

AMD Geode[™] CS5530A Companion Device Data Book

October 2003

Publication ID: May 2001, Revision 1.1

© 2003 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD's Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

AMD's products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD's product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice.

Contacts

www.amd.com pcs.support@amd.com

Trademarks

AMD, the AMD Arrow logo, and combinations thereof, Geode, Virtual System Architecture, and XpressAUDIO are trademarks of Advanced Micro Devices, Inc.

Microsoft, Windows, and Windows NT are registered trademarks of Microsoft Corporation in the U.S. and/or other jurisdictions.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Contents

List	of Fig	jures	. 5	
List	of Tal	bles	Companion Device	
1.0	AMD Geode™ CS5530A Companion Device			
	1.1	General Description	. 11	
	1.2	Features		
2.0	Arch	nitecture Overview	13	
	2.1	Processor Support	. 13	
	2.2	PCI Bus Interface		
	2.3	ISA Bus Interface		
	2.4	AT Compatibility Logic	. 14	
	2.5	IDE Controllers		
	2.6	Power Management		
	2.7	XpressAUDIO™ Subsystem	. 15	
	2.8	Display Subsystem Extensions	. 16	
	2.9	Clock Generation	. 17	
	2.10	Universal Serial Bus	. 17	
3.0	Sign	nal Definitions	19	
	3.1	Pin Assignments		
	3.2	Signal Descriptions		
4.0	Fund	ctional Description	47	
	4.1	Processor Interface		
	4.2	PCI Bus Interface		
	4.3	Resets and Clocks	. 55	
	4.4	Power Management		
	4.5	PC/AT Compatibility Logic		
	4.6	IDE Controller		
	4.7	XpressAUDIO™ Subsystem		
	4.8	Display Subsystem Extensions		
	49	Universal Serial Bus Support	140	

5.0	Reg	gister Descriptions	143
	5.1	PCI Configuration Space and Access Methods	
	5.2	Register Summary	
	5.3	Chipset Register Space	
	5.4	USB Registers	
	5.5	ISA Legacy I/O Register Space	
	5.6	V-ACPI I/O Register Space	
6.0	Elec	ctrical Specifications	233
	6.1	Electrical Connections	
	6.2	Absolute Maximum Ratings	
	6.3	Operating Conditions	
	6.4	DC Characteristics	
	6.5	AC Characteristics	
	6.6	Display Characteristics	
7.0	Tes	st Mode Information	251
	7.1	NAND Tree Test Mode	
	7.2	I/O Test	
8.0	Phy	sical Dimensions	255
Арр	endix	x A Support Documentation	257
		REVISION HISTORY	

List of Figures

Figure 1-1.	Block Diagram	
Figure 2-1.	Example System Block Diagram	
Figure 2-2.	AC97 Codec Signal Connections	
Figure 2-3.	8-Bit Display Subsystem Extensions	
Figure 2-4.	CS5530A Clock Generation	
Figure 3-1.	CS5530A Signal Groups	19
Figure 3-2.	352 PBGA Pin Assignment Diagram	
Figure 4-1.	Processor Signal Connections	
Figure 4-2.	Portable/Desktop Display Subsystem Configurations	
Figure 4-3.	PIXEL Signal Connections	
Figure 4-4.	Subtractive Decoding Timing	
Figure 4-5.	CS5530A Reset	
Figure 4-6.	System Clock Distribution	
Figure 4-7.	General Purpose Timer and UDEF Trap SMI Tree Example	
Figure 4-8.	Non-Posted PCI-to-ISA Access	
Figure 4-9.	PCI to ISA Cycles with Delayed Transaction Enabled	
Figure 4-10.	Limited ISA Mode	
Figure 4-11.	ISA Master Mode	
Figure 4-12.	ISA DMA Read from PCI Memory	95
Figure 4-13.	ISA DMA Write To PCI Memory	
Figure 4-14.	PIT Timer	
Figure 4-15.	PIC Interrupt Controllers	
Figure 4-16.	PCI and IRQ Interrupt Mapping	103
Figure 4-17.	SMI Generation for NMI	
Figure 4-18.	External RTC Interface	109
Figure 4-19.	CS5530A and IDE Channel Connections	110
Figure 4-20.	PRD Table Example	122
Figure 4-21.	AC97 Signal Connections	123
Figure 4-22.	Audio SMI Tree Example	126
Figure 4-23.	8-Bit Display Subsystem Extensions	133
Figure 4-24.	Video Port Protocol	134
Figure 6-1.	Test Measurements for AC Characteristics	240
Figure 6-2.	Test Circuit for AC Characteristics	
Figure 6-3.	PCI Rising Edge (t _{LH}) Test Circuit	241
Figure 6-4.	PCI Falling Edge (tHL) Test Circuit	241
Figure 6-5.	PCI Slew Rate Test Circuit	241
Figure 6-6.	3.3V PCICLK Waveform	242
Figure 6-7.	CPU Interface Timing	243
Figure 6-8.	Audio Interface Timing	244
Figure 6-9.	USB Timing	245
Figure 6-10.	USB Test Circuit	245
Figure 6-11.	Display TFT/TV Outputs Delays	248
Figure 6-12.	MPEG Timing	
Figure 6-13.	Typical Video Connection Diagram	
Figure 7-1.	Example: NAND Tree Output Waveform	
Figure 8-1.	352 PBGA Mechanical Package Outline	255

List of Tables

Table 3-1.	Pin Type Definitions	
Table 3-2.	352 PBGA Pin Assignments - Sorted by Pin Number	22
Table 3-3.	352 PBGA Pin Assignments - Sorted Alphabetically by Signal Name	25
Table 4-1.	GX1 Processor Serial Packet Register	50
Table 4-2.	PCI Command Register	51
Table 4-3.	PCI Command Encoding	52
Table 4-4.	Subtractive Decoding Related Bits	52
Table 4-5.	PERR#/SERR# Associated Register Bits	53
Table 4-6.	PCI Interrupt Steering Registers	54
Table 4-7.	Delay Transaction Programming Bits	54
Table 4-8.	ISACLK Divider Bits	55
Table 4-9.	DCLK Configuration Register	58
Table 4-10.	F4BAR+Memory Offset 24h[22:12] Decode (Value of "N")	59
Table 4-11.	Base Address Register (F1BAR) for SMI Status and ACPI Timer Support	60
Table 4-12.	Suspend Configuration Register	61
Table 4-13.	Clock Stop Control Register	62
Table 4-14.	Suspend Modulation Related Registers	64
Table 4-15.	Power Management Shadow Registers	66
Table 4-16.	APM Support Registers	67
Table 4-17.	Power Management Global Enabling Bits	68
Table 4-18.	Keyboard/Mouse Idle Timer and Trap Related Registers	68
Table 4-19.	Parallel/Serial Idle Timer and Trap Related Registers	69
Table 4-20.	Floppy Disk Idle Timer and Trap Related Registers	70
Table 4-21.	Primary Hard Disk Idle Timer and Trap Related Registers	71
Table 4-22.	Secondary Hard Disk Idle Timer and Trap Related Registers	72
Table 4-23.	User Defined Device 1 (UDEF1) Idle Timer and Trap Related Registers	73
Table 4-24.	User Defined Device 2 (UDEF2) Idle Timer and Trap Related Registers	74
Table 4-25.	User Defined Device 3 (UDEF3) Idle Timer and Trap Related Registers	75
Table 4-26.	Video Idle Timer and Trap Related Registers	76
Table 4-27.	VGA Timer Related Registers	76
Table 4-28.	General Purpose Timers and Control Registers	77
Table 4-29.	ACPI Timer Related Registers/Bits	
Table 4-30.	V-ACPI I/O Register Space Summary	79
Table 4-31.	GPIO Pin Function Selection	80
Table 4-32.	GPIO Pin Configuration/Control Registers	80
Table 4-33.	Top Level SMI Status Register (Read to Clear)	84
Table 4-34.	Second Level Pwr Mgmnt SMI Status Reporting Registers (Read to Clear)	85
Table 4-35.	Device Power Management Programming Summary	88
Table 4-36.	Cycle Configuration Bits	
Table 4-37.	Signal Assignments	92
Table 4-38.	I/O Recovery Programming Register	
Table 4-39.	ROM Interface Related Bits	
Table 4-40.	DMA Shadow Register	98
Table 4-41.	PIT Control and I/O Port 061h Associated Register Bits	99
Table 4-42.	PIT Shadow Register	100

Δ	м	DD	

Revision 1.1

	•	_		
list	Λt	ıaı	NIAG	3

Table 4-43.	PIC Interrupt Mapping	. 101
Table 4-44.	PCI INTA Cycle Disable/Enable Bit	
Table 4-45.	PIC Shadow Register	
Table 4-46.	PCI Interrupt Steering Registers	
Table 4-47.	Interrupt Edge/Level Select Registers	
Table 4-48.	I/O Ports 061h and 092h	
Table 4-49.	I/O Port 092h Decode Enable Bit	
Table 4-50.	Decode Control Registers	
Table 4-51.	External Keyboard Controller Registers	
Table 4-52.	A20 Associated Programming Bits	
Table 4-53.	Real-Time Clock Registers	
Table 4-54.	IDE Reset Bits	
Table 4-55.	Base Address Register (F2BAR) for IDE Support Registers	
Table 4-56.	PIO Programming Registers	
Table 4-57.	IDE Bus Master PRD Table Address Registers	
Table 4-58.	IDE Bus Master Command and Status Registers	
Table 4-59.	Physical Region Descriptor Format	
Table 4-60.	Ultra DMA/33 Signal Definitions	
Table 4-61.	MDMA/UDMA Control Registers	
Table 4-62.	Base Address Register (F3BAR) for XpressAUDIO™ Subsystem Support Registers	
Table 4-63.	Generic Bit Formats for Audio Bus Master Configuration Registers	
Table 4-64.	Audio Bus Master Configuration Register Summary	
Table 4-65.	Physical Region Descriptor Format	
Table 4-66.	Codec Configuration/Control Registers	
Table 4-67.	Second Level SMI Status Reporting Registers	
Table 4-68.	Third Level SMI Status Reporting Registers	
Table 4-69.	Sound Card I/O Trap and Fast Path Enable Registers	
Table 4-70.	IRQ Configuration Registers	
Table 4-71.	Base Address Register (F4BAR) for Video Controller Support Registers	
Table 4-72.	Video Input Format Bits	
Table 4-73.	Video Scale Register	
Table 4-74.	Video X and Y Position Registers	
Table 4-75.	Video Color Registers	
Table 4-76.	Display Configuration Register	
Table 4-77.	USB PCI Configuration Registers	
Table 4-78.	USB Controller Registers	
Table 5-1.	PCI Configuration Address Register (0CF8h)	
Table 5-2.	Function 0: PCI Header and Bridge Configuration Registers Summary	
Table 5-3.	Function 1: PCI Header Registers for SMI Status and ACPI Timer Summary	
Table 5-4.	F1BAR: SMI Status and ACPI Timer Registers Summary	
Table 5-5.	Function 2: PCI Header Registers for IDE Controller Summary	
Table 5-6.	F2BAR: IDE Controller Configuration Registers Summary	
Table 5-7.	Function 3: PCI Header Registers for XpressAUDIO TM Subsystem Summary	
Table 5-8. Table 5-9.	F3BAR: XpressAUDIO™ Subsystem Configuration Registers Summary	
Table 5-9.	Function 4: PCI Header Registers for Video Controller Summary	
Table 5-10.	F4BAR: Video Controller Configuration Registers Summary	
	USB PCI Configuration Registers Summary	
Table 5-12. Table 5-13.	USB BAR: USB Controller Registers Summary	
Table 5-13.	ISA Legacy I/O Registers Summary	
Table 5-14.	F0 Index xxh: PCI Header and Bridge Configuration Registers	
Table 5-15.	F1 Index xxh: PCI Header Registers for SMI Status and ACPI Timer	
Table 5-16.	F1 Index xxn. PCI header Registers for SMI Status and ACPI Timer Registers	
Table 5-17.	F2 Index xxh: PCI Header Registers for IDE Configuration	
Table 5-16.	F2BAR+I/O Offset xxh: IDE Configuration Registers	
1 4510 0 10.	1 25, 11.1., 5 Choot AAL IDE Collingulation Registers	

Table 5-20.	F3 Index xxh: PCI Header Registers for XpressAUDIO™ Subsystem	. 188
Table 5-21.	F3BAR+Memory Offset xxh: XpressAUDIO™ Subsystem Configuration Registers	
Table 5-22.	F4 Index xxh: PCI Header Registers for Video Controller Configuration	
Table 5-23.	F4BAR+Memory Offset xxh: Video Controller Configuration Registers	
Table 5-24.	F4BAR+Memory Offset 24h[22:12] Decode (Value of "N")	
Table 5-25.	USB Index xxh: USB PCI Configuration Registers	
Table 5-26.	USB BAR+Memory Offset xxh: USB Controller Registers	
Table 5-27.	DMA Channel Control Registers	
Table 5-28.	DMA Page Registers	
Table 5-29.	Programmable Interval Timer Registers	
Table 5-30.	Programmable Interrupt Controller Registers	
Table 5-31.	Keyboard Controller Registers	
Table 5-32.	Real-Time Clock Registers	
Table 5-33.	Miscellaneous Registers	
Table 5-34.	V-ACPI Registers	
Table 5-35.	SETUP_IDX Values	
Table 5-36.	GPIO Mapping (0x10-0x17)	. 228
Table 5-37.	IRQ Wakeup Status Mapping (0x30-0x3F)	
Table 5-38.	Commands (0x41-0x43, and 0x50)	
Table 5-39.	Signature/Length Block for 0x43	
Table 5-40.	I/O Block for 0x43	
Table 5-41.	Audio Soft SMI Emulation (0x60-0x63)	
Table 5-42.	Audio Power Control (0x64)	. 231
Table 6-1.	Pins with Weak Internal Pull-Up	. 233
Table 6-2.	Absolute Maximum Ratings	. 234
Table 6-3.	Operating Conditions	. 234
Table 6-4.	DC Characteristics	. 235
Table 6-5.	System Conditions Used to Determine CS5530A's Current Used During the "On" State .	. 237
Table 6-6.	DC Characteristics During Power States	. 238
Table 6-7.	Drive Level and Measurement Points for AC Characteristics	. 239
Table 6-8.	AC Characteristics	. 239
Table 6-9.	Clock and Reset Specifications	. 242
Table 6-10.	DCLK PLL Specifications	. 243
Table 6-11.	CPU Interface Timing	
Table 6-12.	Audio Interface Timing	. 244
Table 6-13.	USB Timing	
Table 6-14.	CRT Display Recommended Operating Conditions	
Table 6-15.	CRT Display Analog (DAC) Characteristics	. 246
Table 6-16.	Display Miscellaneous Characteristics	
Table 6-17.	CRT, TFT/TV and MPEG Display Timing	
Table 7-1.	NAND Tree Test Selection	
Table 7-2.	NAND Tree Test Mode Pins	
Table 7-3.	I/O Test Selection	
Table 7-4.	I/O Test Sequence	
Table A-1.	Revision History	
Table A-2.	Edits to Create Revision 1.1	. 257

AMD Geode™ CS5530A Companion Device

1.1 General Description

The AMD Geode™ CS5530A companion device is designed to work in conjunction with an AMD Geode™ GX1 processor. Together, the Geode GX1 processor and CS5530A companion device provide a system-level solution well suited for the high performance needs of a host of devices which include digital set-top boxes and thin client devices. Due to the low power consumption of the GX1 processor, this solution satisfies the needs of battery powered devices such as AMD's WebPAD system, and thermal design is eased allowing for fanless system design.

The CS5530A is a PCI-to-ISA bridge (South Bridge), ACPI-compliant chipset that provides AT/ISA style functionality. The device contains state-of-the-art power management that enables systems, especially battery powered systems, to significantly reduce power consumption.

Audio is supported through PCI bus master engines that connect to an AC97 compatible codec. If industry standard audio is required, a combination of hardware and software called Virtual System Architecture™ (VSA) technology is provided.

The Geode GX1 processor's graphics/video output is connected to the CS5530A. The CS5530A graphics/video support includes a PLL that generates the DOT clock for the GX1 processor (where the graphics controller is located), video acceleration hardware, gamma RAM plus three DACs for RGB output to CRT, and digital RGB that can be directly connected to TFT panels or NTSC/PAL encoders.

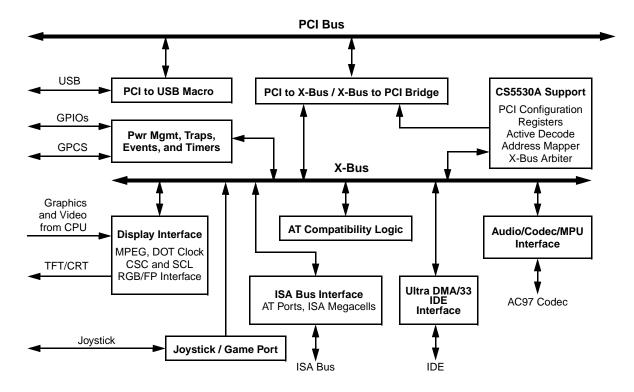


Figure 1-1. Block Diagram

Two bus mastering IDE controllers are included for support of up to four ATA-compliant devices. A two-port Universal Serial Bus (USB) provides high speed, Plug & Play expansion for a variety of consumer peripheral devices such as a keyboard, mouse, printer, and digital camera. If additional functions are required like real-time clock, floppy disk, PS2 keyboard, and PS2 mouse, a Superl/O device can be easily connected to the CS5530A.

1.2 Features

General Features

- Designed for use with AMD's Geode GX1 processor
- 352 PBGA (Plastic Ball Grid Array) package
- 3.3V or 5.0V PCI bus compatible
- 5.0V tolerant on all inputs
- 3.3V core

PCI-to-ISA Bridge

- PCI 2.1 compliant
- Supports PCI initiator-to-ISA and ISA master-to-PCI cycle translations
- PCI master for audio I/O and IDE controllers
- Subtractive agent for unclaimed transactions
- PCI-to-ISA interrupt mapper/translator

AT Compatibility

- Two 8259A-equivalent interrupt controllers
- 8254-equivalent timer
- Two 8237-equivalent DMA controllers
- Boot ROM and keyboard chip select
- Extended ROM to 16 MB

Bus Mastering IDE Controllers

- Two controllers with support for up to four IDE devices
- Independent timing for master and slave devices for both channels
- PCI bus master burst reads and writes
- Ultra DMA/33 (ATA-4) support
- Multiword DMA support
- Programmed I/O (PIO) Modes 0-4 support

Power Management

- Intelligent system controller supports multiple power management standards:
 - Full ACPI and Legacy (APM) support
 - Directly manages all GX1 processor's power states (including automatic Suspend modulation for optimal performance/thermal balancing)
- I/O traps and idle timers for peripheral power management
- Up to eight GPIOs for system control:
 - All eight are configurable as external wakeup events
- Dedicated inputs for keyboard and mouse wakeup events

XpressAUDIO™ Subsystem

- Provides "back-end" hardware support via six buffered PCI bus masters
- AC97 codec interface:
 - Specification Revision 1.3, 2.0, and 2.1 compliant interface. Note that the codec must have SRC (sample rate conversion) support

Display Subsystem Extensions

- Complements the GX1 processor's graphics and video capabilities:
 - Three independent line buffers for accelerating video data streams
 - Handles asynchronous video and graphics data streams concurrently from the processor
 - YUV to RGB conversion hardware
 - Arbitrary X & Y interpolative scaling
 - Color keying for graphics/video overlay
- VDACs / Display interface:
 - Three integrated DACs
 - Gamma RAM:
 - Provides gamma correction for graphics data streams
 - Provides brightness/contrast correction for video data streams
 - Integrated DOT clock generator
 - Digital RGB interface drives TFT panels or standard NTSC/PAL encoders
 - Up to 1280x1024 @ 85 Hz

Universal Serial Bus

- Two independent USB interfaces:
 - Open Host Controller Interface (OpenHCI) specification compliant
 - Second generation proven core design

Architecture Overview Revision 1.1 AMD

Architecture Overview

The Geode CS5530A can be described as providing the functional blocks as shown in Figure 1-1 on page 11.

- · Processor support
- · PCI bus master/slave interface
- ISA bus interface
- · AT compatibility logic
- IDE controllers
- Power management:
 - GPIO interfaces
 - Traps, Events, Timers
- · Joystick/Game port interface
- Virtual audio support hardware
- Video display, which includes MPEG accelerator, RAMDAC, and video ports
- · USB controller

2.1 Processor Support

The traditional south bridge functionality included in the CS5530A companion device has been designed to support the GX1processor. When combined with a GX1 processor, the CS5530A provides a bridge which supports a standard ISA bus and system ROM. As part of the video subsystem, the CS5530A provides MPEG video acceleration and a digital RGB interface, to allow direct connection to TFT LCD panels. This chip also integrates a gamma RAM and three DACs, allowing for direct connection of a CRT monitor. Figure 2-1 shows a typical system block diagram.

For detailed information regarding processor signal connections refer to Section 4.1 "Processor Interface" on page 48

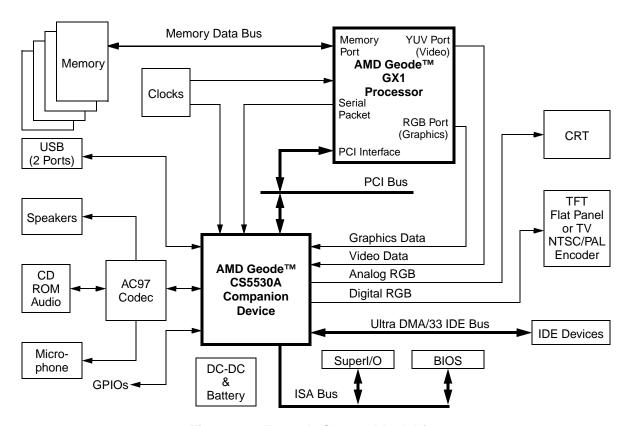


Figure 2-1. Example System Block Diagram

2.2 PCI Bus Interface

The CS5530A provides a PCI bus interface that is both a slave for PCI cycles initiated by the CPU or other PCI master devices, and a non-preemptable master for DMA transfer cycles. The chip also is a standard PCI master for the IDE controllers and audio I/O logic. The CS5530A supports positive decode for configurable memory and I/O regions and implements a subtractive decode option for unclaimed PCI accesses. The CS5530A also generates address and data parity and performs parity checking. The CS5530A does not include the PCI bus arbiter, which is located in the processor.

Configuration registers are accessed through the PCI interface using the PCI Bus Type 1 configuration mechanism as described in the PCI 2.1 Specification.

2.3 ISA Bus Interface

The CS5530A provides an ISA bus interface for unclaimed memory and I/O cycles on PCI. The CS5530A is the default subtractive decoding agent and forwards all unclaimed memory and I/O cycles to the ISA interface; however, the CS5530A may be configured to ignore either I/O, memory, or all unclaimed cycles (subtractive decode disabled).

The CS5530A supports two modes on the ISA interface. The default mode, Limited ISA Mode, supports the full memory and I/O address range without ISA mastering. The address and data buses are multiplexed together, requiring an external latch to latch the lower 16 bits of address of the ISA cycle. The signal SA_LATCH is generated when the data on the SA/SD bus is a valid address. Additionally, the upper four address bits, SA[23:20], are multiplexed on GPIO[7:4].

The second mode, ISA Master Mode, supports ISA bus masters and requires no external circuitry. When the CS5530A is placed in ISA Master Mode, a large number of pins are redefined. In this mode, the CS5530A cannot support TFT flat panels or TV controllers since most of the signals used to support these functions have been redefined. This mode is required if ISA slots or ISA masters are used. ISA master cycles are only passed to the PCI bus if they access memory. I/O accesses are left to complete on the ISA bus.

For further information regarding mode selection and operational details refer to Section 4.5.2.2 "Limited ISA and ISA Master Modes" on page 92.

2.4 AT Compatibility Logic

The CS5530A integrates:

- Two 8237-equivalent DMA controllers with full 32-bit addressing
- Two 8259-equivalent interrupt controllers providing 13 individually programmable external interrupts
- An 8254-equivalent timer for refresh, timer, and speaker logic
- NMI control and generation for PCI system errors and all parity errors
- · Support for standard AT keyboard controllers
- Positive decode for the AT I/O register space
- Reset control

2.4.1 DMA Controller

The CS5530A supports the industry standard DMA architecture using two 8237-compatible DMA controllers in cascaded configuration. CS5530A-supported DMA functions include:

- Standard seven-channel DMA support
- 32-bit address range support via high page registers
- IOCHRDY extended cycles for compatible timing transfers
- · ISA bus master device support using cascade mode

2.4.2 Programmable Interval Timer

The CS5530A contains an 8254-equivalent programmable interval timer. This device has three timers, each with an input frequency of 1.193 MHz.

2.4.3 Programmable Interrupt Controller

The CS5530A contains two 8259-equivalent programmable interrupt controllers (PICs), with eight interrupt request lines each, for a total of 16 interrupts. The two controllers are cascaded internally, and two of the interrupt request inputs are connected to the internal circuitry. This allows a total of 13 externally available interrupt requests.

Each CS5530A IRQ signal can be individually selected as edge- or level-sensitive. The PCI interrupt signals are routed internally to the PICs IRQs.

Architecture Overview Revision 1.1 AMD

2.5 IDE Controllers

The CS5530A integrates two PCI bus mastering, ATA-4 compatible IDE controllers. These controllers support Ultra DMA/33 (enabled in Microsoft® Windows 95 and Windows NT® by using a driver provided by AMD), Multiword DMA, and Programmed I/O (PIO) modes. Two devices are supported on each controller. The data-transfer speed for each device on each controller can be independently programmed. This allows high-speed IDE peripherals to coexist on the same channel as lower speed devices. Faster devices must be ATA-4 compatible.

2.6 Power Management

The CS5530A integrates advanced power management features including:

- · Idle timers for common system peripherals
- Address trap registers for programmable address ranges for I/O or memory accesses
- Up to eight programmable GPIOs
- Clock throttling with automatic speedup for the CPU clock
- · Software CPU stop clock
- Save-to-Disk/RAM with peripheral shadow registers
- Dedicated serial bus to/from the GX1 processor providing CPU power management status

The CS5530A is an ACPI (Advanced Control and Power Interface) compliant chipset. An ACPI compliant system is one whose underlying BIOS, device drivers, chipset and peripherals conform to revision 1.0 or newer of the ACPI specification. The "Fixed Feature" and "General Purpose" registers are virtual. They are emulated by the SMI handling code rather than existing in physical hardware. To the ACPI compliant operating system, the SMI-base virtualization is transparent; however, to eliminate unnecessary latencies, the ACPI timer exists in physical hardware.

The CS5530A V-ACPI (Virtual ACPI) solution provides the following support:

- CPU States C1, C2
- Sleep States S1, S2, S4, S4BIOS, S5
- Embedded Controller (Optional) SCI and SWI event inputs.
- General Purpose Events Fully programmable GPE0 Event Block registers.

2.6.1 GPIO Interface

Eight GPIO pins are provided for general usage in the system. GPIO[3:0] are dedicated pins and can be configured as inputs or outputs. GPIO[7:4] can be configured as the upper addresses of the ISA bus, SA[23:20]. All GPIOs can also be configured to generate an SMI on input edge transitions.

2.7 XpressAUDIO™ Subsystem

XpressAUDIO™ architecture in the CS5530A offers a combined hardware/software support solution to meet industry standard audio requirements. XpressAUDIO architecture uses VSA technology along with additional hardware features to provide the necessary support for industry standard 16-bit stereo synthesis and OPL3 emulation.

The hardware portion of the XpressAUDIO subsystem can broadly be divided into two categories. Hardware for:

- Transporting streaming audio data to/from the system memory and an AC97 codec.
- · VSA technology support.

2.7.1 AC97 Codec Interface

The CS5530A provides an AC97 Specification Revision 1.3, 2.0, and 2.1 compatible interface. Any AC97 codec which supports an independent input and output sample rate conversion interface can be used with the CS5530A. This type of codec allows for a design which meets the requirements for PC97 and PC98-compliant audio as defined by Microsoft Corporation. Figure 2-2 shows the codec and CS5530A signal connections. For specifics on the serial interface, refer to the appropriate codec manufacturer's data sheet.

Low latency audio I/O is accomplished by a buffered PCI bus mastering controller.

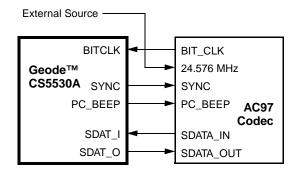


Figure 2-2. AC97 Codec Signal Connections

2.7.2 VSA Technology Support Hardware

The CS5530A companion device incorporates the required hardware in order to support VSA technology for the capture and playback of audio using an external codec. This eliminates much of the hardware traditionally associated with industry standard audio functions.

XpressAUDIO software provides 16-bit compatible sound. This software is available to OEMs for incorporation into the system BIOS ROM.

Revision 1.1 Architecture Overview

2.8 Display Subsystem Extensions

The CS5530A incorporates extensions to the GX1 processor's display subsystem. These include:

- · Video Accelerator
 - Buffers and formats input YUV video data from the processor
 - 8-bit interface to the processor
 - X & Y scaler with bilinear filter
 - Color space converter (YUV to RGB)
- Video Overlay Logic
 - Color key
 - Data switch for graphics and video data

- Gamma RAM
 - Brightness and contrast control
- · Display Interface
 - Integrated RGB Video DACs
 - VESA DDC2B/DPMS support
 - Flat panel interface

Figure 2-3 shows the data path of the display subsystem extensions.

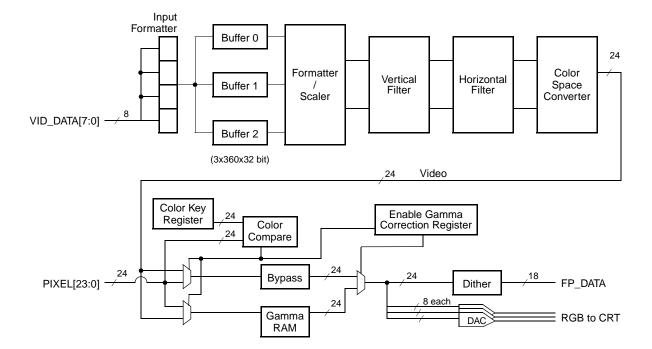


Figure 2-3. 8-Bit Display Subsystem Extensions

Architecture Overview Revision 1.1 AMD

2.9 Clock Generation

In a CS5530A/GX1 processor based system, the CS5530A generates only the video DOT clock (DCLK) for the CPU and the ISA clock. All other clocks are generated by an external clock chip.

The ISACLK is created by dividing the PCICLK. For ISA compatibility, the ISACLK nominally runs at 8.33 MHz or less. The ISACLK dividers are programmed via F0 Index 50h[2:0].

DCLK is generated from the 14.31818 MHz input (CLK_14MHZ). A combination of a phase locked loop (PLL), linear feedback shift register (LFSR) and divisors are used to generate the desired frequencies for the DCLK. The divisors and LFSR are configurable through the F4BAR+Memory Offset 24h. For applications that do not use the GX1 processor's graphics subsystem, this is an available clock for general purpose use.

Figure 2-4 shows a block diagram for clock generation within the CS5530A.

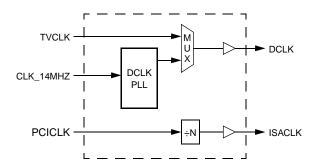


Figure 2-4. CS5530A Clock Generation

2.10 Universal Serial Bus

The CS5530A provides two complete, independent USB ports. Each port has a Data "-" and a Data "+" pin.

The USB controller is a compliant Open Host Controller Interface (OpenHCI). The OpenHCI specification provides a register-level description for a host controller, as well as a common industry hardware/software interface and drivers (see OpenHCI Specification, Revision 1.0, for description).

Signal Definitions Revision 1.1 AMD

Signal Definitions

This section defines the signals and describes the external interface of the Geode CS5530A. Figure 3-1 shows the pins organized by their functional groupings (internal test and electrical pins are not shown).

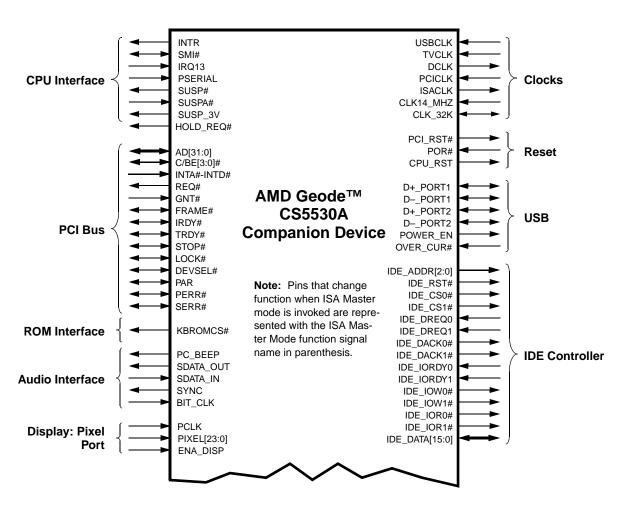


Figure 3-1. CS5530A Signal Groups

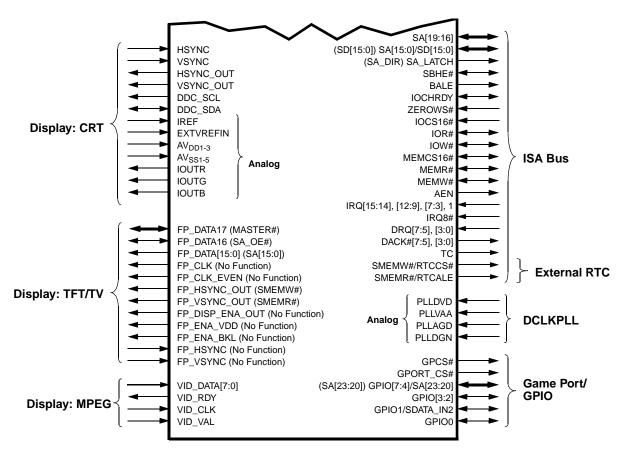


Figure 3-1. CS5530A Signal Groups (Continued)

3.1 Pin Assignments

The tables in this section use several common abbreviations. Table 3-1 lists the mnemonics and their meanings.

Figure 3-2 shows the pin assignment for the CS5530A with Tables 3-2 and 3-3 listing the pin assignments sorted by pin number and alphabetically by signal name, respectively.

In Section 3.2 "Signal Descriptions" on page 29 a description of each signal within its associated functional group is provided.

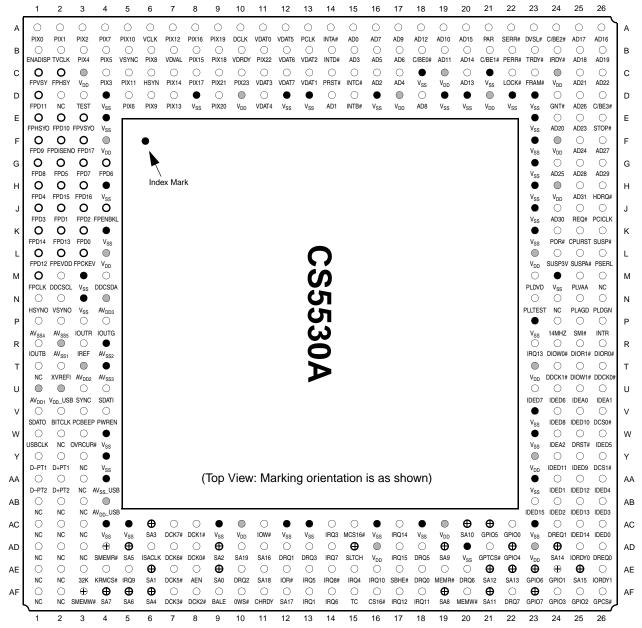

In the signal definitions, references to F0-F4, F1BAR, F2BAR, F3BAR, F4BAR, and PCIUSB are made. These terms relate to designated register spaces. Refer to Table 5-1 "PCI Configuration Address Register (0CF8h)" on page 144 for details regarding these register spaces and their access mechanisms.

Table 3-1. Pin Type Definitions

Mnemonic	Definition
1	Input pin ¹
I/O	Bidirectional pin ¹ , ²
0	Output pin ¹ , ²
OD	Open-drain output structure that allows multiple devices to share the pin in a wired-OR configuration
PU	Pull-up resistor
SMT	Schmitt Trigger
VDD (PWR)	Power pin
VSS (GND)	Ground pin
#	The "#" symbol at the end of a signal name indicates that the active, or asserted state occurs when the signal is at a low voltage level. When "#" is not present after the signal name, the signal is asserted when at a high voltage level.

- 1. All buffers are 5 volt tolerant.
- All digital bidirectional and output pins can be TRI-STATE signals unless a weak pull-up is enabled.

Note: Signal names have been abbreviated in this figure due to space constraints.

