽¹⁸⁾	8	—	10	—	ns
tdS	Data-In Setup Time ^(15, 22)	0	—	0	—	ns
tdH	Data-In Hold Time ^(15, 22)	8	—	10	—	ns
tRWC	READ-MODIFY-WRITE Cycle Time	108	—	133	—	ns
tRWD	<u>RAS</u> to <u>WE</u> Delay Time during READ-MODIFY-WRITE Cycle ⁽¹⁴⁾	64	—	77	—	ns
tcWD	<u>CAS</u> to <u>WE</u> Delay Time ^(14, 20)	26	—	32	—	ns
tAWD	Column-Address to <u>WE</u> Delay Time ⁽¹⁴⁾	39	—	47	—	ns
tPC	Fast Page Mode READ or WRITE Cycle Time ⁽²⁴⁾	20	—	25	—	ns
tRASP	<u>RAS</u> Pulse Width	50	100K	60	100K	ns
tCPA	Access Time from <u>CAS</u> Precharge ⁽¹⁵⁾	—	30	—	35	ns
tPRWC	READ-WRITE Cycle Time ⁽²⁴⁾	56	—	68	—	ns
tCOH	Data Output Hold after <u>CAS</u> LOW	5	—	5	—	ns
tOFF	Output Buffer Turn-Off Delay from <u>CAS</u> or <u>RAS</u> ^(13,15,19, 29)	1.6	12	1.6	15	ns
tWHz	Output Disable Delay from <u>WE</u>	3	10	3	10	ns
tCLCH	Last <u>CAS</u> going LOW to First <u>CAS</u> returning HIGH ⁽²³⁾	10	—	10	—	ns
tCSR	<u>CAS</u> Setup Time (CBR REFRESH) ^(30, 20)	5	—	5	—	ns
tCHR	<u>CAS</u> Hold Time (CBR REFRESH) ^(30, 21)	8	—	10	—	ns
tORD	<u>OE</u> Setup Time prior to <u>RAS</u> during HIDDEN REFRESH Cycle	0	—	0	—	ns
tWRP	<u>WE</u> Setup Time (CBR Refresh)	5	—	5	—	ns
tWRH	<u>WE</u> Hold Time (CBR Refresh)	8	—	10	—	ns
tREF	Auto Refresh Period (1,024 Cycles)	—	16	—	16	ms
t _T	Transition Time (Rise or Fall) ^(2, 3)	1	50	1	50	ns

Note:

The -60 timing parameters are shown for reference only. The -50 speed option supports 50ns and 60ns timing specifications.

AC TEST CONDITIONS

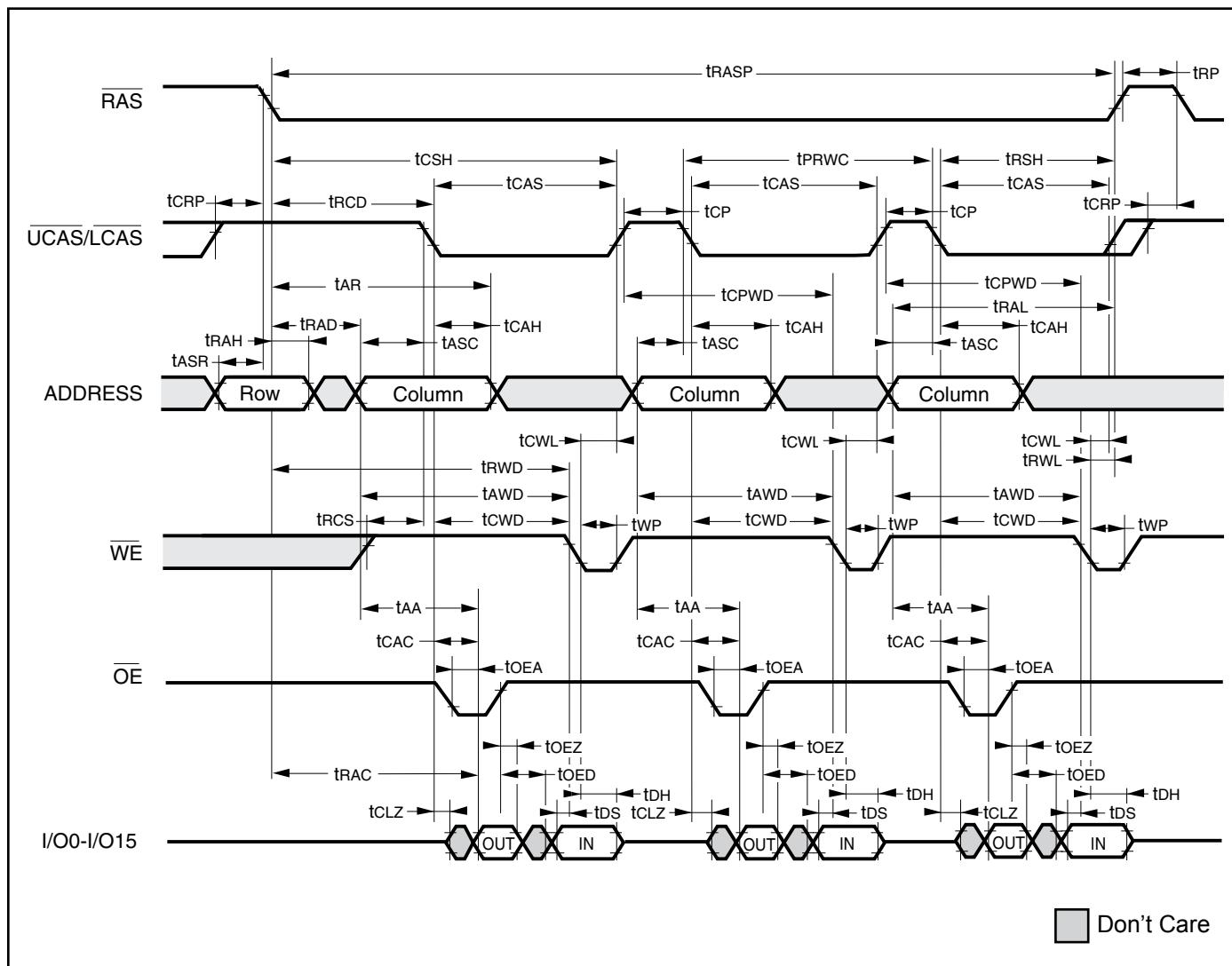
Output load: Two TTL Loads and 100 pF ($V_{DD} = 5.0V \pm 10\%$)
One TTL Load and 50 pF ($V_{DD} = 3.3V \pm 10\%$)

