

DS760SL Series

760 Watts

Bulk Front End

Total Output Power: 760 Watts
+5.0 Vdc Stand-by

Special Features

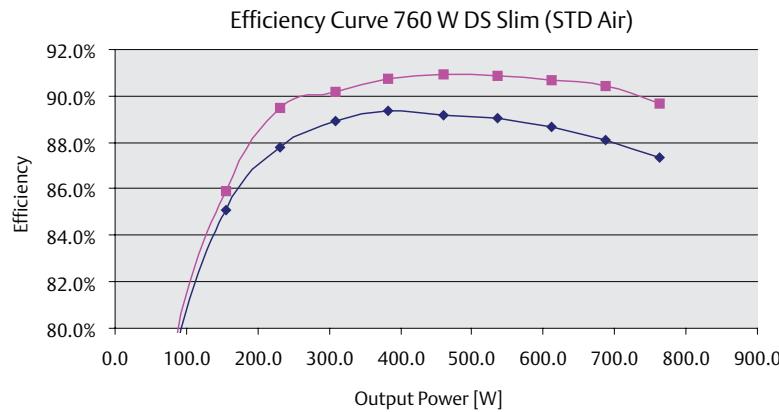
- 760 W output power
- 18.1 W/cu-in
- 1U X 54.5 mm form factor (slimline)
- N + 1 redundant
- Hot-swap
- Internal OR'ing
- 5.0 V housekeeping
- High efficiency 91% @ 230 Vac, 50% load
- Variable speed “smart fans”
- EMI Class A
- EN61000 Immunity
- Two year warranty

Electrical Specifications

Input		
Input range (operating):	90 - 264 Vac	
Input range (nominal):	115 / 230 Vac	Input through IEC connector
Frequency:	47 - 63 Hz	
Input fusing:	Internal 10 A fuses	Both lines fused
Inrush current:	<= 25 A peak	Either hot or cold start
Power factor:	0.99 typical	Meets EN61000-3-2
Harmonics:	Meets IEC 1000-3-2 requirements	
Input current:	8.8 A RMS max input current	At 100 Vac
Holdup time:	12 ms minimum for main O/P 20 ms minimum for standby	At full rated load
Undervoltage lockout:	85 ± 2.5 Vac 80 ± 2.5 Vac	Turn-on voltage Turn-off voltage
Oversupply lockout:	N/A	
Leakage current:	< 0.8 mA	At 264 Vac
On/Off power switch:	N/A	
Power line transient:	MOV directly after the fuse	

Environmental Specifications

Operating temperature:	-10 ° to 50 °C
Storage temperature:	-40 ° to 85 °C
Cooling:	Internal fan (fan speed control)
Operating relative humidity:	5% to 95% non-condensing
Altitude:	10,000 feet
RoHS compliant:	Yes


Safety

- UL/cUL 60950 -1
- CSA 60950-1
- VDE 60950-1
- China CCC
- CB Scheme Report/Cert