- = GND terminal
 ⊕ = Multiplexed signal
- = PWR terminal O = Changes function in ISA Master Mode

Figure 3-2. 352 PBGA Pin Assignment Diagram Order Number: CS5530A-UCE

Revision 1.1 Signal Definitions

Table 3-2. 352 PBGA Pin Assignments - Sorted by Pin Number

	Signal Name		
Pin	Limited ISA Master		
No.	ISA Mode	Mode	
A1	PIXEL0		
A2	PIXEL1		
A3	PIXEL2		
A4	PIXEL7		
A5	PIXEL10		
A6	VID_CLK		
A7	PIXEL12		
A8	PIXEL16		
A9	PIXEL19		
A10	DCLK		
A11	VID_DATA0		
A12	VID_DATA5		
A13	PCLK		
A14	INTA#		
A15	AD0		
A16			
A17	AD9		
A18			
A19			
A20			
A21	PAR		
A22			
A23			
A24			
A25			
A26			
B1	ENA_DISP		
B2	TVCLK		
B3	PIXEL4 PIXEL5		
B4	_		
B5	VSYNC		
B6	VID VAL		
B7			
B9	PIXEL15 PIXEL18		
B10	VID_RDY		
B10	PIXEL22		
B12	VID_DATA6		
B13	VID_DATA0 VID_DATA2		
B14	INTD#		
B15	AD3		
B16	AD5		
B17	AD6		
B18	C/BE0#		
B19	AD11		
B20	AD14		
B21	C/BE1#		
B22	PERR#		
B23	TRDY#		
B24	IRDY#		
B25	AD18		

	Signal Name		
Pin No.	Limited ISA Mode	ISA Master Mode	
B26			
C1	FP_VSYNC	No Function	
C2	FP HSYNC	No Function	
C3	V _{DD}		
C4	PIXEL3		
C5	PIXEL11		
C6	HSYNC		
C7	PIXEL14		
C8	PIXEL17		
C9	PIXEL21		
C10	PIXEL23		
C11	VID_DATA3		
C12	VID DATA7		
C13	VID_DATA1		
C14	PCI_RST#		
C15	INTC#		
C16	AD2		
C17	AD4		
C18	V _{SS}		
C19	V _{DD}		
C20	AD13		
C21	V _{SS}		
C22	LOCK# FRAME# V _{DD}		
C23			
C24			
C25			
C26	AD22		
D1	FP_DATA11	SA11	
D2	NC		
D3	TEST		
D4	V _{SS}		
D5	PIXEL6		
D6	PIXEL9		
D7	PIXEL13		
D8	V _{SS}		
D9	PIXEL20		
D10	V_{DD}		
D11	VID_DATA4		
D12	V _{SS}		
D13	V _{SS}		
D14	AD1		
D15	INTB#		
D16	V _{SS}		
D17	V_{DD}		
D18	AD8		
D19	V _{SS}		
D20	V _{SS}		
D21	V_{DD}		
D22	V _{SS}		
D23	V _{SS}		
D24	GNT#		

	Signal Name		
Pin No.	Limited ISA Mode	ISA Master Mode	
D25	AD26		
D26	C/BE3#		
E1	FP_HSYNC_OUT	SMEMW#	
E2	FP_DATA10	SA10	
E3	FP_VSYNC_OUT	SMEMR#	
E4	V_{SS}		
E23	V_{SS}		
E24	AD20		
E25	AD23		
E26	STOP#		
F1	FP_DATA9	SA9	
F2	FP_DISP_ENA_OUT	No Function	
F3	FP_DATA17	MASTER#	
F4	V_{DD}		
F23	V _{SS}		
F24	V_{DD}		
F25	AD24		
F26	AD27		
G1	FP_DATA8	SA8	
G2	FP_DATA5	SA5	
G3	FP_DATA7	SA7	
G4	FP_DATA6	SA6	
G23	V _{SS}		
G24	AD25		
G25	AD28		
G26	AD29		
H1	FP_DATA4	SA4	
H2	FP_DATA15	SA15	
НЗ	FP_DATA16	SA_OE#	
H4	V _{SS}		
H23	V _{SS}		
H24	V_{DD}		
H25	AD31		
H26	HOLD_REQ#		
J1	FP_DATA3	SA3	
J2	FP_DATA1	SA1	
J3	FP_DATA2	SA2	
J4	FP_ENA_BKL	No Function	
J23	V _{SS}		
J24	AD30		
J25	REQ#		
J26	PCICLK		
K1	FP_DATA14	SA14	
K2	FP_DATA13	SA13	
K3	FP_DATA0	SA0	
K4	V _{SS}	1	
K23	V _{SS}		
K24	POR#		
K25	CPU_RST		
K26	SUSP#		
L1	FP_DATA12	SA12	
	=	J	

Table 3-2. 352 PBGA Pin Assignments - Sorted by Pin Number (Continued)

	Signal Name			
Pin	Limited	ISA Master		
No.	ISA Mode	Mode		
L2	FP_ENA_VDD	No Function		
L3	FP_CLK_EVEN	No Function		
L4	V_{DD}			
L23	V _{DD}			
L24	SUSP_3V			
L25	SUSPA#			
L26		N =		
M1	FP_CLK	No Function		
M2	_			
M3 M4	V _{SS} DDC_SDA			
M23	PLLDVD			
M24				
M25	V _{SS} PLLVAA			
M26				
N1	HSYNC_OUT			
N2				
N3	V _{SS}			
N4				
N23	PLLTEST			
N24				
N25				
N26				
P1	AV _{SS4} (ICAP)			
P2				
P3	IOUTR			
P4	IOUTG			
P23	V _{SS}			
P24	CLK_14MHZ			
P25	SMI#			
P26	INTR			
R1	IOUTB			
R2	AV _{SS1} (DAC)			
R3	IREF			
R4	AV _{SS2} (ICAP)			
R23	IRQ13			
R24	IDE_IOW0#			
R25	IDE_IOR1#			
R26	IDE_IOR0#			
T1	NC			
T2	EXTVREFIN			
T3	AV _{DD2} (VREF)			
T4	AV _{SS3} (VREF)			
T23	V _{DD} IDE_DACK1#			
T25	IDE_IOW1#			
T26	IDE_IOW1#			
U1	AV _{DD1} (DAC)			
U2	V _{DD} USB			
U3	SYNC			
U4	SDATA_IN			

	Signal Name			
Di-				
Pin No.	Limited ISA Mode	ISA Master Mode		
U23	IDE_DATA7			
U24	IDE_DATA6			
U25	IDE_ADDR0			
U26	IDE_ADDR1			
V1	SDATA_OUT			
V2	BIT_CLK			
V3	PC_BEEP			
V4	POWER_EN			
V23	V _{SS}			
V24	IDE_DATA8			
V25	IDE_DATA10			
V26	IDE_CS0#			
W1	USBCLK			
W2	NC			
W3	OVER_CUR#			
W4	V _{SS}			
W23	V _{SS}			
W24	IDE_ADDR2			
W25	IDE_RST#			
W26	IDE_DATA5			
Y1	DPORT1			
Y2	D+_PORT1			
Y3	NC			
Y4	V _{SS}			
Y23	V_{DD}			
Y24	IDE_DATA11			
Y25	IDE_DATA9			
Y26	IDE_CS1#			
AA1	DPORT2			
AA2	D+_PORT2			
AA3	NC			
AA4	30			
AA23	V _{SS}			
AA24	IDE_DATA1			
AA25	IDE_DATA12			
AA26	IDE_DATA4			
AB1	NC			
AB2	NC			
AB3	NC			
AB4	AV _{DD} _USB			
AB23	IDE_DATA15			
AB24	IDE_DATA2			
AB25	IDE_DATA13			
AB26	IDE_DATA3			
AC1	NC			
AC2	NC			
AC3	NC			
AC4	V _{SS}			
AC5	V _{SS}	1		
AC6	SA3/SD3	SD3		

	Signal Name			
Pin No.	Limited ISA Mode	ISA Master Mode		
AC8	DACK1#			
AC9	V_{SS}			
AC10	V_{DD}			
AC11	IOW#			
AC12	V_{SS}			
AC13	V _{SS}			
AC14	IRQ3			
AC15	MEMCS16#			
AC16	V _{SS}			
AC17	IRQ14			
AC18	V _{SS}			
AC19	V_{DD}			
AC20	SA10/SD10	SD10		
AC21	GPIO5/SA21	SA21		
AC22	GPIO0			
AC23	V _{SS}			
AC24	IDE_DREQ1			
AC25	IDE_DATA14			
AC26	IDE_DATA0			
AD1	NC			
AD2	NC			
AD3	NC			
AD4	SMEMR#/RTCALE			
AD5	SA5/SD5	SD5		
AD6	ISACLK	I.		
AD7	DACK6#			
AD8	DACK0#			
AD9	SA2/SD2	SD2		
AD10	SA19	I.		
AD11	SA16			
AD12	DRQ1			
AD13	DRQ3			
AD14	IRQ7			
AD15	SA LATCH	SA DIR		
AD16	V _{DD}			
AD17	IRQ15			
AD18	DRQ5			
AD19	SA9/SD9	SD9		
AD20	V _{SS}	1		
AD21	GPORT_CS#			
AD22	GPIO4/SA20	SA20		
AD23	V _{DD}	<u> </u>		
AD24	SA14/SD14	SD14		
AD25	IDE_IORDY0	<u> </u>		
AD26	IDE_IORBIO			
AE1	NC			
AE2	NC			
AE3	CLK 32K			
AE4	KBROMCS#			
AE5	IRQ9			
AE6	SA1/SD1	SD1		
AEO	0/1/0D1	ועט		

AC7 DACK7#

Revision 1.1 Signal Definitions

Table 3-2. 352 PBGA Pin Assignments - Sorted by Pin Number (Continued)

	Signal Name			
Pin No.	Limited ISA Mode	ISA Master Mode		
AE7	DACK5#			
AE8	AEN			
AE9	SA0/SD0	SD0		
AE10	DRQ2			
AE11	SA18			
AE12	IOR#			
AE13	IRQ5			
AE14	IRQ8#			
AE15	IRQ4			
AE16	IRQ10			
AE17	SBHE#			
AE18	DRQ0			
AE19	MEMR#			
AE20	DRQ6			
AE21	SA12/SD12	SD12		
AE22	SA13/SD13	SD13		

	Signal Name			
Pin No.	Limited ISA Mode	ISA Master Mode		
AE23	GPIO6/SA22	SD22		
AE24	GPIO1/SDATA_IN2			
AE25	SA15/SD15	SD15		
AE26	IDE_IORDY1			
AF1	NC			
AF2	NC			
AF3	SMEMW#/RTCCS#			
AF4	SA7/SD7	SD7		
AF5	SA6/SD6	SD6		
AF6	SA4/SD4	SD4		
AF7	DACK3#			
AF8	DACK2#			
AF9	BALE			
AF10	ZEROWS#			
AF11	IOCHRDY			
AF12	SA17	•		

	Signal Name			
Pin No.	Limited ISA Mode	ISA Master Mode		
AF13	IRQ1			
AF14	IRQ6			
AF15	TC			
AF16	IOCS16#			
AF17	IRQ12			
AF18	IRQ11			
AF19	SA8/SD8	SD8		
AF20	MEMW#			
AF21	SA11/SD11	SD11		
AF22	DRQ7			
AF23	GPIO7/SA23	SA23		
AF24	GPIO3			
AF25	GPIO2			
AF26	GPCS#			

Table 3-3. 352 PBGA Pin Assignments - Sorted Alphabetically by Signal Name

Limited ISA ISA Master Mode	Signal Name				
AD1					1
AD2					
AD3 I/O PCI B15 AD4 I/O PCI C17 AD5 I/O PCI B16 AD6 I/O PCI B17 AD7 I/O PCI A16 AD8 I/O PCI D18 AD9 I/O PCI A17 AD10 I/O PCI A19 AD11 I/O PCI A19 AD12 I/O PCI A18 AD13 I/O PCI A20 AD14 I/O PCI A22 AD13 I/O PCI A22 AD14 I/O PCI A22 AD16 I/O PCI A26 AD16 I/O PCI A25 AD16 I/O PCI A25 AD17 I/O PCI A25 AD18 I/O PCI A25 AD19 I/O PCI	AD1				
AD4	AD2				C16
AD5 I/O PCI B16 AD6 I/O PCI B17 AD7 I/O PCI A16 AD8 I/O PCI D18 AD9 I/O PCI A17 AD10 I/O PCI A19 AD11 I/O PCI A19 AD12 I/O PCI A18 AD13 I/O PCI B20 AD14 I/O PCI B20 AD15 I/O PCI A26 AD16 I/O PCI A26 AD17 I/O PCI A25 AD16 I/O PCI A25 AD16 I/O PCI A25 AD16 I/O PCI A25 AD16 I/O PCI A25 AD17 I/O PCI B25 AD18 I/O PCI B25 AD19 I/O PCI					
AD6	AD4				C17
AD7 I/O PCI A16 AD8 I/O PCI D18 AD9 I/O PCI A17 AD10 I/O PCI A19 AD11 I/O PCI B19 AD12 I/O PCI A18 AD13 I/O PCI C20 AD14 I/O PCI B20 AD15 I/O PCI A26 AD16 I/O PCI A26 AD17 I/O PCI A26 AD18 I/O PCI A25 AD18 I/O PCI A25 AD18 I/O PCI A25 AD19 I/O PCI B25 AD19 I/O PCI B25 AD20 I/O PCI B25 AD20 I/O PCI C25 AD21 I/O PCI C25 AD22 I/O PCI <td>AD5</td> <td></td> <td></td> <td></td> <td>B16</td>	AD5				B16
AD8 I/O PCI D18 AD9 I/O PCI A17 AD10 I/O PCI A19 AD11 I/O PCI B19 AD12 I/O PCI A18 AD13 I/O PCI C20 AD14 I/O PCI B20 AD15 I/O PCI A20 AD16 I/O PCI A26 AD17 I/O PCI A25 AD18 I/O PCI B25 AD19 I/O PCI B26 AD20 I/O PCI B26 AD20 I/O PCI B26 AD20 I/O PCI B26 AD21 I/O PCI B26 AD22 I/O PCI B25 AD23 I/O PCI B25 AD24 I/O PCI G25 AD25 I/O PCI <td>AD6</td> <td></td> <td></td> <td></td> <td>B17</td>	AD6				B17
AD9	AD7		I/O	PCI	A16
AD10 I/O PCI A19 AD11 I/O PCI B19 AD12 I/O PCI A18 AD13 I/O PCI C20 AD14 I/O PCI B20 AD15 I/O PCI A20 AD16 I/O PCI A26 AD17 I/O PCI A25 AD18 I/O PCI B25 AD19 I/O PCI B26 AD20 I/O PCI B26 AD20 I/O PCI B26 AD20 I/O PCI B25 AD20 I/O PCI B26 AD20 I/O PCI C25 AD20 I/O PCI C25 AD21 I/O PCI C26 AD23 I/O PCI G25 AD24 I/O PCI G25 AD25 I/O PCI<	AD8		I/O	PCI	D18
AD11 I/O PCI B19 AD12 I/O PCI A18 AD13 I/O PCI C20 AD14 I/O PCI B20 AD15 I/O PCI A20 AD16 I/O PCI A26 AD17 I/O PCI A25 AD18 I/O PCI B25 AD19 I/O PCI B26 AD20 I/O PCI E24 AD20 I/O PCI E25 AD20 I/O PCI C25 AD20 I/O PCI C25 AD21 I/O PCI C25 AD22 I/O PCI C25 AD23 I/O PCI C25 AD24 I/O PCI G24 AD26 I/O PCI G25 AD27 I/O PCI G25 AD28 I/O PCI<	AD9		I/O	PCI	A17
AD12 I/O PCI A18 AD13 I/O PCI C20 AD14 I/O PCI B20 AD15 I/O PCI A20 AD16 I/O PCI A26 AD17 I/O PCI A25 AD18 I/O PCI B25 AD19 I/O PCI B25 AD20 I/O PCI B26 AD20 I/O PCI B26 AD20 I/O PCI B25 AD20 I/O PCI C25 AD20 I/O PCI C25 AD21 I/O PCI C25 AD22 I/O PCI C25 AD23 I/O PCI C25 AD24 I/O PCI G25 AD25 I/O PCI G25 AD26 I/O PCI G25 AD27 I/O PCI<	AD10		I/O	PCI	A19
AD13 I/O PCI C20 AD14 I/O PCI B20 AD15 I/O PCI A20 AD16 I/O PCI A26 AD17 I/O PCI A25 AD18 I/O PCI B25 AD19 I/O PCI B26 AD20 I/O PCI B26 AD20 I/O PCI B26 AD20 I/O PCI C25 AD21 I/O PCI C25 AD22 I/O PCI C26 AD23 I/O PCI E25 AD24 I/O PCI E25 AD25 I/O PCI G24 AD26 I/O PCI G25 AD27 I/O PCI G25 AD28 I/O PCI G26 AD30 I/O PCI G25 AD31 I/O PCI<	AD11		I/O	PCI	B19
AD14 I/O PCI B20 AD15 I/O PCI A20 AD16 I/O PCI A26 AD17 I/O PCI A25 AD18 I/O PCI B25 AD19 I/O PCI B26 AD20 I/O PCI E24 AD21 I/O PCI C25 AD22 I/O PCI C26 AD23 I/O PCI E25 AD24 I/O PCI E25 AD25 I/O PCI E25 AD26 I/O PCI G24 AD26 I/O PCI G25 AD27 I/O PCI G25 AD28 I/O PCI G25 AD29 I/O PCI G26 AD30 I/O PCI G26 AD30 I/O PCI H25 AEN O 8 mA <td>AD12</td> <td></td> <td>I/O</td> <td>PCI</td> <td>A18</td>	AD12		I/O	PCI	A18
AD15	AD13		I/O	PCI	C20
AD16	AD14		I/O	PCI	B20
AD17 I/O PCI A25 AD18 I/O PCI B25 AD19 I/O PCI B26 AD20 I/O PCI E24 AD21 I/O PCI C25 AD22 I/O PCI C26 AD23 I/O PCI E25 AD24 I/O PCI F25 AD25 I/O PCI G24 AD26 I/O PCI G24 AD27 I/O PCI G25 AD28 I/O PCI G25 AD29 I/O PCI G26 AD30 I/O PCI G26 AD31 I/O PCI H25 AEN O 8 mA AE8 AV _{DD1} (DAC) I, Analog U1 AV _{DD2} (VREF) I, Analog N4 AV _{DD2} (VREF) I, Analog R2 AV _{SS1} (AD15		I/O	PCI	A20
AD18	AD16		I/O	PCI	A26
AD19	AD17		I/O	PCI	A25
AD20	AD18		I/O	PCI	B25
AD21	AD19		I/O	PCI	B26
AD22	AD20		I/O	PCI	E24
AD23	AD21		I/O	PCI	C25
AD24	AD22		I/O	PCI	C26
AD25	AD23		I/O	PCI	E25
AD26	AD24		I/O	PCI	F25
AD27	AD25		I/O	PCI	G24
AD28	AD26		I/O	PCI	D25
AD29 I/O PCI G26 AD30 I/O PCI J24 AD31 I/O PCI H25 AEN O 8 mA AE8 AV_DD1 (DAC) I, Analog U1 AV_DD2 (VREF) I, Analog N4 AV_DD3 (DAC) I, Analog N4 AV_DD_USB PWR AB4 AV_SS1 (DAC) I, Analog R2 AV_SS2 (ICAP) I, Analog R4 AV_SS3 (VREF) I, Analog R4 AV_SS3 (VREF) I, Analog P1 AV_SS4 (ICAP) I, Analog P2 AV_SS5 (DAC) I, Analog P2 AV_SS5 (DAC) I, Analog P2 AV_SS_USB GND AA4 BALE O 8 mA AF9 BIT_CLK I 8 mA V2 C/BE0# I/O PCI B18 C/BE1# I/O PCI B21 C/BE3# I/O PCI D26 CLK_14MHZ I (SMT) CLK P24	AD27		I/O	PCI	F26
AD30 I/O PCI J24 AD31 I/O PCI H25 AEN O 8 mA AE8 AV _{DD1} (DAC) I, Analog U1 AV _{DD2} (VREF) I, Analog N4 AV _{DD3} (DAC) I, Analog N4 AV _{DD3} (DAC) I, Analog N4 AV _{DD4} USB PWR AB4 AV _{SS1} (DAC) I, Analog R2 AV _{SS2} (ICAP) I, Analog R4 AV _{SS3} (VREF) I, Analog R4 AV _{SS3} (VREF) I, Analog P1 AV _{SS4} (ICAP) I, Analog P1 AV _{SS5} (DAC) I, Analog P1 AV _{SS5} (DAC) I, Analog P2 AV _{SS5} (DAC) I, Analog P2 AV _{SS4} (ICAP) I, Analog P2 AV _{SS5} (DAC) I, Analog P2 AV _{SS6} (DAC) I, Analog P3 AV _{SS6} (DAC) I, Analog P4 AV _{SS6} (DAC) I, Analog II	AD28		I/O	PCI	G25
AD31	AD29		I/O	PCI	G26
AEN O 8 mA AE8 AV _{DD1} (DAC) I, Analog U1 AV _{DD2} (VREF) I, Analog T3 AV _{DD3} (DAC) I, Analog N4 AV _{DD} _USB PWR AB4 AV _{SS1} (DAC) I, Analog R2 AV _{SS2} (ICAP) I, Analog R4 AV _{SS3} (VREF) I, Analog P1 AV _{SS4} (ICAP) I, Analog P1 AV _{SS5} (DAC) I, Analog P2 AV _{SS} (DAC) I, Analog <	AD30		I/O	PCI	J24
AV _{DD1} (DAC) I, Analog U1 AV _{DD2} (VREF) I, Analog T3 AV _{DD3} (DAC) I, Analog N4 AV _{DD} USB PWR AB4 AV _{SS1} (DAC) I, Analog R2 AV _{SS2} (ICAP) I, Analog R4 AV _{SS3} (VREF) I, Analog T4 AV _{SS3} (ICAP) I, Analog P1 AV _{SS4} (ICAP) I, Analog P1 AV _{SS5} (DAC) I, Analog P2 AV _{SS-} USB GND AA4 BALE O 8 mA AF9 BIT_CLK I 8 mA V2 C/BE0# I/O PCI B21 C/BE1# I/O PCI B21 C/BE3# I/O PCI D26 CLK_14MHZ I (SMT) CLK P24	AD31		I/O	PCI	H25
AVDD2 (VREF) I, Analog T3 AVDD3 (DAC) I, Analog N4 AVDD_USB PWR AB4 AVSS1 (DAC) I, Analog R2 AVSS2 (ICAP) I, Analog R4 AVSS3 (VREF) I, Analog T4 AVSS4 (ICAP) I, Analog P1 AVSS5 (DAC) I, Analog P2 AVSS_USB GND AA4 BALE O 8 mA AF9 BIT_CLK I 8 mA V2 C/BE0# I/O PCI B18 C/BE1# I/O PCI B21 C/BE3# I/O PCI A24 C/BE3# I/O PCI D26 CLK_14MHZ I (SMT) CLK P24	AEN		0	8 mA	AE8
AV _{DD3} (DAC) I, Analog N4 AV _{DD} USB PWR AB4 AV _{SS1} (DAC) I, Analog R2 AV _{SS2} (ICAP) I, Analog R4 AV _{SS3} (VREF) I, Analog T4 AV _{SS3} (ICAP) I, Analog P1 AV _{SS4} (ICAP) I, Analog P1 AV _{SS5} (DAC) I, Analog P2 AV _{SS-} USB GND AA4 BALE O 8 mA AF9 BIT_CLK I 8 mA V2 C/BE0# I/O PCI B18 C/BE1# I/O PCI B21 C/BE2# I/O PCI A24 C/BE3# I/O PCI D26 CLK_14MHZ I (SMT) CLK P24	AV _{DD1} (DAC)		I, Analog		U1
AV _{DD} _USB PWR AB4 AV _{SS1} (DAC) I, Analog R2 AV _{SS2} (ICAP) I, Analog R4 AV _{SS3} (VREF) I, Analog T4 AV _{SS3} (ICAP) I, Analog P1 AV _{SS4} (ICAP) I, Analog P2 AV _{SS5} (DAC) I, Analog P2 AV _{SS} _USB GND AA4 BALE O 8 mA AF9 BIT_CLK I 8 mA V2 C/BE0# I/O PCI B18 C/BE1# I/O PCI B21 C/BE2# I/O PCI A24 C/BE3# I/O PCI D26 CLK_14MHZ I (SMT) CLK P24	AV _{DD2} (VREF)		I, Analog		Т3
AV _{SS1} (DAC) I, Analog R2 AV _{SS2} (ICAP) I, Analog R4 AV _{SS3} (VREF) I, Analog T4 AV _{SS4} (ICAP) I, Analog P1 AV _{SS5} (DAC) I, Analog P2 AV _{SS} (DAC) I, Analog P1 AV _{SS} (DAC) I, Analog II AV _S (DAC) I	AV _{DD3} (DAC)		I, Analog		N4
AV _{SS2} (ICAP) I, Analog R4 AV _{SS3} (VREF) I, Analog T4 AV _{SS4} (ICAP) I, Analog P1 AV _{SS5} (DAC) I, Analog P2 AV _{SS} _USB GND AA4 BALE O 8 mA AF9 BIT_CLK I 8 mA V2 C/BE0# I/O PCI B18 C/BE1# I/O PCI B21 C/BE2# I/O PCI A24 C/BE3# I/O PCI D26 CLK_14MHZ I (SMT) CLK P24	AV _{DD} _USB		PWR		AB4
AV _{SS3} (VREF) I, Analog T4 AV _{SS4} (ICAP) I, Analog P1 AV _{SS5} (DAC) I, Analog P2 AV _{SS_USB} GND AA4 BALE O 8 mA AF9 BIT_CLK I 8 mA V2 C/BE0# I/O PCI B18 C/BE1# I/O PCI B21 C/BE2# I/O PCI A24 C/BE3# I/O PCI D26 CLK_14MHZ I (SMT) CLK P24	AV _{SS1} (DAC)		I, Analog		R2
AV _{SS4} (ICAP) I, Analog P1 AV _{SS5} (DAC) I, Analog P2 AV _{SS} _USB GND AA4 BALE O 8 mA AF9 BIT_CLK I 8 mA V2 C/BE0# I/O PCI B18 C/BE1# I/O PCI B21 C/BE2# I/O PCI A24 C/BE3# I/O PCI D26 CLK_14MHZ I (SMT) CLK P24	AV _{SS2} (ICAP)		I, Analog		R4
AV _{SS} (DAC) I, Analog P2 AV _{SS} _USB GND AA4 BALE O 8 mA AF9 BIT_CLK I 8 mA V2 C/BE0# I/O PCI B18 C/BE1# I/O PCI B21 C/BE2# I/O PCI A24 C/BE3# I/O PCI D26 CLK_14MHZ I (SMT) CLK P24	AV _{SS3} (VREF)		I, Analog		T4
AV _{SS} _USB GND AA4 BALE O 8 mA AF9 BIT_CLK I 8 mA V2 C/BE0# I/O PCI B18 C/BE1# I/O PCI B21 C/BE2# I/O PCI A24 C/BE3# I/O PCI D26 CLK_14MHZ I (SMT) CLK P24	AV _{SS4} (ICAP)	·	I, Analog		P1
BALE O 8 mA AF9 BIT_CLK I 8 mA V2 C/BE0# I/O PCI B18 C/BE1# I/O PCI B21 C/BE2# I/O PCI A24 C/BE3# I/O PCI D26 CLK_14MHZ I (SMT) CLK P24	AV _{SS5} (DAC)		I, Analog		P2
BIT_CLK I 8 mA V2 C/BE0# I/O PCI B18 C/BE1# I/O PCI B21 C/BE2# I/O PCI A24 C/BE3# I/O PCI D26 CLK_14MHZ I (SMT) CLK P24	AV _{SS} _USB		GND		AA4
C/BE0# I/O PCI B18 C/BE1# I/O PCI B21 C/BE2# I/O PCI A24 C/BE3# I/O PCI D26 CLK_14MHZ I (SMT) CLK P24	BALE		0	8 mA	AF9
C/BE1# I/O PCI B21 C/BE2# I/O PCI A24 C/BE3# I/O PCI D26 CLK_14MHZ I (SMT) CLK P24	BIT_CLK		I	8 mA	V2
C/BE2# I/O PCI A24 C/BE3# I/O PCI D26 CLK_14MHZ I (SMT) CLK P24	C/BE0#		I/O	PCI	B18
C/BE3# I/O PCI D26 CLK_14MHZ I (SMT) CLK P24	C/BE1#		I/O	PCI	B21
CLK_14MHZ I (SMT) CLK P24	C/BE2#		I/O	PCI	A24
	C/BE3#		I/O	PCI	D26
CLK_32K I/O 8 mA AE3	CLK_14MHZ		I (SMT)	CLK	P24
	CLK_32K		I/O	8 mA	AE3
CPU_RST O 8 mA K25	CPU_RST		0	8 mA	K25

Signal Name				
Limited ISA Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	Pin No.
DACK0#		0	8 mA	AD8
DACK1#		0	8 mA	AC8
DACK2#		0	8 mA	AF8
DACK3#		0	8 mA	AF7
DACK5#		0	8 mA	AE7
DACK6#		0	8 mA	AD7
DACK7#		0	8 mA	AC7
DCLK		0	DOTCLK	A10
DDC_SCL		0	8 mA	M2
DDC_SDA		I/O	8 mA	M4
DEVSEL#		I/O	PCI	A23
DPORT1		I/O	USB	Y1
D+_PORT1		I/O	USB	Y2
DPORT2		I/O	USB	AA1
D+_PORT2		I/O	USB	AA2
DRQ0		1	8 mA	AE18
DRQ1		I	8 mA	AD1 2
DRQ2		1	8 mA	AE10
DRQ3		I	8 mA	AD1 3
DRQ5		I	8 mA	AD1 8
DRQ6		1	8 mA	AE20
DRQ7		1	8 mA	AF22
ENA DISP		1	8 mA	B1
EXTVREFIN		I, Analog		T2
FP_CLK	No Function	0	FP_CLK	M1
FP_CLK_EVEN	No Function	0	8 mA	L3
FP_DATA0	SA0	I/O	8 mA	K3
FP_DATA1	SA1	I/O	8 mA	J2
FP_DATA2	SA2	I/O	8 mA	J3
FP_DATA3	SA3	I/O	8 mA	J1
FP_DATA4	SA4	I/O	8 mA	H1
FP_DATA5	SA5	I/O	8 mA	G2
FP_DATA6	SA6	I/O	8 mA	G4
FP_DATA7	SA7	I/O	8 mA	G3
FP_DATA8	SA8	I/O	8 mA	G1
FP_DATA9	SA9	I/O	8 mA	F1
FP_DATA10	SA10	I/O	8 mA	E2
FP_DATA11	SA11	I/O	8 mA	D1
FP_DATA12	SA12	I/O	8 mA	L1
FP_DATA13	SA13	I/O	8 mA	K2
FP_DATA14	SA14	I/O	8 mA	K1
FP_DATA15	SA15	I/O	8 mA	H2
FP_DATA16	SA_OE#	0	8 mA	НЗ
FP_DATA17	MASTER#	I/O	8 mA	F3
FP_DISP_ENA_OUT	No Function	0	8 mA	F2
FP_ENA_BKL	No Function	0	8 mA	J4
FP_ENA_VDD	No Function	0	8 mA	L2
FP_HSYNC	No Function	I	8 mA	C2
FP_HSYNC_OUT	SMEMW#	0	8 mA	E1
FP_VSYNC	No Function	I	8 mA	C1

Revision 1.1 Signal Definitions

Table 3-3. 352 PBGA Pin Assignments - Sorted Alphabetically by Signal Name (Continued)

Limited ISA ISA Master Mode Type¹ Ruffer Type² No.	Signal Name				
FRAME#		Mode			l l
GNT#	FP_VSYNC_OUT	SMEMR#	0	8 mA	E3
GPCS#	FRAME#		I/O	PCI	C23
GPIOO	GNT#		I	PCI	D24
Cartility Cart	GPCS#		0	8 mA	AF26
GPIO2	GPIO0		I/O	8 mA	
GPIO3	GPIO1/SDATA_IN2		I/O	8 mA	AE24
GPIO4/SA20	GPIO2		I/O	8 mA	AF25
GPIO5/SA21 SA21 I/O 8 mA AC2	GPIO3		I/O	8 mA	AF24
GPIO6/SA22 SA22 I/O	GPIO4/SA20	SA20	I/O	8 mA	
GPIO7/SA23 SA23 I/O 8 mA AF23 GPORT_CS# O 8 mA AD2 1 HOLD_REQ# (strap pin) I/O PCI H26 HSYNC I 8 mA C6 HSYNC_OUT O 8 mA N1 IDE_ADDR0 O IDE U25 IDE_ADDR1 O IDE U26 IDE_ADDR2 O IDE W24 IDE_CS0# O IDE W26 IDE_CS1# O IDE Y26 IDE_DACK0# O IDE Y26 IDE_DACK0# O IDE T24 IDE_DATA0 I/O IDE AC2 6 IDE_DATA0 I/O IDE AB24 IDE_DATA2 I/O IDE AB24 IDE_DATA3 I/O IDE AB26 IDE_DATA6 I/O IDE W26 IDE_DATA7 I/O IDE W24 IDE_DATA9	GPIO5/SA21	SA21	I/O	8 mA	_
GPORT_CS# O 8 mA AD2 1 HOLD_REQ# (strap pin) I/O PCI H26 HSYNC I 8 mA C6 HSYNC_OUT O 8 mA N1 IDE_ADDRO O IDE U25 IDE_ADDR1 O IDE U26 IDE_ADDR2 O IDE W24 IDE_CS0# O IDE Y26 IDE_CS1# O IDE Y26 IDE_DATA0 I/O IDE T26 IDE_DATA1 I/O IDE AA24 IDE_DATA2 I/O IDE AB24 IDE_DATA4 I/O IDE AA26 IDE_DATA6 I/O IDE W26 IDE_DATA6 I/O IDE W26 IDE_DATA6 I/O IDE W26 IDE_DATA7 I/O IDE W26 IDE_DATA8 I/O IDE W26 IDE_DATA8 I/O IDE W26 IDE_DATA9 I/O IDE W26 IDE_DATA8 I/O IDE W26 IDE_DATA9 I/O IDE W26 IDE_DATA9 I/O IDE W26 IDE_DATA1 I/O IDE AA26 IDE_DATA8 I/O IDE W26 IDE_DATA9 I/O IDE W26 IDE_DATA9 I/O IDE W26 IDE_DATA1 I/O IDE W26 IDE_DATA11 I/O IDE W25 IDE_DATA11 I/O IDE W26 IDE_DATA11 I/O IDE AA26 IDE_DATA15 I/O IDE AA26 IDE_DATA15 I/O IDE AA26 IDE_DATA15 I/O IDE AB23 IDE_DATA15 I/O IDE AB23 IDE_DATA15 I/O IDE AB26 IDE_DATA15 I/O IDE AB23 IDE_DATA15 I/O IDE AB23 IDE_DATA15 I/O IDE AB23 IDE_DATA15 I/O IDE AB26 IDE_DATA15 I/O IDE AB26 IDE_DATA16 I IDE AC2 4 IDE_IDROW O IDE R26 IDE_IDROW O IDE R26 IDE_IDROW I IDE AB25 IDE_IDROW I IDE AB25	GPIO6/SA22	SA22	I/O	8 mA	AE23
HOLD_REQ# (strap pin)	GPIO7/SA23	SA23	I/O	8 mA	AF23
HSYNC	GPORT_CS#		0	8 mA	
HSYNC_OUT	HOLD_REQ# (strap pi	n)	I/O	PCI	H26
IDE_ADDR0	HSYNC		I	8 mA	C6
IDE_ADDR1	HSYNC_OUT		0	8 mA	N1
IDE_ADDR2	IDE_ADDR0		0	IDE	U25
IDE_CS0#	IDE_ADDR1		0	IDE	U26
IDE_CS1#	IDE_ADDR2		0	IDE	W24
IDE_DACK0# O IDE T26 IDE_DACK1# O IDE T24 IDE_DATA0 I/O IDE AC2 IDE_DATA1 I/O IDE AA24 IDE_DATA2 I/O IDE AB24 IDE_DATA3 I/O IDE AB26 IDE_DATA4 I/O IDE AA26 IDE_DATA5 I/O IDE W26 IDE_DATA6 I/O IDE W26 IDE_DATA7 I/O IDE U23 IDE_DATA8 I/O IDE V24 IDE_DATA9 I/O IDE V25 IDE_DATA10 I/O IDE V25 IDE_DATA11 I/O IDE V25 IDE_DATA12 I/O IDE AA25 IDE_DATA14 I/O IDE AA25 IDE_DATA15 I/O IDE AB25 IDE_DATA16 I/O IDE AB25 IDE_DATA15 I/O IDE AB23 IDE_DATA15 I/O IDE AB23 IDE_DREQ0 I IDE AD2 IDE_IORO# O IDE R26 IDE_IORO# O IDE R25 IDE_IOROPY0 I IDE AD2 IDE_IOROPY0 I IDE IDE_IOROPY0 IDE IDE_IOROPY0 IDE IDE_IOROPY0 IDE IDE_IOROPY0 IDE	IDE_CS0#		0	IDE	V26
IDE_DACK1#	IDE_CS1#		0	IDE	Y26
IDE_DATA0	IDE_DACK0#		0	IDE	T26
IDE_DATA1	IDE_DACK1#		0	IDE	T24
IDE_DATA2	IDE_DATA0		I/O	IDE	_
IDE_DATA3	IDE_DATA1		I/O	IDE	AA24
IDE_DATA4	IDE_DATA2		I/O	IDE	AB24
IDE_DATA5	IDE_DATA3		I/O	IDE	AB26
IDE_DATA6	IDE_DATA4		I/O	IDE	AA26
IDE_DATA7	IDE_DATA5		I/O	IDE	W26
IDE_DATA8	IDE_DATA6		I/O	IDE	U24
IDE_DATA9	IDE_DATA7		I/O	IDE	U23
IDE_DATA10	IDE_DATA8		I/O	IDE	V24
IDE_DATA11	IDE_DATA9		I/O	IDE	Y25
IDE_DATA12	IDE_DATA10			IDE	V25
IDE_DATA13	_			IDE	Y24
IDE_DATA14				IDE	AA25
5 IDE_DATA15					_
IDE_DREQ0	IDE_DATA14		I/O	IDE	l l
1 IDE AC2 4 IDE	IDE_DATA15		I/O	IDE	AB23
4	IDE_DREQ0		I	IDE	
IDE_IOR1# O IDE R25 IDE_IORDY0 I IDE AD2 5	IDE_DREQ1		I	IDE	
IDE_IORDY0 I IDE AD2 5	IDE_IOR0#		0	IDE	R26
5	IDE_IOR1#		0	IDE	R25
IDE_IORDY1 I IDE AE26	IDE_IORDY0		I	IDE	l l
	IDE_IORDY1		I	IDE	AE26

Signal Name				
Limited ISA Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	Pin No.
IDE_IOW0#		0	IDE	R24
IDE_IOW1#		0	IDE	T25
IDE_RST#		0	IDE	W25
INTA#		I	PCI	A14
INTB#		I	PCI	D15
INTC#		I	PCI	C15
INTD#		I	PCI	B14
INTR (strap pin)		I/O	8 mA	P26
IOCHRDY		I/O, OD	8 mA	AF11
IOCS16#		I	8 mA	AF16
IOR#		I/O (PU)	8 mA	AE12
IOUTB		O, Ana- log		R1
IOUTR		O, Ana- log		P3
IOUTG		O, Ana- log		P4
IOW#		I/O (PU)	8 mA	AC1 1
IRDY#		I/O	PCI	B24
IREF		I, Analog		R3
IRQ1		1	8 mA	AF13
IRQ3		1	8 mA	AC1 4
IRQ4		1	8 mA	AE15
IRQ5		1	8 mA	AE13
IRQ6		I	8 mA	AF14
IRQ7		1	8 mA	AD1 4
IRQ8#		I	8 mA	AE14
IRQ9		I	8 mA	AE5
IRQ10		1	8 mA	AE16
IRQ11		1	8 mA	AF18
IRQ12		1	8 mA	AF17
IRQ13		I	8 mA	R23
IRQ14		1	8 mA	AC1 7
IRQ15		1	8 mA	AD1 7
ISACLK		0	8 mA	AD6
KBROMCS#		0	8 mA	AE4
LOCK#		I/O	PCI	C22
MEMCS16#		I/O, OD	8 mA	AC1 5
MEMR#		I/O (PU)	8 mA	AE19
MEMW#		I/O (PU)	8 mA	AF20
NC				AA3
NC				AB1
NC				AB2
NC				AB3
NC				AC1
NC				AC2
NC				AC3
NC				AD1

Table 3-3. 352 PBGA Pin Assignments - Sorted Alphabetically by Signal Name (Continued)

Signal Name				
Limited ISA Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	Pin No.
NC	•			AD2
NC				AD3
NC				AE1
NC				AE2
NC				AF1
NC				AF2
NC				D2
NC				M26
NC				N24
NC				T1
NC				W2
NC				Y3
OVER_CUR#		I	8 mA	W3
PAR		I/O	PCI	A21
PC_BEEP		0	8 mA	V3
PCICLK		I (SMT)	CLK	J26
PCI RST#		O	8 mA	C14
PCLK		ı	8 mA	A13
PERR#		I/O	PCI	B22
PIXEL0		I	8 mA	A1
PIXEL1		1	8 mA	A2
PIXEL2		1	8 mA	A3
PIXEL3			8 mA	C4
PIXEL4			8 mA	B3
PIXEL5		1	8 mA	B4
PIXEL6		1	8 mA	D5
PIXEL7		1	8 mA	A4
PIXEL8		1	8 mA	B6
PIXEL9		1	8 mA	D6
PIXEL10		1	8 mA	A5
PIXEL11		1	8 mA	C5
PIXEL12		1	8 mA	A7
PIXEL13		ı	8 mA	D7
PIXEL14		ı	8 mA	C7
PIXEL15		ı	8 mA	B8
PIXEL16		ı	8 mA	A8
PIXEL17		ı	8 mA	C8
PIXEL18		ı	8 mA	B9
PIXEL19		ı	8 mA	A9
PIXEL20		ı	8 mA	D9
PIXEL21		ı	8 mA	C9
PIXEL22		ı	8 mA	B11
PIXEL23		ı	8 mA	C10
PLLAGD		I, Analog		N25
PLLDGN		I, Analog		N26
PLLDVD		I, Analog		M23
PLLTEST		i, Allalog		N23
PLLVAA		I, Analog		M25
POR#		I, Allalog	8 mA	K24
POWER_EN		0	8 mA	V4
PSERIAL				1
FOERIAL		I	8 mA	L26

Signal Name				
Limited ISA Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	Pin No.
REQ#		0	PCI	J25
SA0/SD0	SD0	I/O (PU)	8 mA	AE9
SA1/SD1	SD1	I/O (PU)	8 mA	AE6
SA2/SD2	SD2	I/O (PU)	8 mA	AD9
SA3/SD3	SD3	I/O (PU)	8 mA	AC6
SA4/SD4	SD4	I/O (PU)	8 mA	AF6
SA5/SD5	SD5	I/O (PU)	8 mA	AD5
SA6/SD6	SD6	I/O (PU)	8 mA	AF5
SA7/SD7	SD7	I/O (PU)	8 mA	AF4
SA8/SD8	SD8	I/O (PU)	8 mA	AF19
SA9/SD9	SD9	I/O (PU)	8 mA	AD1 9
SA10/SD10	SD10	I/O (PU)	8 mA	AC2 0
SA11/SD11	SD11	I/O (PU)	8 mA	AF21
SA12/SD12	SD12	I/O (PU)	8 mA	AE21
SA13/SD13	SD13	I/O (PU)	8 mA	AE22
SA14/SD14	SD14	I/O (PU)	8 mA	AD2 4
SA15/SD15	SD15	I/O (PU)	8 mA	AE25
SA16		I/O (PU)	8 mA	AD1 1
SA17		I/O (PU)	8 mA	AF12
SA18		I/O (PU)	8 mA	AE11
SA19		I/O (PU)	8 mA	AD1 0
SA_LATCH	SA_DIR	0	8 mA	AD1 5
SBHE#		I/O (PU)	8 mA	AE17
SDATA IN		I	8 mA	U4
SDATA_OUT		0	8 mA	V1
SERR#		I/O, OD	PCI	A22
SMEMR#/RTCALE		0	8 mA	AD4
SMEMW#/RTCCS#		0	8 mA	AF3
SMI#		I/O	8 mA	P25
STOP#		I/O	PCI	E26
SUSP#		0	8 mA	K26
SUSPA#		- 1	8 mA	L25
SUSP_3V		I/O	8 mA	L24
SYNC		0	8 mA	U3
TC		0	8 mA	AF15
TEST		1	8 mA	D3
TRDY#		I/O	PCI	B23
TVCLK		I	8 mA	B2
USBCLK		I (SMT)	CLK	W1
V_{DD}		PWR		D10
V_{DD}		PWR		D17
V_{DD}		PWR	1	AC1 0
V_{DD}		PWR	1	AC1 9
V_{DD}		PWR	-	AD1 6
V_{DD}		PWR		AD2 3

Table 3-3. 352 PBGA Pin Assignments - Sorted Alphabetically by Signal Name (Continued)

Signal Nar	ne			
Limited ISA Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	Pin No.
V_{DD}		PWR		C19
V_{DD}		PWR		C24
V_{DD}		PWR		С3
V_{DD}		PWR		D21
V_{DD}		PWR		F24
V_{DD}		PWR		F4
V_{DD}		PWR		H24
V_{DD}		PWR		L23
V_{DD}		PWR		L4
V _{DD}		PWR		T23
V _{DD}		PWR		Y23
V _{DD} _USB		PWR		U2
VID_CLK		I	8 mA	A6
VID_DATA0		I	8 mA	A11
VID_DATA1		I	8 mA	C13
VID_DATA2		I	8 mA	B13
VID_DATA3		I	8 mA	C11
VID_DATA4		I	8 mA	D11
VID DATA5		ı	8 mA	A12
VID DATA6		1	8 mA	B12
VID DATA7		ı	8 mA	C12
VID RDY		0	8 mA	B10
VID VAL		ı	8 mA	B7
V _{SS}		GND		D12
V _{SS}		GND		D13
V _{SS}		GND		D16
V _{SS}		GND		AA23
V _{SS}		GND		AC1
V _{SS}		GND		AC1
V _{SS}		GND		AC1 6
V _{SS}		GND		AC1 8
V _{SS}		GND		AC2 3
V _{SS}		GND		AC4
V _{SS}		GND		AC5
V _{SS}		GND		AC9
V _{SS}		GND		AD2 0
V _{SS}		GND		C18
V _{SS}		GND		C21
V _{SS}		GND		D19
V _{SS}		GND		D20
V _{SS}		GND		D22
V _{SS}		GND		D23
V _{SS}		GND		D4
V _{SS}		GND		D8
V _{SS}		GND		E23
V _{SS}		GND		E4
V _{SS}		GND		F23

Signal Na	ame			
Limited ISA Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	Pin No.
V _{SS}		GND		G23
V _{SS}		GND		H23
V _{SS}		GND		H4
V _{SS}		GND		J23
V _{SS}		GND		K23
V _{SS}		GND		K4
V _{SS}		GND		M24
V _{SS}		GND		М3
V _{SS}		GND		N3
V _{SS}		GND		P23
V _{SS}		GND		V23
V _{SS}		GND		W23
V _{SS}	/ _{SS}			W4
V _{SS}		GND		Y4
VSYNC		I	8 mA	B5
VSYNC_OUT		0	8 mA	N2
ZEROWS#		I	8 mA	AF10

- See Table 3-1 "Pin Type Definitions" on page 20 for pin type definitions.
- See Table 6-4 "DC Characteristics" on page 235 and Table 6-8 "AC Characteristics" on page 239 for more information on buffer types. Note that some bidirectional buffers are used as input only, indicated by an "I" in the Pin Type column.