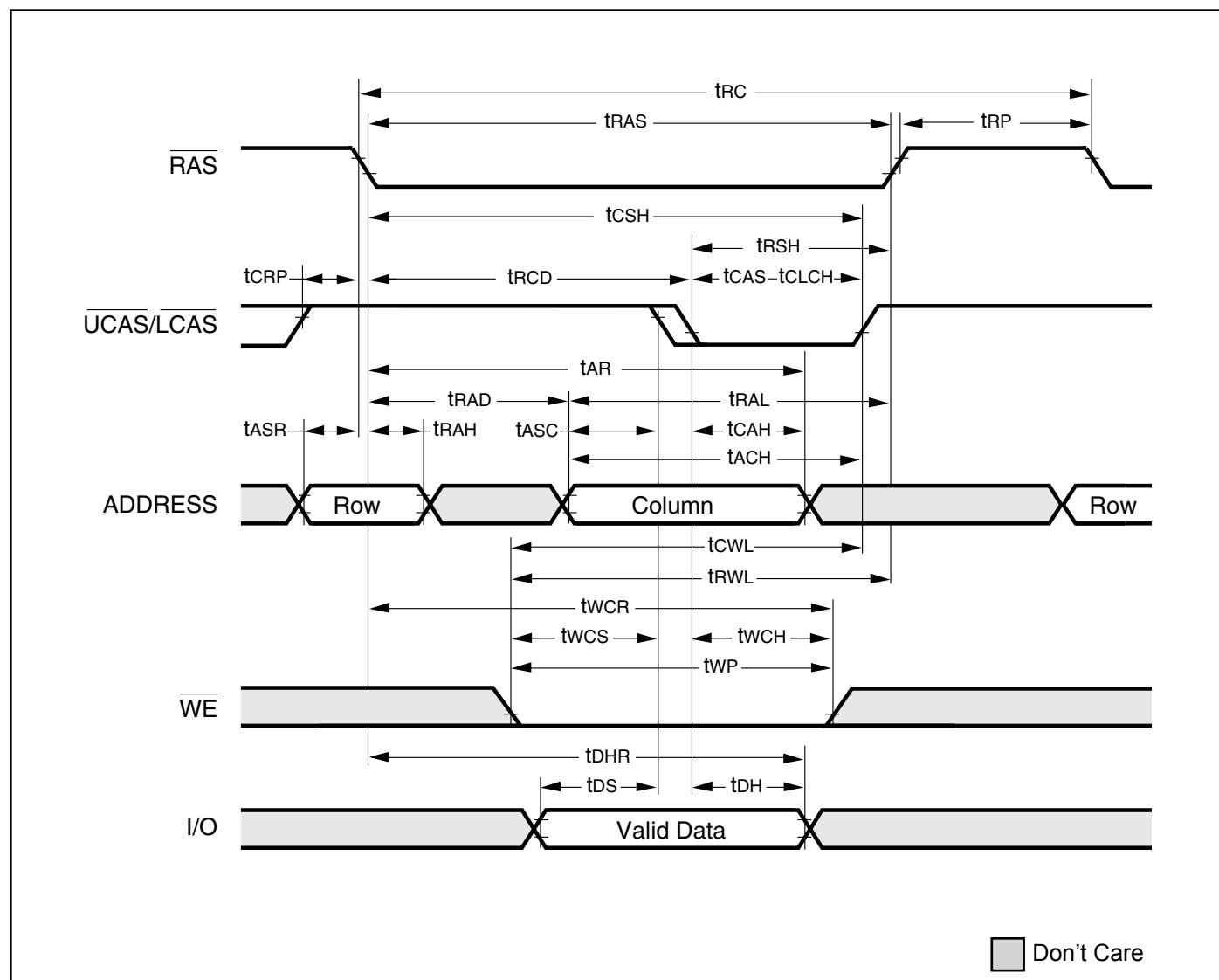

Input timing reference levels: $V_{IH} = 2.4V$, $V_{IL} = 0.8V$ ($V_{DD} = 5.0V \pm 10\%$);
 $V_{IH} = 2.0V$, $V_{IL} = 0.8V$ ($V_{DD} = 3.3V \pm 10\%$)

Output timing reference levels: $V_{OH} = 2.4V$, $V_{OL} = 0.4V$ ($V_{DD} = 5V \pm 10\%$, $3.3V \pm 10\%$)