Created with

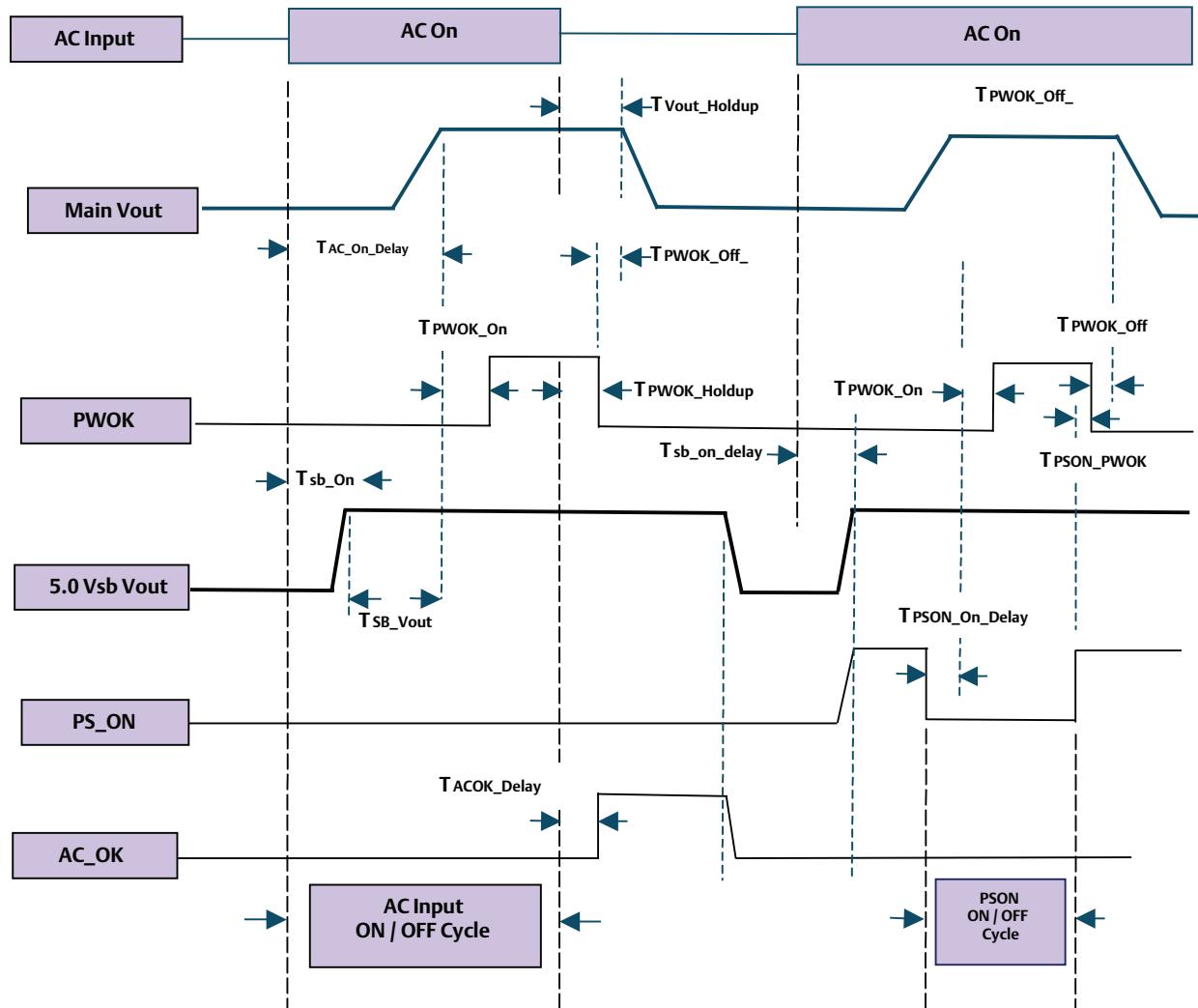
 EMERSON
nitro professional
Network Power

download the free trial online at nitropdf.com/professional

Output

Output rating:	12 V @ 62.3 A; 748 W 5.0 Vsb @ 2.4 A; 12 W	90 - 264 Vac
Setpoint:	12.0 V	Programmable \pm 5% through I ² C serial bus
Total regulation range:	12 V \pm 1% 5.0 Vsb \pm 3%	Line/load/transient when measured at output connector
Rated load:	760 W maximum	No derating over operating temp range
Minimum load:	12 V @ 0.0 A 5.0 Vsb @ 0.0 A	No loss of regulation
Output noise (PARD):	100 mV Max P-P 100 mV Max P-P	12.0 V output 5.0 Vsb output Measured with a 0.1 uF ceramic and 10 uF tantalum capacitor on any output; 20 Mhz
Output voltage overshoot:	300 mV; 12 V main 200 mV; 5.0 standby	1 A/uSec slew rate
Transient response:	< 250 uSec	50% load step @ 1 A/us Step load valid between 10% to 100% of output rating Recovery time to within 1% of set point at onset of transient
Max units in parallel:	Up to 4	
Short circuit protection:	To 120% of rated output	Output to return
Remote sense:	Compensation up to 100 MV	
Output isolation:	Standard per Safety Requirements	
Forced load sharing:	To within 10% of all shared outputs	Digital sharing control
Overload protection (OCP):	120% to 130% 120% to 170%	12 V output 5.0 Vsb output
Overvoltage protection (OVP):	110% to 120% 110% to 125%	12 V output 5.0 Vsb output
Overtemperature protection:	10 - 15 °C above safe operating area	Both PFC and output converter monitored

Ordering Information


Model Number	O/P Voltage Set Point	Set Point Tolerance	Total Regulation	Minimum Current	Maximum Current	Output Ripple P/P	Stand-by Voltage	Air Flow
DS760SL-3	12.0 Vdc	\pm 0.2%	\pm 1%	0 A	62.3 A	120 mV	5.0 V @ 2.4 A	Standard
DS760SL-3-001	12.0 Vdc	\pm 0.2%	\pm 1%	0 A	50.0 A	120 mV	5.0 V @ 2.4 A	Reverse
DS760SL-3-002	12.0 Vdc	\pm 0.2%	\pm 1%	0 A	62.3 A	120 mV	5.0 V @ 2.4 A	Standard
DS760SL-3-003	12.0 Vdc	\pm 0.2%	\pm 1%	0 A	50.0 A	120 mV	3.3 V @ 2.4 A	Reverse

nitroPDF professional
download the free trial online at nitropdf.com/professional