Signal Definitions

3.2 Signal Descriptions

3.2.1 Reset Interface

Signal Name	Pin No.	Pin Type	Description
PCI_RST#	C14	0	PCI Reset
			PCI_RST# resets the PCI bus and is asserted while POR# is asserted, and for approximately 9 ms following the deassertion of POR#.
POR#	K24	I	Power On Reset
			POR# is the system reset signal generated from the power supply to indicate that the system should be reset.
CPU_RST	K25	0	CPU Reset
			CPU_RST resets the CPU and is asserted while POR# is asserted, and for approximately 9 ms following the deassertion of POR#. CLK_14MHZ is used to generate this signal.

3.2.2 Clock Interface

Signal Name	Pin No.	Pin Type	Description
PCICLK	J26	I	PCI Clock
		(SMT)	The PCI clock is used to drive most circuitry of the CS5530A.
TVCLK	B2	I	Television Clock
			The TVCLK is an input from a digital NTSC/PAL converter which is optionally re-driven back out onto the DCLK signal under software program control. This is only used if interfacing to a compatible digital NTSC/PAL encoder device.
DCLK	A10	0	DOT Clock
			DOT clock is generated by the CS5530A and typically connects to the processor to create the clock used by the graphics subsystem. The minimum frequency of DCLK is 10 MHz and the maximum is 200 MHz. However, when DCLK is used as the graphics subsystem clock, the Geode processor determines the maximum DCLK frequency.
ISACLK	AD6	0	ISA Bus Clock
			ISACLK is derived from PCICLK and is typically programmed for approximately 8 MHz. F0 Index 50h[2:0] are used to program the ISA clock divisor.
CLK_14MHZ	P24	I	14.31818 MHz Clock
		(SMT)	This clock is used to generate CPU_RST to the Geode processor. DOT clock (DCLK) is also derived from this clock.
USBCLK	W1	W1 I (SMT)	USBCLK
	(This input is used as the clock source for the USB. In this mode, a 48 MHz clock source input is required.
CLK_32K	AE3	I/O	32 KHz Clock
			CLK_32K is a 32.768 KHz clock used to generate reset signals, as well as to maintain power management functionality. It should be active when power is applied to the CS5530A.
			CLK_32K can be an input or an output. As an output CLK_32K is internally derived from CLK_14MHZ. F0 Index 44h[5:4] are used to program this pin.

3.2.3 CPU Interface

Signal Name	Pin No.	Pin Type	Description
INTR	P26	0	CPU Interrupt Request
	Strap Option Pin		INTR is the level output from the integrated 8259 PICs and is asserted if an unmasked interrupt request (IRQ _n) is sampled active.
		I	Strap Option Select Pin
			Pin P26 is a strap option select pin. It is used to select whether the CS5530A operates in Limited ISA or ISA Master mode.
			ISA Limited Mode—Strap pin P26 low through a 10-kohm resistor. ISA Master Mode—Strap pin P26 high through a 10-kohm resistor.
SMI#	P25	I/O	System Management Interrupt
			SMI# is a level-sensitive interrupt to the CPU that can be configured to assert on a number of different system events. After an SMI# assertion, System Management Mode (SMM) is entered, and program execution begins at the base of SMM address space.
			Once asserted, SMI# remains active until all SMI sources are cleared.
IRQ13	R23	I	IRQ13
			IRQ13 is an input from the processor indicating that a floating point error was detected and that INTR should be asserted.
PSERIAL	L26	I	Power Management Serial Interface
			PSERIAL is the unidirectional serial data link between the GX1 processor and the CS5530A. An 8-bit serial data packet carries status on power management events within the CPU. Data is clocked synchronous to the PCI-CLK input clock.
SUSP#	K26	0	CPU Suspend
			SUSP# asserted requests that the CPU enters Suspend mode and the CPU asserts SUSPA# after completion. The SUSP# pin is deasserted if SUSP# has gone active and any Speedup or Resume event has occurred, including expiration of the Suspend Modulation ON timer, which is loaded from F0 Index 95h. If the SUSP#/SUSPA# handshake is configured as a system 3 Volt Suspend, the deassertion of SUSP# is delayed by an interval programmed in F0 Index BCh[7:4] to allow the system clock chip and the processor to stabilize.
			The SUSP#/SUSPA# handshake occurs as a result of a write to the Suspend Notebook Command Register (F0 Index AFh), or expiration of the Suspend Modulation OFF timer (loaded from F0 Index 94h) when Suspend Modulation is enabled. Suspend Modulation is enabled via F0 Index 96h[0]. If SUSPA# is asserted as a result of a HALT instruction, SUSP# does not deassert when the Suspend Modulation ON timer (loaded from F0 Index 95h) expires.
SUSPA#	L25	I	CPU Suspend Acknowledge
			SUSPA# is a level input from the processor. When asserted it indicates the CPU is in Suspend mode as a result of SUSP# assertion or execution of a HALT instruction.

Signal Definitions Revision 1.1

3.2.3 CPU Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
SUSP_3V	L24	I/O	Suspend 3 Volt Active
			SUSP_3V can be connected to the output enable (OE) of a clock synthesis or buffer chip to stop the clocks to the system. SUSP_3V is asserted after the SUSP#/SUSPA# handshake that follows a write to the Suspend Notebook Command Register (F0 Index AFh) with bit 0 set in the Clock Stop Control Register (F0 Index BCh).
			As an input, SUSP_3V is sampled during power-on-reset to determine the inactive state. This allows the system designer to match the active state of SUSP_3V to the inactive state for a clock driver output enabled with a pull-up/down 10-kohm resistor. If pulled down, SUSP_3V is active high. If pulled up, SUSP_3V is active low.

3.2.4 PCI Interface

Signal Name	Pin No.	Pin Type	Description
AD[31:0]	Refer	I/O	PCI Address/Data
	to Table 3-3		AD[31:0] is a physical address during the first clock of a PCI transaction; it is the data during subsequent clocks.
			When the CS5530A is a PCI master, AD[31:0] are outputs during the address and write data phases, and are inputs during the read data phase of a transaction.
			When the CS5530A is a PCI slave, AD[31:0] are inputs during the address and write data phases, and are outputs during the read data phase of a transaction.
C/BE[3:0]#	D26,	I/O	PCI Bus Command and Byte Enables
	A24, B21, B18		During the address phase of a PCI transaction, C/BE[3:0]# define the bus command. During the data phase of a transaction, C/BE[3:0]# are the data byte enables.
			C/BE[3:0]# are outputs when the CS5530A is a PCI master and inputs when it is a PCI slave.
INTA#,	A14,	I	PCI Interrupt Pins
INTB#, INTC#, INTD#	D15, C15, B14		The CS5530A provides inputs for the optional "level-sensitive" PCI interrupts (also known in industry terms as PIRQx#). These interrupts may be mapped to IRQs of the internal 8259s using PCI Interrupt Steering Registers 1 and 2 (F0 Index 5Ch and 5Dh).
			The USB controller uses INTA# as its output signal. Refer to PCIUSB Index 3Dh.
REQ#	J25	0	PCI Bus Request
			The CS5530A asserts REQ# in response to a DMA request or ISA master request to gain ownership of the PCI bus. The REQ# and GNT# signals are used to arbitrate for the PCI bus.
			REQ# should connect to the REQ0# of the GX1 processor and function as the highest-priority PCI master.

3.2.4 PCI Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
GNT#	D24	I	PCI Bus Grant
			GNT# is asserted by an arbiter that indicates to the CS5530A that access to the PCI bus has been granted.
			GNT# should connect to GNT0# of the GX1 processor and function as the highest-priority PCI master.
HOLD_REQ#	H26	0	PCI Bus Hold Request
	Strap Option		This pin's function as HOLD_REQ# is no longer applicable.
	Pin	I	Strap Option Select Pin
			Pin H26 is a strap option select pin. It allows selection of which address bits are used as the IDSEL.
			Strap pin H26 low: IDSEL = AD28 (Chipset Register Space) and AD29 (USB Register Space)
			Strap pin H26 high: IDSEL = AD26 (Chipset Register Space) and AD27 (USB Register Space)
FRAME#	C23	I/O	PCI Cycle Frame
			FRAME# is asserted to indicate the start and duration of a transaction. It is deasserted on the final data phase.
			FRAME# is an input when the CS5530A is a PCI slave.
IRDY#	B24	I/O	PCI Initiator Ready
			IRDY# is driven by the master to indicate valid data on a write transaction, or that it is ready to receive data on a read transaction.
			When the CS5530A is a PCI slave, IRDY# is an input that can delay the beginning of a write transaction or the completion of a read transaction.
			Wait cycles are inserted until both IRDY# and TRDY# are asserted together.
TRDY#	B23	I/O	PCI Target Ready
			TRDY# is asserted by a PCI slave to indicate it is ready to complete the current data transfer.
			TRDY# is an input that indicates a PCI slave has driven valid data on a read or a PCI slave is ready to accept data from the CS5530A on a write.
			TRDY# is an output that indicates the CS5530A has placed valid data on AD[31:0] during a read or is ready to accept the data from a PCI master on a write.
			Wait cycles are inserted until both IRDY# and TRDY# are asserted together.
STOP#	E26	I/O	PCI Stop
			As an input, STOP# indicates that a PCI slave wants to terminate the current transfer. The transfer is either aborted or retried. STOP# is also used to end a burst.
			As an output, STOP# is asserted with TRDY# to indicate a target disconnect, or without TRDY# to indicate a target retry. The CS5530A asserts STOP# during any cache line crossings if in single transfer DMA mode or if busy.

3.2.4 PCI Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
LOCK#	C22	I/O	PCI Lock
			LOCK# indicates an atomic operation that may require multiple transactions to complete.
			If the CS5530A is currently the target of a LOCKed transaction, any other PCI master request with the CS5530A as the target is forced to retry the transfer.
			The CS5530A does not generate LOCKed transactions.
DEVSEL#	A23	I/O	PCI Device Select
			DEVSEL# is asserted by a PCI slave, to indicate to a PCI master and subtractive decoder that it is the target of the current transaction.
			As an input, DEVSEL# indicates a PCI slave has responded to the current address.
			As an output, DEVSEL# is asserted one cycle after the assertion of FRAME# and remains asserted to the end of a transaction as the result of a positive decode. DEVSEL# is asserted four cycles after the assertion of FRAME# if DEVSEL# has not been asserted by another PCI device when the CS5530A is programmed to be the subtractive decode agent. The subtractive decode sample point is configured in F0 Index 41h[2:1]. Subtractive decode cycles are passed to the ISA bus.
PAR	A21	I/O	PCI Parity
			PAR is the parity signal driven to maintain even parity across AD[31:0] and C/BE[3:0]#.
			The CS5530A drives PAR one clock after the address phase and one clock after each completed data phase of write transactions as a PCI master. It also drives PAR one clock after each completed data phase of read transactions as a PCI slave.
PERR#	B22	I/O	PCI Parity Error
			PERR# is pulsed by a PCI device to indicate that a parity error was detected. If a parity error was detected, PERR# is asserted by a PCI slave during a write data phase and by a PCI master during a read data phase.
			When the CS5530A is a PCI master, PERR# is an output during read transfers and an input during write transfers. When the CS5530A is a PCI slave, PERR# is an input during read transfers and an output during write transfers.
			Parity detection is enabled through F0 Index 04h[6]. An NMI is generated if I/O Port 061h[2] is set. PERR# can assert SERR# if F0 Index 41h[5] is set.
SERR#	A22	I/O	PCI System Error
		OD	SERR# is pulsed by a PCI device to indicate an address parity error, data parity error on a special cycle command, or other fatal system errors.
			SERR# is an open-drain output reporting an error condition, and an input indicating that the CS5530A should generate an NMI. As an input, SERR# is asserted for a single clock by the slave reporting the error.
			System error detection is enabled with F0 Index 04h[8]. An NMI is generated if I/O Port 061h[2] is set. PERR# can assert SERR# if F0 Index 41h[5] is set.

3.2.5 ISA Bus Interface

Signal Name	Pin No.	Pin Type	Description
SA_LATCH/		0	Limited ISA Mode: System Address Latch
SA_DIR			This signal is used to latch the destination address, which is multiplexed on bits [15:0] of the SA/SD bus.
			ISA Master Mode: System Address Direction
			Controls the direction of the external 5.0V tolerant transceiver on bits [15:0] of the SA bus. When low, the SA bus is driven out. When high, the SA bus is driven into the CS5530A by the external transceiver.
SA_OE#/	Н3	0	Limited ISA Mode: Flat Panel Data Port Line 16
FP_DATA16			Refer to Section 3.2.11 "Display Interface" on page 40 for this signal's definition.
		0	ISA Master Mode: System Address Transceiver Output Enable
			Enables the external transceiver on bits [15:0] of the SA bus.
MASTER#/	F3	0	Limited ISA Mode: Flat Panel Data Port Line 17
FP_DATA17	FP_DATA17		Refer to Section 3.2.11 "Display Interface" on page 40 for this signal's definition.
		1	ISA Master Mode: Master
			The MASTER# input asserted indicates an ISA bus master is driving the ISA bus.
SA23/GPIO7	AF23	I/O	Limited ISA Mode: System Address Bus Lines 23 through 20 or
SA22/GPIO6	AE23		General Purpose I/Os 7 through 4
SA21/GPIO5 SA20/GPIO4	AC21 AD22		These pins can function either as the upper four bits of the SA bus or as general purpose I/Os. Programming is done through F0 Index 43h, bits 6 and 2.
			Refer to Section 3.2.9 "Game Port and General Purpose I/O Interface" on page 39 for further details when used as GPIOs.
			ISA Master Mode: System Address Bus Lines 23 through 20
			The pins function only as the four MSB (most significant bits) of the SA bus.
SA[19:16]	AD10,	I/O	System Address Bus Lines 19 through 16
	AE11, AF12, AD11	(PU)	Refer to SA[15:0] signal description.
SA[15:0]/SD[15:0]	Refer	I/O	Limited ISA Mode: System Address Bus / System Data Bus
	to Table 3-3	(PU)	This bus carries both the addresses and data for all ISA cycles. Initially, the address is placed on the bus and then SA_LATCH is asserted in order for external latches to latch the address. At some time later, the data is put on the bus, for a read, or the bus direction is changed to an input, for a write.
			Pins designated as SA/SD[15:0] are internally connected to a 20-kohm pull-up resistor.
			ISA Master Mode: System Data Bus
			These pins perform only as SD[15:0] and pins FP_DATA[15:0] take on the functions of SA[15:0].
			Pins designated as SA/SD[15:0] are internally connected to a 20-kohm pull-up resistor.

Revision 1.1

3.2.5 ISA Bus Interface (Continued)

3.2.3 ISA BUS II	IIICHACE	(Oomanac	5a,			
Signal Name	Pin No.	Pin Type	Description			
SMEMW#/	E1	E1	E1	E1	0	Limited ISA Mode: Flat Panel Horizontal Sync Output
FP_HSYNC_OUT			Refer to Section 3.2.11 "Display Interface" on page 40 for this signal's definition.			
			Note that if Limited ISA Mode of operation is selected, SMEMW# is available on pin AF3 (multiplexed with RTCCS#).			
			ISA Master Mode: System Memory Write			
			SMEMW# is asserted for any memory write accesses below 1 MB (i.e., A23:A20 set to 0). This enables 8-bit memory slaves to decode the memory address on SA[19:0].			
SMEMR#/	E3	0	Limited ISA Mode: Flat Panel Vertical Sync Output			
FP_VSYNC_OUT			Refer to Section 3.2.11 "Display Interface" on page 40 for this signal's definition.			
			Note that if Limited ISA Mode of operation is selected, SMEMR# is available on pin AD4 (multiplexed with RTCALE).			
			ISA Master Mode: System Memory Read			
			SMEMR# is asserted for memory read accesses below 1 MB (i.e., A23:A20 set to 0). This enables 8-bit memory slaves to decode the memory address on SA[19:0].			
SMEMW#/	#/ AF3	AF3	0	System Memory Write / Real-Time Clock Chip Select		
RTCCS#			If Limited ISA Mode of operation has been selected, then SMEMW# can be output on this pin. SMEMW# is asserted for any memory write accesses below 1 MB (i.e., A23:A20 set to 0). This enables 8-bit memory slaves to decode the memory address on SA[19:0].			
			RTCCS# is a chip select to an external real-time clock chip. This signal is activated on reads or writes to I/O Port 071h.			
			Function selection is made through F0 Index 53h[2]: 0 = SMEMW#, 1 = RTCCS#.			
SMEMR#/	AD4	0	System Memory Read / Real-Time Clock Address Latch Enable			
RTCALE			If Limited ISA Mode of operation has been selected, then SMEMR# can be output on this pin. SMEMR# is asserted for memory read accesses below 1 MB (i.e., A23:A20 set to 0). This enables 8-bit memory slaves to decode the memory address on SA[19:0].			
			RTCALE is a signal telling an external real-time clock chip to latch the address, which is on the SD bus.			
			Function selection is made through F0 Index 53h[2]: 0 = SMEMR#, 1 = RTCALE.			
SBHE#	AE17	I/O	System Bus High Enable			
		(PU)	The CS5530A or ISA master asserts SBHE# to indicate that SD[15:8] will be used to transfer a byte at an odd address.			
			SBHE# is an output during non-ISA master DMA operations. It is driven as the inversion of AD0 during 8-bit DMA cycles. It is forced low for all 16-bit DMA cycles.			
			SBHE# is an input during ISA master operations.			
			This pin is internally connected to a 20-kohm pull-up resistor.			
BALE	AF9	0	Buffered Address Latch Enable			
			BALE indicates when SA[23:0] and SBHE# are valid and may be latched. For DMA transfers, BALE remains asserted until the transfer is complete.			

3.2.5 ISA Bus Interface (Continued)

3.2.3 ISA Bus II	1	Continue				
Signal Name	Pin No.	Pin Type	Description			
IOCHRDY	IOCHRDY AF11	I/O	I/O Channel Ready			
		OD	IOCHRDY deasserted indicates that an ISA slave requires additional wait states.			
			When the CS5530A is an ISA slave, IOCHRDY is an output indicating additional wait states are required.			
ZEROWS#	AF10	I	Zero Wait States			
			ZEROWS# asserted indicates that an ISA 8- or 16-bit memory slave can shorten the current cycle. The CS5530A samples this signal in the phase after BALE is asserted. If asserted, it shortens 8-bit cycles to three ISACLKs and 16-bit cycles to two ISACLKs.			
IOCS16#	AF16	I	I/O Chip Select 16			
			IOCS16# is asserted by 16-bit ISA I/O devices based on an asynchronous decode of SA[15:0] to indicate that SD[15:0] will be used to transfer data.			
			8-bit ISA I/O devices only use SD[7:0].			
IOR#	AE12	I/O	I/O Read			
		(PU)	IOR# is asserted to request an ISA I/O slave to drive data onto the data bus.			
			This pin is internally connected to a 20-kohm pull-up resistor.			
IOW#	AC11	I/O	I/O Write			
		(PU)	IOW# is asserted to request an ISA I/O slave to accept data from the data bus.			
			This pin is internally connected to a 20-kohm pull-up resistor.			
MEMCS16#	AC15	I/O	Memory Chip Select 16			
		OD	MEMCS16# is asserted by 16-bit ISA memory devices based on an asynchronous decode of SA[23:17] to indicate that SD[15:0] will be used to transfer data.			
			8-bit ISA memory devices only use SD[7:0].			
MEMR#	AE19	AE19	AE19	AE19	AE19 I/O	Memory Read
		(PU)	MEMR# is asserted for any memory read accesses. It enables 16-bit memory slaves to decode the memory address on SA[23:0].			
			This pin is internally connected to a 20-kohm pull-up resistor.			
MEMW#	AF20	I/O	Memory Write			
		(PU)	MEMW# is asserted for any memory write accesses. It enables 16-bit memory slaves to decode the memory address on SA[23:0].			
			This pin is internally connected to a 20-kohm pull-up resistor.			
AEN	AE8	0	Address Enable			
			AEN asserted indicates that a DMA transfer is in progress, informing I/O devices to ignore the I/O cycle.			
IRQ[15:14], [12:9],	Refer	1	ISA Bus Interrupt Request			
[7:3], 1	to Table 3-3		IRQ inputs indicate ISA devices or other devices requesting a CPU interrupt service.			
IRQ8#	AE14	1	Real-Time Clock Interrupt			
			IRQ8# is the (active-low) interrupt that comes from the external RTC chip and indicates a date/time update has completed.			

3.2.5 ISA Bus Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
DRQ[7:5], DRQ[3:0]	Refer to Table 3-3	I	DMA Request - Channels 7 through 5 and 3 through 0 DRQ inputs are asserted by ISA DMA devices to request a DMA transfer. The request must remain asserted until the corresponding DACK is asserted.
DACK[7:5]#, DACK[3:0]#	Refer to Table 3-3	0	DMA Acknowledge - Channels 7 through 5 and 3 through 0 DACK outputs are asserted to indicate when a DRQ is granted and the start of a DMA cycle.
TC	AF15	0	Terminal Count TC signals the final data transfer of a DMA transfer.

3.2.6 ROM Interface

Signal Name	Pin No.	Pin Type	Description
KBROMCS#	AE4	0	Keyboard/ROM Chip Select
			KBROMCS# is the enable pin for the BIOS ROM and for the keyboard controller. For ROM accesses, KBROMCS# is asserted for ISA memory accesses programmed at F0 Index 52h[2:0].
			For keyboard controller accesses, KBROMCS# is asserted for I/O accesses to I/O Ports 060h, 062h, 064h, and 066h.

3.2.7 IDE Interface

Signal Name	Pin No.	Pin Type	Description
IDE_RST#	W25	0	IDE Reset
			This signal resets all the devices that are attached to the IDE interface.
IDE_ADDR[2:0]	W24,	0	IDE Address Bits
	U26, U25		These address bits are used to access a register or data port in a device on the IDE bus.
IDE_DATA[15:0]	Refer	I/O	IDE Data Lines
	to Table 3-3		IDE_DATA[15:0] transfers data to/from the IDE devices.
IDE_IOR0#	R26	0	IDE I/O Read for Channels 0 and 1
IDE_IOR1#	R25	0	IDE_IOR0# is the read signal for Channel 0, and IDE_IOR1# is the read signal for Channel 1. Each signal is asserted on read accesses to the corresponding IDE port addresses.
			When in Ultra DMA/33 mode, these signals are redefined: Read Cycle — DMARDY0# and DMARDY1# Write Cycle — STROBE0 and STROBE1
IDE_IOW0#	R24	0	IDE I/O Write for Channels 0 and 1
IDE_IOW1#	T25	0	IDE_IOW0# is the write signal for Channel 0, and IDE_IOW1# is the read signal for Channel 1. Each signal is asserted on write accesses to corresponding IDE port addresses.
			When in Ultra DMA/33 mode, these signals are redefined: Read Cycle — STOP0 and STOP1 Write Cycle — STOP0 and STOP1
IDE_CS0#	V26	0	IDE Chip Selects
IDE_CS1#	Y26	0	The chip select signals are used to select the command block registers in an IDE device.
IDE_IORDY0	AD25	I	I/O Ready Channels 0 and 1
IDE_IORDY1	AE26	I	When deasserted, these signals extend the transfer cycle of any host register access when the device is not ready to respond to the data transfer request.
			When in Ultra DMA/33 mode, these signals are redefined: Read Cycle — STROBE0 and STROBE1 Write Cycle — DMARDY0# and DMARDY1#
IDE_DREQ0	AD26	I	DMA Request Channels 0 and 1
IDE_DREQ1	AC24	I	The DREQ is used to request a DMA transfer from the CS5530A. The direction of the transfers are determined by the IDE_IOR/IOW signals.
IDE_DACK0#	T26	0	DMA Acknowledge Channels 0 and 1
IDE_DACK1#	T24	0	The DACK# acknowledges the DREQ request to initiate DMA transfers.

3.2.8 USB Interface

Signal Name	Pin No.	Pin Type	Description
POWER_EN	V4	0	Power Enable
			This pin enables the power to a self-powered USB hub.
OVER_CUR#	W3	I	Over Current
			This pin indicates the USB hub has detected an overcurrent on the USB.
D+_PORT1	Y2	I/O	USB Port 1 Data Positive
			This pin is the Universal Serial Bus Data Positive for port 1.
DPORT1	Y1	I/O	USB Port 1 Data Minus
			This pin is the Universal Serial Bus Data Minus for port 1.
D+_PORT2	AA2	I/O	USB Port 2 Data Positive
			This pin is the Universal Serial Bus Data Positive for port 2.
DPORT2	AA1	I/O	USB Port 2 Data Minus
			This pin is the Universal Serial Bus Data Minus for port 2.
V _{DD} _USB	U2	PWR	Power for USB
AV _{DD} _USB	AB4	I	Analog Power for USB
		Analog	
AV _{SS} _USB	AA4	l I	Analog Ground for USB
		Analog	

3.2.9 Game Port and General Purpose I/O Interface

Signal Name	Pin No.	Pin Type	Description
GPORT_CS#	AD21	0	Game Port Chip Select
			GPORT_CS# is asserted upon any I/O reads or I/O writes to I/O Port 200h and 201h.
GPCS#	AF26	0	General Purpose Chip Select
			GPCS# is asserted upon any I/O access that matches the I/O address in the General Purpose Chip Select Base Address Register (F0 Index 70h) and the conditions set in the General Purpose Chip Select Control Register (F0 Index 72h).
GPIO7/SA23	AF23	I/O	Limited ISA Mode: General Purpose I/Os 7 through 4 or
GPIO6/SA22	AE23		System Address Bus Lines 23 through 20
GPIO5/SA21	AC21		These pins can function either as general purpose I/Os or as the upper four bits of the SA bus. Selection is done through F0 Index 43h[6,2].
GPIO4/SA20	AD22		Refer to GPIO[3:2] signal description for GPIO function description.
			ISA Master Mode: System Address Bus Lines 23 through 20
			These pins function as the four MSB (most significant bits) of the SA bus.
GPIO3	AF24	I/O	General Purpose I/Os 3 and 2
GPIO2	AF25	I/O	GPIOs can be programmed to operate as inputs or outputs via F0 Index 90h. As an input, the GPIO can be configured to generate an external SMI. Additional configuration can select if the SMI# is generated on the rising or falling edge. GPIO external SMI generation/edge selection is done in F0 Index 92h and 97h.

3.2.9 Game Port and General Purpose I/O Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
GPIO1/	AE24	I/O	General Purpose I/O 1 or Serial Data Input 2
SDATA_IN2			This pin can function either as a general purpose I/O or as a second serial data input pin if two codecs are used in the system.
			In order for this pin to function as SDATA_IN2, it must first be configured as an input (F0 Index 90h[1] = 0). Then setting F3BAR+Memory Offset 08h[21] = 1 selects the pin to function as SDATA_IN2.
			Refer to GPIO[3:2] signal description for GPIO function description.
GPIO0	AC22	I/O	General Purpose I/O 0
			Refer to GPIO[3:2] signal description for GPIO function description.

3.2.10 Audio Interface

Signal Name	Pin No.	Pin Type	Description
BIT_CLK	V2	I	Audio Bit Clock
			The serial bit clock from the codec.
SDATA_OUT	V1	0	Serial Data I/O
			This output transmits audio serial data to the codec.
SDATA_IN	U4	I	Serial Data Input
			This input receives serial data from the codec.
SYNC	U3	0	Serial Bus Synchronization
			This bit is asserted to synchronize the transfer of data between the CS5530A and the AC97 codec.
PC_BEEP	V3	0	PC Beep
			Legacy PC/AT speaker output.

3.2.11 Display Interface

Signal Name	Pin No.	Pin Type	Description
Pixel Port	1	l	
PCLK	A13	I	Pixel Clock
			This clock is used to sample data on the PIXEL input port. It runs at the graphics DOT clock (DCLK) rate.
PIXEL[23:0]	Refer to Table 3-3	I	Pixel Data Port This is the input pixel data from the processor's display controller. If F4BAR+Memory Offset 00h[29] is reset, the data is sent in RGB 8:8:8 format. Otherwise, the pixel data is sent in RGB 5:6:5 format which has been dithered by the processor. The other eight bits are used in conjunction with VID_DATA[7:0] to provide 16-bit video data. This bus is sampled by the PCLK input.

Signal Definitions Revision 1.1

Signal Name	Pin No.	Pin Type	Description
ENA_DISP	B1	I	Display Enable Input
			This signal qualifies active data on the pixel input port. It is used to qualify active pixel data for all display modes and configurations and is not specific to flat panel display.
Display CRT			
HSYNC	C6	I	Horizontal Sync Input
			This is the CRT horizontal sync input from the processor's display controller. It is used to indicate the start of a new video line. This signal is pipelined for the appropriate number of clock stages to remain in sync with the pixel data. A separate output (HSYNC_OUT) is provided to re-drive the CRT and flat panel interfaces.
HSYNC_OUT	N1	0	Horizontal Sync Output
			This is the horizontal sync output to the CRT. It represents a delayed version of the input horizontal sync signal with the appropriate pipeline delay relative to the pixel data. The pipeline delay and polarity of this signal are programmable.
VSYNC	B5	I	Vertical Sync Input
			This is the CRT vertical sync input from the processor's display controller. It is used to indicate the start of a new frame. This signal is pipelined for the appropriate number of clock stages to remain in sync with the pixel data. A separate output (VSYNC_OUT) is provided to re-drive the CRT and flat panel interfaces.
VSYNC_OUT	N2	0	Vertical Sync Output
			This is the vertical sync output to the CRT. It represents a delayed version of the input vertical sync signal with the appropriate pipeline delay relative to the pixel data. The pipeline delay and polarity of this signal are programmable.
DDC_SCL	M2	0	DDC Serial Clock
			This is the serial clock for the VESA Display Data Channel interface. It is used for monitoring communications. The DDC2B standard is supported by this interface.
DDC_SDA	M4	I/O	DDC Serial Data
			This is the bidirectional serial data signal for the VESA Display Data Channel interface. It is used to monitor communications. The DDC2B standard is supported by this interface.
			The direction of this pin can be configured through F4BAR+Memory Offset 04h[24]: 0 = Input; 1 = Output.
IREF	R3	. 1	VDAC Current Reference Input
(Video DAC)		Analog	Connect a 680 ohm resistor between this pin and AV _{SS} (analog ground for Video DAC).
EXTVREFIN	T2	I	External Voltage Reference Pin
(Video DAC)		Analog	Connect this pin to a 1.235V voltage reference.

3.2.11 Display II	nterrace (Jonanac	u, I
Signal Name	Pin No.	Pin Type	Description
AV _{DD1} (DAC)	U1	I Analog	Analog Power for Video DAC
AV _{DD2} (VREF)	Т3		These pins provide power to the analog portions of the Video DAC.
AV _{DD3} (DAC)	N4		A 47 µF capacitor should be connected between the DAC analog power and DAC analog ground. Analog power is AV _{DD1} (pin U1) and AV _{DD3} (pin N4). Analog ground is AV _{SS1} (pin R2) and AV _{SS5} (pin P2).
AV _{SS1} (DAC)	R2	. 1	Analog Ground for Video DAC
AV _{SS2} (ICAP)	R4	Analog	These pins provide the ground plane connections to the analog portions of
AV _{SS3} (VREF)	T4		the Video DAC. A 47 µF capacitor should be connected between the DAC analog power and
AV _{SS4} (ICAP)	P1	-	DAC analog ground. Analog power is AV _{DD1} (pin U1) and AV _{DD3} (pin N4).
AV _{SS5} (DAC)	P2	-	Analog ground is AV _{SS1} (pin R2) and AV _{SS5} (pin P2).
IOUTR	P3	0	Red DAC Output
(Video DAC)		Analog	Red analog output.
IOUTG	P4	0	Green DAC Output
(Video DAC)		Analog	Green analog output.
IOUTB	R1	0	Blue DAC Output
(Video DAC)		Analog	Blue analog output.
Display TFT/TV			
FP_DATA17/	F3	0	Limited ISA Mode: Flat Panel Data Port Line 17
MASTER#			Refer to FP_DATA[15:0] signal description.
		I	ISA Master Mode: Master
			Refer to Section 3.2.5 "ISA Bus Interface" on page 34 for this signal's definition.
FP_DATA16/	НЗ	0	Limited ISA Mode: Flat Panel Data Port Line 16
SA_OE#			Refer to FP_DATA[15:0] signal description.
		0	ISA Master Mode: System Address Transceiver Output Enable
			Refer to Section 3.2.5 "ISA Bus Interface" on page 34 for this signal's definition.
FP_DATA[15:0]/	Refer	0	Limited ISA Mode: Flat Panel Data Port Lines 15 through 0
SA[15:0]	to Table 3-3		This is the data port to an attached active matrix TFT panel. This port may optionally be tied to a DSTN formatter chip, LVDS transmitter, or digital NTSC/PAL encoder.
			F4BAR+Memory Offset 04h[7] enables the flat panel data bus: 0 = FP_DATA[17:0] is forced low 1 = FP_DATA[17:0] is driven based upon power sequence control
		I/O	ISA Master Mode: System Address Bus Lines 15 through 0
			These pins function as SA[15:0] and the pins designated as SA/SD[15:0] function only as SD[15:0].
			Note that SA[19:16] are dedicated address pins and GPIO[7:4] function as SA[23:20] only.

3.2.11 Display in	<u> </u>	ı	,
Signal Name	Pin No.	Pin Type	Description
FP_CLK	M1	0	Limited ISA Mode: Flat Panel Clock
			This is the clock for the flat panel interface.
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A cannot support TFT flat panels or TV controllers.
FP_CLK_EVEN	L3	0	Limited ISA Mode: Flat Panel Even Clock
			This is an optional output clock for a set of external latches used to de-multiplex the flat panel data bus into two channels (odd/even). Typically this would be used to interface to a pair of LVDS transmitters driving an XGA resolution flat panel.
			F4BAR+Memory Offset 04h[12] enables the FP_CLK_EVEN output: 0 = Standard flat panel 1 = XGA flat panel
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A can not support TFT flat panels or TV controllers.
FP_HSYNC	C2	I	Limited ISA Mode: Flat Panel Horizontal Sync Input
			This is the horizontal sync input reference from the processor's display controller. The timing of this signal is independent of the standard (CRT) horizontal sync input to allow a different timing relationship between the flat panel and an attached CRT.
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A can not support TFT flat panels or TV controllers.
FP_HSYNC_OUT	E1	0	Limited ISA Mode: Flat Panel Horizontal Sync Output
/SMEMW#			This is the horizontal sync for an attached active matrix TFT flat panel. This represents a delayed version of the input flat panel horizontal sync signal with the appropriate pipeline delay relative to the pixel data.
			ISA Master Mode: System Memory Write
			Refer to Section 3.2.5 "ISA Bus Interface" on page 34 for this signal's definition.
FP_VSYNC	C1	I	Limited ISA Mode: Flat Panel Vertical Sync Input
			This is the vertical sync input reference from the processor's display control- ler. The timing of this signal is independent of the standard (CRT) vertical sync input to allow a different timing relationship between the flat panel and an attached CRT.
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A can not support TFT flat panels or TV controllers.
FP_VSYNC_OUT	E3	0	Limited ISA Mode: Flat Panel Vertical Sync Output
/SMEMR#			This is the vertical sync for an attached active matrix TFT flat panel. This represents a delayed version of the input flat panel vertical sync signal with the appropriate pipeline delay relative to the pixel data.
			ISA Master Mode: System Memory Read
			Refer to Section 3.2.5 "ISA Bus Interface" on page 34 on for this signal's definition.