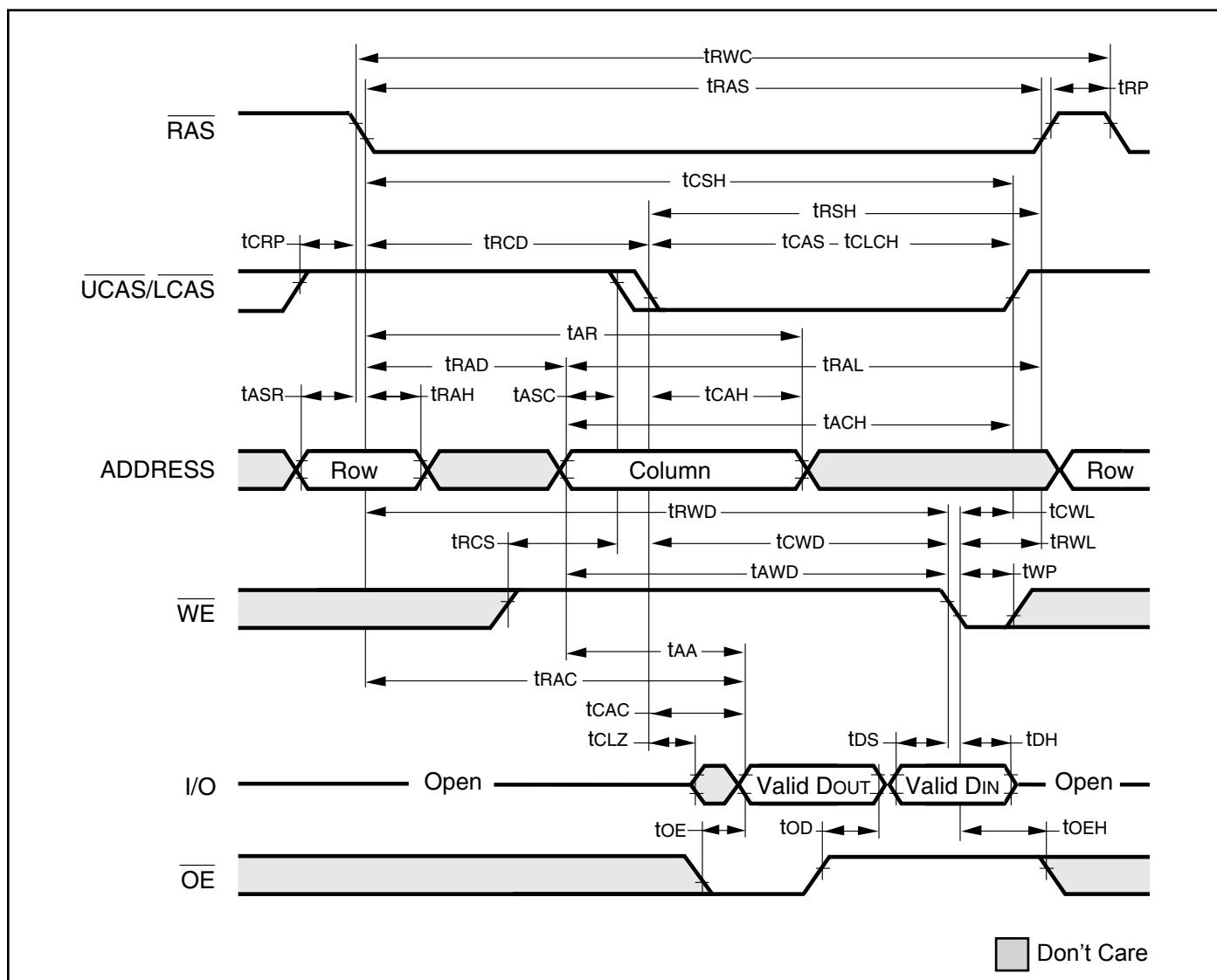
Notes:

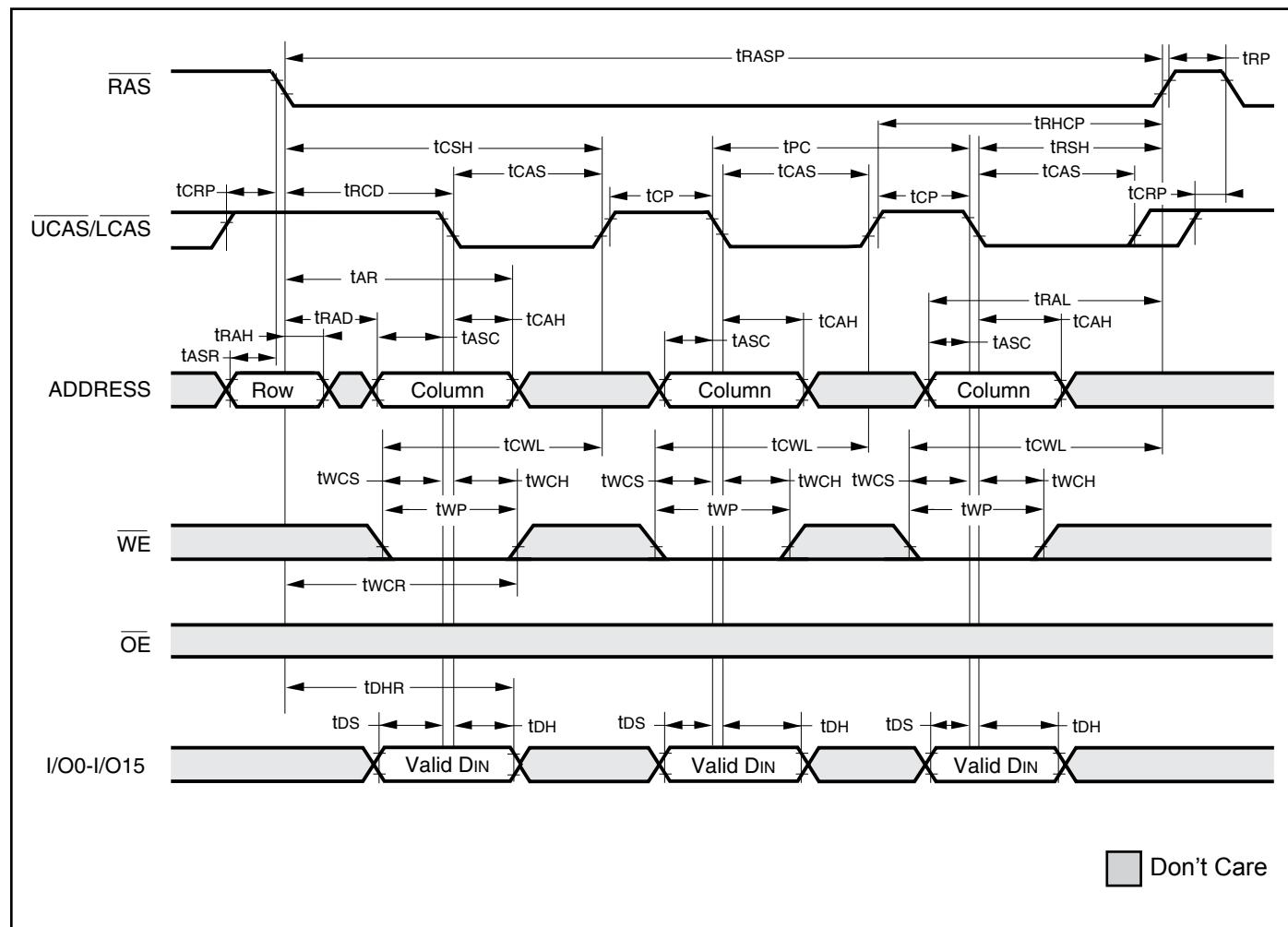
1. An initial pause of 200 μs is required after power-up followed by eight \overline{RAS} refresh cycle (\overline{RAS} -Only or CBR) before proper device operation is assured. The eight \overline{RAS} cycles wake-up should be repeated any time the t_{REF} refresh requirement is exceeded.
2. V_{IH} (MIN) and V_{IL} (MAX) are reference levels for measuring timing of input signals. Transition times, are measured between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) and assume to be 1 ns for all inputs.
3. In addition to meeting the transition rate specification, all input signals must transit between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
4. If \overline{CAS} and $\overline{RAS} = V_{IH}$, data output is High-Z.
5. If $\overline{CAS} = V_{IL}$, data output may contain data from the last valid READ cycle.
6. Measured with a load equivalent to one TTL gate and 50 pF.
7. Assumes that t_{RCD} $\leq t_{RCD}$ (MAX). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown.
8. Assumes that $t_{RCD} \geq t_{RCD}$ (MAX).
9. If \overline{CAS} is LOW at the falling edge of \overline{RAS} , data out will be maintained from the previous cycle. To initiate a new cycle and clear the data output buffer, \overline{CAS} and \overline{RAS} must be pulsed for t_{CP} .
10. Operation with the t_{RCD} (MAX) limit ensures that t_{RAC} (MAX) can be met. t_{RCD} (MAX) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (MAX) limit, access time is controlled exclusively by t_{CAC} .
11. Operation within the t_{RAD} (MAX) limit ensures that t_{RCD} (MAX) can be met. t_{RAD} (MAX) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (MAX) limit, access time is controlled exclusively by t_{AA} .
12. Either t_{RCH} or t_{RRH} must be satisfied for a READ cycle.
13. t_{OFF} (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to V_{OH} or V_{OL} .
14. t_{WCS} , t_{RWL} , t_{AWD} and t_{CWL} are restrictive operating parameters in LATE WRITE and READ-MODIFY-WRITE cycle only. If $t_{WCS} \geq t_{WCS}$ (MIN), the cycle is an EARLY WRITE cycle and the data output will remain open circuit throughout the entire cycle. If $t_{RWL} \geq t_{RWL}$ (MIN), $t_{AWD} \geq t_{AWD}$ (MIN) and $t_{CWL} \geq t_{CWL}$ (MIN), the cycle is a READ-WRITE cycle and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of I/O (at access time and until \overline{CAS} and \overline{RAS} or \overline{OE} go back to V_{IH}) is indeterminate. \overline{OE} held HIGH and \overline{WE} taken LOW after \overline{CAS} goes LOW result in a LATE WRITE (\overline{OE} -controlled) cycle.
15. Output parameter (I/O) is referenced to corresponding \overline{CAS} input, I/O0-I/O7 by \overline{LCAS} and I/O8-I/O15 by \overline{UCAS} .
16. During a READ cycle, if \overline{OE} is LOW then taken HIGH before \overline{CAS} goes HIGH, I/O goes open. If \overline{OE} is tied permanently LOW, a LATE WRITE or READ-MODIFY-WRITE is not possible.
17. Write command is defined as \overline{WE} going low.
18. LATE WRITE and READ-MODIFY-WRITE cycles must have both t_{OD} and t_{OEH} met (\overline{OE} HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The I/Os will provide the previously written data if \overline{CAS} remains LOW and \overline{OE} is taken back to LOW after t_{OEH} is met.
19. The I/Os are in open during READ cycles once t_{OD} or t_{OFF} occur.
20. The first $\chi\overline{CAS}$ edge to transition LOW.
21. The last $\chi\overline{CAS}$ edge to transition HIGH.
22. These parameters are referenced to \overline{CAS} leading edge in EARLY WRITE cycles and \overline{WE} leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
23. Last falling $\chi\overline{CAS}$ edge to first rising $\chi\overline{CAS}$ edge.
24. Last rising $\chi\overline{CAS}$ edge to next cycle's last rising $\chi\overline{CAS}$ edge.
25. Last rising $\chi\overline{CAS}$ edge to first falling $\chi\overline{CAS}$ edge.
26. Each $\chi\overline{CAS}$ must meet minimum pulse width.
27. Last $\chi\overline{CAS}$ to go LOW.
28. I/Os controlled, regardless \overline{UCAS} and \overline{LCAS} .
29. The 3 ns minimum is a parameter guaranteed by design.
30. Enables on-chip refresh and address counters.