Outputs - All Models

Timing Diagram

Outputs - All Models

Turn On/Off Timing				
Item	Description	Min	Max	Units
Tvout_rise	+12 Output rise time	10	300	mSec
Tvout_rise	5.0 Vsb output rise time	1	50	mSec
Tsb_on_delay	Delay from AC being applied to 5.0 Vsb being within regulation.		1500	mSec
Tac_on_delay	Delay from AC being applied to all output voltages being within regulation.		3000	mSec
Tvout_holdup	Time all output voltages, including 5.0 Vsb, stay within regulation after loss of AC.	12		mSec
Tpwok_holdup	Delay from loss of AC to de-assertion of PWOK	5		mSec
Tpson_on_delay	Delay from PSON# active to output voltages within regulation limits.	50	2500	mSec
Tpson_pwok	Delay from PSON# de-active to PWOK being de-asserted.		100	mSec
Tacok_delay	Delay from loss of AC input to de-assertion of ACOK#.	10		mSec
Tpwok_on	Delay from output voltages within regulation limits to PWOK asserted at turn on.	100	1000	mSec
Tpwok_off	Delay from PWOK de-asserted to 12 Vdc or 5.0 Vsb dropping out of regulation limits.	1	1000	mSec
Tpwok_low	Duration of PWOK being in the de-asserted state during an off/on cycle using AC or the PSON# signal.	100		mSec
Tsb_vout	Delay from 5.0 Vsb being in regulation to 12 Vdc being in regulation at AC turn on.	50	1000	mSec

PSON

The PSON# signal is required to remotely turn on/off the power supply. PSON# is an active low signal that turns on the +12 Vdc power rail. When this signal is not pulled low by the system, or left open, the +12 Vdc output turns off. The 5.0 Vsb output remains on. This signal is pulled to a standby voltage by a pull-up resistor internal to the power supply. The power supply fan(s) shall operate at the lowest speed.

Signal Type	Accepts an open collector/drain input from the system. Pulled-up to the 5.0 Vsb located in power supply.	
PSON# = Low	ON	
PSON# = Open	OFF	
	MIN	MAX
Logic level low (power supply ON)	0V	0.8V
Logic level high (power supply OFF)	2.0V	4.125V
Source current, Vpson = low		4 mA
Power up delay: Tpson_on_delay	5 msec	200 msec

PWOK# (Power Good)

PPWOK is a power good signal and will assert HIGH when the outputs are within the regulation limits. PWOK will be pulled LOW by the power supply to indicate when either output falls below regulation limits or when AC power has been removed for a time sufficiently long so that power supply operation is no longer guaranteed. The start of the PWOK# delay time shall be inhibited as long as the +12 Vdc output is in current limit or the 5.0 Vsb output is below the regulation limit.

PWOK Signal Characteristics		
Signal Type	Open collector/drain output from power supply. Pullup to 5.0 Vsb external to the power supply.	
PWOK = High	Power Good	
PWOK = Low	Power Not Good	
	MIN	MAX
To tLogic level low voltage, $I_{sing} = 4 \text{ mA}$	0 V	0.8 V
Logic level high voltage, $I_{source} = 200 \mu\text{A}$	2.0 V	4.125 V
Sink current, PWOK = low		4 mA
Source current, PWOK = high		2 mA
PWOK delay: T_{pwok_on}	100 ms	1000 ms
PWOK rise and fall time		100 μsec
Power down delay: T_{pson_off}	1 msec	1000 msec

PSKILL

The +12 Vdc output only from the power supply shall be disabled if the PSKILL input is high and V Standby will continue to be provided, outputs may be enabled if this signal is low. The power supply includes a pull up to disable all outputs if this signal is open. PSKILL shall not be connected during a hot insertion before all of the other pins are connected.