Signal Name	Pin No.	Pin Type	Description
FP_DISP_	F2	0	Flat Panel Display Enable Output
ENA_OUT			This is the display enable for an attached active matrix TFT flat panel. This signal qualifies active pixel data on the flat panel interface.
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A can not support TFT flat panels or TV controllers.
FP_ENA_VDD	L2	0	Flat Panel VDD Enable
			This is the enable signal for the V _{DD} supply to an attached flat panel. It is under the control of power sequence control logic. A transition on bit 6 of the Display Configuration Register (F4BAR+Memory Offset 04h) initiates a power-up/down sequence.
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A can not support TFT flat panels or TV controllers.
FP_ENA_BKL	J4	0	Flat Panel Backlight Enable Output
			This is the enable signal for the backlight power supply to an attached flat panel. It is under control of the power sequence control logic.
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A can not support TFT flat panels or TV controllers.
Display MPEG			
VID_DATA[7:0]	C12,	I	Video Data Port
	B12, A12, D11, C11, B13, C13, A11		This is the input data for a video (MPEG) or graphics overlay in its native form. For video overlay, this data is in an interleaved YUV 4:2:2 format. For graphics overlay, the data is in RGB 5:6:5 format. This port operates at the VID_CLK rate.
VID_CLK	A6	I	Video Clock
			This is the clock for the video port. This clock is completely asynchronous to the input pixel clock rate.
VID_VAL	B7	I	Video Valid
			This signal indicates that valid video data is being presented on the VID_DATA input port. If the VID_RDY signal is also asserted, the data will advance.
VID_RDY	B10	0	Video Ready
			This signal indicates that the CS5530A is ready to receive the next piece of video data on the VID_DATA port. If the VID_VAL signal is also asserted, the data will advance.

Signal Definitions Revision 1.1

3.2.12 DCLK PLL

Signal Name	Pin No.	Pin Type	Description
PLLTEST	N23		PLLTEST
			Internal test pin. This pin should not be connected for normal operation.
PLLVAA	M25	- 1	Analog PLL Power (V _{DD})
		Analog	PLLVAA is the analog positive rail power connection to the PLL.
PLLAGD	N25	I	Analog PLL Ground (V _{SS})
		Analog	PLLAGD is the analog ground rail connection to the PLL.
PLLDVD	M23	I	Digital PLL Power (V _{DD})
		Analog	This pin is the digital V_{DD} power connection for the PLL.
PLLDGN	N26	- 1	Digital PLL Ground (V _{SS})
		Analog	This pin is the digital ground (V _{SS}) connection for the PLL.

3.2.13 Power, Ground, and No Connects

Signal Name	Pin No.	Pin Type	Description
V _{DD}	Refer to Table 3-3 (Total of 17)	PWR	3.3V (Nominal) Power Connection Note that the USB power (V _{DD} _USB, AV _{DD} _USB) connections are listed in Section 3.2.8 "USB Interface" on page 39.
V _{SS}	Refer to Table 3-3 (Total of 38)	GND	Ground Connection Note that the USB ground (AV _{SS} _USB) connection is listed in Section 3.2.8 "USB Interface" on page 39.
NC	Refer to Table 3-3 (Total of 20)		No Connection These lines should be left disconnected. Connecting a pull-up/-down resistor or to an active signal could cause unexpected results and possible malfunctions.

3.2.14 Internal Test and Measurement

Signal Name	Pin No.	Pin Type	Description
TEST	D3	I	Test Mode
			TEST should be tied low for normal operation.

Functional Description Revision 1.1 AMD

Functional Description

The AMD Geode[™] CS5530A companion device provides many support functions for a GX1 processor. This chapter discusses the detailed operations of the CS5530A in two categories: system-level activities and operations/programming of the major functional blocks.

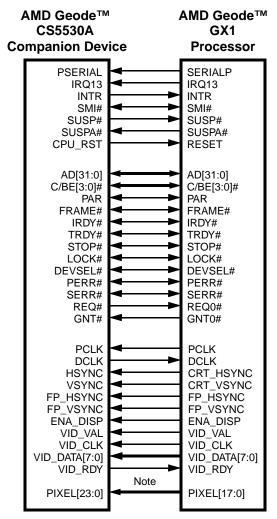
The system-level discussion topics revolve around events that affect the device as a whole unit and as an interface with other chips (e.g., processor): Topics include:

- Processor Interface
 - Display Subsystem Connections
 - PSERIAL Pin Interface
- · PCI Bus Interface
 - PCI Initiator
 - PCI Target
 - Special Bus Cycles-Shutdown/Halt
 - PCI Bus Parity
 - PCI Interrupt Routing Support
 - Delayed Transactions
- Resets and Clocks
 - Resets
 - ISA Clock
 - DOT Clock
- Power Management
 - CPU Power Management
 - APM Support
 - Peripheral Power Management

All of the major functional blocks interact with the processor through the PCI bus, or via its own direct interface. The major functional blocks are divided out as:

PC/AT Compatibility Logic

- ISA Subtractive Decode
- ISA Bus Interface
- ROM Interface
- Megacells
- I/O Ports 092h and 061h System Control
- Keyboard Interface Function
- External Real-Time Clock Interface
- IDE Controller
 - IDE Interface Signals
 - IDE Configuration Registers
- XpressAUDIO™ Subsystem
 - Subsystem Data Transport Hardware
 - VSA Technology Support Hardware
- Display Subsystem Extensions
 - Video Interface Configuration Registers
 - Video Accelerator
 - Video Overlay
 - Gamma RAM
 - Display Interface
- Universal Serial Bus Support
 - USB PCI Controller
 - USB Host Controller
 - USB Power Management


Note that this Functional Description section of the data book describes many of the registers used for configuration of the CS5530A; however, not all registers are reported in detail. Some tables in the following subsections show only the bits (not the entire register) associated with a specific function being discussed. For access, register, and bit information regarding all CS5530A registers refer to Section 5.0 "Register Descriptions" on page 143.

AMD Revision 1.1 Processor Interface

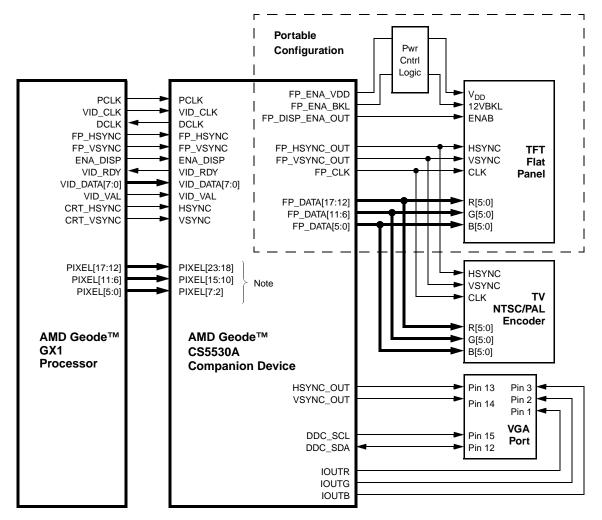
4.1 Processor Interface

The CS5530A interface to the GX1 processor consists of seven miscellaneous connections, the PCI bus interface signals, plus the display controller connections. Figure 4-1 shows the interface requirements. Note that the PC/AT legacy pins NMI, WM_RST, and A20M are all virtual functions executed in SMM (System Management Mode) by the BIOS.

- PSERIAL is a one-way serial bus from the processor to the CS5530A used to communicate power management states and VSYNC information for VGA emulation.
- IRQ13 is an input from the processor indicating that a floating point error was detected and that INTR should be asserted.
- INTR is the level output from the integrated 8259 PICs and is asserted if an unmasked interrupt request (IRQn) is sampled active.
- SMI# is a level-sensitive interrupt to the processor that can be configured to assert on a number of different system events. After an SMI# assertion, SMM is entered and program execution begins at the base of the SMM address space. Once asserted, SMI# remains active until the SMI source is cleared.
- SUSP# and SUSPA# are handshake pins for implementing CPU Clock Stop and clock throttling.
- CPU_RST resets the CPU and is asserted for approximately 9 ms after the negation of POR#.
- · PCI bus interface signals.
- Display subsystem interface connections.

Note: Refer to Figure 4-3 on page 50 for correct interconnection of PIXEL lines with the processor.

Figure 4-1. Processor Signal Connections


Processor Interface Revision 1.1 AMD

4.1.1 Display Subsystem Connections

When a GX1 processor is used in a system with the CS5530A, the need for an external RAMDAC is eliminated. The CS5530A contains the DACs, a video accelerator engine, and the TFT interface.

The CS5530A also supports both portable and desktop configurations. Figure 4-2 shows the signal connections for both types of systems.

Figure 4-3 on page 50 details how PIXEL[17:0] on the processor connects with PIXEL[23:0] of the CS5530A.

Note: Connect PIXEL[17:16] PIXEL[9:8], and PIXEL[1:0] on the CS5530A to ground. See Figure 4-3 "PIXEL Signal Connections" on page 50.

Figure 4-2. Portable/Desktop Display Subsystem Configurations

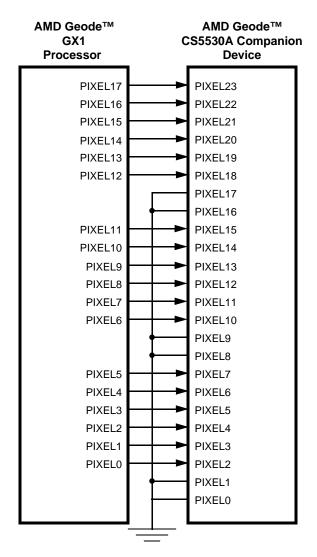


Figure 4-3. PIXEL Signal Connections

4.1.2 PSERIAL Pin Interface

The majority of the system power management logic is implemented in the CS5530A, but a minimal amount of logic is contained within the GX1 processor to provide information that is not externally visible (e.g., graphics controller).

The processor implements a simple serial communications mechanism to transmit the CPU status to the CS5530A. The processor accumulates CPU events in an 8-bit register (defined in Table 4-1) which it transmits serially every 1 to $10~\mu s$.

The packet transmitter holds the serial output pin (PSE-RIAL) low until the transmission interval timer has elapsed. Once the timer has elapsed, the PSERIAL pin is held high for two clocks to indicate the start of packet transmission. The contents of the Serial Packet Register are then shifted out starting from bit 7 down to bit 0. The PSERIAL pin is held high for one clock to indicate the end of packet trans-

mission and then remains low until the next transmission interval. After the packet transmission is complete, the processor's Serial Packet Register's contents are cleared.

The processor's input clock is used as the clock reference for the serial packet transmitter.

Once a bit in the register is set, it remains set until the completion of the next packet transmission. Successive events of the same type that occur between packet transmissions are ignored. Multiple unique events between packet transmissions accumulate in this register. The processor transmits the contents of the serial packet only when a bit in the Serial Packet Register is set and the interval timer has elapsed.

For more information on the Serial Packet Register referenced in Table 4-1, refer to the *AMD Geode™ GX1 Processor Data Book*.

The CS5530A decodes the serial packet after each transmission and performs the power management tasks related to video retrace.

Table 4-1. GX1 Processor Serial Packet Register

Bit	Description
7	Video IRQ: This bit indicates the occurrence of a video vertical sync pulse. This bit is set at the same time that the VINT (Vertical Interrupt) bit gets set in the DC_TIMING_CFG register. The VINT bit has a corresponding enable bit (VIEN) in the DC_TIM_CFG register.
6	CPU Activity: This bit indicates the occurrence of a level 1 cache miss that was not a result of an instruction fetch. This bit has a corresponding enable bit in the PM_CNTL_TEN register.
5:2	Reserved
1	Programmable Address Decode: This bit indicates the occurrence of a programmable memory address decode. The bit is set based on the values of the PM_BASE register and the PM_MASK register. The PM_BASE register can be initialized to any address in the full CPU address range.
0	Video Decode: This bit indicates that the CPU has accessed either the display controller registers or the graphics memory region. This bit has a corresponding enable bit in the PM_CNTRL_TEN.

4.1.2.1 Video Retrace Interrupt

Bit 7 of the "Serial Packet" can be used to generate an SMI whenever a video retrace occurs within the processor. This function is normally not used for power management but for SoftVGA routines.

Setting F0 Index 83h[2] = 1 (bit details on page 164) enables this function. A read only status register located at F1BAR+Memory Offset 00h[5] (bit details on page 181) can be read to see if the SMI was caused by a video retrace event.

PCI Bus Interface Revision 1.1 AMD

4.2 PCI Bus Interface

The PCI bus interface is compliant with the PCI Bus Specification Rev. 2.1.

The CS5530A acts as a PCI target for PCI cycles initiated by the processor or other PCI master devices, or as an initiator for DMA, ISA, IDE, and audio master transfer cycles. It supports positive decode for memory and I/O regions and is the subtractive decode agent on the PCI bus. The CS5530A also generates address and data parity and performs parity checking. A PCI bus arbiter is not part of the CS5530A; however, one is included in the GX1 processor.

The PCI Command Register, located at F0 Index 04h (Table 4-2), provides the basic control over the CS5530A's ability to respond and perform PCI bus accesses.

4.2.1 PCI Initiator

The CS5530A acts as a PCI bus master on behalf of the DMA controller or ISA, IDE, and audio interfaces. The

REQ# and GNT# signals are used to arbitrate for the PCI bus

Note: In a GX1 processor based system, the REQ#/GNT# signals of the CS5530A must connect to the REQ0#/GNT0# of the processor. This configuration ensures that the CS5530A is treated as a non-preemptable PCI master by the processor.

The CS5530A asserts REQ# in response to a bus mastering or DMA request for ownership of the PCI bus. GNT# is asserted by the PCI arbiter (i.e., processor) to indicate that access to the PCI bus has been granted to the CS5530A. The CS5530A then issues a grant to the DMA controller. This mechanism prevents any deadlock situations across the bridge. Once granted the PCI bus, the ISA master or DMA transfer commences.

If an ISA master executes an I/O access, that cycle remains on the ISA bus and is not forwarded to the PCI bus. The CS5530A performs only single transfers on the PCI bus for legacy DMA cycles.

Table 4-2. PCI Command Register

Bit	Description	
F0 Index	· ·	Reset Value = 000Fh
15:10	Reserved: Set to 0.	
9	Fast Back-to-Back Enable (Read Only): This function is not supported when the CS5530 disabled (always reads 0).	A is a master. It is always
8	SERR#: Allow SERR# assertion on detection of special errors. 0 = Disable (Default); 1 = E	Enable.
7	Wait Cycle Control (Read Only): This function is not supported in the CS5530A. It is alwa (always reads 0).	ys disabled
6	Parity Error: Allow the CS5530A to check for parity errors on PCI cycles for which it is a tar a parity error is detected. 0 = Disable (Default); 1 = Enable.	rget, and to assert PERR# when
5	VGA Palette Snoop Enable (Read Only): This function is not supported in the CS5530A. reads 0).	It is always disabled (always
4	Memory Write and Invalidate: Allow the CS5530A to do memory write and invalidate cycle Register (F0 Index 0Ch) is set to 16 bytes (04h). 0 = Disable (Default); 1 = Enable.	es, if the PCI Cache Line Size
3	Special Cycles: Allow the CS5530A to respond to special cycles. 0 = Disable; 1 = Enable (This bit must be enabled to allow the CPU Warm Reset internal signal to be triggered from	` '
2	Bus Master: Allow the CS5530A bus mastering capabilities. 0 = Disable; 1 = Enable (Defa This bit must be set to 1.	ult).
1	Memory Space: Allow the CS5530A to respond to memory cycles from the PCI bus. 0 = D	visable; 1 = Enable (Default).
0	I/O Space: Allow the CS5530A to respond to I/O cycles from the PCI bus. 0 = Disable; 1 =	Enable (Default).

4.2.2 PCI Target

The CS5530A positively decodes PCI transactions intended for any internal registers, the ROM address range, and several peripheral and user-defined address ranges. For positive-decoded transactions, the CS5530A is a medium responder. Table 4-3 lists the valid C/BE# encoding for PCI target transactions.

The CS5530A acts as the subtractive agent in the system since it contains the ISA bridge functionality. Subtractive decoding ensures that all accesses not positively claimed by PCI devices are forwarded to the ISA bus. The subtractive-decoding sample point can be configured as slow, default, or disabled via F0 Index 41h[2:1]. Table 4-4 shows these programming bits. Figure 4-4 shows the timing for subtractive decoding.

Note: I/O accesses that are mis-aligned so as to include address 0FFFFh and at least one byte beyond will "wrap" around to I/O address 0000h.

Table 4-3. PCI Command Encoding

C/BE[3:0]#	Command Type	
0000	Interrupt Acknowledge	
0001	Special Cycles: Shutdown, AD[15:0] = 0000	
	Special Cycles: Halt, AD[15:0] = 0001	
0010	I/O Read	
0011	I/O Write	
010x	Reserved	
0110	Memory Read	
0111	Memory Write	
100x	Reserved	
1010	Configuration Read	
1011	Configuration Write	
1100	Memory Read Multiple (memory read only)	
1101	Reserved	
1110	Memory Read Line (memory read only)	
1111	Memory Write, Invalidate (memory write)	

Table 4-4. Subtractive Decoding Related Bits

Bit	Description	
F0 Index 4	1h PCI Function Control Register 2 (R/W)	Reset Value = 10h
2:1	Subtractive Decode: These bits determine the point at which the CS5530A accepts cycles t device. The CS5530A defaults to taking subtractive decode cycles in the default cycle clock, Slow Decode cycle point if all other PCI devices decode in the fast or medium clocks. Disabli done with care, as all ISA and ROM cycles are decoded subtractively.	but can be moved up to the
	00 = Default sample (4th clock from FRAME# active) 01 = Slow sample (3rd clock from FRAME# active) 1x = No subtractive decode	

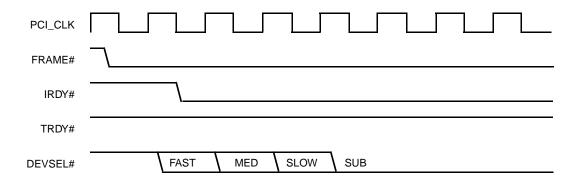


Figure 4-4. Subtractive Decoding Timing

PCI Bus Interface Revision 1.1 AMD

4.2.3 Special Bus Cycles-Shutdown/Halt

The PCI interface does not pass Special Bus Cycles to the ISA interface, since special cycles by definition have no destination. However, the PCI interface monitors the PCI bus for Shutdown and Halt Special Bus Cycles.

Upon detection of a Shutdown Special Bus Cycle, a WM_RST SMI is generated after a delay of three PCI clock cycles. PCI Shutdown Special Cycles are detected when C/BE[3:0]# = 0001 during the address phase and AD[31:0] = xxxx0000h during the data phase. C/BE[3:0]# are also properly asserted during the data phase.

Upon detection of a Halt Special Bus Cycle, the CS5530A completes the cycle by asserting TRDY#. PCI Halt Special Bus Cycles are detected when CBE[3:0]# = 0001 during the address phase and AD[31:0] = xxxx0001h during the data phase of a Halt cycle. CBE[3:0]# are also properly asserted during the data phase.

4.2.4 PCI Bus Parity

When the CS5530A is the PCI initiator, it generates address parity for read and write cycles. It checks data par-

ity for read cycles and it generates data parity for write cycles. The PAR signal is an even-parity bit that is calculated across 36 bits of AD[31:0] plus C/BE[3:0]#.

By default, the CS5530A does not report parity errors. However, the CS5530A detects parity errors during the data phase if F0 Index 04h[6] is set to 1. If enabled and a data parity error is detected, the CS5530A asserts PERR#. It also asserts SERR# if F0 Index 41h[5] is set to 1. This allows NMI generation.

The CS5530A also detects parity errors during the address phase if F0 Index 04h[6] is set. When parity errors are detected during the address phase, SERR# is asserted internally. Parity errors are reported to the CPU by enabling the SERR# source in I/O Port 061h (Port B) control register. The CS5530A sets the corresponding error bits in the PCI Status Register (F0 Index 06h[15:14]). Table 4-5 shows these programming bits.

If the CS5530A is the PCI master for a cycle and detects PERR# asserted, it generates SERR# internally.

Table 4-5. PERR#/SERR# Associated Register Bits

Bit	Description		
F0 Index	04h-05h	PCI Command Register (R/W)	Reset Value = 000Fh
6	_	S5530A to check for parity errors on PCI cycles for which it is a 0 = Disable (Default); 1 = Enable.	target, and to assert PERR# when
F0 Index	06h-07h	PCI Status Register (R/W)	Reset Value = 0280h
15	Detected Parity Error: Write 1 to clear.	his bit is set whenever a parity error is detected.	
14	Signaled System Error Write 1 to clear.	This bit is set whenever the CS5530A asserts SERR# active.	
F0 Index	41h	PCI Function Control Register 2 (R/W)	Reset Value = 10h
5	_	: Assert SERR# any time that PERR# is asserted or detected a ascaded to NMI (SMI) generation in the system). 0 = Disable; 1	`

Revision 1.1 PCI Bus Interface

4.2.5 PCI Interrupt Routing Support

The CS5530A allows the PCI interrupt signals INTA#, INTB#, INTC#, and INTD# (also know in industry terms as PIRQx#) to be mapped internally to any IRQ signal via register programming (shown in Table 4-6). Further details are supplied in Section 4.5.4.4 "PCI Compatible Interrupts" on page 103 regarding edge/level sensitivity selection.

4.2.6 Delayed Transactions

The CS5530A supports delayed transactions to prevent slow PCI cycles from occupying too much bandwidth and allows access for other PCI traffic.

Note: For systems which have only the GX1 processor and CS5530A on the PCI bus, system performance is improved if delayed transactions are disabled

F0 Index 42h[5] and F0 Index 43h[1] are used to program this function. Table 4-7 shows these bit formats.

Table 4-6. PCI Interrupt Steering Registers

Bit	Description			
F0 Index 5Ch		PCI Interrupt Stee	Reset Value = 00	
7:4	INTB# Target Interrup	t: Selects target interrupt for I	NTB#.	
	0000 = Disable	0100 = IRQ4	1000 = RSVD	1100 = IRQ12
	0001 = IRQ1	0101 = IRQ5	1001 = IRQ9	1101 = RSVD
	0010 = RSVD	0110 = IRQ6	1010 = IRQ10	1110 = IRQ14
	0011 = IRQ3	0111 = IRQ7	1011 = IRQ11	1111 = IRQ15
3:0	INTA# Target Interrup	t: Selects target interrupt for I	NTA#.	
	0000 = Disable	0100 = IRQ4	1000 = RSVD '	1100 = IRQ12
	0001 = IRQ1	0101 = IRQ5	1001 = IRQ9	1101 = RSVD
	0010 = RSVD	0110 = IRQ6	1010 = IRQ10	1110 = IRQ14
	00.0			
	0011 = IRQ3	0111 = IRQ7	1011 = IRQ11	1111 = IRQ15
	0011 = IRQ3			1111 = IRQ15 h in order to maintain PCI interrupt
	0011 = IRQ3 ne target interrupt must first ompatibility.	st be configured as level sensi		
co	0011 = IRQ3 ne target interrupt must fire compatibility. 5Dh	st be configured as level sensi	tive via I/O Port 4D0h and 4D1l	h in order to maintain PCI interrupt
co F 0 Index	0011 = IRQ3 ne target interrupt must fire compatibility. 5Dh	st be configured as level sensi	tive via I/O Port 4D0h and 4D1l	h in order to maintain PCI interrupt
co F 0 Index	ne target interrupt must first impatibility. 5Dh INTD# Target Interrup	PCI Interrupt Stee	ring Register 2 (R/W) NTD#.	h in order to maintain PCI interrupt Reset Value = 00
co F 0 Index	ne target interrupt must first impatibility. 5Dh INTD# Target Interrupt 0000 = Disable	PCI Interrupt Stee t: Selects target interrupt for I 0100 = IRQ4	ring Register 2 (R/W) NTD#. 1000 = RSVD	h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12
co o Index	ne target interrupt must first impatibility. 5Dh INTD# Target Interrupt 0000 = Disable 0001 = IRQ1	PCI Interrupt Stee t: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5	ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9	Reset Value = 00 1100 = IRQ12 1101 = RSVD
co F 0 Index	ne target interrupt must first impatibility. 5Dh INTD# Target Interrupt 0000 = Disable 0001 = IRQ1 0010 = RSVD 0011 = IRQ3	PCI Interrupt Stee t: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5 0110 = IRQ6	ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10 1011 = IRQ11	Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14
7:4	ne target interrupt must first impatibility. 5Dh INTD# Target Interrupt 0000 = Disable 0001 = IRQ1 0010 = RSVD 0011 = IRQ3	PCI Interrupt Stee It: Selects target interrupt for I O100 = IRQ4 O101 = IRQ5 O110 = IRQ6 O111 = IRQ7	ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10 1011 = IRQ11	Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14
7:4	ne target interrupt must first impatibility. 5Dh INTD# Target Interrupt 0000 = Disable 0001 = IRQ1 0010 = RSVD 0011 = IRQ3 INTC# Target Interrupt	PCI Interrupt Stee It: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5 0110 = IRQ6 0111 = IRQ7	ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10 1011 = IRQ11 NTC#.	Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14 1111 = IRQ15
7:4	ne target interrupt must first impatibility. 5Dh INTD# Target Interrupt 0000 = Disable 0001 = IRQ1 0010 = RSVD 0011 = IRQ3 INTC# Target Interrupt 0000 = Disable	PCI Interrupt Stee It: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5 0110 = IRQ6 0111 = IRQ7 It: Selects target interrupt for I 0100 = IRQ4	ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10 1011 = IRQ11 NTC#.	Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14 1111 = IRQ15

Table 4-7. Delay Transaction Programming Bits

Bit	Description	
F0 Index	42h PCI Function Control Register 3 (R/W)	Reset Value = ACh
5	Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Also see F0 Index 43h[1].	
F0 Index 4	USB Shadow Register (R/W)	Reset Value = 03h
1	PCI Retry Cycles: When the CS5530A is a PCI target and the PCI buffer is not empty, allow the 0 = Disable; 1 = Enable.	PCI bus to retry cycles.
	This bit works in conjunction with PCI bus delayed transactions bit. F0 Index 42h[5] must = 1 for	this bit to be valid.

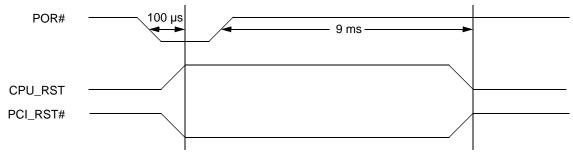
Resets and Clocks Revision 1.1 AMD

4.3 Resets and Clocks

The operations of resets and clocks in the CS5530A are described in this section of the Functional Description.

At any state, Power-on/Resume/Reset, the 14.31818 MHz oscillator must be active for the resets to function.

4.3.1 Resets


The CS5530A generates two reset signals, PCI_RST# to the PCI bus and CPU_RST to the GX1 processor. These resets are generated after approximately 100 μ s delay from POR# active as depicted in Figure 4-5.

4.3.2 ISA Clock

The CS5530A creates the ISACLK from dividing the PCI-CLK. For ISA compatibility, the ISACLK nominally runs at 8.33 MHz or less. The ISACLK dividers are programmed via F0 Index 50h[2:0] as shown in Table 4-8.

Table 4-8. ISACLK Divider Bits

Bit	Description		
F0 Index 5	50h	PIT Control/ISA CLK Divider (R/W)	Reset Value = 7Bh
2:0	ISA Clock Divisor: Determine approximately 8 MHz.	es the divisor of the PCI clock used to make the ISA clock	k, which is typically programmed for
	000 = Reserved 001 = Divide by two 010 = Divide by three 011 = Divide by four	100 = Divide by five 101 = Divide by six 110 = Divide by seven 111 = Divide by eight ag of 010 (divide by 3). If 30 or 33 MHz PCI clock, use a second	sotting of 011 (divide by 4)

POR# minimum pulse width for CS5530A only (i.e., not a system specification) = 100 µs and 14 MHz must be running.

Figure 4-5. CS5530A Reset

Revision 1.1 Resets and Clocks

4.3.3 DOT Clock

The DOT clock (DCLK) is generated from the 14.31818 MHz input (CLK_14MHZ). A combination of a phase locked loop (PLL), linear feedback shift register (LFSR) and divisors are used to generate the desired frequencies for the DOT clock. The divisors and LFSR are configurable through the F4BAR+Memory Offset 24h. The minimum frequency of DCLK is 10 MHz and the maximum is 200 MHz.

However, system constraints limit DCLK to 150 MHz when DCLK is used as the graphics subsystem clock.

For applications that do not use the GX1 processor's graphics subsystem, this is an available clock for general purpose use.

The system clock distribution for a CS5530A/GX1 based system is shown in Figure 4-6.

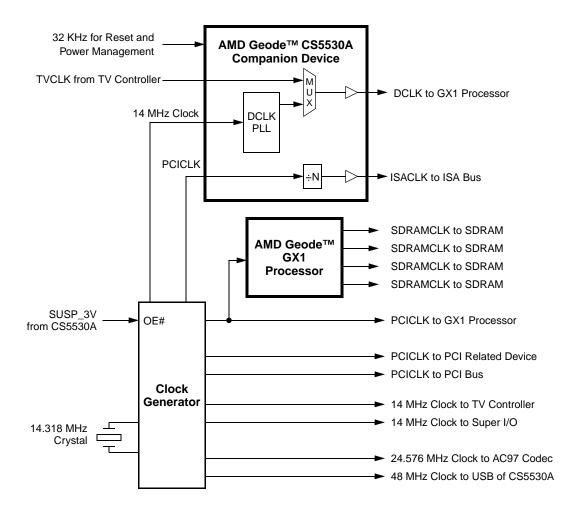


Figure 4-6. System Clock Distribution

56

Resets and Clocks Revision 1.1 AMD

4.3.3.1 DCLK Programming

The PLL contains an input divider (ID), feedback divider (FD) and a post divider (PD). The programming of the dividers is through F4BAR+Memory Offset 24h (see Table 4-9 on page 58). The maximum output frequency is 300 MHz. The output frequency is given by equation #1:

Equation #1:

 $DCLK = [CLK_14MHZ * FD] \div [PD *ID]$

Condition:

140 MHz < [DCLK * PD] < 300 MHz

Where:

CLK_14MHZ is pin P24

FD is derived from N see equation #2 and #3:

PD is derived from bits [28:24]

ID is derived from bits [2:0]

Equation #2:

If FD is an odd number then: FD = 2*N +1

Equation #3:

If FD is an even number then: FD = 2*N +0

Where:

N is derived from bits [22:12]

+1 is achieved by setting bit 23 to 1.

+0 is achieved by clearing bit 23 to 0.

Example

Define Target Frequency:

Target frequency = 135 MHz

Satisfy the "Condition":

(140 MHz < [DCLK * PD] < 300 MHz) 140 MHz < [135 MHz * 2] < 300 MHz Therefore PD = 2

Solve Equation #1:

DCLK = [CLK_14MHZ * FD] \div [PD *ID] 135 = [14.31818 * FD] \div [2 * ID] 135 = [7.159 * FD] \div ID 18.86 = FD \div ID Guess: ID = 7, Solve for FD FD = 132.02

Solve Equation #2 or #3:

FD = 2*N + 1 for odd FD FD = 2*N + 0 for even FD FD is 132, therefore even 132 = 2*N + 0N = 66

Summarize:

PD = 2: Bits [28:24] = 00111 ID = 7: Bits [2:0] = 101 N = 66: Bits [22:12] = 073h (found in Table 4-10), clear bit 23

Result:

DCLK = 135

The BIOS has been provided with a complete table of divisor values for supported graphics clock frequencies. Many combinations of divider values and VCO frequencies are possible to achieve a certain output clock frequency. These BIOS values may be adjusted from time to time to meet system frequency accuracy and jitter requirements. For applications that do not use the GX1 processor's graphics subsystem, this is an available clock for general purpose use.

The transition from one DCLK frequency to another is not guaranteed to be smooth or bounded; therefore, new divider coefficients should only be programmed while the PLL is off line in a situation where the transition characteristics of the clock are "don't care". The steps below describe (in order) how to change the DCLK frequency.

- 1) Program the new clock frequency.
- Program Feedback Reset (bit 31) high and Bypass PLL (bit 8) high.
- 3) Wait at least 500 µs for PLL to settle.
- 4) Program Feedback Reset (bit 31) low.
- 5) Program Bypass PLL (bit 8) low.

Table 4-9. DCLK Configuration Register

Bit	Description						
F4BAR+M	lemory Offset 24h-27h	DOT Clock Configuratio	n Register (R/W)	Reset Value = 00000000h			
31		e PLL postscaler and feedback et description is provided in bit		1 = Reset.			
30	Half Clock: 0 = Enable; 1 =	Disable.					
	For odd post divisors, half clock enables the falling edge of the VCO clock to be used to generate the falling edge of the post divider output to more closely approximate a 50% output duty cycle.						
29	Reserved: Set to 0.						
28:24	5-Bit DCLK PLL Post Divisor (PD) Value: Selects value of 1 to 31.						
	00000 = PD divisor of 8 00001 = PD divisor of 6 00010 = PD divisor of 18 00011 = PD divisor of 4 00100 = PD divisor of 12 00101 = PD divisor of 16	01000 = PD divisor of 10 01001 = PD divisor of 20 01010 = PD divisor of 14 01011 = PD divisor of 26 01100 = PD divisor of 22 01101 = PD divisor of 28	10000 = PD divisor of 9 10001 = PD divisor of 7 10010 = PD divisor of 19 10011 = PD divisor of 5 10100 = PD divisor of 13 10101 = PD divisor of 17	11000 = PD divisor of 11 11001 = PD divisor of 21 11010 = PD divisor of 15 11011 = PD divisor of 27 11100 = PD divisor of 23 11101 = PD divisor of 29			
	00110 = PD divisor of 24 00111 = PD divisor of 2 *See bit 11 description.	01110 = PD divisor of 30 01111 = PD divisor of 1*	10110 = PD divisor of 25 10111 = PD divisor of 3	11110 = PD divisor of 31 11111 = Reserved			
23	Plus 1 (+1): Adds 1 or 0 to 0 = Add 0 to FD; 1 = Add 1	FD (DCLK PLL VCO Feedback to FD.	Divisor) parameter in equation	n (see Note).			
22:12		n the equation (see Note). It is t 0. For all values of N, refer to Ta		DCLK PLL VCO feedback divisor).			
11	CLK_ON: 0 = PLL disable; disabled by this bit.	1 = PLL enable. If PD = 1 (i.e.,	bits [28:24] = 01111) the PLL	is always enabled and cannot be			
10	DOT Clock Select: 0 = DC	LK; 1 = TV_CLK.					
9	Reserved: Set to 0						
8	If this bit is set to 1, the inp	e input of the PLL directly to the ut of the PLL bypasses the PLL he control voltage to be driven to	and resets the VCO control vo	Operation; 1 = Bypass PLL. oltage, which in turn powers down			
7:6	Reserved: Set to 0.	<u>gg</u>					
5	Reserved (Read Only): W	rite as read					
4:3	Reserved: Set to 0.						
2:0	PLL Input Divide (ID) Valu	e: Selects value of 2 to 9 (see	Note).				
	000 = ID divisor of 2 010 = ID divisor of 4	100 = ID divisor of 6 110 = ID divisor of 8	001 = ID divisor of 3 011 = ID divisor of 5	101 = ID divisor of 7 111 = ID divisor of 9			
Note:	To calculate DCLK output free	quency:					
	Equation #1: DCLK = [CLK_1 Condition: 140 MHz < [DCLK						
	FD is de PD is de ID is deri	MHZ is pin P24 rived from N see equation #2 ar rived from bits [28:24] ved from bits [2:0]	nd #3				
	+1 is ach						

Table 4-10. F4BAR+Memory Offset 24h[22:12] Decode (Value of "N")

N	Reg. Value		N	Reg. Value		N	Reg. Value	N		Reg. Value								
400	33A	349	23	298	331	247	7D0	196	143	-	145	551	-	94	19E	43		161
399	674	348	47	297	662	246	7A1	195	286		144	2A3		93	33C	42		2C2
398	4E8	347	8F	296	4C4	245	743	194	50D		143	547		92	678	41		585
397	1D0	346	11F	295	188	244	687	193	21B		142	28F		91	4F0	40		30B
396	3A0	345	23E	294	310	243	50E	192	437		141	51F		90	1E0	39		616
395	740	344	47D	293	620	242	21D	191	6E		140	23F	L	89	3C0	38		42C
394	681	343	FA	292	440	241	43B	190	DD		139	47F	L	88	780	37		58
393	502	342	1F5	291	80	240	76	189	1BB		138	FE	L	87	701	36		B1
392	205	341	3EA	290	101	239	ED	188	376		137	1FD	L	86	603	35		163
391	40B	340	7D4	289	202	238	1DB	187	6EC	-	136	3FA	_	85	406	34	_	2C6
390	16	339	7A9	288	405	237	3B6	186	5D8	-	135	7F4	F	84	C	33	_	58D
389 388	2D 5B	338 337	753 6A7	287 286	15	236 235	76C 6D9	185 184	3B1 762	-	134 133	7E9 7D3	F	83 82	19 33	32		31B 636
387	эв В7	336	54E	285	2B	234	5B2	183	6C5	-	132	7D3 7A7	-	81	67	30		46C
386	16F	335	29D	284	57	233	365	182	58A	-	131	74F	F	80	CF	29		D8
385	2DE	334	53B	283	AF	232	6CA	181	315	-	130	69F	F	79	19F	28		1B1
384	5BD	333	277	282	15F	231	594	180	62A	-	129	53E	F	78	33E	27		362
383	37B	332	4EF	281	2BE	230	329	179	454	-	128	27D	F	77	67C	26		6C4
382	6F6	331	1DE	280	57D	229	652	178	A8	-	127	4FB	-	76	4F8	25		588
381	5EC	330	3BC	279	2FB	228	4A4	177	151	-	126	1F6	-	75	1F0	24		311
380	3D9	329	778	278	5F7	227	148	176	2A2	-	125	3EC	-	74	3E0	23		622
379	7B2	328	6F1	277	3EF	226	290	175	545	-	124	7D8	F	73	7C0	22		444
378	765	327	5E2	276	7DE	225	521	174	28B	-	123	7B1	F	72	781	21		88
377	6CB	326	3C5	275	7BD	224	243	173	517		122	763	F	71	703	20		111
376	596	325	78A	274	77B	223	487	172	22F		121	6C7	-	70	607	19		222
375	32D	324	715	273	6F7	222	10E	171	45F		120	58E	F	69	40E	18		445
374	65A	323	62B	272	5EE	221	21C	170	BE		119	31D		68	1C	17		8A
373	4B4	322	456	271	3DD	220	439	169	17D		118	63A		67	39	16		115
372	168	321	AC	270	7BA	219	72	168	2FA		117	474		66	73	15		22A
371	2D0	320	159	269	775	218	E5	167	5F5		116	E8		65	E7	14		455
370	5A1	319	2B2	268	6EB	217	1CB	166	3EB		115	1D1		64	1CF	13		AA
369	343	318	565	267	5D6	216	396	165	7D6		114	3A2		63	39E	12		155
368	686	317	2CB	266	3AD	215	72C	164	7AD		113	744	L	62	73C	11		2AA
367	50C	316	597	265	75A	214	659	163	75B		112	689	L	61	679	10		555
366	219	315	32F	264	6B5	213	4B2	162	6B7		111	512	_	60	4F2	9		2AB
365	433	314	65E	263	56A	212	164	161	56E		110	225	L	59	1E4	8		557
364	66	313	4BC	262	2D5	211	2C8	160	2DD	-	109	44B	_	58	3C8	7		2AF
363	CD	312	178	261	5AB	210	591	159	5BB		108	96	L	57	790	6	-	55F
362	19B	311	2F0	260	357	209	323	158	377	-	107	12D	F	56	721	5		2BF
361	336	310	5E1	259	6AE	208	646	157	6EE	-	106	25A	F	55	643	4		57F
360	66C	309	3C3	258	55C	207	48C	156	5DC	-	105	4B5	-	54	486	3		2FF
359 358	4D8 1B0	308	786 70D	257 256	2B9 573	206 205	118 230	155 154	3B9 772	-	104	16A 2D4	F	53 52	10C 218	1		5FF 3FF
357	360	306	61B	255	2E7	203	461	153	6E5	-	103	5A9	F	51	431			SFF
356	6C0	305	436	254	5CF	203	C2	152	5CA	-	101	353	F	50	62			
355	580	304	6C	253	39F	202	185	151	395	-	100	6A6	F	49	C5			
354	301	303	D9	252	73E	202	30A	150	72A	╽┝	99	54C	-	48	18B			
353	602	302	1B3	251	67D	200	614	149	655		98	299	ŀ	47	316			
352	404	301	366	250	4FA	199	428	148	4AA	╽┟	97	533	ŀ	46	62C			
351	8	300	6CC	249	1F4	198	50	147	154		96	267	ŀ	45	458			
350	11	299	598	248	3E8	197	A1	146	2A8		95	4CF	f	44	B0			
	• •	_55		5	, ,_0					ı L	,,		L					

AMD Revision 1.1 Power Management

4.4 Power Management

The hardware resources provided by a combined CS5530A/GX1 based system support a full-featured power management implementation. The extent to which these resources are employed depends on the application and the discretion of the system designer.