FAST-PAGE-MODE READ CYCLE

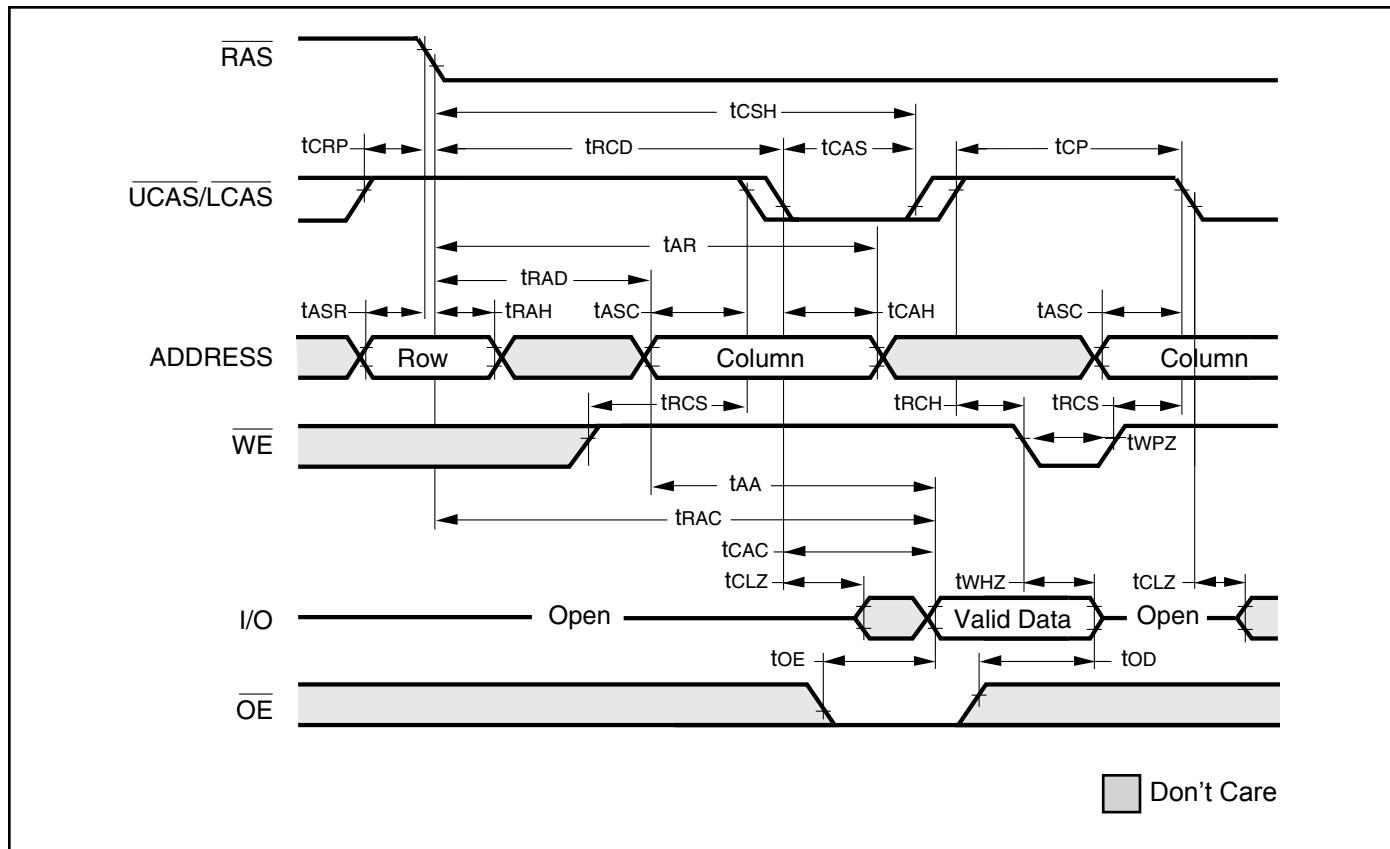

Note:

1. tOFF is referenced from rising edge of RAS or CAS, whichever occurs last.