AC INPUT Present Indicator (ACOK#)

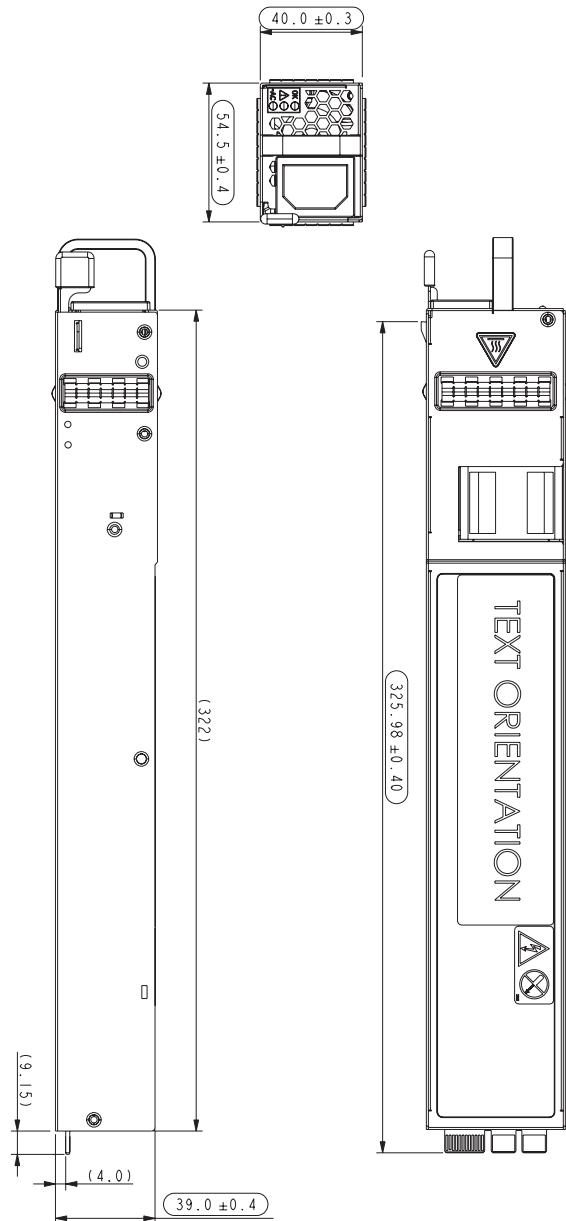
The AC OK# signal is used to indicate presence of AC input to the power supply. This signal shall be connected to 5.0 Vsb through a resistor on the host system side. A logic “High” level on this signal shall indicate AC input to the power supply is present. A Logic “Low” on this signal shall indicate a loss of AC input to the power supply.

ACOK# Signal Characteristics		
Signal Type	Pull up to 5.0 Vsb through a resistor in the host system.	
Present = High	Present	
Present = Low	Not Present	
	MIN	MAX
Logic level low voltage, $I_{sink} = 4 \text{ mA}$	0V	0.8 V
Logic level high voltage, $I_{sink} = 50 \mu\text{A}$	2.0 V	4.125 V
Sink current, PRESENT# = low		4 mA
Sink current, PRESENT# = high		50 μsec

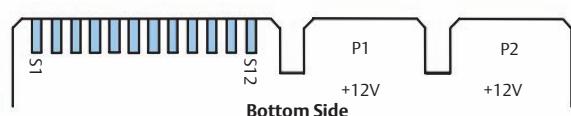
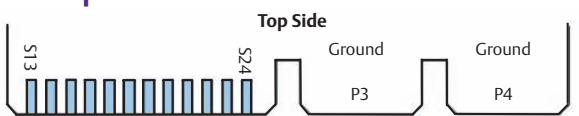
Status Indications

See table below for Summary of Status signals, Ports and Indicators. The condition column assumes 2 or more power supplies present and ON and 5.0 Vsb shared for management interface. On the “Fan Blocked” condition, the assumption is that all outputs are within spec and not over temperature. This would be considered a “warning” condition. On the “Standby” condition, the system differentiates this state by knowing PS_ONL in negated (requesting Standby).

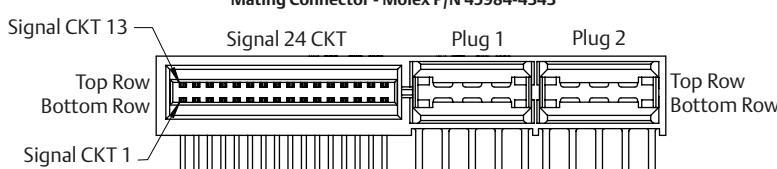
Condition	Status Indicators										LED's		
	Status Signals		Status Register		Shutdown Register					AC	DC	Fail	
	ACOK/H	PWOK/H	PSON	PWOK	Fan-Fail	AC-Loss	0-Temp	0-Current	Fail				
Normal Operation	1	1	1	1	0	0	0	0	0	On	On	Off	
V1 12 V Overcurrent	1	0	1	0	0	0	0	1	1	On	Off	On	
AC Input Fail	0	0	1	0	0	1	0	0	1	Off	Off	Off	
Fan Blocked or Running Under Speed. O/P's ok	1	1	1	1	0	0	0	0	0	On	On	Off	
UV on V1 12 V and PS Has Latched Off	1	0	1	0	0	0	0	0	1	On	Off	On	
UV on Vsb +5.0 and PS Has Turned Off	1	0	1	0	0	0	0	0	1	On	Off	On	
OV on V1 12V or Vsb +5.0 & PS Has Latched Off	1	0	1	0	0	0	0	0	1	On	Off	On	
Over Temp and PS Has Turned Off	1	0	1	0	0	0	1	0	1	On	Off	On	
Fan Below Shutdown Limit	1	0	1	0	1	0	0	0	1	On	Off	On	
No Problems But PS is in Standby Mode	1	0	0	0	0	0	0	0	0	On	Off	Off	