Power management resources can be grouped according to the function they enable or support. The major functions are as follows:

- CPU Power Management
 - Оn
 - Active Idle
 - Suspend
 - 3 Volt Suspend
 - Off
 - Save-to-Disk/Save-to-RAM
 - Suspend Modulation
- APM Support
- · Peripheral Power Management
 - Device Idle Timers and Traps
 - General Purpose Timers
 - ACPI Timer Register
 - General Purpose I/O Pins
 - Power Management SMI Status Reporting Registers
 - Device Power Management Register Programming Summary

Included in the following subsections are details regarding the registers used for configuring power management features. The majority of these registers are directly accessed through the PCI configuration register space designated as Function 0 (F0). However, included in the discussions are references to F1BAR+Memory Offset 10h. This refers to the registers accessed through a base address register in

Function 1 (F1) at Index 10h (F1BAR). F1BAR sets the base address for the SMI status and ACPI timer support registers as shown in Table 3-11.

4.4.1 CPU Power Management

The three greatest power consumers in a system are the display, hard drive, and CPU. The power management of the first two is relatively straightforward and is discussed in Section 4.4.3 "Peripheral Power Management" on page 67. CPU power management is supported through several mechanisms resulting in five defined system power conditions:

- On
- · Active Idle
- Suspend
- 3 Volt Suspend
- Off

There are also three derivative power conditions defined:

- Suspend Modulation
 - Combination of On and Suspend
- Save-to-Disk
 - Off with the ability to return back to the exact system condition without rebooting
- Save-to-RAM
 - Extreme 3 Volt Suspend with only the contents of RAM still powered

4.4.1.1 On

System is running and the CPU is actively executing code.

Table 4-11. Base Address Register (F1BAR) for SMI Status and ACPI Timer Support

Bit	Description				
F1 Index 10h-13h Base Address Register — F1BAR (R/W) Reset Value = 000					
indicating a 256-byte memory address ran ues. The upper 16 bytes are always mapp		ess of the memory mapped SMI status and ACPI timer related regis dress range. Refer to Table 5-16 for the SMI status and ACPI timer ays mapped to the ACPI timer, and are always memory mapped. egister is accessible through F1BAR+Memory Offset 1Ch and I/O F	registers bit formats and reset val-		
31:8	31:8 SMI Status/Power Management Base Address				
7:0	Address Range (Re	ad Only)			

Power Management Revision 1.1 AMD

4.4.1.2 Active Idle

This state is the most powerful power management state because it is an operational state. The CPU has executed a HLT instruction and has asserted the SUSPA# signal. The operating system has control of the entry of this state because the OS has either executed the HLT or made a BIOS call to indicate idle, and the BIOS executed the HLT instruction. The display refresh subsystem is still active but the CPU is not executing code. The clock is stopped to the processing core in this state and considerable power is saved in the processor. The CS5530A takes advantage of this power state by stopping the clock to some of the internal circuitry. This power saving mode can be enabled/disabled by programming F0 Index 96h[4] (see Table 4-12). The CS5530A can still make bus master requests for IDE, audio, USB, and ISA from this state. When the CS5530A or any other device on the PCI bus asserts REQ#, the CPU deasserts SUSPA# for the duration of REQ# activity. Once REQ# has gone inactive and all PCI cycles have stopped, the CPU reasserts SUSPA#. SUSPA# remains active until

the CPU receives an INTR or SMI event which ends the CPU halt condition.

4.4.1.3 Suspend

This state is similar to the Active Idle state except that the CPU enters this state because the CS5530A asserted SUSP#. The CS5530A deasserts SUSP# when an INTR or SMI event occurs. The Suspend Configuration register is shown in Table 4-12, however, also see the tables listed below for a more complete understanding on configuring the Suspend state.

- F0 Index BCh in Table 4-13 "Clock Stop Control Register" on page 62.
- Related registers in Table 4-14 "Suspend Modulation Related Registers" on page 64.
- F0 Index AEh in Table 4-16 "APM Support Registers" on page 67.

Table 4-12. Suspend Configuration Register

Bit	Description				
F0 Index	s 96h Suspend Configuration Register (R/W) Reset Value = 00h				
7:5	Reserved: Set to 0.				
4	Power Savings Mode: 0 = Enable; 1 = Disable.				
3	Include ISA Clock in Power Savings Mode: 0 = ISA clock not included; 1 = ISA clock included.				
2	Suspend Mode Configuration: "Special 3 Volt Suspend" mode to support powering down a GX1 processor during Suspend. 0 = Disable; 1 = Enable.				
1	SMI Speedup Configuration: Selects how Suspend Modulation function reacts when an SMI occurs.				
	0 = Use the IRQ Speedup Timer Count Register (F0 Index 8Ch) to temporarily disable Suspend Modulation when an SMI occurs.				
	1 = Disable Suspend Modulation when an SMI occurs until a read to the SMI Speedup Disable Register (F1BAR+Memory Offset 08h).				
	The purpose of this bit is to disable Suspend Modulation while the CPU is in the System Management Mode so that VSA technology and power management operations occur at full speed. Two methods for accomplishing this are either to map the SMI into the IRQ Speedup Timer Count Register (F0 Index 8Ch), or to have the SMI disable Suspend Modulation unti the SMI handler reads the SMI Speedup Disable Register (F1BAR+Memory Offset 08h). The latter is the preferred method The IRQ speedup method is provided for software compatibility with earlier revisions of the CS5530A. This bit has no effect if the Suspend Modulation feature is disabled (bit 0 = 0).				
0	Suspend Modulation Feature: 0 = Disable; 1 = Enable.				
When enabled, the SUSP# pin will be asserted and deasserted for the durations programmed in the Sus OFF/ON Count Registers (F0 Index 94h/95h).					

4.4.1.4 3 Volt Suspend

This state is a non-operational state. To enter this state the display must have been previously turned off. This state is usually used to put the system into a deep sleep to conserve power and still allow the user to resume where they left off.

The CS5530A supports the stopping of the CPU and system clocks for a 3 Volt Suspend state. If appropriately configured, via the Clock Stop Control Register (F0 Index BCh, see Table 4-13), the CS5530A asserts the SUSP_3V pin after it has gone through the SUSP#/SUSPA# handshake. The SUSP_3V pin is a state indicator, indicating that the system is in a low-activity state. This indicator can be used to put the system into a low-power state (the system clock can be turned off).

The SUSP_3V pin is intended to be connected to the output enable of a clock generator or buffer chip, so that the clocks to the CPU and the CS5530A (and most other system devices) are stopped. The CS5530A continues to decrement all of its device timers and respond to external SMI interrupts after the input clock has been stopped, as long

as the 32 KHz clock continues to oscillate. Any SMI event or unmasked interrupt pin causes the CS5530A to deassert the SUSP_3V pin, restarting the system clocks. As the CPU or other device might include a PLL, the CS5530A holds SUSP# active for a pre-programmed period of delay (the PLL re-sync delay) that varies from 0 to 15 ms. After this period has expired, the CS5530A deasserts SUSP#, stopping Suspend. SMI# is held active for the entire period, so that the CPU reenters SMM when the clocks are restarted.

Note: The SUSP_3V pin can be active either high or low. The pin is an input during POR, and is sampled to determine its inactive state. This allows a designer to match the active state of SUSP_3V to the inactive state for a clock driver output enable with a pull-up or pull-down resistor.

4.4.1.5 Off

The system is off and there is no power being consumed by the processor or the CS5530A.

Table 4-13. Clock Stop Control Register

Bit	Description				
F0 Index BCh		Clock Stop Con	Clock Stop Control Register (R/W)		
7:4	pin is deasserted to the		to allow the clock chip and CP	a break event occurs before the SUSP# U PLL to stabilize before starting execu-	
	The four-bit field allow				
	0000 = 0 ms	0100 = 4 ms	1000 = 8 ms	1100 = 12 ms	
	0001 = 1 ms	0101 = 5 ms	1001 = 9 ms	1101 = 13 ms	
	0010 = 2 ms	0110 = 6 ms	1010 = 10 ms	1110 = 14 ms	
	0011 = 3 ms	0111 = 7 ms	1011 = 11 ms	1111 = 15 ms	
3:1	Reserved: Set to 0.				
0	CPU Clock Stop: 0 =	Normal SUSP#/ SUSPA# han	dshake; 1 = Full system Suspe	nd.	

Note: This register configures the CS5530A to support a 3 Volt Suspend. Setting bit 0 causes the SUSP_3V pin to assert after the appropriate conditions, stopping the system clocks. A delay of 0 to 15 ms is programmable (bits 7:4) to allow for a delay for the clock chip and CPU PLL to stabilize when an event Resumes the system.

A write to the CPU Suspend Command Register (F0 Index AEh) with bit 0 written as:

0 = SUSP#/SUSPA# handshake occurs. The CPU is put into a low-power state, and the system clocks are not stopped. When a break/resume event occurs, it releases the CPU halt condition.

1 = SUSP#/SUSPA# handshake occurs and the SUSP_3V pin is asserted, thus invoking a full system Suspend (both CPU and system clocks are stopped). When a break event occurs, the SUSP_3V pin will deassert, the PLL delay programmed in bits [7:4] will be invoked which allows the clock chip and CPU PLL to stabilize before deasserting the SUSP# pin.

Power Management Revision 1.1 AMD

4.4.1.6 Suspend Modulation

Suspend Modulation is a derivative of the On and Suspend states and works by asserting and de-asserting the SUSP# pin to the CPU for a configurable period and duty cycle. By modulating the SUSP# pin, an effective reduction in frequency is achieved. Suspend Modulation is the system power management choice of last resort. However, it is an excellent choice for thermal management. If the system is expected to operate in a thermal environment where the processor could overheat, then Suspend Modulation could be used to reduce power consumption in the overheated condition and thus reduce the processor's temperature.

When used as a power management state, Suspend Modulation works by assuming that the processor is idle unless external activity indicates otherwise. This approach effectively slows down the processor until external activity indicates a need to run at full speed, thereby reducing power consumption.

Suspend Modulation serves as the primary CPU power management mechanism when APM or some other power management software strategy is not present. It can also act as a backup for situations where the power management scheme does not correctly detect an Idle condition in the system.

In order to provide high-speed performance when needed, the SUSP# pin modulation can be temporarily disabled any time system activity is detected. When this happens, the processor is "instantly" converted to full speed for a programmed duration. System activities in the CS5530A are defined in hardware as: any unmasked IRQ, accessing Port 061h, SMI, and/or accessing the graphics controller. Since the graphics controller is integrated in the GX1 processor, the indication of graphics activity is sent to the CS5530A via the serial link (see Section 4.1.2 "PSERIAL Pin Interface" on page 50 for more information on serial link) and is automatically decoded. Graphics activity is defined as any access to the VGA register space, the VGA frame buffer, the graphics accelerator control registers and the configured graphics frame buffer.

The automatic speedup events (IRQ, SMI, and/or graphics) for Suspend Modulation should be used together with software-controlled speedup registers for major I/O events such as any access to the floppy disk controller, hard disk drive, or parallel/serial ports, since these are indications of major system activities. When major I/O events occur, Suspend Modulation can be temporarily disabled using the procedures described in the following subsections.

Bus master internal (Ultra DMA/33, Audio, USB, or ISA) or external requests do not directly affect the Suspend Modulation programming.

Configuring Suspend Modulation

Control of the Suspend Modulation feature is accomplished using the Suspend Modulation OFF Count Register, the Suspend Modulation ON Count Register, and the Suspend Configuration Register (F0 Index 94h, 95h, and 96h, respectively).

The Power Management Enable Register 1 (F0 Index 80h) contains the enables for the individual activity speedup timers.

Bit 0 of the Suspend Configuration Register (F0 Index 96h) enables the Suspend Modulation feature. Bit 1 controls how SMI events affect the Suspend Modulation feature. In general this bit should be set to a 1, which causes SMIs to disable Suspend Modulation until it is re-enabled by the SMI handler.

The Suspend Modulation OFF and ON Count Registers (F0 Index 94h and 95h) control two 8-bit counters that represent the number of 32 µs intervals that the SUSP# pin is asserted and then deasserted to the processor. These counters define a ratio which is the effective frequency of operation of the system while Suspend Modulation is enabled.

$$F_{eff} = F_{GX86} x \qquad \frac{\text{Off Count}}{\text{On Count} + \text{Off Count}}$$

The IRQ and Video Speedup Timer Count registers (F0 Index 8Ch and 8Dh) configure the amount of time which Suspend Modulation is disabled when the respective events occur.

SMI Speedup Disable

If the Suspend Modulation feature is being used for CPU power management, the occurrence of an SMI disables the Suspend Modulation function so that the system operates at full speed while in SMM. There are two methods used to invoke this via bit 1 of the Suspend Configuration Register.

If F0 Index 96h[1] = 0: Use the IRQ Speedup Timer (F0 Index 8Ch) to temporarily disable Suspend Modulation when an SMI occurs.

If F0 Index 96h[1] = 1: Disable Suspend Modulation when an SMI occurs until a read to the SMI Speedup Disable Register (F1BAR+Memory Offset 08h).

The SMI Speedup Disable Register prevents VSA technology software from entering Suspend Modulation while operating in SMM. The data read from this register can be ignored. If the Suspend Modulation feature is disabled, reading this I/O location has no effect.

Table 4-14 shows the bit formats of the Suspend Modulation related registers.

Table 4-14. Suspend Modulation Related Registers

Bit	Description	
F0 Index	Power Management Enable Register 1 (R/W)	Reset Value = 00h
4	Video Speedup: Any video activity, as decoded from the serial connection (PSERIAL resor disables clock throttling (via SUSP#/SUSPA# handshake) for a configurable duration aged using CPU Suspend modulation. 0 = Disable; 1 = Enable.	
	The duration of the speedup is configured in the Video Speedup Timer Count Register (external VGA access (3Bxh, 3Cxh, 3Dxh and A000h-B7FFh) on the PCI bus is also supstandard, but it does allow the power management routines to support an external VGA	ported. This configuration is non-
3	IRQ Speedup: Any unmasked IRQ (per I/O Port 021h/0A1h) or SMI disables clock throt shake) for a configurable duration when the system is power managed using CPU Susp 0 = Disable; 1 = Enable.	
	The duration of the speedup is configured in the IRQ Speedup Timer Count Register (Fo	0 Index 8Ch).
F0 Index	Ch IRQ Speedup Timer Count Register (R/W)	Reset Value = 00h
7:0	IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup time Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O F occurs, the Suspend Modulation logic is inhibited, permitting full performance operation is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase	Port 061h occurs. When the event of the CPU. Upon expiration, no SMI
	This speedup mechanism allows instantaneous response to system interrupts for full-sp value here would be 2 to 4 ms.	eed interrupt processing. A typical
F0 Index	BDh Video Speedup Timer Count Register (R/W)	Reset Value = 00h
7:0	Video Speedup Timer Count: This register holds the load value for the Video speedup when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graph access occurs, the Suspend Modulation logic is inhibited, permitting full-performance option, no SMI is generated; the Suspend Modulation begins again. The video speedup tin This speedup mechanism allows instantaneous response to video activity for full speed tions. A typical value here would be 50 to 100 ms.	pics controller occurs. When a video peration of the CPU. Upon expiraner's timebase is 1 ms.
Index 94h	Suspend Modulation OFF Count Register (R/W)	Reset Value = 00h
7:0	Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs ir deasserted to the GX1 processor. This timer, together with the Suspend Modulation ON form the Suspend Modulation function for CPU power management. The ratio of the on-(emulated) clock frequency, allowing the power manager to reduce CPU power consumptons timer is prematurely reset if an enabled speedup event occurs. The speedup events	Count Register (F0 Index 95h), per- to-off count sets up an effective ption.
	speedups.	
Index 95h		Reset Value = 00h
7:0	Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs inte asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Ind ulation function for CPU power management. The ratio of the on-to-off count sets up an quency, allowing the power manager to reduce CPU power consumption.	lex 94h), perform the Suspend Mod- effective (emulated) clock fre-
	This timer is prematurely reset if an enabled speedup event occurs. The speedup events speedups.	s are IRQ speedups and video

Table 4-14. Suspend Modulation Related Registers (Continued)

Bit	Description					
Index 96h	Suspend Configuration Register (R/W)	Reset Value = 00h				
7:5	Reserved: Set to 0.					
4	Power Savings: 0 = Enable; 1 = Disable.					
3	Include ISA Clock in Power Savings Mode: 0 = ISA clock not included; 1 = ISA clock included	ded.				
2	Suspend Mode Configuration: "Special 3 Volt Suspend" mode to support powering down a pend. 0 = Disable; 1 = Enable.	GX1 processor during Sus-				
1	SMI Speedup Configuration: Selects how Suspend Modulation function reacts when an SM	Il occurs.				
	0 = Use the IRQ Speedup Timer Count Register (F0 Index 8Ch) to temporarily disable Suspectures.	nd Modulation when an SMI				
	1 = Disable Suspend Modulation when an SMI occurs until a read to the SMI Speedup Disable Register (F1BAR+Memory Offset 08h).					
	The purpose of this bit is to disable Suspend Modulation while the CPU is in the System Management Mode so that VSA technology and power management operations occur at full speed. Two methods for accomplishing this are either to map the SMI into the IRQ Speedup Timer Count Register (F0 Index 8Ch), or to have the SMI disable Suspend Modulation until the SMI handler reads the SMI Speedup Disable Register (F1BAR+Memory Offset 08h). The latter is the preferred method. The IRQ speedup method is provided for software compatibility with earlier revisions of the CS5530A. This bit has no effect if the Suspend Modulation feature is disabled (bit 0 = 0).					
0	Suspend Modulation Feature: 0 = Disable; 1 = Enable.					
	When enabled, the SUSP# pin will be asserted and deasserted for the durations programmed OFF/ON Count Registers (F0 Index 94h/95h).	d in the Suspend Modulation				
F0 Index A	.8h-A9h Video Overflow Count Register (R/W)	Reset Value = 0000h				
15:0	Video Overflow Count: Each time the Video Speedup timer (F0 Index 8Dh) is triggered, a 1 100 ms timer expires before the Video Speedup timer lapses, the Video Overflow Count Regi ms timer re-triggers. Software clears the overflow register when new evaluations are to begin register may be combined with other data to determine the type of video accesses present in	ster increments and the 100 . The count contained in this				
F1BAR+M	emory Offset 08h-09h SMI Speedup Disable Register (Read to Enable)	Reset Value = 0000h				
15:0	SMI Speedup Disable: If bit 1 in the Suspend Configuration Register is set (F0 Index 96h[1] invokes the SMI handler to re-enable Suspend Modulation.	= 1), a read of this register				
	The data read from this register can be ignored. If the Suspend Modulation feature is disabled no effect.	d, reading this I/O location has				

4.4.1.7 Save-to-Disk/Save-to-RAM

This is a derivative of the Off state. The processor and the CS5530A have the capability to save their complete state. This state information can be saved to a hard disk or to RAM and the system can be turned off. When powered back on, the system can be returned exactly back to the state it was in when the save process began. This means that the system does not have to be rebooted in the traditional sense. In both cases, precautions must be taken in the system design to make sure that there is sufficient space on the hard drive or RAM to store the information. In the case of the RAM, it must also be powered at all times and can not be corrupted when the system is powered off and back on.

The PC/AT compatible floppy port is not part of the CS5530A. If a floppy is attached on the ISA bus in a Superl/O or by some other means, some of the FDC registers are shadowed in the CS5530A because they cannot be safely read. The FDC registers are shown in Table 4-15. Additional shadow registers for other functions are described in:

- Table 4-40 "DMA Shadow Register" on page 98
- Table 4-42 "PIT Shadow Register" on page 100
- Table 4-45 "PIC Shadow Register" on page 102
- Table 4-53 "Real-Time Clock Registers" on page 109

Table 4-15. Power Management Shadow Registers

Bit	Description					
F0 Index I	B4h Floppy Port 3F2h Shadow Register (RO) Res	set Value = xxh				
7:0	Floppy Port 3F2h Shadow (Read Only): Last written value of I/O Port 3F2h. Required for support of FDC and Save-to-Disk/RAM coherency.	power ON/OFF				
	This register is a copy of an I/O register which cannot safely be directly read. Value in register is not determine the register is being read. It is provided here to assist in a Save-to-Disk operation.	ministic of when				
F0 Index I	B5h Floppy Port 3F7h Shadow Register (RO) Res	set Value = xxh				
7:0	Floppy Port 3F7h Shadow (Read Only): Last written value of I/O Port 3F7h. Required for support of FDC and Save-to-Disk/RAM coherency.	power ON/OFF				
	This register is a copy of an I/O register which cannot safely be directly read. Value in register is not determine the register is being read. It is provided here to assist in a Save-to-Disk operation.	ministic of when				
F0 Index I	B6h Floppy Port 1F2h Shadow Register (RO) Res	set Value = xxh				
7:0	Floppy Port 1F2h Shadow (Read Only): Last written value of I/O Port 1F2h. Required for support of FDC and Save-to-Disk/RAM coherency.	power ON/OFF				
	This register is a copy of an I/O register which cannot safely be directly read. Value in register is not determine the register is being read. It is provided here to assist in a Save-to-Disk operation.	ninistic of when				
F0 Index I	B7h Floppy Port 1F7h Shadow Register (RO) Res	set Value = xxh				
7:0	Floppy Port 1F7h Shadow (Read Only): Last written value of I/O Port 1F7h. Required for support of FDC and Save-to-Disk/RAM coherency.	power ON/OFF				
This register is a copy of an I/O register which cannot safely be directly read. Value in register is not determ the register is being read. It is provided here to assist in a Save-to-Disk operation.						

Power Management Revision 1.1 AMD

4.4.2 APM Support

Some IA systems rely solely on an APM (Advanced Power Management) driver for enabling the operating system to power-manage the CPU. APM provides several services which enhance the system power management and is theoretically the best approach; but in its current form, APM is imperfect for the following reasons:

- APM is an OS-specific driver, and may not be available for some operating systems.
- Application support is inconsistent. Some applications in foreground may prevent Idle calls.
- APM does not help with Suspend determination or peripheral power management.

The CS5530A provides two entry points for APM support:

- Software CPU Suspend control via the CPU Suspend Command Register (F0 Index AEh)
- Software SMI entry via the Software SMI Register (F0 Index D0h). This allows the APM BIOS to be part of the SMI handler.

These registers are shown in Table 4-16.

4.4.3 Peripheral Power Management

The CS5530A provides peripheral power management using a combination of device idle timers, address traps, and general purpose I/O pins. Idle timers are used in conjunction with traps to support powering down peripheral devices. Eight programmable GPIO (general purpose I/O) pins are included for external device power control as well as other functions. All I/O addresses are decoded in 16 bits. All memory addresses are decoded in 32 bits.

4.4.3.1 Device Idle Timers and Traps

Idle timers are used to power manage a peripheral by determining when the peripheral has been inactive for a specified period of time, and removing power from the peripheral at the end of that time period.

Idle timers are provided for the commonly-used peripherals (FDC, IDE, parallel/serial ports, and mouse/keyboard). In addition, there are three user-defined timers that can be configured for either I/O or memory ranges. The Power Management enable bit (F0 Index 80h[1]) enables and disables the power management idle timers. The Trap bit in the same register (F0 Index 80h[2]) enables and disables device I/O traps.

The idle timers are 16-bit countdown timers with a 1 second time base, providing a time-out range of 1 to 65536 seconds (1092 minutes) (18 hours). General purpose timers can be programmed to count milliseconds instead of seconds (see Section 4.4.3.2 on page 77 for further information on general purpose timers).

When the idle timers are enabled, the timers are loaded from the timer count registers and start to decrement at the next timebase clock, but cannot trigger an interrupt on that cycle. If an idle timer is initially set to 1, it decrements to 0 on the first cycle and continues counting with 65535 on the next cycle. Starting at 2 gives 1 on the first cycle, and 0 on the second cycle, generating the interrupt. Since the timebase is one second, the minimum interval before the next interrupt from this timer is variable, from one to two seconds with a setting of two.

The idle timers continue to decrement until one of two possibilities occurs: a bus cycle occurs at that I/O or memory range, or the timer decrements to zero.

When a bus cycle occurs, the idle timer is reloaded with its starting value. It then continues to decrement.

Table 4-16. APM Support Registers

Bit	Description						
F0 Index	AEh CPU Suspend Command Register (WO) Re	Reset Value = 00h					
7:0	Software CPU Suspend Command (Write Only): If bit 0 in the Clock Stop Control Register is set low (For 0) and all SMI status bits are 0, a write to this register causes a SUSP#/SUSPA# handshake with the CPU, in a low-power state. The data written is irrelevant. Once in this state, any unmasked IRQ or SMI releases dition.	placing the CPU					
		f F0 Index BCh[0] = 1, writing to this register invokes a full system Suspend. In this case, the SUSP_3V pin is asserted after the SUSP#/SUSPA# halt. Upon a Resume event (see Note), the PLL delay programmed in the F0 Index BCh[7:4] is invoked, allowing the clock chip and CPU PLL to stabilize before deasserting the SUSP# pin.					
Note: If the clocks are stopped, the external IRQ4 and IRQ3 pins, when enabled (F3BAR+Memory Offset 1Ah[4:3]), a only IRQ pins that can be used as a Resume event. If GPIO2, GPIO1, and GPIO0 are enabled as an external source (F0 Index 92h[2:0]), they too can be used as a Resume event. No other CS5530A pins can be used to up the system from Suspend when the clocks are stopped. As long as the 32 KHz clock remains active, internevents are also Resume events.							
F0 Index	C D0h Software SMI Register (WO) Res	set Value = 00h					
7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This registred software entry into SMM via normal bus access instructions.							

When the timer decrements to zero, if power management is enabled (F0 Index 80h[0] = 1), the timer generates an SMI. (F0 Index 80h[0] = 0 does not disable these timers from running, but only from generating SMI.)

When an idle timer generates an SMI, the SMI handler manages the peripheral power, disables the timer, and

Serial Port Idle Timer Count Register (F0 Index 9Ch).

enables the trap. The next time an event occurs, the trap generates an SMI. This time, the SMI handler applies power to the peripheral, enables the timer (thus reloading its starting value), and disables the trap.

Tables 4-17 through 4-25 show the device associated idle timers and traps programming bits.

Table 4-17. Power Management Global Enabling Bits

Bit	Description					
F0 Index	Power Management Enable Register 1 (R/W) Reset Value = 00h					
2	Traps: Globally enable all power management device I/O traps. 0 = Disable; 1 = Enable.					
	This excludes the audio I/O traps. They are enabled at F3BAR+Memory Offset 18h.					
1	Idle Timers: Globally enable all power management device idle timers. 0 = Disable; 1 = Enable.					
	Note, disable at this level does not reload the timers on the enable. The timers are disabled at their current counts.					
	This bit has no effect on the Suspend Modulation OFF/ON Timers (F0 Index 94h/95h), nor on the General Purpose (UDEFx Timers (F0 Index 88h-8Bh). This bit must be set for the command to trigger the SUSP#/SUSPA# feature to function (see F0 Index AEh).					
0	Power Management: Global power management. 0 = Disable; 1 = Enabled.					
	This bit must be set (1) immediately after POST for some power management resources to function. Until this is done, the command to trigger the SUSP#/SUSPA# feature is disabled (see F0 Index AEh) and all SMI# trigger events listed for F0 Index 84h-87h are disabled. A '0' in this bit does NOT stop the Idle Timers if bit 1 of this register is a '1', but only prevents them from generating an SMI# interrupt. It also has no effect on the UDEF traps.					

Table 4-18. Keyboard/Mouse Idle Timer and Trap Related Registers

Bit	Description	
F0 Index 8	1h Power Management Enable Register 2 (R/W)	Reset Value = 00h
3	Keyboard/Mouse Idle Timer Enable: Load timer from Keyboard/Mouse Idle Timer Count Register (I erate an SMI when the timer expires. 0 = Disable; 1 = Enable.	F0 Index 9Eh) and gen-
	If an access occurs in the address ranges (listed below) the timer is reloaded with the programmed of Keyboard Controller: I/O Ports 060h/064h COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is included) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is included) Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].	count.
	Second level SMI status is reported at F0 Index 85h/F5h[3].	
F0 Index 8	2h Power Management Enable Register 3 (R/W)	Reset Value = 00h
3	Keyboard/Mouse Trap: 0 = Disable; 1 = Enable.	
	If this bit is enabled and an access occurs in the address ranges (listed below) an SMI is generated. Keyboard Controller: I/O Ports 060h/064h COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is included) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is included)	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[3].	
F0 Index 9	3h Miscellaneous Device Control Register (R/W)	Reset Value = 00h
1	Mouse on Serial Enable: Mouse is present on a serial port. 0 = No; 1 = Yes. (Note)	
0	Mouse Port Select: Selects which serial port the mouse is attached to. 0 = COM1; 1 = COM2. (Note	e)
moi moi	1 and 0 - If a mouse is attached to a serial port (bit 1 = 1), that port is removed from the serial device nitor serial port access for power management purposes and added to the keyboard/mouse decode. T use, along with the keyboard, is considered an input device and is used only to determine when to blar se bits determine the decode used for the Keyboard/Mouse Idle Timer Count Register (FO Index 9Eh)	his is done because a nk the screen.

Table 4-18. Keyboard/Mouse Idle Timer and Trap Related Registers (Continued)

Bit	Description					
F0 Index 9	F0 Index 9Eh-9Fh Keyboard / Mouse Idle Timer Count Register (R/W) Reset Value = 000					
15:0	are not in use so for these ports af ever an access o	se Idle Timer Count: The idle timer loaded from this register determines we that the LCD screen can be blanked. The 16-bit value programmed here refer which the system is alerted via an SMI. The timer is automatically reload securs to either the keyboard or mouse I/O address spaces, including the metalled on a serial port. The timer uses a 1 second timebase.	presents the period of inactivity ded with the count value when-			
To enable this timer set F0 Index 81h[3] = 1.						
		itus is reported at F1BAR+Memory Offset 00h/02h[0]. I status is reported at F0 Index 85h/F5h[3].				

Table 4-19. Parallel/Serial Idle Timer and Trap Related Registers

Bit	Description	
F0 Index	81h Power Management Enable Register 2 (R/W)	Reset Value = 00h
2	Parallel/Serial Idle Timer Enable: Load timer from Parallel/Serial Port Idle Timer Couerate an SMI when the timer expires. 0 = Disable; 1 = Enable. If an access occurs in the address ranges (listed below) the timer is reloaded with the LPT1: I/O Port 378h-37Fh, 778h-77Ah LPT2: I/O Port 278h-27Fh, 678h-67Ah COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is excluded) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is excluded)	, ,
	COM3: I/O Port 3E8h-3EFh COM4: I/O Port 2E8h-2EFh Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].	
F0 Index 8	Second level SMI status is reported at F0 Index 85h/F5h[2]. Power Management Enable Register 3 (R/W)	Reset Value = 00h
2	Parallel/Serial Trap: 0 = Disable; 1 = Enable.	110001 14140 - 0011
	If this bit is enabled and an access occurs in the address ranges (listed below) an SMI LPT1: I/O Port 378h-37Fh, 778h-77Ah LPT2: I/O Port 278h-27Fh, 678h-67Ah COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is excluded) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is excluded) COM3: I/O Port 3E8h-3EFh COM4: I/O Port 2E8h-2EFh	I is generated.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[2].	
F0 Index	93h Miscellaneous Device Control Register (R/W)	Reset Value = 00h
1	Mouse on Serial Enable: Mouse is present on a serial port. 0 = No; 1 = Yes. (Note)	
0	Mouse Port Select: Selects which serial port the mouse is attached to. 0 = COM1; 1	= COM2. (Note)
mo mo The	is 1 and 0 - If a mouse is attached to a serial port (bit 1 = 1), that port is removed from the initor serial port access for power management purposes and added to the keyboard/mouse, along with the keyboard, is considered an input device and is used only to determine the decode used for the Keyboard/Mouse Idle Timer Count Register (rial Port Idle Timer Count Register (F0 Index 9Ch).	ouse decode. This is done because ane when to blank the screen.
F0 Index	9Ch-9Dh Parallel / Serial Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	Parallel / Serial Idle Timer Count: The idle timer loaded from this register is used to do ports are not in use so that the ports can be power managed. The 16-bit value program inactivity for these ports after which the system is alerted via an SMI. The timer is autovalue whenever an access occurs to the parallel (LPT) or serial (COM) I/O address sperial port, that port is not considered here. The timer uses a 1 second timebase. To enable this timer set F0 Index 81h[2] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].	mmed here represents the period of omatically reloaded with the count

Revision 1.1

Bit	Description		
F0 Index 81h Power Management Enable Register 2 (R/W)		Reset Value = 00h	
1	Floppy Disk Idle Timer Enable: Load timer from Floppy Disk Idle Timer Count Register (F0 Index 9Ah) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.		
	If an access occurs in the address ranges (listed below) the timer is reloaded with the proprimary floppy disk: I/O Port 3F2h, 3F4h, 3F5h, and 3F7 Secondary floppy disk: I/O Port 372h, 373h, 375h, and 377h	ogrammed count.	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[1].		
F0 Index	82h Power Management Enable Register 3 (R/W)	Reset Value = 00h	
1	Floppy Disk Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the address ranges (listed below) an SMI is Primary floppy disk: I/O Port 3F2h, 3F4h, 3F5h, or 3F7 Secondary floppy disk: I/O Port 372h, 373h, 375h, or 377h Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[1].	generated.	
F0 Index	93h Miscellaneous Device Control Register (R/W)	Reset Value = 00h	
7	Floppy Drive Port Select: All system resources used to power manage the floppy drive u addresses for decode. 0 = Primary; 1 = Primary and Secondary.	use the primary or secondary FDC	
F0 Index	9Ah-9Bh Floppy Disk Idle Timer Count Register (R/W)	Reset Value = 0000h	
15:0	Floppy Disk Idle Timer Count: The idle timer loaded from this register is used to determine when the floppy disk drive is not in use so that it can be powered down. The 16-bit value programmed here represents the period of floppy disk drive inactivity after which the system is alerted via an SMI. The timer is automatically reloaded with the count value whenever an access occurs to any of I/O Ports 3F2h, 3F4h, 3F5h, and 3F7h (primary) or 372h, 374h, 375h, and 377h (secondary). The timer uses a 1 second timebase. To enable this timer set F0 Index 81h[1] = 1.		
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[1].		

Table 4-21. Primary Hard Disk Idle Timer and Trap Related Registers

Bit	Description		
F0 Index 8	Power Management Enable Register 2 (R/W)	Reset Value = 00h	
0	Primary Hard Disk Idle Timer Enable: Load timer from Primary Hard Disk Idle Timer Congenerate an SMI when the timer expires. 0 = Disable; 1 = Enable.	unt Register (F0 Index 98h) and	
	If an access occurs in the address ranges selected in F0 Index 93h[5], the timer is reloaded with the programmed count.		
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[0].		
F0 Index 8	Power Management Enable Register 3 (R/W)	Reset Value = 00h	
0	Primary Hard Disk Trap: 0 = Disable; 1 = Enable.		
	If this bit is enabled and an access occurs in the address ranges selected in F0 Index 93h Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[0].	[5], an SMI is generated.	
F0 Index 9	O3h Miscellaneous Device Control Register (R/W)	Reset Value = 00h	
5	Partial Primary Hard Disk Decode: This bit is used to restrict the addresses which are deaccesses.	ecoded as primary hard disk	
	0 = Power management monitors all reads and writes I/O Port 1F0h-1F7h, 3F6h 1 = Power management monitors only writes to I/O Port 1F6h and 1F7h		
F0 Index 9	98h-99h Primary Hard Disk Idle Timer Count Register (R/W)	Reset Value = 0000h	
15:0	Primary Hard Disk Idle Timer Count: The idle timer loaded from this register is used to determine when the primary hard disk is not in use so that it can be powered down. The 16-bit value programmed here represents the period of primary hard disk inactivity after which the system is alerted via an SMI. The timer is automatically reloaded with the count value whenever an access occurs to the configured primary hard disk's data port (configured in F0 Index 93h[5]). The timer uses a 1 second timebase.		
	To enable this timer set F0 Index 81h[0] = 1.		
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[0].		

Table 4-22. Secondary Hard Disk Idle Timer and Trap Related Registers

Bit	Description		
F0 Index 8	3h Power Management Enable Register 4 (R/W)	Reset Value = 00h	
7	Secondary Hard Disk Idle Timer Enable: Load timer from Secondary Hard Disk Idle Timer Count Register (F0 Index ACh) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.		
	If an access occurs in the address ranges selected in F0 Index 93h[4], the timer is reloaded with	the programmed count.	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[4].		
6	Secondary Hard Disk Trap: 0 = Disable; 1 = Enable.		
	If this bit is enabled and an access occurs in the address ranges selected in F0 Index 93h[4], an	SMI is generated.	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[5].		
F0 Index 9	3h Miscellaneous Device Control Register (R/W)	Reset Value = 00h	
4	Partial Secondary Hard Disk Decode: This bit is used to restrict the addresses which are decodes Disk accesses.	oded as secondary hard	
	0 = Power management monitors all reads and writes I/O Port 170h-177h, 376h 1 = Power management monitors only writes to I/O Port 176h and 177h		
F0 Index A	Ch-ADh Secondary Hard Disk Idle Timer Count Register (R/W)	Reset Value = 0000h	
15:0	Secondary Hard Disk Idle Timer Count: The idle timer loaded from this register is used to determine when the secondary hard disk is not in use so that it can be powered down. The 16-bit value programmed here represents the period of secondary hard disk inactivity after which the system is alerted via an SMI. The timer is automatically reloaded with the count value whenever an access occurs to the configured secondary hard disk's data port (configured in F0 Index 93h[4]). The timer uses a 1 second timebase.		
	To enable this timer set F0 Index 83h[7] = 1.		
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[4].		

Table 4-23. User Defined Device 1 (UDEF1) Idle Timer and Trap Related Registers

Bit	Description					
F0 Index	81h	Power Management Enable Register 4 (R/W)	Reset Value = 00h			
4		User Defined Device 1 (UDEF1) Idle Timer Enable: Load timer from UDEF1 Idle Timer Count Register (F0 Index A0h) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.				
	UDEF1 address pr	s in the programmed address range the timer is reloaded with the program rogramming is at F0 Index C0h (base address register) and CCh (control is is reported at F1BAR+Memory Offset 00h/02h[0].				
		status is reported at F0 Index 85h/F5h[4].				
F0 Index	82h	Power Management Enable Register 3 (R/W)	Reset Value = 00h			
4	User Defined Dev	ice 1 (UDEF1) Trap: 0 = Disable; 1 = Enable.				
		d and an access occurs in the programmed address range an SMI is gen- F0 Index C0h (base address register), and CCh (control register).	erated. UDEF1 address			
		is is reported at F1BAR+Memory Offset 00h/02h[9]. status is reported at F1BAR+Memory Offset 04h/06h[2].				
Index A0	h-A1h	User Defined Device 1 Idle Timer Count Register (R/W)	Reset Value = 0000h			
	period of inactivity count value whene ter) and F0 Index (To enable this time Top level SMI statu	EF1 is not in use so that it can be power managed. The 16-bit value progrifor this device after which the system is alerted via an SMI. The timer is a ever an access occurs to memory or I/O address space configured at F0 ICCh (control register). The timer uses a 1 second timebase. For set F0 Index 81h[4] = 1. It is is reported at F1BAR+Memory Offset 00h/02h[0]. Status is reported at F0 Index 85h/F5h[4].	automatically reloaded with the			
F0 Index	C0h-C3h	User Defined Device 1 Base Address Register (R/W)	Reset Value = 00000000h			
31:0	timer resources) fo	rice 1 (UDEF1) Base Address [31:0]: This 32-bit register supports power a PCMCIA slot or some other device in the system. The value written is ap/timer logic. The device can be memory or I/O mapped (configured in I	used as the address compara-			
F0 Index	CCh	User Defined Device 1 Control Register (R/W)	Reset Value = 00h			
7	Memory or I/O Ma	apped: User Defined Device 1 is: 0 = I/O; 1 = Memory.				
6:0	Mask					
	If bit $7 = 0 (I/O)$:					
	Bit 6	0 = Disable write cycle tracking1 = Enable write cycle tracking				
	Bit 5	0 = Disable read cycle tracking1 = Enable read cycle tracking				
	Bits 4:0	Mask for address bits A[4:0]				
	If bit $7 = 1 (M/IO)$:					
	Bits 6:0	Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored.			
	Note: A "1" in a m	ask bit means that the address bit is ignored for comparison.				