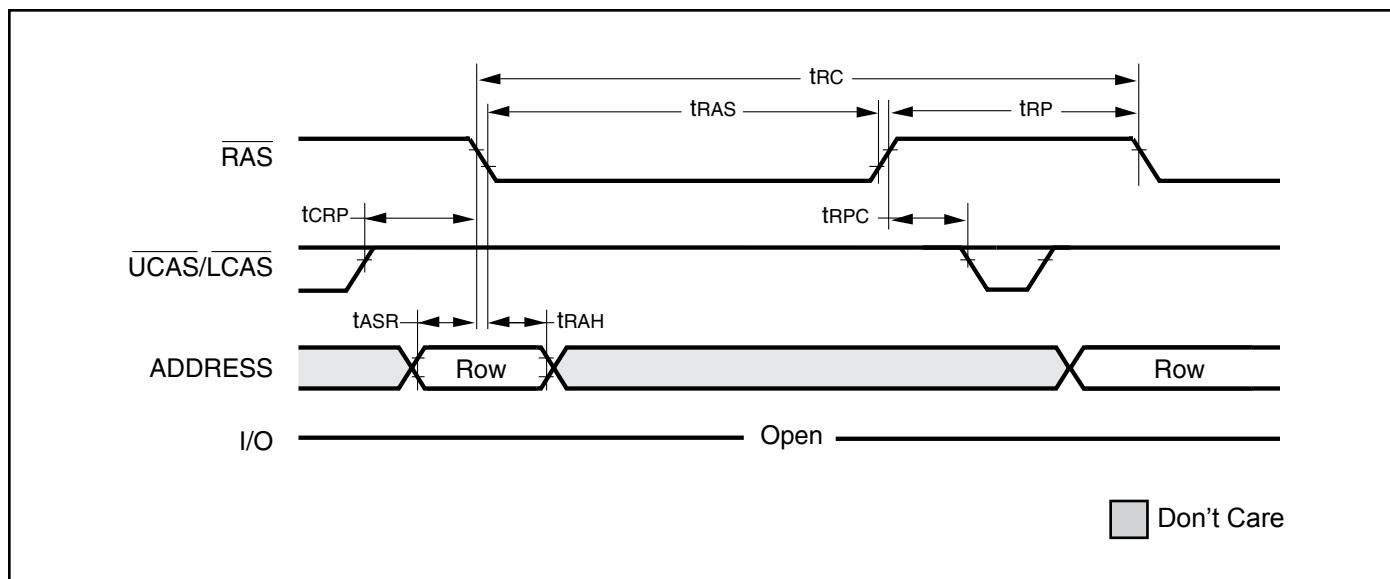

FAST PAGE MODE READ-MODIFY-WRITE CYCLE


FAST-PAGE-MODE EARLY WRITE CYCLE (\overline{OE} = DON'T CARE)

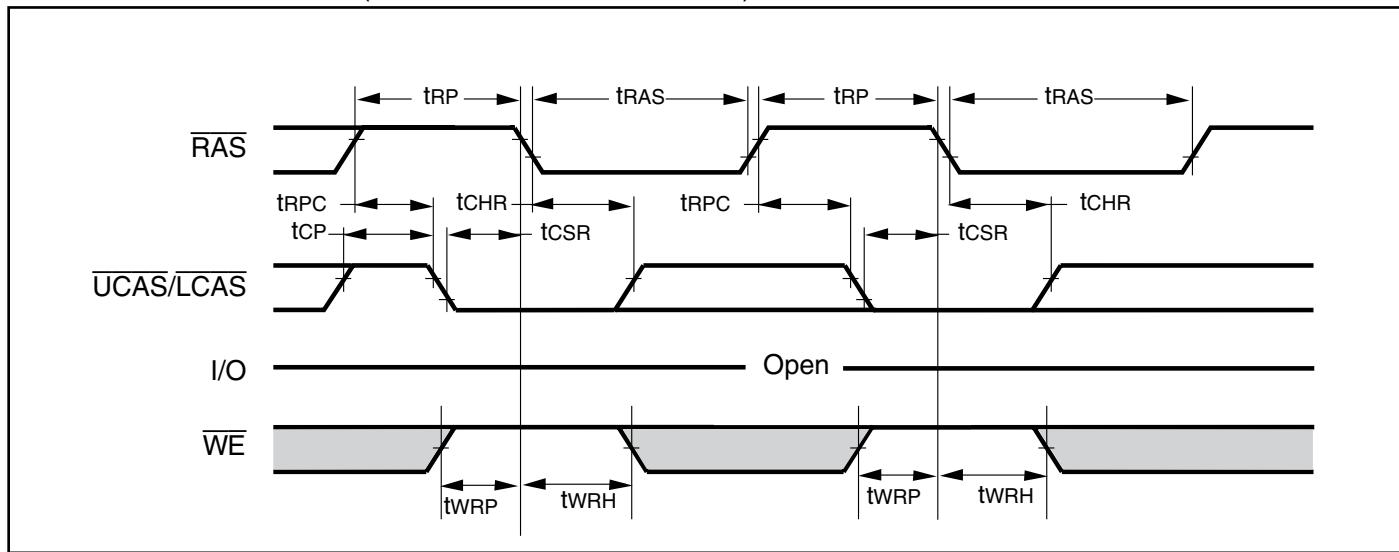
FAST-PAGE-MODE READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE Cycles)