Pin Out Table



Pin	Signal Name
P1	+12V
P2	+12V
P3	Ground
P4	Ground
S1	+12V Sense
S2	+12V RTN Sense
S3	+12V Current Share
S4	SMB_ALERT/L
S5	SDA
S6	SCL*
S7	PSKILL
S8	PSON/L
S9	PW_OK
S10	PS_A1
S11	+5.0 V_STBY
S12	+5.0 V_STBY
S13	Reserved
S14	PRESENT/L
S15	PS_A0
S16	Reserved
S17	Reserved for factory use
S18	EEPROM_WP
S19	ACOK/H
S20	Not used
S21	Not used
S22	Reserved for factory use
S23	+5.0 V_STBY
S24	+5.0 V_STBY

*Supports I²C standard mode (100 kHz) only


Mechanical Drawing

Output Connector

Mating Connector - Molex P/N 45984-4343

*Note: The top side of the PSU Output Connector connects with the Bottom Row of the Mating Connector ex: PSU-S13 ↔ Mating Signal Ckt1

Reference	On Power Supply	Mating Connector or Equivalent
AC Input Connector	IEC60320-C14	IEC60320-C13
Output Connector	MOLEX P/N 45984/4005	MOLEX P/N 45984-4343

Mating Connector Details

P/N	Molex 45984-4343
Current Rating	30
Receptacle/Header	Upper & Lower Blades
Mating Contact	4 Power Contacts, 24 Signal Contacts

nitroPDF professional

download the free trial online at nitropdf.com/professional

Burn-In

100% Burn-in at 45 °C, at 80-90% load. Duration of burn-in determined by Quality Assurance Procedures.

MTBF

The power supply has a minimum MTBF of 300K hours using the Bell core 332, issue 6 specification @ 25 °C and 40 °C, ambient, at full load. With the power supply installed in a system in a 25 °C ambient environment and operating at full load, capacitor life shall be 10 years, minimum for ALL electrolytic capacitors contained within this power supply. The power supply shall demonstrate a MTBF level of > 500,000 hours.

Quality Assurance

Full QAV testing shall be conducted in accordance with Emerson Network Power Standards with reports available upon request.

Warranty

Emerson Network Power shall warrant the power supply to be free of defects in materials and workmanship for a minimum period of two years from the date of shipment, when operated within specifications. The warranty shall be fully transferable to the end owner of the equipment powered by the supply.

Americas

5810 Van Allen Way
Carlsbad, CA 92008
USA
Telephone: +1 760 930 4600
Facsimile: +1 760 930 0698

Europe (UK)

Waterfront Business Park
Merry Hill, Dudley
West Midlands, DY5 1LX
United Kingdom
Telephone: +44 (0) 1384 842 211
Facsimile: +44 (0) 1384 843 355

Asia (HK)

14/F, Lu Plaza
2 Wing Yip Street
Kwun Tong, Kowloon
Hong Kong
Telephone: +852 2176 3333
Facsimile: +852 2176 3888

For global contact, visit:

www.Emerson.com/EmbeddedPower
techsupport.embeddedpower@emerson.com

While every precaution has been taken to ensure accuracy and completeness in this literature, Emerson Network Power assumes no responsibility, and disclaims all liability for damages resulting from use of this information or for any errors or omissions.

Emerson Network Power.
The global leader in enabling
business-critical continuity.

- AC Power
- Connectivity
- DC Power
- Embedded Computing
- **Embedded Power**
- Monitoring
- Outside Plant
- Power Switching & Controls
- Precision Cooling
- Racks & Integrated Cabinets
- Services
- Surge Protection

Created with

nitropdf professional

download the free trial online at nitropdf.com/professional

EmersonNetworkPower.com

Emerson Network Power and the Emerson Network Power logo are trademarks and service marks of Emerson Electric Co.
©2011 Emerson Electric Co.