Table 4-24. User Defined Device 2 (UDEF2) Idle Timer and Trap Related Registers

Bit	Description					
F0 Index	81h	Power Management Enable Register 4 (R/W)	Reset Value = 00h			
5		User Defined Device 2 (UDEF2) Idle Timer Enable: Load timer from UDEF2 Idle Timer Count Register (F0 Index A2h) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.				
		s in the programmed address range the timer is reloaded with the programming is at F0 Index C4h (base address register) and CDh (contro				
	'	is is reported at F1BAR+Memory Offset 00h/02h[0]. status is reported at F0 Index 85h/F5h[5].				
F0 Index	82h	Power Management Enable Register 3 (R/W)	Reset Value = 00h			
5	User Defined Dev	ice 2 (UDEF2) Trap: 0 = Disable; 1 = Enable.				
		d and an access occurs in the programmed address range an SMI is ge F0 Index C4h (base address register) and CDh (control register).	nerated. UDEF2 address			
	'	is is reported at F1BAR+Memory Offset 00h/02h[9]. status is reported at F1BAR+Memory Offset 04h/06h[3].				
F0 Index	A2h-A3h	User Defined Device 2 Idle Timer Count Register (R/W)	Reset Value = 0000h			
	count value whene ter) and F0 Index (To enable this time Top level SMI statu	for this device after which the system is alerted via an SMI. The timer is ever an access occurs to memory or I/O address space configured at FO CDh (control register). The timer uses a 1 second timebase. or set F0 Index 81h[5] = 1. as is reported at F1BAR+Memory Offset 00h/02h[0]. status is reported at F0 Index 85h/F5h[5].	•			
F0 Index	C4h-C7h	User Defined Device 2 Base Address Register (R/W)	Reset Value = 00000000h			
31:0	timer resources) fo	ice 2 (UDEF2) Base Address [31:0]: This 32-bit register supports power a PCMCIA slot or some other device in the system. The value written ap/timer logic. The device can be memory or I/O mapped (configured in	is used as the address compara-			
F0 Index	CDh	User Defined Device 2 Control Register (R/W)	Reset Value = 00h			
7	Memory or I/O Ma	apped: User Defined Device 2 is: 0 = I/O; 1 = Memory.				
6:0	Mask					
	If bit $7 = 0 (I/O)$:					
	Bit 6	0 = Disable write cycle tracking				
	Bit 5	1 = Enable write cycle tracking 0 = Disable read cycle tracking				
	Dit 3	1 = Enable read cycle tracking				
	Bits 4:0	Mask for address bits A[4:0]				
	If bit $7 = 1 (M/IO)$:					
	Bits 6:0	Mask for address memory bits A[15:9] (512 bytes min. and 64 KB ma	x.) and A[8:0] are ignored.			
	Note: A "1" in a m	ask bit means that the address bit is ignored for comparison.				

Table 4-25. User Defined Device 3 (UDEF3) Idle Timer and Trap Related Registers

Bit	Description					
F0 Index	81h	Power Management Enable Register 4 (R/W)	Reset Value = 00h			
6		User Defined Device 3 (UDEF3) Idle Timer Enable: Load timer from UDEF3 Idle Timer Count Register (F0 Index A4h) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.				
	UDEF3 address pr	is in the programmed address range the timer is reloaded with the program rogramming is at F0 Index C8h (base address register) and CEh (control is is reported at F1BAR+Memory Offset 00h/02h[0].				
F0 Index	<u>'</u>	status is reported at F0 Index 85h/F5h[6]. Power Management Enable Register 3 (R/W)	Reset Value = 00h			
6	_	rice 3 (UDEF3) Trap: 0 = Disable; 1 = Enable.	Treset value – von			
J	If this bit is enabled programming is at	d and an access occurs in the programmed address range an SMI is general F0 Index C8h (base address register) and CEh (control register).	erated. UDEF3 address			
		is is reported at F1BAR+Memory Offset 00h/02h[9]. status is reported at F1BAR+Memory Offset 04h/06h[4].				
F0 Index	A4h-A5h	User Defined Device 3 Idle Timer Count Register (R/W)	Reset Value = 0000h			
	period of inactivity count value whene ter) and F0 Index (To enable this time Top level SMI statu	EF3 is not in use so that it can be power managed. The 16-bit value prografor this device after which the system is alerted via an SMI. The timer is a ever an access occurs to memory or I/O address space configured at F0 ICEh (control register). The timer uses a 1 second timebase. For set F0 Index 81h[6] = 1. It is is reported at F1BAR+Memory Offset 00h/02h[0]. Status is reported at F0 Index 85h/F5h[6].	automatically reloaded with the			
F0 Index	C8h-CBh	User Defined Device 3 Base Address Register (R/W)	Reset Value = 00000000h			
31:0	timer resources) fo	rice 3 (UDEF3) Base Address [31:0]: This 32-bit register supports power a PCMCIA slot or some other device in the system. The value written is ap/timer logic. The device can be memory or I/O mapped (configured in I	used as the address compara-			
F0 Index	CEh	User Defined Device 3 Control Register (R/W)	Reset Value = 00h			
7	Memory or I/O Ma	apped: User Defined Device 3 is: 0 = I/O; 1 = Memory.				
6:0	Mask If bit 7 = 0 (I/O):					
	Bit 6	0 = Disable write cycle tracking 1 = Enable write cycle tracking				
	Bit 5	0 = Disable read cycle tracking 1 = Enable read cycle tracking				
	Bits 4:0 If bit 7 = 1 (M/IO):	Mask for address bits A[4:0]				
	Bits 6:0	Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored.			
	Note: A "1" in a m	ask bit means that the address bit is ignored for comparison.				

Revision 1.1 Power Management

Although not considered as device idle timers, two additional timers are provided by the CS5530A. The Video Idle Timer used for Suspend determination and the VGA Timer used for SoftVGA.

These timers and their associated programming bits are listed in Tables 4-26 and 4-27.

Table 4-26. Video Idle Timer and Trap Related Registers

Bit	Description	
F0 Index 8	81h Power Management Enable Register 2 (R/W)	Reset Value = 00h
7	Video Access Idle Timer Enable: Load timer from Video Idle Timer Count Register (F0 In when the timer expires. 0 = Disable; 1 = Enable.	dex A6h) and generate an SMI
	If an access occurs in the video address range (sets bit 0 of the GX1 processor's PSERIAL with the programmed count.	register) the timer is reloaded
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[7].	
F0 Index 8	Power Management Enable Register 3 (R/W)	Reset Value = 00h
7	Video Access Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the video address range (sets bit 0 of the GX1 register) an SMI is generated.	processor's PSERIAL
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[7].	
F0 Index	A6h-A7h Video Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	Video Idle Timer Count: The idle timer loaded from this register determines when the graph part of the Suspend determination algorithm. The 16-bit value programmed here represent after which the system is alerted via an SMI. The count in this timer is automatically reset which graphics controller space. The timer uses a 1 second timebase.	s the period of video inactivity
	In a GX1 processor based system the graphics controller is embedded in the CPU, so video CS5530A via the serial connection (PSERIAL register, bit 0) from the processor. The CS55 standard VGA space on PCI (3Bxh, 3Cxh, 3Dxh and A000h-B7FFh) in the event an external	30A also detects accesses to
	To enable this timer set F0 Index 81h[7] = 1.	-
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[7].	

Table 4-27. VGA Timer Related Registers

Bit	Description	
F0 Index 8	3h Power Management Enable Register 4 (R/W) Reset Value = 00h	
3	VGA Timer Enable: Turn on VGA Timer and generate an SMI when the timer reaches 0. 0 = Disable; 1 = Enable. VGA Timer programming is at F0 Index 8Eh and F0 Index 8Bh[6]. To reload the count in the VGA timer, disable it, optionally change the count value in F0 Index 8Eh[7:0], and reenable it before enabling power management. SMI Status reporting is at F1BAR+Memory Offset 00h/02h[6] (only). Although grouped with the power management Idle Timers, the VGA Timer is not a power management function. The VGA Timer counts whether power management is enabled or disabled.	
F0 Index 8		
6	VGA Timer Base: Selects timebase for VGA Timer Register (F0 Index 8Eh). 0 = 1 ms; 1 = 32 μs.	
F0 Index 8	Eh VGA Timer Count Register	
7:0	7:0 VGA Timer Load Value: This register holds the load value for the VGA timer. The value is loaded into the timer when timer is enabled (F0 Index 83h[3] = 1). The timer is decremented with each clock of the configured timebase (F0 Index 88h[6]). Upon expiration of the timer, an SMI is generated and the status is reported in F1BAR+Memory Offset 00h/0 (only). Once expired, this timer must be re-initialized by disabling it (F0 Index 83h[3] = 0) and then enabling it (F0 Index 83h[3] = 1). When the count value is changed in this register, the timer must be re-initialized in order for the new value loaded.	
	This timer's timebase is selectable as 1 ms (default) or 32 µs. (F0 Index 8Bh).	
	Note: Although grouped with the power management Idle Timers, the VGA Timer is not a power management function. It is not affected by the Global Power Management Enable setting at F0 Index 80h[0].	

Power Management Revision 1.1 AMD

4.4.3.2 General Purpose Timers

The CS5530A contains two general purpose timers, General Purpose Timer 1 (F0 Index 88h) and General Purpose Timer 2 (F0 Index 8Ah). These two timers are similar to the Device Idle Timers in that they count down to zero unless re-triggered, and generate an SMI when they reach zero. However, these are 8-bit timers instead of 16 bits, they have a programmable timebase, they are not enabled or disabled by Global Power Management bits F0 Index 80h[1:0], and the events which reload these timers are configurable. These timers are typically used for an indication of system inactivity for Suspend determination.

General Purpose Timer 1 can be re-triggered by activity to any of the configured user defined devices, keyboard and mouse, parallel and serial, floppy disk, or hard disk.

General Purpose Timer 2 can be re-triggered by a transition on the GPIO7 pin (if GPIO7 is properly configured). Configuration of the GPIO7 is explained in Section 4.4.3.4 "General Purpose I/O Pins" on page 80.

The timebase for both general purpose timers can be configured as either 1 second (default) or 1 millisecond. The registers at F0 Index 89h and 8Bh are the control registers for the general purpose timers. Table 4-28 show the bit formats for these registers.

After a general purpose timer is enabled or after an event reloads the timer, the timer is loaded with the configured count value. Upon expiration of the timer an SMI is generated and a status flag is set. Once expired, this timer must be re-initialized by disabling and enabling it.

The general purpose timer is not loaded immediately, but when the free-running timebase counter reaches its maximum value. Depending on the count at the time, this could be on the next 32 KHz clock (CLK_32K), or after a full count of 32, or 32,768 clocks (approximately 1 msec, or exactly 1 sec). The general purpose timer cannot trigger an interrupt until after the first count. Thus, the minimum time before the next SMI from the timer can be either from 1-2 msec or 1-2 sec with a setting of 02h.

Table 4-28. General Purpose Timers and Control Registers

Bit	Description			
F0 Index	88h General Purpose Timer 1 Count Register (R/W)	Reset Value = 00h		
7:0	General Purpose Timer 1 Count: This register holds the load value for GP Timer 1. This value can represent either an 8-bit or 16-bit timer (selected at F0 Index 8Bh[4]). It is loaded into the timer when the timer is enabled (F0 Index 83h[0] =1). Once enabled, an enabled event (configured in F0 Index 89h[6:0]) reloads the timer.			
	The timer is decremented with each clock of the configured timebase. Upon expiration of the the top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. The second level SF1BAR+Memory Offset 04h/06h[0]).	, ,		
	Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a	new count value here.		
	This timer's timebase can be configured as 1 msec or 1 sec at F0 Index 89h[7].			
F0 Index	89h General Purpose Timer 1 Control Register (R/W)	Reset Value = 00h		
7	Timebase for General Purpose Timer 1: Selects timebase for GP Timer 1 (F0 Index 88h).	0 = 1 sec; 1 = 1 msec.		
6	Re-trigger General Purpose Timer 1 on User Defined Device 3 (UDEF3) Activity: 0 = Dis	sable; 1 = Enable.		
	Any access to the configured (memory or I/O) address range for UDEF3 reloads GP Timer 1 programming is at F0 Index C8h (base address register) and CEh (control register).	. UDEF3 address		
5	Re-trigger General Purpose Timer 1 on User Defined Device 2 (UDEF2) Activity: 0 = Dis	sable; 1 = Enable.		
	Any access to the configured (memory or I/O) address range for UDEF2 reloads GP Timer 1 programming is at F0 Index C4h (base address register) and CDh (control register).	. UDEF2 address		
4	Re-trigger General Purpose Timer 1 on User Defined Device 1 (UDEF1) Activity: 0 = Dis	sable; 1 = Enable.		
	Any access to the configured (memory or I/O) address range for UDEF1 reloads GP Timer 1 programming is at F0 Index C0h (base address register) and CCh (control register)	. UDEF1 address		
3	Re-trigger General Purpose Timer 1 on Keyboard or Mouse Activity: 0 = Disable; 1 = En	nable		
	Any access to the keyboard or mouse I/O address range (listed below) reloads GP Timer 1. Keyboard Controller: I/O Ports 060h/064h			
	COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is included) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is included)			
2	Re-trigger General Purpose Timer 1 on Parallel/Serial Port Activity: 0 = Disable; 1 = Ena	able.		
	Any access to the parallel or serial port I/O address range (listed below) reloads the GP Time LPT1: I/O Port 378h-37Fh, 778h-77Ah LPT2: I/O Port 278h-27Fh, 678h-67Ah COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is excluded) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is excluded)	er 1.		
	COM3: I/O Port 3E8h-3EFh COM4: I/O Port 2E8h-2EFh			

Table 4-28. General Purpose Timers and Control Registers (Continued)

Bit	Description				
1	Re-trigger General Purpose Timer 1 on Floppy Disk Activity: 0 = Disable; 1 = Enable.				
	Any access to the floppy disk drive address ranges (listed below) reloads GP Timer 1.				
	Primary floppy disk: I/O Port 3F2h, 3F4h, 3F5h, and 3F7				
	Secondary floppy disk: I/O Port 372h, 373h, 375h, and 377h				
	The active floppy drive is configured via F0 Index 93h[7].				
0	Re-trigger General Purpose Timer 1 on Primary Hard Disk Activity: 0 = Disable; 1 = Enable.				
	Any access to the primary hard disk drive address range selected in F0 Index 93h[5] reloads GP Tim	er 1.			
F0 Index 8	8Ah General Purpose Timer 2 Count Register (R/W)	Reset Value = 00h			
7:0	General Purpose Timer 2 Count: This register holds the load value for GP Timer 2. This value can				
	bit or 16-bit timer (configured in F0 Index 8Bh[5]). It is loaded into the timer when the timer is enabled Once the timer is enabled and a transition occurs on GPIO7, the timer is re-loaded.	(F0 Index 83h[1] = 1).			
	The timer is decremented with each clock of the configured timebase. Upon expiration of the timer, are the top level of status is F1BAR+Memory Offset 00h/02h[9] and the second level of status is reported Offset 04h/06h[1]).				
	Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a new count value here.				
	For GPIO7 to act as the reload for this timer, it must be enabled as such (F0 Index 8Bh[2]) and be con Index 90h[7]).	figured as an input (F0			
	This timer's timebase can be configured as 1 msec or 1 sec in F0 Index 8Bh[3].				
F0 Index 8	BBh General Purpose Timer 2 Control Register (R/W)	Reset Value = 00h			
7	Re-trigger General Purpose Timer 1 on Secondary Hard Disk Activity: 0 = Disable; 1 = Enable.				
	Any access to the secondary hard disk drive address range selected in F0 Index 93h[4] reloads GP	Timer 1			
6	VGA Timer Base: Selects timebase for VGA Timer Register (F0 Index 8Eh). 0 = 1 ms; 1 = 32 μs.				
	Test times according to the state of the sta	Timor 1.			
5	General Purpose Timer 2 Shift: GP Timer 2 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-b				
5					
5	General Purpose Timer 2 Shift: GP Timer 2 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-b	it.			
4	General Purpose Timer 2 Shift: GP Timer 2 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-b As an 8-bit timer, the count value is loaded into GP Timer 2 Count Register (F0 Index 8Ah). As a 16-bit timer, the value loaded into GP Timer 2 Count Register is shifted left by eight bits, the low	it. er eight bits become			
	General Purpose Timer 2 Shift: GP Timer 2 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-b As an 8-bit timer, the count value is loaded into GP Timer 2 Count Register (F0 Index 8Ah). As a 16-bit timer, the value loaded into GP Timer 2 Count Register is shifted left by eight bits, the low zero, and this 16-bit value is used as the count for GP Timer 2.	it. er eight bits become			
	General Purpose Timer 2 Shift: GP Timer 2 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-b As an 8-bit timer, the count value is loaded into GP Timer 2 Count Register (F0 Index 8Ah). As a 16-bit timer, the value loaded into GP Timer 2 Count Register is shifted left by eight bits, the low zero, and this 16-bit value is used as the count for GP Timer 2. General Purpose Timer 1 Shift: GP Timer 1 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-bit timer.	it. rer eight bits become it.			
	General Purpose Timer 2 Shift: GP Timer 2 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-b As an 8-bit timer, the count value is loaded into GP Timer 2 Count Register (F0 Index 8Ah). As a 16-bit timer, the value loaded into GP Timer 2 Count Register is shifted left by eight bits, the low zero, and this 16-bit value is used as the count for GP Timer 2. General Purpose Timer 1 Shift: GP Timer 1 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-b As an 8-bit timer, the count value is that loaded into GP Timer 1 Count Register (F0 Index 88h).	it. rer eight bits become it.			
	General Purpose Timer 2 Shift: GP Timer 2 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-b As an 8-bit timer, the count value is loaded into GP Timer 2 Count Register (F0 Index 8Ah). As a 16-bit timer, the value loaded into GP Timer 2 Count Register is shifted left by eight bits, the low zero, and this 16-bit value is used as the count for GP Timer 2. General Purpose Timer 1 Shift: GP Timer 1 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-b As an 8-bit timer, the count value is that loaded into GP Timer 1 Count Register (F0 Index 88h). As a 16-bit timer, the value loaded into GP Timer 1 Count Register is shifted left by eight bit, the lower than the count of th	er eight bits become it. er eight bits become			
4	General Purpose Timer 2 Shift: GP Timer 2 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-b As an 8-bit timer, the count value is loaded into GP Timer 2 Count Register (F0 Index 8Ah). As a 16-bit timer, the value loaded into GP Timer 2 Count Register is shifted left by eight bits, the low zero, and this 16-bit value is used as the count for GP Timer 2. General Purpose Timer 1 Shift: GP Timer 1 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-b As an 8-bit timer, the count value is that loaded into GP Timer 1 Count Register (F0 Index 88h). As a 16-bit timer, the value loaded into GP Timer 1 Count Register is shifted left by eight bit, the lower zero, and this 16-bit value is used as the count for GP Timer 1.	rer eight bits become it. er eight bits become c; 1 = 1 msec.			
3	General Purpose Timer 2 Shift: GP Timer 2 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-b As an 8-bit timer, the count value is loaded into GP Timer 2 Count Register (F0 Index 8Ah). As a 16-bit timer, the value loaded into GP Timer 2 Count Register is shifted left by eight bits, the low zero, and this 16-bit value is used as the count for GP Timer 2. General Purpose Timer 1 Shift: GP Timer 1 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-b As an 8-bit timer, the count value is that loaded into GP Timer 1 Count Register (F0 Index 88h). As a 16-bit timer, the value loaded into GP Timer 1 Count Register is shifted left by eight bit, the lower zero, and this 16-bit value is used as the count for GP Timer 1. Timebase for General Purpose Timer 2: Selects timebase for GP Timer 2 (F0 Index 8Ah). 0 = 1 sets Re-trigger General Purpose Timer 2 on GPIO7 Pin Transition: A configured transition on the GPI	rer eight bits become it. er eight bits become c; 1 = 1 msec. O7 pin reloads GP			

Power Management Revision 1.1 AMD

4.4.3.3 ACPI Timer Register

The ACPI Timer Count Register (F1BAR+Memory Offset 1Ch or a fixed I/O Port at 121Ch) provides the current value of the ACPI timer. The timer counts at 14.31818/4 MHz (3.579545 MHz). If SMI generation is enabled (F0 Index 83h[5] = 1), an SMI is generated when bit 23 toggles. Table 4-29 shows the ACPI Timer Count Register and the ACPI Timer SMI enable bit.

V-ACPI I/O Register Space

The register space designated as V-ACPI (Virtualized ACPI) I/O does not physically exist in the CS5530A. ACPI is supported in the CS5530A by virtualizing this register space. In order for ACPI to be supported, the V-ACPI module must be included in the BIOS. The register descriptions that follow are supplied here for reference only.

Fixed Feature space registers are required to be implemented by all ACPI-compatible hardware. The Fixed Feature registers in the V-ACPI solution are mapped to normal I/O space starting at Offset AC00h. However, the designer can relocate this register space at compile time, hereafter referred to as ACPI_BASE. Registers within the V-ACPI I/O space must only be accessed on their defined boundaries. For example, BYTE aligned registers must not be accessed via WORD I/O instructions, WORD aligned registers must not be accessed as DWORD I/O instructions, etc.

Table 4-29 summarizes the registers available in the V-ACPI I/O Register Space. The "Reference" column gives the table and page number where the bit formats for the registers are located.

Table 4-29. ACPI Timer Related Registers/Bits

Bit	Description		
F1BAR+M	emory Offset 1Ch-1Fh (Note)	ACPI Timer Count Register (RO)	Reset Value = 00FFFFFCh
	MHz). If SMI generation is enabled	egister provides the current value of the ACPI time via F0 Index 83h[5], an SMI is generated when the	
	MI status is reported at F1BAR+Mel SMI status is reported at F0 Inde		
31:24	Reserved: Always returns 0.		
23:0	Counter		
Note: The	ACPI Timer Count Register is also	accessible through I/O Port 121Ch.	
F0 Index 8	3h Po	wer Management Enable Register 4 (R/W)	Reset Value = 00h
5	ACPI Timer SMI: Allow SMI general 121Ch). 0 = Disable; 1 = Enable.	eration for MSB toggles on the ACPI Timer (F1BAF	R+Memory Offset 1Ch or I/O Port
	Top level SMI status is reported a Second level SMI status is report	t F1BAR+Memory Offset 00h/02h[0]. ed at F0 Index 87h/F7h[0].	

Table 4-30. V-ACPI I/O Register Space Summary

ACPI_ BASE	Туре	Align	Length	Name	Reset Value	Reference (Table 5-34)
00h-03h	R/W	4	4	P_CNT: Processor Control Register	00000000h	Page 224
04h	RO	1	1	P_LVL2: Enter C2 Power State Register	00h	Page 224
05h		1	1	Reserved	00h	Page 224
06h	R/W	1	1	SMI_CMD: OS/BIOS Requests Register (ACPI Enable/ Disable Port)	00h	Page 224
07h		1	1	Reserved	00h	Page 225
08h-09h	R/W	2	2	PM1A_STS: PM1A Status Register	0000h	Page 225
0Ah-0Bh	R/W	2	2	PM1A_EN: PM1A Enable Register	0000h	Page 225
0Ch-0Dh	R/W	4	2	PM1A_CNT: PM1A Control Register	0000h	Page 225
0Eh-0Fh	R/W	2	2	SETUP_IDX: Setup Index Register (V-ACPI internal index register)	0000h	Page 226
10h-11h	R/W	2	2	GPE0_STS: General Purpose Event 0 Status Register	0000h	Page 226
12h-13h	R/W	2	2	GPE0_EN: General Purpose Event 0 Enable Register	0000h	Page 226
14h-17h	R/W	4	4	SETUP_DATA: Setup Data Register (V-ACPI internal data register)	00000000h	Page 227
18h-1Fh			8	Reserved: For Future V-ACPI Implementations		Page 227

Revision 1.1 Power Management

4.4.3.4 General Purpose I/O Pins

The CS5530A provides up to eight GPIO (general purpose I/O) pins. Five of the pins (GPIO[7:4] and GPIO1) have alternate functions. Table 4-31 shows the bits used for GPIO pin function selection.

Each GPIO pin can be configured as an input or output. GPIO[7:0] can be independently configured to act as edge-sensitive SMI events. Each pin can be enabled and configured to be either positive-edge sensitive or negative-edge sensitive. These pins then cause an SMI to be generated when an appropriate edge condition is detected. The power management status registers indicate that a GPIO external SMI event has occurred.

The GPIO Pin Direction Register 1 (F0 Index 90h) selects whether the GPIO pin is an input or output. The GPIO Pin

Data Register 1 (F0 Index 91h) contains the direct values of the GPIO pins. Write operations are valid only for bits defined as outputs. Reads from this register read the last written value if the pin is an output.

GPIO Control Register 1 (F0 Index 92h) configures the operation of the GPIO pins for their various alternate functions. Bits [5:3] set the edge sensitivity for generating an SMI on the GPIO[2:0] (input) pins respectively. Bits [2:0] enable the generation of an SMI. Bit 6 enables GPIO6 to act as the lid switch input. Bit 7 determines which edge transition will cause General Purpose Timer 2 (F0 Index 8Ah) to reload.

Table 4-32 shows the bit formats for the GPIO pin configuration and control registers.

Table 4-31. GPIO Pin Function Selection

Bit	Description		
F0 Index 4	I3h	USB Shadow Register (R/W)	Reset Value = 03h
6	Enable SA20: Pin AD22 confi	guration: 0 = GPIO4; 1 = SA20. If F0 Index 43h bit 6 o	r bit 2 is set to 1, then pin AD22 = SA20.
2	Enable SA[23:20]: Pins AF23, AE23, AC21, and AD22 configuration: 0 = GPIO[7:4]; 1 = SA[23:20]. If F0 Index 43h bit 6 or bit 2 is set to 1, then pin AD22 = SA20.]; 1 = SA[23:20]. If F0 Index 43h bit 6 or
F3BAR+M	emory Offset 08h-0Bh	Codec Status Register (R/W)	Reset Value = 00000000h
21	Enable SDATA_IN2: Pin AE2	4 functions as: 0 = GPIO1; 1 = SDATA_IN2.	
	For this pin to function as SDATA_IN2, it must first be configured as an input (F0 Index 90h[1] = 0).		

Table 4-32. GPIO Pin Configuration/Control Registers

Bit	Description	
F0 Index 9	0h GPIO Pin Direction Register 1 (R/W)	Reset Value = 00h
7	GPIO7 Direction: Selects if GPIO7 is an input or output: 0 = Input; 1 = Output.	
6	GPIO6 Direction: Selects if GPIO6 is an input or output: 0 = Input; 1 = Output.	
5	GPIO5 Direction: Selects if GPIO5 is an input or output: 0 = Input; 1 = Output.	
4	GPIO4 Direction: Selects if GPIO4 is an input or output: 0 = Input; 1 = Output.	
3	GPIO3 Direction: Selects if GPIO3 is an input or output: 0 = Input; 1 = Output.	
2	GPIO2 Direction: Selects if GPIO2 is an input or output: 0 = Input; 1 = Output.	
1	GPIO1 Direction: Selects if GPIO1 is an input or output: 0 = Input; 1 = Output.	
0	GPIO0 Direction: Selects if GPIO0 is an input or output: 0 = Input; 1 = Output.	
	eral of these pins have specific alternate functions. The direction configured here must be consis rnate function.	stent with the pins' use as the
F0 Index 9	1h GPIO Pin Data Register 1 (R/W)	Reset Value = 00h
7	GPIO7 Data: Reflects the level of GPIO7: 0 = Low; 1 = High.	
6	GPIO6 Data: Reflects the level of GPIO6: 0 = Low; 1 = High.	
5	GPIO5 Data: Reflects the level of GPIO5: 0 = Low; 1 = High.	
4	GPIO4 Data: Reflects the level of GPIO4: 0 = Low; 1 = High.	
3	GPIO3 Data: Reflects the level of GPIO3: 0 = Low; 1 = High.	
2	GPIO2 Data: Reflects the level of GPIO2: 0 = Low; 1 = High.	
1	GPIO1 Data: Reflects the level of GPIO1: 0 = Low; 1 = High.	
0	GPIO0 Data: Reflects the level of GPIO0: 0 = Low; 1 = High.	
Note: This	register contains the direct values of GPIO[7:0] pins. Write operations are valid only for bits def	

Power Management Revision 1.1

Table 4-32. GPIO Pin Configuration/Control Registers (Continued)

Bit	Description	
F0 Index	92h GPIO Control Register 1 (R/W)	Reset Value = 00h
7	GPIO7 Edge Sense for Reload of General Purpose Timer 2: Selects which edge transition of GP Timer 2 to reload. 0 = Rising; 1 = Falling (Note 2).	GPIO7 causes
6	GPIO6 Enabled as Lid Switch: Allow GPIO6 to act as the lid switch input. 0 = GPIO6; 1 = Lid sv	vitch.
	When enabled, every transition of the GPIO6 pin causes the lid switch status to toggle and general	rate an SMI.
	The top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].	
	Second level SMI status is reported at F0 Index 87h/F7h[3].	asition
5	If GPIO6 is enabled as the lid switch, F0 Index 87h/F7h[4] reports the current status of the lid's p	
3	GPIO2 Edge Sense for SMI: Selects which edge transition of the GPIO2 pin generates an SMI. 0 = Rising; 1 = Fallir Bit 2 must be set to enable this bit.	
4	GPIO1 Edge Sense for SMI: Selects which edge transition of the GPIO1 pin generates an SMI.	0 - Rising: 1 - Falling
4	Bit 1 must be set to enable this bit.	0 = Mising, 1 = Falling.
3	GPIO0 Edge Sense for SMI: Selects which edge transition of the GPIO0 pin generates an SMI.	0 = Rising: 1 = Falling
3	Bit 1 must be set to enable this bit.	0 = 1113111g, 1 = 1 alli11g.
2	Enable GPIO2 as an External SMI Source: Allow GPIO2 to be an external SMI source and gen	erate an SMI on either a
	rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3).	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].	
	Second level SMI status reporting is at F0 Index 87h/F7h[7].	
1	Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and gen rising- or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3).	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].	
	Second level SMI status reporting is at F0 Index 87h/F7h[6].	
0	Enable GPIO0 as an External SMI Source: Allow GPIO0 to be an external SMI source and gen	erate an SMI on either a
	rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3)	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].	
N-1 4	Second level SMI status reporting is at F0 Index 87h/F7h[5].	
	For any of the above bits to function properly, the respective GPIO pin must be configured as an in GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 8B	
	If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SM	
J,	system from Suspend when the clocks are stopped.	in sources to wake up the
0 Index	97h GPIO Control Register 2 (R/W)	Reset Value = 00h
7	GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI.	0 = Rising; 1 = Falling.
	Bit 3 must be set to enable this bit.	
6	GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI.	0 = Rising; 1 = Falling.
	Bit 2 must be set to enable this bit.	
5	GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI.	0 = Rising; 1 = Falling.
	Bit 1 must be set to enable this bit.	
4	GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI.	0 = Rising; 1 = Falling.
	Bit 0 must be set to enable this bit.	
3	Enable GPIO7 as an External SMI Source: Allow GPIO7 to be an external SMI source and to ge	enerate an SMI on either
	rising or falling edge transition (depends upon setting of bit 7). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].	
	Second level SMI status reporting is at F0 Index 84h/F4h[3].	
2	Enable GPIO5 as an External SMI Source: Allow GPIO5 to be an external SMI source and to go rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable.	enerate an SMI on either
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].	
4	Second level SMI status reporting is at F0 Index 84h/F4h[2].	poorate on CMI are although
1	Enable GPIO4 as an External SMI Source: Allow GPIO4 to be an external SMI source and to ge rising- or falling-edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable.	enerate an SIVII on either a
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].	

Table 4-32. GPIO Pin Configuration/Control Registers (Continued)

Bit	Description		
0	Enable GPIO3 as an External SMI Source: Allow GPIO3 to be an external SMI source and to generate an SMI on either a rising or falling edge transition (depends upon setting of bit 4) 0 = Disable; 1 = Enable.		
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[0].		
Note: For	Note: For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h).		

4.4.3.5 Power Management SMI Status Reporting Registers

The CS5530A updates status registers to reflect the SMI sources. Power management SMI sources are the device idle timers, address traps, and general purpose I/O pins.

Power management events are reported to the processor through the SMI# pin. It is active low. When an SMI is initiated, the SMI# pin is asserted low and is held low until all SMI sources are cleared. At that time, SMI# is deasserted.

All SMI sources report to the Top Level SMI Status Register (F1BAR+Memory Offset 02h) and the Top Level SMI Status Mirror Register (F1BAR+Memory Offset 00h). The Top SMI Status and Status Mirror Registers are the top level of hierarchy for the SMI handler in determining the source of an SMI. These two registers are identical except that reading the register at F1BAR+Memory Offset 02h clears the status.

Since all SMI sources report to the Top Level SMI Status Register, many of its bits combine a large number of events requiring a second level of SMI status reporting. The second level of SMI status reporting is set up very much like the top level. There are two status reporting registers, one "read only" (mirror) and one "read to clear". The data returned by reading either offset is the same, the difference between the two being that the SMI can not be cleared by reading the mirror register.

Figure 4-7 on page 83 shows an example SMI tree for checking and clearing the source of general purpose timer and the user defined trap generated SMIs.

Table 4-33 on page 84 shows the bit formats of the read to clear Top Level SMI Status Register (F1BAR+Memory Offset 02h). Table 4-34 starting on page 85 shows the bit formats of the read to clear second level SMI status registers. For information regarding the location of the corresponding mirror register, refer to the note in the footer of the register description.

Keep in mind, all SMI sources in the CS5530A are reported into the Top Level SMI Status Registers (F1BAR+Memory Offset 00h/02h); however, this discussion is regarding power management SMIs. For details regarding audio SMI events/reporting, refer to Section 4.7.2.2 "Audio SMI Related Registers" on page 125.

Power Management Revision 1.1

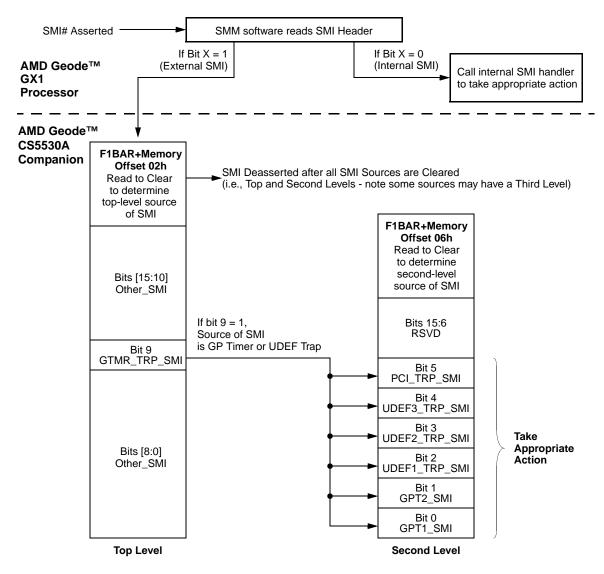


Figure 4-7. General Purpose Timer and UDEF Trap SMI Tree Example

Table 4-33. Top Level SMI Status Register (Read to Clear)

Bit	Description
F1BAR+N	Memory Offset 02h-03h Top Level SMI Status Register (RC) Reset Value = 0000h
15	Suspend Modulation Enable Mirror (Read to Clear): This bit mirrors the Suspend Mode Configuration bit (F0 Index 96h[0]). It is used by the SMI handler to determine if the SMI Speedup Disable Register (F1BAR+Memory Offset 08h) must be cleared on exit.
14	SMI Source is USB (Read to Clear): SMI was caused by USB activity? 0 = No; 1 = Yes. SMI generation is configured in F0 Index 42h[7:6].
13	SMI Source is Warm Reset Command (Read to Clear): SMI was caused by Warm Reset command? $0 = No; 1 = Yes.$
12	SMI Source is NMI (Read to Clear): SMI was caused by NMI activity? 0 = No; 1 = Yes.
11:10	Reserved (Read to Clear): Always reads 0.
9	SMI Source is General Purpose Timers/User Defined Device Traps/Register Space Trap (Read to Clear): SMI was caused by expiration of GP Timer 1/2; trapped access to UDEF3/2/1; trapped access to F1-F4 or ISA Legacy Register Space? 0 = No; 1 = Yes.
	The next level of status is found at F1BAR+Memory Offset 04h/06h.
8	SMI Source is Software Generated (Read to Clear): SMI was caused by software? 0 = No; 1 = Yes.
7	SMI on an A20M# Toggle (Read to Clear): SMI was caused by an access to either Port 092h or the keyboard command which initiates an A20M# SMI? 0 = No; 1 = Yes.
	This method of controlling the internal A20M# in the GX1 processor is used instead of a pin.
	SMI generation enabling is at F0 Index 53h[0].
6	SMI Source is a VGA Timer Event (Read to Clear): SMI was caused by the expiration of the VGA Timer (F0 Index 8Eh)? 0 = No; 1 = Yes.
	SMI generation enabling is at F0 Index 83h[3].
5	SMI Source is Video Retrace (IRQ2) (Read to Clear): SMI was caused by a video retrace event as decoded from the serial connection (PSERIAL register, bit 7) from the GX1 processor? 0 = No; 1 = Yes.
	SMI generation enabling is at F0 Index 83h[2].
4:2	Reserved (Read to Clear): Always reads 0.
1	SMI Source is Audio Interface (Read to Clear): SMI was caused by the audio interface? 0 = No; 1 = Yes.
	The next level SMI status registers is found in F3BAR+Memory Offset 10h/12h.
0	SMI Source is Power Management Event (Read to Clear): SMI was caused by one of the power management resources 0 = No; 1 = Yes.
	The next level of status is found at F0 Index 84h-87h/F4h-F7h.
	Note: The status for the General Purpose Timers and the User Device Defined Traps are checked separately in bit 9.
Note: Re	eading this register clears all the SMI status bits. Note that bits 9, 1, and 0 have another level (second) of status reporting.
	read-only "Mirror" version of this register exists at F1BAR+Memory Offset 00h. If the value of the register must be read withou earing the SMI source (and consequently deasserting SMI), the Mirror register may be read instead.