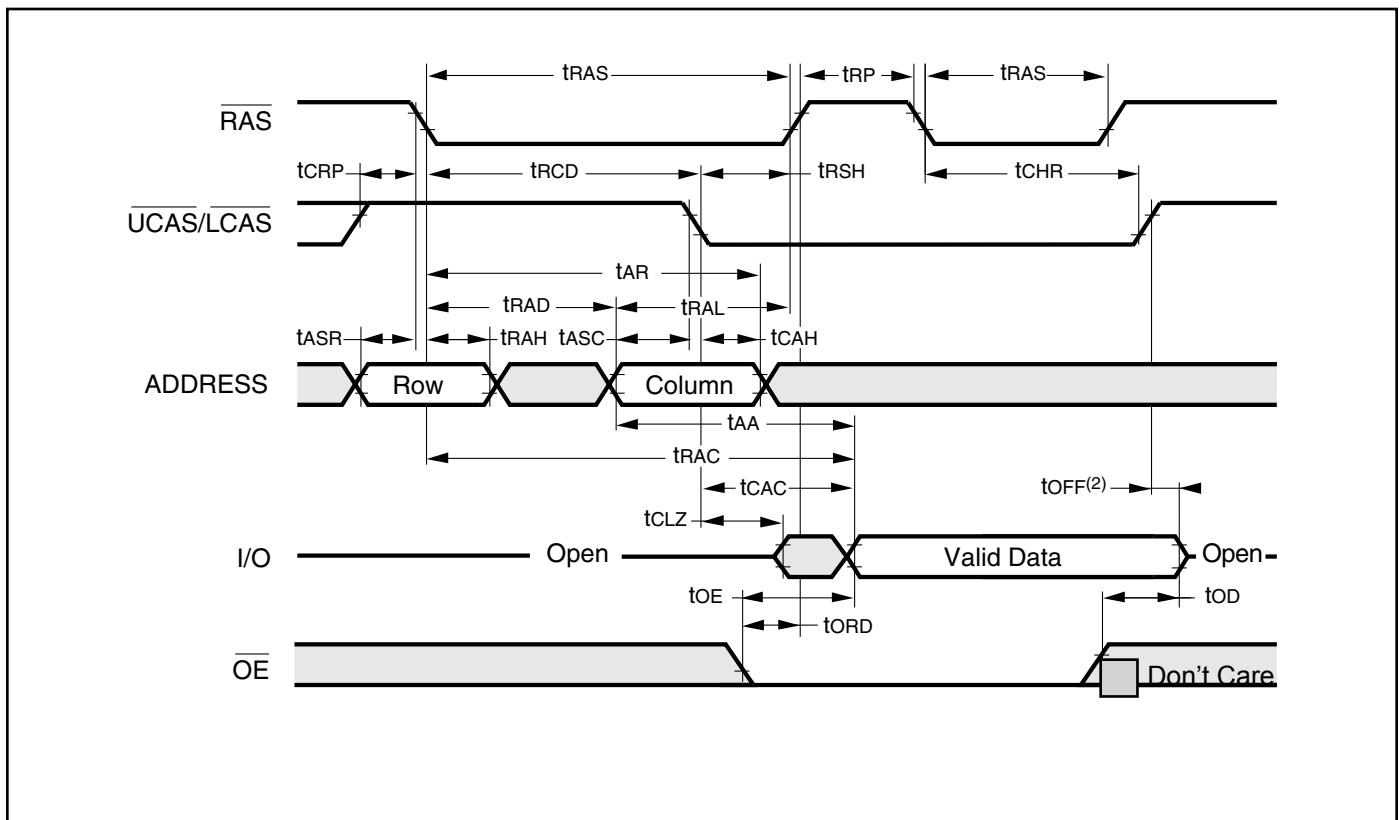


FAST PAGE MODE EARLY WRITE CYCLE



AC WAVEFORMS


READ CYCLE (With \overline{WE} -Controlled Disable)


RAS-ONLY REFRESH CYCLE (\overline{OE} , \overline{WE} = DON'T CARE)

CBR REFRESH CYCLE (Addresses; \overline{OE} = DON'T CARE)

HIDDEN REFRESH CYCLE⁽¹⁾ (\overline{WE} = HIGH; \overline{OE} = LOW)

Notes:

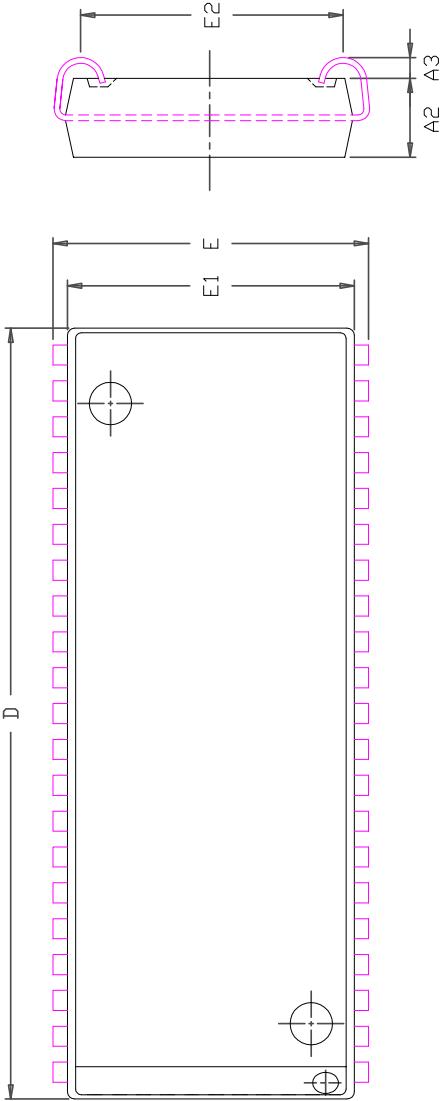
1. A Hidden Refresh may also be performed after a Write Cycle. In this case, \overline{WE} = LOW and \overline{OE} = HIGH.
2. t_{OFF} is referenced from rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last.

ORDERING INFORMATION : 5V

Industrial Range: -40°C to 85°C

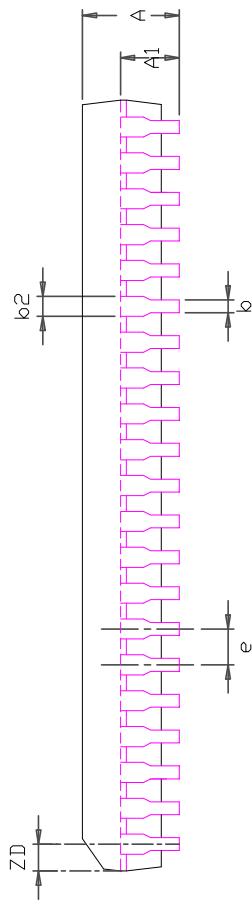
Speed (ns)	Order Part No.	Package
50	IS41C16105C-50KI	400-mil SOJ
	IS41C16105C-50KLI	400-mil SOJ, Lead-free
	IS41C16105C-50TI	400-mil TSOP (Type II)
	IS41C16105C-50TLI	400-mil TSOP (Type II), Lead-free

ORDERING INFORMATION : 3.3V

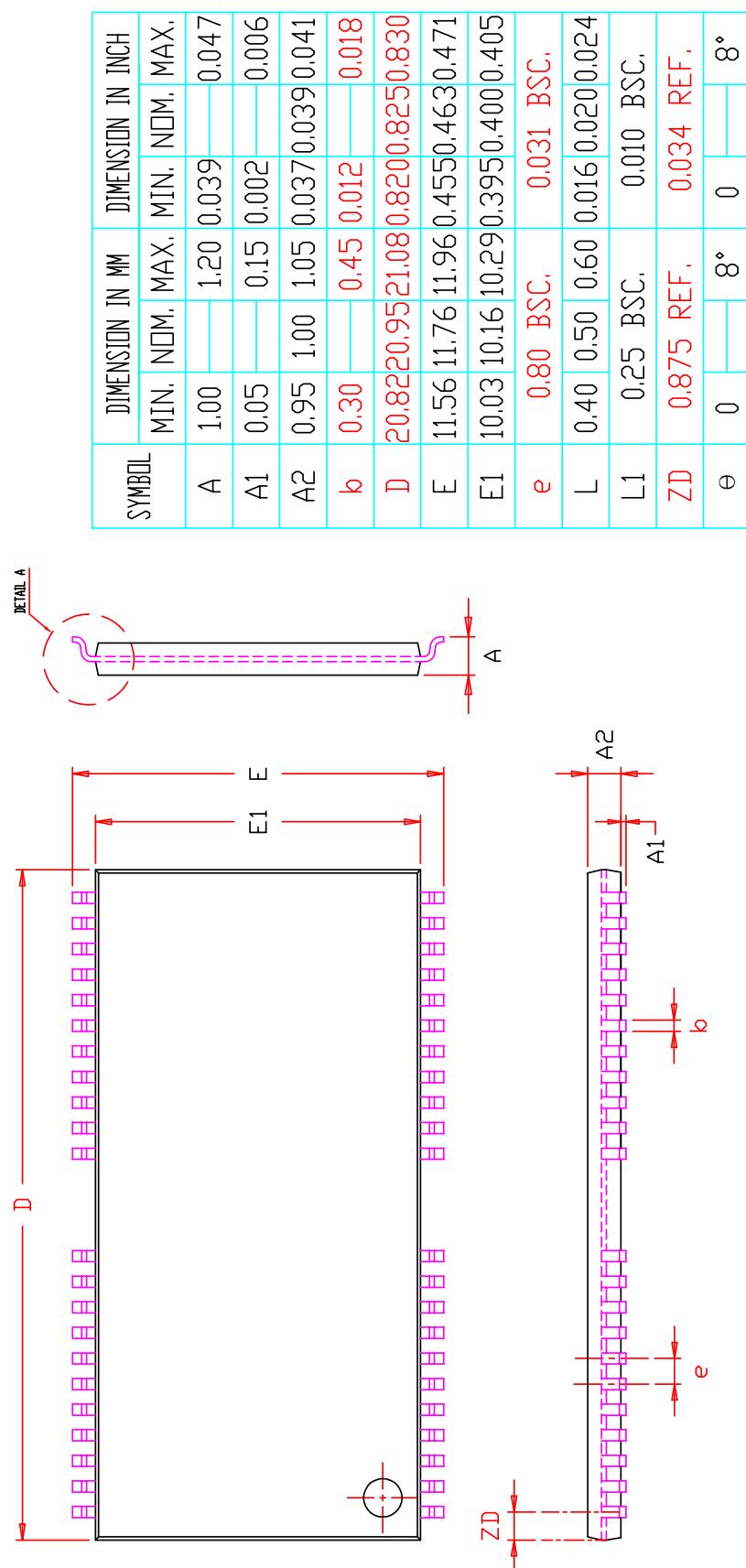

Industrial Range: -40°C to 85°C

Speed (ns)	Order Part No.	Package
50	IS41LV16105C-50KI	400-mil SOJ
	IS41LV16105C-50KLI	400-mil SOJ, Lead-free
	IS41LV16105C-50TI	400-mil TSOP (Type II)
	IS41LV16105C-50TLI	400-mil TSOP (Type II), Lead-free

Note:


The -50 speed option supports 50ns and 60ns timing specifications.

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH		
	MIN.	NUM.	MAX.	MIN.	NUM.	MAX.
A	3.25		3.76	0.128		0.148
A1	2.08		2.70	0.082		0.106
A2	2.61		2.92	0.103		0.115
A3	0.64		0.84	0.025		0.033
b	0.38		0.51	0.015		0.020
b2	0.66		0.81	0.026		0.032
D	27.18		27.43	1.070		1.080
E	11.03		11.18	0.433	0.434	0.446
E1	10.03		10.16	0.399	0.395	0.405
E2	9.14		9.65	0.360		0.380
e	1.27		BSC.	0.050		BSC.
ZD	0.95		REF.	0.037		REF.



NOTE :

1. CONTROLLING DIMENSION : MM
2. DIMENSION D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
3. DIMENSION b2 DOES NOT INCLUDE DAMBAR PROTRUSION/INTRUSION.

ISSI	TITLE	42L 400mil SOJ Package Outline	REV.	C	DATE	03/19/2009
------	-------	-----------------------------------	------	---	------	------------

NOTE :

1. CONTROLLING DIMENSION : MM
2. DIMENSION D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION/INTRUSION.

ISSI	TITLE	44/50L 400mil TSOP-2	REV.	E	DATE	03/19/2009
------	-------	----------------------	------	---	------	------------