Table 4-34. Second Level Pwr Mgmnt SMI Status Reporting Registers (Read to Clear)

Bit	Description
F1BAR	-Memory Offset 06h-07h Second Level Gen. Traps/Timers SMI Status Register (RC) Reset Value = 0000h
15:6	Reserved (Read to Clear)
5	PCI Function Trap (Read to Clear): SMI was caused by a trapped configuration cycle (listed below)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].
	Trapped access to F0 PCI header registers other than Index 40h-43h; SMI generation enabling is at F0 Index 41h[0]. Trapped access to F1 PCI header registers; SMI generation enabling is at F0 Index 41h[3]. Trapped access to F2 PCI header registers; SMI generation enabling is at F0 Index 41h[6]. Trapped access to F3 PCI header registers; SMI generation enabling is at F0 Index 42h[0]. Trapped access to F4 PCI header registers; SMI generation enabling is at F0 Index 42h[1].
4	SMI Source is Trapped Access to User Defined Device 3 (Read to Clear): SMI was caused by a trapped I/O or memory access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[6].
3	SMI Source is Trapped Access to User Defined Device 2 (Read to Clear): SMI was caused by a trapped I/O or memory access to the User Defined Device 2 (F0 Index C4h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].
	SMI generation enabling is at F0 Index 82h[5].
2	SMI Source is Trapped Access to User Defined Device 1 (Read to Clear): SMI was caused by a trapped I/O or memory access to the User Defined Device 1 (F0 Index C0h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[4].
1	SMI Source is Expired General Purpose Timer 2 (Read to Clear): SMI was caused by the expiration of General Purpose Timer 2 (F0 Index 8Ah)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].
	SMI generation enabling is at F0 Index 83h[1].
0	SMI Source is Expired General Purpose Timer 1 (Read to Clear): SMI was caused by the expiration of General Purpose Timer 1 (F0 Index 88h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].
	SMI generation enabling is at F0 Index 83h[0].
Note: R	Reading this register clears all the SMI status bits.
	read-only "Mirror" version of this register exists at F1BAR+Memory Offset 04h. If the value of the register must be read withou learing the SMI source (and consequently deasserting SMI), the Mirror register may be read instead.
F0 Inde	x F4h Second Level Power Management Status Register 1 (RC) Reset Value = 84h
7:5	Reserved
4	Game Port SMI Status (Read to Clear): SMI was caused by a R/W access to game port (I/O Port 200h and 201h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	Game Port Read SMI generation enabling is at F0 Index 83h[4]. Game Port Write SMI generation enabling is at F0 Index 53h[3].
3	GPIO7 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO7 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 97h[3].
2	GPIO5 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO5 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 97h[2].
1	GPIO4 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO4 pin? 0 = No; 1 = Yes.
1	This is the according to CNN states according The tenderal in EADAD Means and Office (AON 100)
1	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
1	SMI generation enabling is at F0 Index 97h[1].
0	

Bit	Description
Note: Pro	perly-configured means that the GPIO pin must be enabled as a GPIO, an input, and to cause an SMI.
Thi	s register provides status on various power-management SMI events. Reading this register clears the SMI status bits. A rea y (mirror) version of this register exists at F0 Index 84h.
F0 Index	F5h Second Level Power Management Status Register 2 (RC) Reset Value = 00h
7	Video Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Video Idle Timer Count Register (F0 Index A6h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 81h[7].
6	User Defined Device 3 (UDEF3) Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the UDEF3 Idle Timer Count Register (F0 Index A4h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 81h[6].
5	User Defined Device 2 (UDEF2) Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the UDEF2 Idl Timer Count Register (F0 Index A2h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 81h[5].
4	User Defined Device 1 (UDEF1) Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the UDEF1 Idl Timer Count Register (F0 Index A0h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 81h[4].
3	Keyboard/Mouse Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Keyboard/Mouse Idle Timer Count Register (F0 Index 9Eh)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 81h[3].
2	Parallel/Serial Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Parallel/Serial Port Idle Time Count Register (F0 Index 9Ch)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 81h[2].
1	Floppy Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Floppy Disk Idle Timer Count Register (F0 Index 9Ah)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
0	SMI generation enabling is at F0 Index 81h[1]. Primary Hard Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Primary Hard Disk Idle Timer Count Register (F0 Index 98h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 81h[0].
dur bits	s register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for that ocnfigured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead.
F0 Index	
7	Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap?
	0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[7].
6	Reserved (Read Only)
5	Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the
	secondary hard disk? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].

Power Management Revision 1.1

Table 4-34. Second Level Pwr Mgmnt SMI Status Reporting Registers (Read to Clear) (Continued)

	4 041 Occord Level 1 III Ingiline cimi ciatac Reporting Regionale (Read to Clour) (Commission)
Bit	Description
4	Secondary Hard Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Hard Disk Idle Timer Count Register (F0 Index ACh)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 83h[7].
3	Keyboard/Mouse Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the keyboard or mouse? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[3].
2	Parallel/Serial Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to either the serial or parallel ports? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[2].
1	Floppy Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the
	floppy disk? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[1].
0	Primary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the primary hard disk? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[0].
de\ of t	s register provides status on the Device Traps to the SMI handler. A bit set here indicates that an access occurred to the vice while the trap was enabled, causing an SMI. Reading this register clears the SMI status bits. A read-only (mirror) version his register exists at F0 Index 86h. If the value of the register must be read without clearing the SMI source (and consequently asserting SMI), F0 Index 86h may be read instead.
F0 Index I	
7	GPIO2 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO2 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 92h[2].
6	GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 92h[1].
5	GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 92h[0].
4	Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pin is configured as the lid
	switch indicator, this bit reflects the state of the pin.
3	switch indicator, this bit reflects the state of the pin. Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes.
3	
2	Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Index
	Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Index 92h[6] = 1). Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a positive edge on
	Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Index 92h[6] = 1). Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a positive edge on SDATA_IN? 0 = No; 1 = Yes.
	Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Index 92h[6] = 1). Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a positive edge on SDATA_IN? 0 = No; 1 = Yes. This is the second level of status is reporting. The top level status is reported in F1BAR+Memory Offset 00h/02h[0].
2	Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Index 92h[6] = 1). Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a positive edge on SDATA_IN? 0 = No; 1 = Yes. This is the second level of status is reporting. The top level status is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 80h[5].
2	Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Index 92h[6] = 1). Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a positive edge on SDATA_IN? 0 = No; 1 = Yes. This is the second level of status is reporting. The top level status is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 80h[5]. RTC Alarm (IRQ8) SMI Status (Read to Clear): SMI was caused by an RTC interrupt? 0 = No; 1 = Yes.
2	Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Index 92h[6] = 1). Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a positive edge on SDATA_IN? 0 = No; 1 = Yes. This is the second level of status is reporting. The top level status is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 80h[5]. RTC Alarm (IRQ8) SMI Status (Read to Clear): SMI was caused by an RTC interrupt? 0 = No; 1 = Yes. This SMI event can only occur while in 3V Suspend and RTC interrupt occurs. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. ACPI Timer SMI Status (Read to Clear): SMI was caused by an ACPI Timer MSB toggle? 0 = No; 1 = Yes.
2	Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Index 92h[6] = 1). Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a positive edge on SDATA_IN? 0 = No; 1 = Yes. This is the second level of status is reporting. The top level status is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 80h[5]. RTC Alarm (IRQ8) SMI Status (Read to Clear): SMI was caused by an RTC interrupt? 0 = No; 1 = Yes. This SMI event can only occur while in 3V Suspend and RTC interrupt occurs. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. ACPI Timer SMI Status (Read to Clear): SMI was caused by an ACPI Timer MSB toggle? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
1 0	Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Index 92h[6] = 1). Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a positive edge on SDATA_IN? 0 = No; 1 = Yes. This is the second level of status is reporting. The top level status is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 80h[5]. RTC Alarm (IRQ8) SMI Status (Read to Clear): SMI was caused by an RTC interrupt? 0 = No; 1 = Yes. This SMI event can only occur while in 3V Suspend and RTC interrupt occurs. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. ACPI Timer SMI Status (Read to Clear): SMI was caused by an ACPI Timer MSB toggle? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation configuration is at F0 Index 83h[5].
2 1 0 Note: Pro	Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Index 92h[6] = 1). Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a positive edge on SDATA_IN? 0 = No; 1 = Yes. This is the second level of status is reporting. The top level status is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 80h[5]. RTC Alarm (IRQ8) SMI Status (Read to Clear): SMI was caused by an RTC interrupt? 0 = No; 1 = Yes. This SMI event can only occur while in 3V Suspend and RTC interrupt occurs. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. ACPI Timer SMI Status (Read to Clear): SMI was caused by an ACPI Timer MSB toggle? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation configuration is at F0 Index 83h[5]. Operly-configured means that the GPIO pin must be enabled as a GPIO, an input, and to cause an SMI.
2 1 0 Note: Pro Thi the	Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Index 92h[6] = 1). Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a positive edge on SDATA_IN? 0 = No; 1 = Yes. This is the second level of status is reporting. The top level status is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 80h[5]. RTC Alarm (IRQ8) SMI Status (Read to Clear): SMI was caused by an RTC interrupt? 0 = No; 1 = Yes. This SMI event can only occur while in 3V Suspend and RTC interrupt occurs. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. ACPI Timer SMI Status (Read to Clear): SMI was caused by an ACPI Timer MSB toggle? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation configuration is at F0 Index 83h[5].

Revision 1.1 Power Management

4.4.3.6 Device Power Management Register Programming Summary

Table 4-35 provides a programming register summary of the device idle timers, address traps, and general purpose I/O pins. For complete bit information regarding the registers listed in Table 4-35, refer to Section 5.3.1 "Bridge Configuration Registers - Function 0" on page 155 and Section 5.3.2 "SMI Status and ACPI Timer Registers - Function 1" on page 180.

Table 4-35. Device Power Management Programming Summary

		Located at F0 Index xxh Unless Otherwise Noted			
Device Power Management Resource	Enable	Configuration	Second Level SMI Status/No Clear	Second Level SMI Status/With Clear	
Global Timer Enable	80h[1]	N/A	N/A	N/A	
Keyboard / Mouse Idle Timer	81h[3]	93h[1:0]	85h[3]	F5h[3]	
Parallel / Serial Idle Timer	81h[2]	93h[1:0]	85h[2]	F5h[2]	
Floppy Disk Idle Timer	81h[1]	9Ah[15:0], 93h[7]	85h[1]	F5h[1]	
Video Idle Timer (Note 1)	81h[7]	A6h[15:0]	85h[7]	F5h[7]	
VGA Timer (Note 2)	83h[3]	8Eh[7:0]	F1BAR+Memory Offset 00h[6]	F1BAR+Memory Offset 02h[6]	
Primary Hard Disk Idle Timer	81h[0]	98h[15:0], 93h[5]	85h[0]	F5h[0]	
Secondary Hard Disk Idle Timer	83h[7]	ACh[15:0], 93h[4]	86h[4]	F6h[4]	
User Defined Device 1 Idle Timer	81h[4]	A0h[15:0], C0h[31:0], CCh[7:0]	85h[4]	F5h[4]	
User Defined Device 2 Idle Timer	81h[5]	A2h[15:0], C4h[31:0], CDh[7:0]	85h[5]	F5h[5]	
User Defined Device 3 Idle Timer	81h[6]	A4h[15:0], C8h[31:0], CEh[7:0]	85h[6]	F5h[6]	
Global Trap Enable	80h[2]	N/A	N/A	N/A	
Keyboard / Mouse Trap	82h[3]	9Eh[15:0] 93h[1:0]	86h[3]	F6h[3]	
Parallel / Serial Trap	82h[2]	9Ch[15:0], 93h[1:0]	86h[2]	F6h[2]	
Floppy Disk Trap	82h[1]	93h[7]	86h[1]	F6h[1]	
Video Access Trap	82h[7]	N/A	86h[7]	F6h[7]	
Primary Hard Disk Trap	82h[0]	93h[5]	86h[0]	F6h[0]	
Secondary Hard Disk Trap	83h[6]	93h[4]	86h[5]	F6h[5]	
User Defined Device 1 Trap	82h[4]	C0h[31:0], CCh[7:0]	F1BAR+Memory Offset 04h[2]	F1BAR+Memory Offset 06h[2]	
User Defined Device 2 Trap	82h[5]	C4h[31:0], CDh[7:0]	F1BAR+Memory Offset 04h[3]	F1BAR+Memory Offset 06h[3]	
User Defined Device 3 Trap	82h[6]	C8h[31:0], CEh[7:0]	F1BAR+Memory Offset 04h[4]	F1BAR+Memory Offset 06h[4]	
General Purpose Timer 1	83h[0]	88h[7:0], 89h[7:0], 8Bh[4]	F1BAR+Memory Offset 04h[0]	F1BAR+Memory Offset 06h[0]	
General Purpose Timer 2	83h[1]	8Ah[7:0], 8Bh[5,3,2]	F1BAR+Memory Offset 04h[1]	F1BAR+Memory Offset 06h[1]	
GPIO7 Pin	N/A	90h[7], 91h[7], 92h[7], 97h[7,3]	91h[7]	N/A	
GPIO6 Pin	N/A	90h[6], 91h[6], 92h[6]	87h[4,3], 91h[6]	F7h[4,3]	
GPIO5 Pin	N/A	90h[5], 91h[5], 97h[6,2]	91h[5]	N/A	
GPIO4 Pin	N/A	90h[4], 91h[4], 97h[5,1]	91h[4]	N/A	
GPIO3 Pin	N/A	90h[3], 91h[3], 97h[4,0]	91h[3]	N/A	
GPIO2 Pin	N/A	90h[2], 91h[2], 92h[5,2]	87h[7], 91h[2]	F7h[7]	
GPIO1 Pin	N/A	90h[1], 91h[1] 92h[4,1]	87h[6], 91h[1]	F7h[6]	
GPIO0 Pin	N/A	90h[0], 91h[0], 92h[3,0]	87h[5], 91h[0]	F7h[5]	
Suspend Modulation OFF/ON Video Speedup IRQ Speedup	96h[0] 80h[4] 80h[3]	94h[7:0]/95h[7:0] 8Dh[7:0] 8Ch[7:0]	N/A A8h[15:0] N/A	N/A N/A N/A	

Note: 1. This function is used for Suspend determination.

2. This function is used for SoftVGA, not power management. It is not affected by Global Power Enable.

4.5 PC/AT Compatibility Logic

The CS5530A's PC/AT compatibility logic provides support for the standard PC architecture. This subsystem also provides legacy support for existing hardware and software. Support functions for the GX1 processor provided by these subsystems include:

- · ISA Subtractive Decode
- ISA Bus Interface
 - Delayed PCI Transactions
 - Limited ISA and ISA Master Modes
- ROM Interface
- Megacells
 - Direct Memory Access (DMA)
 - Programmable Interval Timer
 - Programmable Interrupt Controller
 - PCI Compatible Interrupts
- I/O Ports 092h and 061h System Control
 - I/O Port 092h System Control
 - I/O Port 061h System Control

- SMI Generation for NMI
- Keyboard Interface Function
 - Fast Keyboard Gate Address 20 and CPU Reset
- External Real-Time Clock Interface

The following subsections give a detailed description for each of these functions.

4.5.1 ISA Subtractive Decode

The CS5530A provides an ISA bus controller. The CS5530A is the default subtractive-decoding agent, and forwards all unclaimed memory and I/O cycles to the ISA interface. For reads and writes in the first 1 MB of memory (i.e., A23:A20 set to 0), MEMR# or MEMW# respectively will be asserted. However, the CS5530A can be configured using F0 Index 04h[1:0] to ignore either I/O, memory, or all unclaimed cycles (subtractive decode disabled, F0 Index 41h[2:1] = 1x). Table 4-36 shows these programming bits.

Table 4-36. Cycle Configuration Bits

Bit	Description		
F0 Index	04h-05h PCI Command Register (R/W)	Reset Value = 000Fh	
1	1 Memory Space: Allow the CS5530A to respond to memory cycles from the PCI bus. 0 = Disable; 1 = Enable (Default).		
0	I/O Space: Allow the CS5530A to respond to I/O cycles from the PCI bus. 0 = Disable; 1 = Enable (Default).		
F0 Index 41h PCI Function Control Register 2 (R/W) Res		Reset Value = 10h	
2:1	Subtractive Decode: These bits determine the point at which the CS5530A accepts cycles that are not claimed by anothe device. The CS5530A defaults to taking subtractive decode cycles in the default cycle clock, but can be moved up to the Slow Decode cycle point if all other PCI devices decode in the fast or medium clocks. Disabling subtractive decode must be done with care, as all ISA and ROM cycles are decoded subtractively. 00 = Default sample (4th clock from FRAME# active) 01 = Slow sample (3rd clock from FRAME# active) 1x = No subtractive decode		

4.5.2 ISA Bus Interface

The ISA bus controller issues multiple ISA cycles to satisfy PCI transactions that are larger than 16 bits. A full 32-bit read or write results in two 16-bit ISA transactions or four 8-bit ISA transactions. The ISA controller gathers the data from multiple ISA read cycles and returns TRDY# only after all of the data can be presented to the PCI bus at the same time.

SA[23:0] are a concatenation of ISA LA[23:17] and SA[19:0] and perform equivalent functionality at a reduced pin count.

Figure 4-8 shows the relationship between a PCI cycle and the corresponding ISA cycle generated.

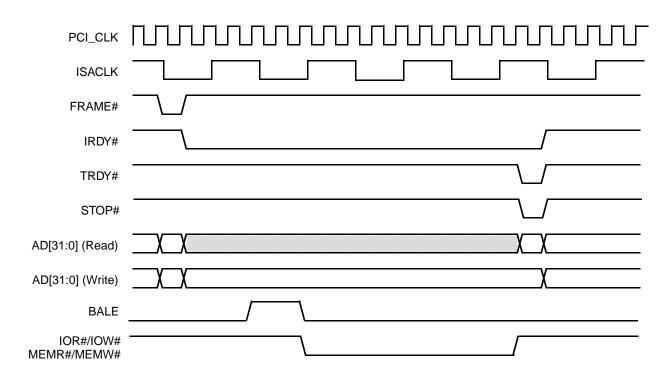
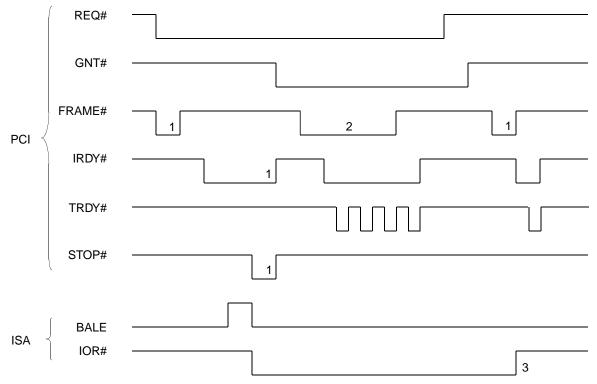



Figure 4-8. Non-Posted PCI-to-ISA Access

4.5.2.1 Delayed PCI Transactions

If PCI delayed transactions are enabled (F0 Index 42h[5] = 1) multiple PCI cycles occur for every slower ISA cycle. Figure 4-9 shows the relationship of PCI cycles to an ISA cycle with PCI delayed transactions enabled.

See Section 4.2.6 "Delayed Transactions" on page 54 for additional information.

- 1 Delay
- 2 IDE bus master starts and completes
- 3 End of ISA cycle

Figure 4-9. PCI to ISA Cycles with Delayed Transaction Enabled

4.5.2.2 Limited ISA and ISA Master Modes

The CS5530A supports two modes on the ISA interface. The default mode of the ISA bus is a fully functional ISA mode, but it does not support ISA masters, as shown in Figure 4-10 "Limited ISA Mode". When in this mode, the address and data buses are multiplexed together, requiring an external latch to latch the lower 16 bits of address of the ISA cycle. The signal SA_LATCH is generated when the data on the SA/SD bus is a valid address. Additionally, the upper four address bits, SA[23:20], are multiplexed on GPIO[7:4].

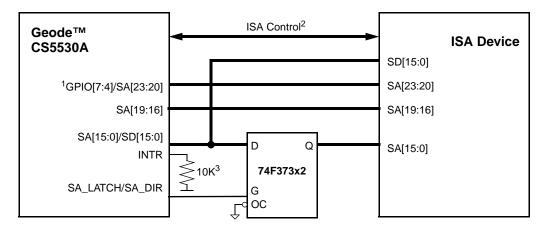
The second mode of the ISA interface supports ISA bus masters, as shown in Figure 4-11. When the CS5530A is placed in the ISA Master mode, a large number of pins are redefined as shown in Table 4-37.

In this mode of operation, the CS5530A cannot support TFT flat panels or TV controllers, since most of the signals used to support these functions have been redefined. This mode is required if ISA slots or ISA masters are used. ISA master cycles are only passed to the PCI bus if they access memory. I/O accesses are left to complete on the ISA bus.

The mode of operation is selected by the strapping of pin P26 (INTR):

- ISA Limited Mode Strap pin P26 (INTR) low through a 10-kohm resistor.
- ISA Master Mode Strap pin P26 (INTR) high through a 10-kohm resistor.

F0 Index 44h[7] (bit details on page 158) reports the strap value of the INTR pin (pin P26) during POR: 0 = ISA Limited; 1 = ISA Master.


This bit can be written after POR# deassertion to change the ISA mode selected. Writing to this bit is not recommended due to the actual strapping done on the board.

ISA memory and ISA refresh cycles are not supported by the CS5530A, although, the refresh toggle bit in I/O Port 061h still exists for software compatibility reasons.

Table 4-37. Signal Assignments

Pin No.	Limited ISA Mode	ISA Master Mode
AD15	SA_LATCH	SA_DIR
AE25, AD24, AE22, AE21, AF21, AC20, AD19, AF19, AF4, AF5, AD5, AF6, AC6, AD9, AE6, AE9	SA[15:0]/SD[15:0]	SD[15:0]
H2, K1, K2, L1, D1, E2, F1, G1, G3, G4, G2, H1, J1, J3, J2, K3	FP_DATA[15:0]	SA[15:0]
H3	FP_DATA[16]	SA_OE#
F3	FP_DATA[17]	MASTER#
E1	FP_HSYNC_OUT	SMEMW#
E3	FP_VSYNC_OUT	SMEMR#
AF3 (Note)	SMEMW#	RTCCS#
AD4 (Note)	SMEMR#	RTCALE
AF23, AE23, AC21, AD22	GPIO[7:4] SA[23:20]	SA[23:20]

Note: If Limited ISA Mode of operation has been selected, SMEMW# and SMEMR# can be output on these pins by programming F0 Index 53[2] = 0 (bit details on page 159).

Notes:

- 1. F0 Index 43h[2] controls GPIO[7:4]/SA[23:20].
- These signals are: MEMW#, MEMR#, IOR#, IOW#, TC, AEN, DREQ[7:5, 3:0], DACK[7:5, 3:0]#, MEMCS16#, ZEROWS#, SBHE#, IOCS16#, IOCHRDY, ISACLK.
- 3. This resistor is used at boot time to determine the mode of the ISA bus.

ISA Control² FP_VSYNC_OUT/SMEMR# SMEMR# FP_HSYNC_OUT/SMEMW# SMEMW# 3.3V/5V 330Ω FP_DATA17/MASTER# MASTER# ¹GPIO[7:4]/SA[23:20] SA[23:20] SA[19:16] SA[19:16] FP_DATA[15:0]/SA[15:0] SA[15:0] Geode™ **INTR ISA Master** CS5530A SA[15:0]_SD[15:0]/SD[15:0] SD[15:0]

Figure 4-10. Limited ISA Mode

Notes:

- 1. When strapped for ISA Master mode, GPIO[7:4]/SA[23:20] are set to SA[23:20] and the settings in F0 Index 43h[2] are invalid.
- 2. These signals are: MEMW#, MEMR#, IOR#, IOW#, TC, AEN, DREQ[7:5, 3:0], DACK[7:5, 3:0]#, MEMCS16#, ZEROWS#, SBHE#, IOCS16#, IOCHRDY, ISACLK.
- 3. This resistor is used at boot time to determine the mode of the ISA bus.

Figure 4-11. ISA Master Mode

4.5.2.3 ISA Bus Data Steering

The CS5530A performs all of the required data steering from SD[7:0] to SD[15:0] during normal 8-bit ISA cycles, as well as during DMA and ISA master cycles. It handles data transfers between the 32-bit PCI data bus and the ISA bus. 8/16-bit devices can reside on the ISA bus. Various PC-compatible I/O registers, DMA controller registers, interrupt controller registers, and count registers (for loading timers) lie on the on-chip I/O data bus. Either the PCI bus master or the DMA controllers can become the bus owner.

When the PCI bus master is the bus owner, the CS5530A data steering logic provides data conversion necessary for 8/16/32-bit transfers to and from 8/16-bit devices on either the ISA bus or the 8-bit registers on the on-chip I/O data bus. When PCI data bus drivers of the CS5530A are tristated, data transfers between the PCI bus master and PCI bus devices are handled directly via the PCI data bus.

When the DMA requestor is the bus owner, the CS5530A allows 8/16-bit data transfer between the ISA bus and the PCI data bus.

4.5.2.4 I/O Recovery Delays

In normal operation, the CS5530A inserts a delay between back-to-back ISA I/O cycles that originate on the PCI bus. The default delay is four ISACLK cycles. Thus, the second of consecutive I/O cycles is held in the ISA bus controller until this delay count has expired. The delay is measured between the rising edge of IOR#/IOW# and the falling edge of BALE. This delay can be adjusted to a greater delay through the ISA I/O Recovery Control Register (F0 Index 51h, see Table 4-38).

Note: This delay is not inserted for a 16-bit ISA I/O access that is split into two 8-bit I/O accesses.

Table 4-38. I/O Recovery Programming Register

Bit	Description				
F0 Index 51h		ISA I/O Recovery Con	trol Register (R/W)	Reset Value = 40h	
7:4	8-Bit I/O Recovery: These bits determine the number of ISA bus clocks between back-to-back 8-bit I/O read cycles. This count is in addition to a preset one-clock delay built into the controller.				
	0000 = 1 ISA clock 0001 = 2 ISA clocks 0010 = 3 ISA clocks 0011 = 4 ISA clocks	0100 = 5 ISA clocks 0101 = 6 ISA clocks 0110 = 7 ISA clocks 0111 = 8 ISA clocks	1000 = 9 ISA clocks 1001 = 10 ISA clocks 1010 = 11 ISA clocks 1011 = 12 ISA clocks	1100 = 13 ISA clocks 1101 = 14 ISA clocks 1110 = 15 ISA clocks 1111 = 16 ISA clocks	
3:0	1	ese bits determine the number reset one-clock delay built into 0100 = 5 ISA clocks		k-to-back 16-bit I/O cycles. This $1100 = 13 \text{ ISA clocks}$	
	0001 = 2 ISA clocks 0010 = 3 ISA clocks 0011 = 4 ISA clocks	0101 = 6 ISA clocks 0110 = 7 ISA clocks 0111 = 8 ISA clocks	1001 = 10 ISA clocks 1010 = 11 ISA clocks 1011 = 12 ISA clocks	1101 = 14 ISA clocks 1110 = 15 ISA clocks 1111 = 16 ISA clocks	

4.5.2.5 ISA DMA

DMA transfers occur between ISA I/O peripherals and system memory. The data width can be either 8 or 16 bits. Out of the seven DMA channels available, four are used for 8-bit transfers while the remaining three are used for 16-bit transfers. One BYTE or WORD is transferred in each DMA cycle.

Note: The CS5530A does not support DMA transfers to ISA memory.

The ISA DMA device initiates a DMA request by asserting one of the DRQ[7:5, 3:0] signals. When the CS5530A receives this request, it sends a bus grant request to the

PCI arbiter. After the PCI bus has been granted, the respective DACK# is driven active.

The CS5530A generates PCI memory read or write cycles in response to a DMA cycle. Figures 4-12 and 4-13 are examples of DMA memory read and memory write cycles. Upon detection of the DMA controller's MEMR# or MEMW# active, the CS5530A starts the PCI cycle, asserts FRAME#, and negates an internal IOCHRDY. This assures the DMA cycle does not complete before the PCI cycle has provided or accepted the data. IOCHRDY is internally asserted when IRDY# and TRDY# are sampled active.

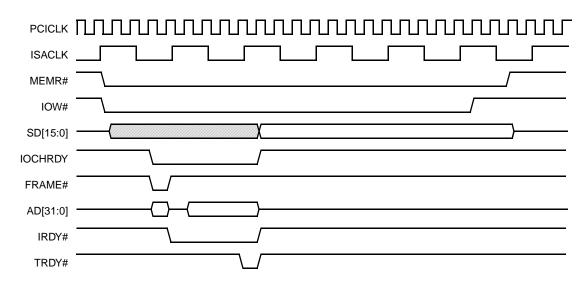


Figure 4-12. ISA DMA Read from PCI Memory

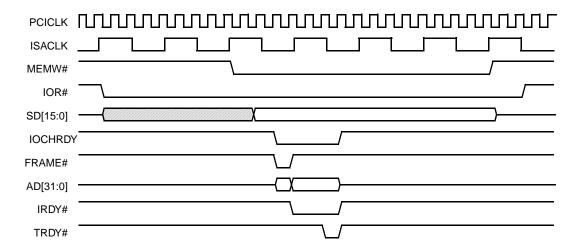


Figure 4-13. ISA DMA Write To PCI Memory

4.5.3 ROM Interface

The CS5530A positively decodes memory addresses 000F0000h-000FFFFH (64 KB) and FFFC0000h-FFFFFFFFH (256 KB) at reset. These memory cycles cause the CS5530A to claim the cycle, and generate an ISA bus memory cycle with KBROMCS# asserted. The CS5530A can also be configured to respond to memory addresses FF000000h-FFFFFFFFH (16 MB) and 000E0000h-000FFFFFH (128 KB).

Flash ROM is supported in the CS5530A by enabling the KBROMCS# signal on write accesses to the ROM region. Normally only read cycles are passed to the ISA bus, and the KBROMCS# signal is suppressed. When the ROM Write Enable bit (F0 Index 52h[1]) is set, a write access to the ROM address region causes an 8-bit write cycle to occur with MEMW# and KBROMCS# asserted. Table 4-39 shows the ROM interface related programming bits.

4.5.4 Megacells

The CS5530A core logic integrates:

- Two 8237-equivalent DMA controllers (DMAC) with full 32-bit addressing for DMA transfers.
- Two 8259-equivalent interrupt controllers providing 13 individually programmable external interrupts.
- An 8254-equivalent timer for refresh, timer, and speaker logic.
- NMI control and generation for PCI system errors and all parity errors.
- Support for standard AT keyboard controllers, reset control, and VSA technology audio.

Table 4-39. ROM Interface Related Bits

Bit	Description	
F0 Index	52h ROM/AT Logic Control Register (R/W)	Reset Value = F8h
2	Upper ROM Address Range: KBROMCS# is asserted for ISA memory read accesses. 0 = FFFC0000h-FFFFFFFh (256 KB, Default); 1 = FF000000h-FFFFFFFFh (16 MB)	
	Note: PCI Positive decoding for the ROM space is enabled at F0 Index 5Bh[5]).	
1	ROM Write Enable: Assert KBROMCS# during writes to configured ROM space (configured in bits 2 and 0), allowing Flash programming. 0 = Disable; 1 = Enable.	
0	Lower ROM Address Range: KBROMCS# is asserted for ISA memory read accesses. 0 = 000F0000h-000FFFFFh (64 KB, Default); 1 = 000E0000h-000FFFFFh (128 KB).	
	Note: PCI Positive decoding for the ROM space is enabled at F0 Index 5Bh[5]).	
F0 Index	5Bh Decode Control Register 2 (R/W)	Reset Value = 20h
5	BIOS ROM Positive Decode: Selects PCI positive or subtractive decoding for accesses to the 0 = Subtractive; 1 = Positive.	e configured ROM space.
	ROM configuration is at F0 Index 52h[2:0].	

4.5.4.1 Direct Memory Access (DMA)

The 8237-compatible DMA controllers in the CS5530A control transfers between ISA I/O devices and system memory. They generate a bus request to the PCI bus when an I/O device requests a DMA operation. Once they are granted the bus, the DMA transfer cycle occurs. DMA transfers can occur over the entire 32-bit address range of the PCI bus. Software DMA is not supported.

The CS5530A contains registers for driving the high address bits (high page) and registers for generating the middle address bits (low page) output by the 8237 controller.

DMA Controllers

The CS5530A supports seven DMA channels using two standard 8237-equivalent controllers. DMA Controller 1 contains Channels 0 through 3 and supports 8-bit I/O adapters. These channels are used to transfer data between 8-bit peripherals and PCI memory or 8/16-bit ISA memory. Using the high and low page address registers, a full 32-bit PCI address is output for each channel so they can all transfer data throughout the entire 4 GB system address space. Each channel can transfer data in 64 KB pages.

DMA Controller 2 contains Channels 4 through 7. Channel 4 is used to cascade DMA Controller 1, so it is not available externally. Channels 5 through 7 support 16-bit I/O adapters to transfer data between 16-bit I/O adapters and 16-bit system memory. Using the high and low page address registers, a full 32-bit PCI address is output for each channel so they can all transfer data throughout the entire 4 GB system address space. Each channel can transfer data in 128 KB pages. Channels 5, 6, and 7 transfer 16-bit WORDs on even byte boundaries only.

DMA Transfer Modes

Each DMA channel can be programmed for single, block, demand or cascade transfer modes. In the most commonly used mode, single transfer mode, one DMA cycle occurs per DRQ and the PCI bus is released after every cycle. This allows the CS5530A to timeshare the PCI bus with the CPU. This is imperative, especially in cases involving large data transfers, so that the CPU does not get locked out for too long.

In block transfer mode, the DMA controller executes all of its transfers consecutively without releasing the PCI bus.

In demand transfer mode, DMA transfer cycles continue to occur as long as DRQ is high or terminal count is not reached. In this mode, the DMA controller continues to execute transfer cycles until the I/O device drops DRQ to indicate its inability to continue providing data. For this case, the PCI bus is held by the CS5530A until a break in the transfers occurs.

In cascade mode, the channel is connected to another DMA controller or to an ISA bus master, rather than to an I/O device. In the CS5530A, one of the 8237 controllers is designated as the master and the other as the slave. The HOLD output of the slave is tied to the DRQ0 input of the

master (Channel 4), and the master's DACK0# output is tied to the slave's HLDA input.

In each of these modes, the DMA controller can be programmed for read, write, or verify transfers.

Both DMA controllers are reset at Power On Reset (POR) to fixed priority. Since master Channel 0 is actually connected to the slave DMA controller, the slave's four DMA channels have the highest priority, with Channel 0 as highest and Channel 3 as the lowest. Immediately following slave Channel 3, master Channel 1 (Channel 5) is the next highest, followed by Channels 6 and 7.

DMA Controller Registers

The DMA controller can be programmed with standard I/O cycles to the standard register space for DMA. The I/O addresses of all registers for the DMA controller are listed in Table 5-27 "DMA Channel Control Registers" on page 215.

Addresses under Master are for the 16-bit DMA channels, and Slave corresponds to the 8-bit channels. When writing to a channel's address or word-count register, the data is written into both the base register and the current register simultaneously. When reading a channel address or word count register, only the current address or word count can be read. The base address and base word count are not accessible for reading.

DMA Transfer Types

Each of the seven DMA channels may be programmed to perform one of three types of transfers: read, write, or verify. The transfer type selected defines the method used to transfer a BYTE or WORD during one DMA bus cycle.

For read transfer types, the CS5530A reads data from memory and writes it to the I/O device associated with the DMA channel.

For write transfer types, the CS5530A reads data from the I/O device associated with the DMA channel and writes to the memory.

The verify transfer type causes the CS5530A to execute DMA transfer bus cycles, including generation of memory addresses, but neither the Read nor Write command lines are activated. This transfer type was used by DMA Channel 0 to implement DRAM refresh in the original IBM PC/XT.

DMA Priority

The DMA controller may be programmed for two types of priority schemes: fixed and rotate (I/O Ports 008h[4] and 0D0h[4]), as shown in Table 5-27 "DMA Channel Control Registers" on page 215.

In fixed priority, the channels are fixed in priority order based on the descending values of their numbers. Thus, Channel 0 has the highest priority. In rotate priority, the last channel to get service becomes the lowest-priority channel with the priority of the others rotating accordingly. This prevents a channel from dominating the system.

Revision 1.1 PC/AT Compatibility Logic

The address and word count registers for each channel are 16-bit registers. The value on the data bus is written into the upper byte or lower byte, depending on the state of the internal addressing byte pointer. This pointer can be cleared by the Clear Byte Pointer command. After this command, the first read/write to an address or word count register will read/write to the low byte of the 16-bit register and the byte pointer will point to the high byte. The next read/write to an address or word-count register will read or write to the high byte of the 16-bit register and the byte pointer will point back to the low byte.

When programming the 16-bit channels (Channels 5, 6, and 7), the address which is written to the base address register must be the real address divided by two. Also, the base word count for the 16-bit channels is the number of 16-bit WORDs to be transferred, not the number of bytes as is the case for the 8-bit channels.

The DMA controller allows the user to program the active level (low or high) of the DRQ and DACK# signals. Since the two controllers are cascaded together internally on the chip, these signals should always be programmed with the DRQ signal active high and the DACK# signal active low.

DMA Shadow Registers

 \square

The CS5530A contains a shadow register located at F0 Index B8h (Table 4-40) for reading the configuration of the DMA controllers. This read-only register can sequence to read through all of the DMA registers.

DMA Addressing Capability

DMA transfers occur over the entire 32-bit address range of the PCI bus. This is accomplished by using the DMA controller's 16-bit memory address registers in conjunction with an 8-bit DMA Low Page register and an 8-bit DMA High Page register. These registers, associated with each channel, provide the 32-bit memory address capability. A write to the Low Page register clears the High Page register, for backward compatibility with the PC/AT standard. The starting address for the DMA transfer must be programmed into the DMA controller registers and the chan-

nel's respective Low and High Page registers prior to beginning the DMA transfer.

DMA Page Registers and Extended Addressing

The DMA Page registers provide the upper address bits during DMA cycles. DMA addresses do not increment or decrement across page boundaries. Page boundaries for the 8-bit channels (Channels 0 through 3) are every 64 KB and page boundaries for the 16-bit channels (Channels 5, 6, and 7) are every 128 KB.

Before any DMA operations are performed, the Page Registers must be written at the I/O Port addresses shown in Table 5-28 "DMA Page Registers" on page 218 to select the correct page for each DMA channel. The other address locations between 080h and 08Fh and 480h and 48Fh are not used by the DMA channels, but can be read or written by a PCI bus master. These registers are reset to zero at POR. A write to the Low Page register clears the High Page register, for backward compatibility with the PC/AT standard.

For most DMA transfers, the High Page register is set to zeros and is driven onto PCI address bits AD[31:24] during DMA cycles. This mode is backward compatible with the PC/AT standard. For DMA extended transfers, the High Page register is programmed and the values are driven onto the PCI addresses AD[31:24] during DMA cycles to allow access to the full 4 GB PCI address space.

DMA Address Generation

The DMA addresses are formed such that there is an upper address, a middle address, and a lower address portion

The upper address portion, which selects a specific page, is generated by the Page registers. The Page registers for each channel must be set up by the system before a DMA operation. The DMA Page register values are driven on PCI address bits AD[31:16] for 8-bit channels and AD[31:17] for 16-bit channels.

Table 4-40. DMA Shadow Register

Bit	Description
F0 Index	B8h DMA Shadow Register (RO) Reset Value = xxh
7:0	DMA Shadow (Read Only): This 8-bit port sequences through the following list of shadowed DMA Controller registers. At power on, a pointer starts at the first register in the list and consecutively reads incrementally through it. A write to this register resets the read sequence to the first register. Each shadow register in the sequence contains the last data written to that location.
İ	The read sequence for this register is:
	1. DMA Channel 0 Mode Register
	2. DMA Channel 1 Mode Register
	3. DMA Channel 2 Mode Register
	4. DMA Channel 3 Mode Register
	5. DMA Channel 4 Mode Register
	6. DMA Channel 5 Mode Register
	7. DMA Channel 6 Mode Register
	8. DMA Channel 7 Mode Register
	9. DMA Channel Mask Register (bit 0 is channel 0 mask, etc.)
	10. DMA Busy Register (bit 0 or 1 means a DMA occurred within last 1 ms, all other bits are 0)

The middle address portion, which selects a block within the page, is generated by the DMA controller at the beginning of a DMA operation and any time the DMA address increments or decrements through a block boundary. Block sizes are 256 bytes for 8-bit channels (Channels 0 through 3) and 512 bytes for 16-bit channels (Channels 5, 6, and 7). The middle address bits are driven on PCI address bits AD[15:8] for 8-bit channels and AD[16:9] for 16-bit channels.

The lower address portion is generated directly by the DMA controller during DMA operations. The lower address bits are output on PCI address bits AD[7:0] for 8-bit channels and AD[8:1] for 16-bit channels.

SBHE# is configured as an output during all DMA operations. It is driven as the inversion of AD0 during 8-bit DMA cycles and forced low for all 16-bit DMA cycles.

4.5.4.2 Programmable Interval Timer

The CS5530A contains an 8254-equivalent Programmable Interval Timer (PIT) configured as shown in Figure 4-14. The PIT has three timers/counters, each with an input frequency of 1.19318 MHz (OSC divided by 12), and individually programmable to different modes.

The gates of Counter 0 and 1 are usually enabled, however, they can be controlled via F0 Index 50h (see Table 4-41). The gate of Counter 2 is connected to I/O Port 061h[0]. The output of Counter 0 is connected internally to IRQ0. This timer is typically configured in Mode 3 (square wave output), and used to generate IRQ0 at a periodic rate to be used as a system timer function. The output of Counter 1 is connected to I/O Port 061h[4]. The reset state of I/O Port 061h[4] is 0 and every falling edge of Counter 1 output causes I/O Port 061h[4] to flip states. The output of Counter 2 is brought out to the PC_BEEP output. This output is gated with I/O Port 061h[1].

Table 4-41. PIT Control and I/O Port 061h Associated Register Bits

Bit	Description	
F0 Index 5	50h PIT Control/ISA CLK Divider (R/W) Reset Value = 7Bh	
7	PIT Software Reset: 0 = Disable; 1 = Enable.	
6	PIT Counter 1: 0 = Forces Counter 1 output (OUT1) to zero; 1 = Allows Counter 1 output (OUT1) to pass to I/O Port 061h[4].	
5	PIT Counter 1 Enable: 0 = Sets GATE1 input low; 1 = Sets GATE1 input high.	
4	PIT Counter 0: 0 = Forces Counter 0 output (OUT0) to zero; 1 = Allows Counter 0 output (OUT0) to pass to IRQ0.	
3	PIT Counter 0 Enable: 0 = Sets GATE0 input low; 1 = Sets GATE0 input high.	
I/O Port 0	Port B Control Register (R/W) Reset Value = 00x01100b	
5	PIT OUT2 State (Read Only): This bit reflects the current status of the PIT Counter 2 (OUT2).	
4	Toggle (Read Only): This bit toggles on every falling edge of Counter 1 (OUT1).	
1	PIT Counter2 (SPKR): 0 = Forces Counter 2 output (OUT2) to zero; 1 = Allows Counter 2 output (OUT2) to pass to the speaker.	
0	PIT Counter2 Enable: 0 = Sets GATE2 input low; 1 = Sets GATE2 input high.	

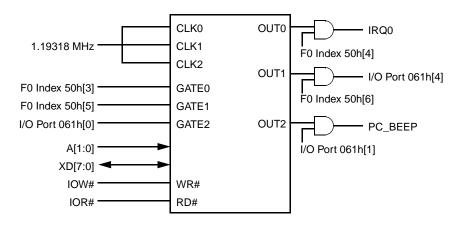


Figure 4-14. PIT Timer

Revision 1.1 PC/AT Compatibility Logic

PIT Registers

The PIT registers are summarized and bit formats are in Table 5-29 "Programmable Interval Timer Registers" on page 219.

PIT Shadow Register

The PIT registers are shadowed to allow for Save-to-Disk/RAM to save/restore the PIT state by reading the PIT's counter and write-only registers. The read sequence for the shadow register is listed in F0 Index BAh, Table 4-42.

4.5.4.3 Programmable Interrupt Controller

The CS5530A includes an AT-compatible Programmable Interrupt Controller (PIC) configuration with two 8259-equivalent interrupt controllers in a master/slave configuration (Figure 4-15). These PIC devices support all x86 modes of operation except Special Fully Nested Mode.

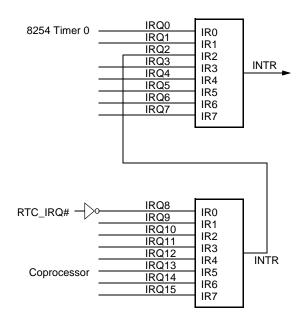


Figure 4-15. PIC Interrupt Controllers

Table 4-42. PIT Shadow Register

Bit	Description	
F0 Index	BAh PIT Shadow Register (RO)	Reset Value = xxh
7:0	PIT Shadow (Read Only): This 8-bit port sequences through the following list of shadow registers. At power on, a pointer starts at the first register in the list and consecutively read to this register resets the read sequence to the first register. Each shadow register in the swritten to that location.	ds to increment through it. A write
	The read sequence for this register is:	
	 Counter 0 LSB (least significant byte) Counter 0 MSB Counter 1 LSB Counter 1 MSB Counter 2 LSB Counter 2 MSB Counter 0 Command Word Counter 1 Command Word Counter 2 Command Word Counter 2 Command Word 	
	Note: The LSB/MSB of the count is the Counter base value, not the current value.	
	Bits [7:6] of the command words are not used.	

Of the 16 IRQs, four are mapped as shown in Table 4-43, leaving 12 external interrupts. The two controllers are cascaded through IRQ2. The internal 8254 PIT connects to IRQ0. The real-time clock interface chip (see Figure 4-18 "External RTC Interface" on page 109) and the external coprocessor interface (see Figure 4-1 "Processor Signal Connections" on page 48) connect to IRQ8# and IRQ13 respectively.

Table 4-43. PIC Interrupt Mapping

Master IRQ#	Mapping
IRQ0	Connected to the OUT0 (system timer) of the internal 8254 PIT.
IRQ2	Connected to the slave's INTR for a cascaded configuration.
IRQ8#	Connected to external real-time clock.
IRQ13	Connected to the coprocessor interface.
IRQ[15:14, 12:9, 7:3, 1]	External interrupts.

The CS5530A allows the PCI interrupt signals INTA#-INTD# (also known in industry terms as PIRQx#) to be routed internally to any IRQ signal. The routing can be modified through the CS5530A's configuration registers. If this is done, the IRQ input must be configured to be level-rather than edge-sensitive. IRQ inputs may be individually programmed to be active low, level-sensitive with the Interrupt Sensitivity configuration registers at I/O address space 4D0h and 4D1h. PCI interrupt configuration is discussed in further detail in Section 4.5.4.4 "PCI Compatible Interrupts" on page 103.

PIC Interrupt Sequence

A typical AT-compatible interrupt sequence is as follows. Any unmasked interrupt generates the INTR signal to the

CPU. The interrupt controller then responds to the interrupt acknowledge (INTA) cycles from the CPU. On the first INTA cycle the cascading priority is resolved to determine which of the two 8259 controllers output the interrupt vector onto the data bus. On the second INTA cycle the appropriate 8259 controller drives the data bus with the correct interrupt vector for the highest priority interrupt.

By default, the CS5530A responds to PCI INTA cycles because the system interrupt controller is located within the CS5530A. This may be disabled with F0 Index 40h[7] (see Table 4-44). When the CS5530A responds to a PCI INTA cycle, it holds the PCI bus and internally generates the two INTA cycles to obtain the correct interrupt vector. It then asserts TRDY# and returns the interrupt vector.

PIC I/O Registers

Each PIC contains registers located in the standard I/O address locations, as shown in Table 5-30 "Programmable Interrupt Controller Registers" on page 220.

An initialization sequence must be followed to program the interrupt controllers. The sequence is started by writing Initialization Command Word 1 (ICW1). After ICW1 has been written, the controller expects the next writes to follow in the sequence ICW2, ICW3, and ICW4 if it is needed. The Operation Control Words (OCW) can be written after initialization. The PIC must be programmed before operation begins.

Since the controllers are operating in cascade mode, ICW3 of the master controller should be programmed with a value indicating that IRQ2 input of the master interrupt controller is connected to the slave interrupt controller rather than an I/O device as part of the system initialization code. In addition, ICW3 of the slave interrupt controller should be programmed with the value 02h (slave ID) and corresponds to the input on the master controller.

Table 4-44. PCI INTA Cycle Disable/Enable Bit

Bit	Description	
F0 Index 4	0h PCI Function Control Register 1 (R/W)	Reset Value = 89h
7	PCI Interrupt Acknowledge Cycle Response: Allow the CS5530A responds to PCI inter 0 = Disable; 1 = Enable.	rupt acknowledge cycles.

PIC Shadow Register

The PIC registers are shadowed to allow for Save-to-Disk/RAM to save/restore the PIC state by reading the PIC's

write-only registers. A write to this register resets the read sequence to the first register. The read sequence for the shadow register is listed in F0 Index B9h (Table 4-45).

Table 4-45. PIC Shadow Register

Bit	Description
F0 Index	B9h PIC Shadow Register (RO) Reset Value = xxh
7:0	PIC Shadow (Read Only): This 8-bit port sequences through the following list of shadowed Programmable Interrupt Controller registers. At power on, a pointer starts at the first register in the list and consecutively reads incrementally through in A write to this register resets the read sequence to the first register. Each shadow register in the sequence contains the last data written to that location.
	The read sequence for this register is:
	 PIC1 ICW1 PIC1 ICW2 PIC1 ICW3 PIC1 ICW4 - Bits [7:5] of ICW4 are always 0 PIC1 OCW2 - Bits [6:3] of OCW2 are always 0 (Note) PIC1 OCW3 - Bits [7, 4] are 0 and bit [6, 3] are 1 PIC2 ICW1 PIC2 ICW2 PIC2 ICW3 PIC2 ICW4 - Bits [7:5] of ICW4 are always 0 PIC2 OCW2 - Bits [6:3] of OCW2 are always 0 (Note)
	12. PIC2 OCW3 - Bits [7, 4] are 0 and bit [6, 3] are 1 Note: To restore OCW2 to shadow register value, write the appropriate address twice. First with the shadow register value then with the shadow register value ORed with C0h.

4.5.4.4 PCI Compatible Interrupts

The CS5530A allows the PCI interrupt signals INTA#, INTB#, INTC#, and INTD# (also known in industry terms as PIRQx#) to be mapped internally to any IRQ signal with the PCI Interrupt Steering Registers 1 and 2, F0 Index 5Ch and 5Dh (Table 4-46). This reassignment does not disable the corresponding IRQ pin. Two interrupt signals may not be assigned to the same IRQ.

PCI interrupts are low-level sensitive, whereas PC/AT interrupts are positive-edge sensitive; therefore, the PCI interrupts are inverted before being connected to the 8259.

Although the controllers default to the PC/AT-compatible mode (positive-edge sensitive), each IRQ may be individually programmed to be edge or level sensitive using the Interrupt Edge/Level Sensitivity registers in I/O Port 4D0h and 4D1h, as shown in Table 4-47. However, if the controllers are programmed to be level-sensitive via ICW1, all interrupts must be level-sensitive. Figure 4-16 shows the PCI interrupt mapping for the master/slave 8259 interrupt controller.

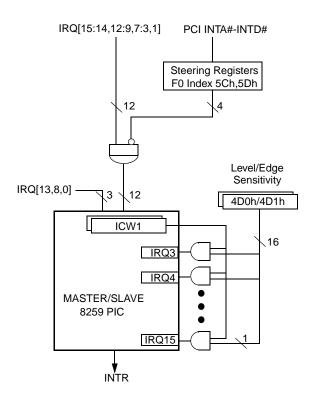


Figure 4-16. PCI and IRQ Interrupt Mapping

Table 4-46. PCI Interrupt Steering Registers

Bit	Description			
F0 Index 5Ch		PCI Interrupt Steering Register 1 (R/W)		Reset Value = 00
7:4	INTB# Target Interrup	t: Selects target interrupt for I	NTB#.	
	0000 = Disable	0100 = IRQ4	1000 = RSVD	1100 = IRQ12
	0001 = IRQ1	0101 = IRQ5	1001 = IRQ9	1101 = RSVD
	0010 = RSVD	0110 = IRQ6	1010 = IRQ10	1110 = IRQ14
	0011 = IRQ3	0111 = IRQ7	1011 = IRQ11	1111 = IRQ15
3:0	INTA# Target Interrup	t: Selects target interrupt for I	NTA#.	
	0000 = Disable	0100 = IRQ4	1000 = RSVD '	1100 = IRQ12
	0001 = IRQ1	0101 = IRQ5	1001 = IRQ9	1101 = RSVD
		0110 = IRQ6	1010 = IRQ10	1110 = IRQ14
	0010 = RSVD	0110 - 1100	1010 - 111010	
	0011 = IRQ3	0111 = IRQ7	1011 = IRQ11	1111 = IRQ15
	0011 = IRQ3	0111 = IRQ7	1011 = IRQ11	1111 = IRQ15 h in order to maintain PCI interrupt
	0011 = IRQ3 ne target interrupt must first impatibility.	0111 = IRQ7 st be configured as level sensi	1011 = IRQ11	
CO	0011 = IRQ3 ne target interrupt must first impatibility. 5Dh	0111 = IRQ7 st be configured as level sensi	1011 = IRQ11 tive via I/O Port 4D0h and 4D1 ring Register 2 (R/W)	h in order to maintain PCI interrupt
co F 0 Index	0011 = IRQ3 ne target interrupt must first impatibility. 5Dh	0111 = IRQ7 st be configured as level sensi	1011 = IRQ11 tive via I/O Port 4D0h and 4D1 ring Register 2 (R/W)	h in order to maintain PCI interrupt
co F 0 Index	0011 = IRQ3 ne target interrupt must first impatibility. 5Dh INTD# Target Interrup	0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee st: Selects target interrupt for I	1011 = IRQ11 tive via I/O Port 4D0h and 4D1l ring Register 2 (R/W) NTD#.	h in order to maintain PCI interrupt Reset Value = 00
co F 0 Index	0011 = IRQ3 ne target interrupt must first impatibility. 5Dh INTD# Target Interrupt 0000 = Disable	0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee st: Selects target interrupt for I 0100 = IRQ4	1011 = IRQ11 tive via I/O Port 4D0h and 4D1l ring Register 2 (R/W) NTD#. 1000 = RSVD	h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12
co F 0 Index	ne target interrupt must first impatibility. 5Dh INTD# Target Interrupt 0000 = Disable 0001 = IRQ1	0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee st: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5	1011 = IRQ11 tive via I/O Port 4D0h and 4D1l ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9	Reset Value = 00 1100 = IRQ12 1101 = RSVD
co F 0 Index	ne target interrupt must first impatibility. 5Dh INTD# Target Interrupt 0000 = Disable 0001 = IRQ1 0010 = RSVD 0011 = IRQ3	o111 = IRQ7 st be configured as level sensi PCI Interrupt Stee st: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5 0110 = IRQ6	1011 = IRQ11 tive via I/O Port 4D0h and 4D1l ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10 1011 = IRQ11	Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14
7:4	ne target interrupt must first impatibility. 5Dh INTD# Target Interrupt 0000 = Disable 0001 = IRQ1 0010 = RSVD 0011 = IRQ3	o111 = IRQ7 Interrupt Stee PCI Interrupt Stee It: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5 0110 = IRQ6 0111 = IRQ7	1011 = IRQ11 tive via I/O Port 4D0h and 4D1l ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10 1011 = IRQ11	Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14
7:4	ne target interrupt must first impatibility. 5Dh INTD# Target Interrupt 0000 = Disable 0001 = IRQ1 0010 = RSVD 0011 = IRQ3 INTC# Target Interrupt	o111 = IRQ7 Interrupt Stee I	1011 = IRQ11 tive via I/O Port 4D0h and 4D1l ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10 1011 = IRQ11 NTC#.	Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14 1111 = IRQ15
7:4	ne target interrupt must first impatibility. 5Dh INTD# Target Interrupt 0000 = Disable 0001 = IRQ1 0010 = RSVD 0011 = IRQ3 INTC# Target Interrupt 0000 = Disable	o111 = IRQ7 Interrupt Stee I	1011 = IRQ11 tive via I/O Port 4D0h and 4D1l ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10 1011 = IRQ11 NTC#. 1000 = RSVD	Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14 1111 = IRQ15

Table 4-47. Interrupt Edge/Level Select Registers

Bit	Description		
I/O Port 4D	00h Interrupt Edge/Level Select Register 1 (R/W)	Reset Value = 00h	
7	IRQ7 Edge or Level Select: Selects PIC IRQ7 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1	and 2)	
6	IRQ6 Edge or Level Select: Selects PIC IRQ6 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1	and 2)	
5	IRQ5 Edge or Level Select: Selects PIC IRQ5 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 and 2)		
4	IRQ4 Edge or Level Select: Selects PIC IRQ4 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 and 2)		
3	IRQ3 Edge or Level Select: Selects PIC IRQ3 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 and 2)		
2	Reserved: Set to 0.		
1	IRQ1 Edge or Level Select: Selects PIC IRQ1 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1	and 2)	
0	Reserved: Set to 0.		
Notes: 1.	If ICW1 - bit 3 in the PIC is set as level, it overrides this setting.		
	If ICW1 - bit 3 in the PIC is set as level, it overrides this setting. This bit is provided to configure a PCI interrupt mapped to IRQ[x] on the PIC as level-sensitive (share	ed).	
	This bit is provided to configure a PCI interrupt mapped to IRQ[x] on the PIC as level-sensitive (share	ed). Reset Value = 00h	
2.	This bit is provided to configure a PCI interrupt mapped to IRQ[x] on the PIC as level-sensitive (share	Reset Value = 00h	
2. I/O Port 4D	This bit is provided to configure a PCI interrupt mapped to IRQ[x] on the PIC as level-sensitive (share the pink of the pink o	Reset Value = 00h s 1 and 2)	
2. I/O Port 4D 7	This bit is provided to configure a PCI interrupt mapped to IRQ[x] on the PIC as level-sensitive (share the picture of the pic	Reset Value = 00h s 1 and 2)	
2. I/O Port 4D 7 6	This bit is provided to configure a PCI interrupt mapped to IRQ[x] on the PIC as level-sensitive (share the pink of the pink o	Reset Value = 00h s 1 and 2) s 1 and 2)	
2. I/O Port 4D 7 6 5	This bit is provided to configure a PCI interrupt mapped to IRQ[x] on the PIC as level-sensitive (share of the linear large of the linear large). Interrupt Edge/Level Select Register 2 (R/W) IRQ15 Edge or Level Select: Selects PIC IRQ15 sensitivity configuration. 0 = Edge; 1 = Level. (Notes IRQ14 Edge or Level Select: Selects PIC IRQ14 sensitivity configuration. 0 = Edge; 1 = Level. (Notes Reserved: Set to 0.	Reset Value = 00h s 1 and 2) s 1 and 2) s 1 and 2)	
2. I/O Port 4D 7 6 5 4	This bit is provided to configure a PCI interrupt mapped to IRQ[x] on the PIC as level-sensitive (share the pitch of the p	Reset Value = 00h s 1 and 2)	
2. VO Port 4D 7 6 5 4 3	This bit is provided to configure a PCI interrupt mapped to IRQ[x] on the PIC as level-sensitive (share the picture of the pic	Reset Value = 00h s 1 and 2)	
2. I/O Port 4D 7 6 5 4 3 2	This bit is provided to configure a PCI interrupt mapped to IRQ[x] on the PIC as level-sensitive (share the pink of the pink o	Reset Value = 00h s 1 and 2)	
2. I/O Port 4D 7 6 5 4 3 2 1	This bit is provided to configure a PCI interrupt mapped to IRQ[x] on the PIC as level-sensitive (share the picture of the pic	Reset Value = 00h s 1 and 2)	

4.5.5 I/O Ports 092h and 061h System Control

The CS5530A supports control functions of I/O Ports 092h (Port A) and 061h (Port B) for PS/2 compatibility. I/O Port 092h allows a fast assertion of the A20M# or CPU_RST. I/O Port 061h controls NMI generation and reports system status. Table 4-48 shows these register bit formats.

The CS5530A does not use a pin to control A20 Mask when used together with a GX1 processor. Instead, it generates an SMI for every internal change of the A20M# state and the SMI handler sets the A20M# state inside the CPU. This method is used for both the Port 092h (PS/2) and Port 061h (keyboard) methods of controlling A20M#.

Table 4-48. I/O Ports 061h and 092h

Bit	Description			
I/O Port (061h Port B Control Register (R/W) Rese	t Value = 00x01100b		
7	PERR#/SERR# Status (Read Only): Was a PCI bus error (PERR#/SERR#) asserted by a PCI device 0 = No; 1 = Yes.	ce or by the CS5530A?		
	This bit can only be set if ERR_EN (bit 2) is set 0. This bit is set 0 after a write to ERR_EN with a 1 or after reset.			
6	IOCHK# Status (Read Only): Is an I/O device reporting an error to the CS5530A? 0 = No; 1 = Yes.			
	This bit can only be set if IOCHK_EN (bit 3) is set 0. This bit is set 0 after a write to IOCHK_EN with a 1 or after reset.			
5	PIT OUT2 State (Read Only): This bit reflects the current status of the PIT Counter 2 (OUT2).			
4	Toggle (Read Only): This bit toggles on every falling edge of Counter 1 (OUT1).			
3	IOCHK Enable:			
	0 = Generates an NMI if IOCHK# is driven low by an I/O device to report an error. Note that NMI is under SMI control. 1 = Ignores the IOCHK# input signal and does not generate NMI.			
2	PERR#/SERR# Enable: Generates an NMI if PERR#/SERR# is driven active to report an error. 0 = Enable: 1 = Disable			
1	PIT Counter2 (SPKR): 0 = Forces Counter 2 output (OUT2) to zero; 1 = Allows Counter 2 output (OUT2) to pass to the speaker.			
0	PIT Counter2 Enable: 0 = Sets GATE2 input low; 1 = Sets GATE2 input high.			
I/O Port (092h Port A Control Register (R/W)	Reset Value = 02h		
7:2	Reserved: Set to 0.			
1	A20M# SMI Assertion: Assert A20M#. 0 = Enable mask; 1 = Disable mask.			
0	Fast CPU Reset: WM_RST SMI is asserted to the BIOS. 0 = Disable; 1 = Enable.			
	This bit must be cleared before the generation of another reset.			

4.5.5.1 I/O Port 092h System Control

I/O Port 092h allows for a fast keyboard assertion of an A20# SMI and a fast keyboard CPU reset. Decoding for this register may be disabled via F0 Index 52h[3] (Table 4-49).

The assertion of a fast keyboard A20# SMI is controlled by either I/O Port 092h or by monitoring for the keyboard command sequence (see Section 4.5.6.1 "Fast Keyboard Gate Address 20 and CPU Reset" on page 108). If bit 1 of I/O Port 092h is cleared, the CS5530A internally asserts an A20M# SMI, which in turn causes an SMI to the processor. If bit 1 is set, A20M# SMI is internally deasserted again causing an SMI.

The assertion of a fast keyboard reset (WM_RST SMI) is controlled by bit 0 in I/O Port 092h or by monitoring for the keyboard command sequence. If bit 0 is changed from a 0 to a 1, the CS5530A generates a reset to the processor by generating a WM_RST SMI. When the WM_RST SMI occurs, the BIOS jumps to the Warm Reset vector. This bit

remains set until the CS5530A is externally reset, or this bit is cleared by program control. Note that Warm Reset is not a pin; it is under SMI control.

4.5.5.2 I/O Port 061h System Control

Through I/O Port 061h, the speaker output can be enabled, NMI from IOCHK# or SERR# can be enabled, the status of IOCHK# and SERR# can be read, and the state of the speaker data (Timer2 output) and refresh toggle (Timer1 output) can be read back. Note that NMI is under SMI control. Even though the hardware is present, the IOCHK# pin does not exist so an NMI from IOCHK# can not happen.

4.5.5.3 SMI Generation for NMI

Figure 4-17 shows how the CS5530A can generate an SMI for an NMI. Note that NMI is not a pin.

Table 4-49. I/O Port 092h Decode Enable Bit

Bit	Description	
F0 Index 5	2h ROM/AT Logic Control Register (R/W)	Reset Value = F8h
3	Enable I/O Port 092h Decode (Port A): I/O Port 092h decode and the logical functions. 0 = D	isable; 1 = Enable.

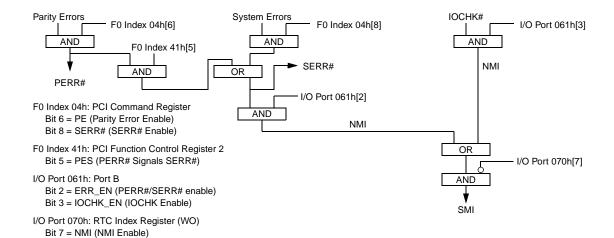


Figure 4-17. SMI Generation for NMI

4.5.6 Keyboard Interface Function

The CS5530A actively decodes the keyboard controller I/O Ports 060h and 064h, and generate an ISA I/O cycle with KBROMCS# asserted. Access to I/O Ports 062h and 066h must be enabled for KBROMCS# to be asserted. The CS5530A also actively decodes the keyboard controller I/O Ports 062h and 066h if F0 Index 5Bh[7] is set. Keyboard

positive decoding can be disabled if F0 Index 5Ah[1] is cleared. Table 4-50 shows these two decoding bits.

Table 4-51 lists the standard keyboard control I/O registers and their bit formats.

Table 4-50. Decode Control Registers

Bit	Description	
F0 Index	5Ah Decode Control Register 1 (R/W)	Reset Value = 03h
1	Keyboard Controller Positive Decode: Selects PCI positive or subtractive decoding for 060h and 064h (and 062h/066h if enabled). 0 = Subtractive; 1 = Positive.	accesses to I/O Port
	sitive decoding by the CS5530A speeds up the I/O cycle time. These I/O Ports do not exist in ositive decode is enabled, the port exists on the ISA bus.	n the CS5530A. It is assumed that
F0 Index	5Bh Decode Control Register 2 (R/W)	Reset Value = 20h
7	Keyboard I/O Port 062h/066h Decode: This alternate port to the keyboard controller is protebook keyboard controller mailbox. 0 = Disable; 1 = Enable.	provided in support of the 8051SL
	sitive decoding by the CS5530A speeds up the I/O cycle time. The keyboard, LPT3, LPT2, as CS5530A. It is assumed that if positive decode is enabled, the port exists on the ISA bus.	and LPT1 I/O Ports do not exist in

Table 4-51. External Keyboard Controller Registers

Bit	Description			
I/O Port 06	60h (R/W)	External Keyboard Controller Data Register		
tures are e	Keyboard Controller Data Register: All accesses to this port are passed to the ISA bus. If the fast keyboard gate A20 and reset features are enabled through bit 7 of the ROM/AT Logic Control Register (F0 Index 52h[7]), the respective sequences of writes to this port assert the A20M# pin or cause a warm CPU reset.			
I/O Port 06	62h (R/W)	External Keyboard Controller Mailbox Register		
-	Keyboard Controller Mailbox Register: Accesses to this port will assert KBROMCS# if the Port 062h/066h decode is enabled through bit 7 of the Decode Control Register 2 (F0 Index 5Bh[7]).			
I/O Port 06	64h (R/W)	External Keyboard Controller Command Register		
features ar	re enabled through bit	d Register: All accesses to this port are passed to the ISA bus. If the fast keyboard gate A20 and reset 7 of the ROM/AT Logic Control Register (F0 Index 52h[7]), the respective sequences of writes to this use a warm CPU reset.		
I/O Port 06	66h (R/W)	External Keyboard Controller Mailbox Register		
		egister: Accesses to this port will assert KBROMCS# if the Port 062h/066h decode is enabled through ster 2 (F0 Index 5Bh[7]).		

4.5.6.1 Fast Keyboard Gate Address 20 and CPU Reset

The CS5530A monitors the keyboard I/O Ports 064h and 060h for the fast keyboard A20M# and CPU reset control sequences. If a write to I/O Port 060h[1] = 1 after a write takes place to I/O Port 064h with data of D1h, then the CS5530A asserts the A20M# signal. A20M# remains asserted until cleared by:

- (1) a write to bit 1 of I/O Port 092h,
- (2) a CPU reset of some kind, or
- (3) write to I/O Port 060h[1] = 0 after a write takes place to I/O Port 064h with data of D1h.

The CS5530A also monitors the keyboard ports for the CPU reset control sequence. If a write to I/O Port 060h with data bit 0 set occurs after a write to I/O Port 064h with data of D1h, the CS5530A asserts a WM_RST SMI.

The fast keyboard A20M# and CPU reset can be disabled through F0 Index 52h[7]. By default, bit 7 is cleared, and the fast keyboard A20M# and CPU reset monitor logic is active. If bit 7 is clear, the CS5530A forwards the commands to the keyboard controller.

By default, the CS5530A forces the deassertion of A20M# during a warm reset. This action may be disabled if F0 Index 52h[4] is cleared.

Table 4-52. A20 Associated Programming Bits

Bit	Description
F0 Index 5	2h ROM/AT Logic Control Register (R/W) Reset Value = F8h
7	Snoop Fast Keyboard Gate A20 and Fast Reset: Enables the snoop logic associated with keyboard commands for A20 Mask and Reset. 0 = Disable; 1 = Enable (snooping).
	If disabled, the keyboard controller handles the commands.
4	Enable A20M# Deassertion on Warm Reset: Force A20M# high during a Warm Reset (guarantees that A20M# is deasserted regardless of the state of A20). 0 = Disable; 1 = Enable.

PC/AT Compatibility Logic Revision 1.1

4.5.7 External Real-Time Clock Interface

I/O Ports 070h and 071h decodes are provided to interface to an external real-time clock controller. I/O Port 070h, a write only port, is used to set up the address of the desired data in the controller. This causes the address to be placed on the ISA data bus, and the RTCALE signal to be triggered. A read of I/O Port 071h causes an ISA I/O read cycle to be performed while asserting the RTCCS# signal. A write to I/O Port 071h causes an ISA I/O write cycle to be performed with the desired data being placed on the ISA bus and the RTCCS# signal to be asserted. RTCCS#/SMEMW# and RTCALE/SMEMR# are multiplexed pins. The function selection is made through F0 Index 53h[2].

The connection between the CS5530A and an external real-time clock is shown in Figure 4-18.

The CS5530A also provides the RTC Index Shadow Register (F0 Index BBh) to store the last write to I/O Port 070h.

Table 4-53 shows the bit formats for the associated registers for interfacing with an external real-time clock.

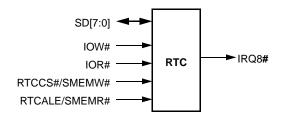


Figure 4-18. External RTC Interface

Table 4-53. Real-Time Clock Registers

		Table 4-53. Real-Time Clock Registers						
Bit	Description							
I/O Port	070h (WO)	RTC Address Register	RTC Address Register					
7	NMI Mask: 0 = Enab	ole; 1 = Mask.						
6:0	RTC Register Index	: A write of this register sends the data out on the ISA bus and also c	auses RTCALE to be triggered.					
Note: Th	nis register is shadowed	within the CS5530A and is read through the RTC Shadow Register (I	F0 Index BBh).					
I/O Port	071h (R/W)	RTC Data Register						
	J	e value of the register indexed by the RTC Address Register plus initial value into the register indexed by the RTC Address Register plus initiate						
F0 Index BBh		RTC Index Shadow Register (RO)	Reset Value = xxh					
7:0	RTC Index Shadow register (I/O Port 070	(Read Only): The RTC Shadow register contains the last written value).	ue of the RTC Index					
F0 Index	53h	Alternate CPU Support Register (R/W)	Reset Value = 00h					
2 RTC Enable/RTC Pin Configuration: 0 = SMEMW# (Pin AF3) and SMEMR# (Pin AD4), RTC decode disabled; 1 = RTCCS# (Pin AF3) and RTCALE (Pin AD4), RTC decode enabled.								
	Note: The RTC Inde	ex Shadow Register (F0 Index BBh) is independent of the setting of the	is bit.					

Revision 1.1 IDE Controller

4.6 IDE Controller

The CS5530A integrates a fully-buffered, 32-bit, ANSI ATA-4-compliant (Ultra DMA33) IDE interface. The IDE interface supports two channels, primary and secondary, each supporting two devices that can operate in PIO Modes 1, 2, 3, 4, Multiword DMA, or Ultra DMA/133.

The IDE interface provides a variety of features to optimize system performance, including 32-bit disk access, post write buffers, bus master, Multiword DMA, look-ahead read buffer, and prefetch mechanism for each channel respectively.

The IDE interface timing is completely programmable. Timing control covers the command active and recover pulse widths, and command block register accesses. The IDE data-transfer speed for each device on each channel can

be independently programmed allowing high-speed IDE peripherals to coexist on the same channel as older, compatible devices.

The CS5530A also provides a software-accessible buffered reset signal to the IDE drive, F0 Index 44h[3:2] (Table 4-54). The IDE_RST# signal is driven low during reset to the CS5530A and can be driven low or high as needed for device-power-off conditions.

4.6.1 IDE Interface Signals

The CS5530A has two completely separate IDE control signals, however, the IDE_RST#, IDE_ADDR[2:0] and IDE_DATA[15:0] are shared. The connections between the CS5530A and IDE devices are shown as Figure 4-19.

Table 4-54. IDE Reset Bits

Bit	Description						
F0 Index 4	4h Reset Control Register (R/W) Reset Value = xx000000b						
3	IDE Controller Reset: Reset both of the CS5530A IDE controllers' internal state machines. 0 = Run; 1 = Reset.						
	This bit is level-sensitive and must be explicitly cleared to 0 to remove the reset.						
2	IDE Reset: Reset IDE bus. 0 = Deassert IDE bus reset signal; 1 = Assert IDE bus reset signal.						
	This bit is level-sensitive and must be explicitly cleared to 0 to remove the reset.						

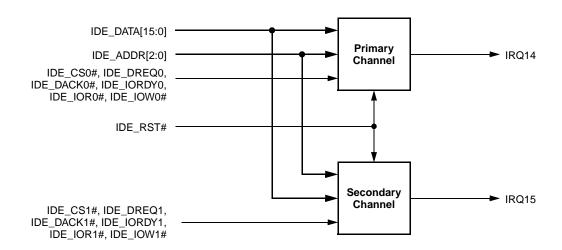


Figure 4-19. CS5530A and IDE Channel Connections

IDE Controller Revision 1.1 AMD

4.6.2 IDE Configuration Registers

Registers for configuring the IDE interface are accessed through F2 Index 20h, the Base Address Register (F2BAR) in Function 2. F2BAR sets the base address for the IDE Controllers Configuration Registers as shown in Table 4-55. For complete bit information, refer to Section 5.3.3 "IDE Controller Registers - Function 2" on page 184.

The following subsections discuss CS5530A operational/programming details concerning PIO, Bus Master, and Ultra DMA/33 modes.

4.6.2.1 PIO Mode

The IDE data port transaction latency consists of address latency, asserted latency and recovery latency. Address latency occurs when a PCI master cycle targeting the IDE data port is decoded, and the IDE_ADDR[2:0] and IDE_CS# lines are not set up. Address latency provides the setup time for the IDE_ADDR[2:0] and IDE_CS# lines prior to IDE IOR# and IDE IOW#.

Asserted latency consists of the I/O command strobe assertion length and recovery time. Recovery time is provided so that transactions may occur back-to-back on the IDE interface without violating minimum cycle periods for the IDE interface.

If IDE_IORDY is asserted when the initial sample point is reached, no wait states are added to the command strobe assertion length. If IDE_IORDY is negated when the initial sample point is reached, additional wait states are added.

Recovery latency occurs after the IDE data port transactions have completed. It provides hold time on the

IDE_ADDR[2:0] and IDE_CS# lines with respect to the read and write strobes (IDE_IOR# and IDE_IOW#).

The PIO portion of the IDE registers is enabled through:

- Channel 0 Drive 0 Programmed I/O Register (F2BAR+I/ O Offset 20h)
- Channel 0 Drive 1 Programmed I/O Register (F2BAR+I/ O Offset 28h)
- Channel 1 Drive 0 Programmed I/O Register (F2BAR+I/ O Offset 30h)
- Channel 1 Drive 1 Programmed I/O Register (F2BAR+I/ O Offset 38h)

The IDE channels and devices can be individually programmed to select the proper address setup time, asserted time, and recovery time.

The bit formats for these registers are shown in Table 4-56. Note that there are different bit formats for each of the PIO programming registers depending on the operating format selected: Format 0 or Format 1.

F2BAR+I/O Offset 24h[31] (Channel 0 Drive 0 — DMA Control Register) sets the format of the PIO register. If bit 31 = 0, Format 0 is used and it selects the slowest PIO-MODE (bits [19:16]) per channel for commands. If bit 31 = 1, Format 1 is used and it allows independent control of command and data.

Also listed in the bit formats are recommended values for the different PIO modes.

Note: These are only recommended settings and are not 100% tested.

Table 4-55. Base Address Register (F2BAR) for IDE Support Registers

Bit	Description						
F2 Index 20h-23h Base Address Register - F2BAR (R/W) Reset Value = 000							
This register sets the base address of the I/O mapped bus mastering IDE and controller registers. Bits [6:0] are read only (0000 001), indicating a 128-byte I/O address range. Refer to Table 5-19 for the IDE configuration registers bit formats and reset values.							
31:7	Bus Mastering IDE Base Address						
6:0	Address Range (R	ead Only)					

Table 4-56. PIO Programming Registers

Bit	Description										
F2BAR+I/C	Offset 20h-23h	Channel 0 Drive 0 PIO Register (R/W)	Reset Value = 0000E132h (Note)								
If Offset 24	If Offset 24h[31] = 0, Format 0: Selects slowest PIOMODE per channel for commands.										
Format 0 settings for: PIO Mode 0 = 00009172h PIO Mode 1 = 00012171h PIO Mode 2 = 00020080h											
	PIO Mode 3 = 0003 PIO Mode 4 = 0004										
31:20	Reserved: Set to 0.										
19:16	PIOMODE: PIO mode										
15:12	t2l: Recovery time (value + 1	cycle)									
11:8	t3: IDE_IOW# data setup tim	e (value + 1 cycle)									
7:4	t2W: IDE_IOW# width minus	t3 (value + 1 cycle)									
3:0	t1: Address Setup Time (valu	ue + 1 cycle)									
	th[31] = 1, Format 1: Allows in ettings for: PIO Mode 0 = 9172 PIO Mode 1 = 2171 PIO Mode 2 = 0080 PIO Mode 3 = 2010 PIO Mode 4 = 0010	7121h 3020h 2010h									
31:28	t2IC: Command cycle recove	ery time (value + 1 cycle)									
27:24	t3C: Command cycle IDE_IC)W# data setup (value + 1 cycle)									
23:20	t2WC: Command cycle IDE_	IOW# pulse width minus t3 (value + 1 cycle)									
19:16	t1C: Command cycle addres	s setup time (value + 1 cycle)									
15:12	t2ID: Data cycle recovery time	ne (value + 1 cycle)									
11:8	t3D: Data cycle IDE_IOW# d	ata setup (value + 1 cycle)									
7:4	t2WD: Data cycle IDE_IOW#	pulse width minus t3 (value + 1 cycle)									
3:0	t1D: Data cycle address Setu	up Time (value + 1 cycle)									
Note: The	reset value of this register is r	not a valid PIO Mode.									
Offset 28h	-2Bh	Channel 0 Drive 1 PIO Register (R/W)	Reset Value = 0000E132h								
Channel 0	Drive 1 Programmed I/O Cor	ntrol Register: Refer to F2BAR+I/O Offset 20h for bi	t descriptions.								
Offset 30h	-33h	Channel 1 Drive 0 PIO Register (R/W)	Reset Value = 0000E132h								
Channel 1	Drive 0 Programmed I/O Cor	ntrol Register: Refer to F2BAR+I/O Offset 20h for bi	t descriptions.								
Offset 38h	Offset 38h-3Bh Channel 1 Drive 1 PIO Register (R/W) Reset Value = 0000										
Channel 1	Drive 1 Programmed I/O Cor	ntrol Register: Refer to F2BAR+I/O Offset 20h for bi	t descriptions.								

IDE Controller Revision 1.1 AMD

4.6.2.2 Bus Master Mode

Two IDE bus masters are provided to perform the data transfers for the primary and secondary channels. The CS5530A off-loads the CPU and improves system performance in multitasking environments.

The bus master mode programming interface is an extension of the standard IDE programming model. This means that devices can always be dealt with using the standard IDE programming model, with the master mode functionality used when the appropriate driver and devices are present. Master operation is designed to work with any IDE device that supports DMA transfers on the IDE bus. Devices that work in PIO mode can only use the standard IDE programming model.

The IDE bus masters use a simple scatter/gather mechanism allowing large transfer blocks to be scattered to or gathered from memory. This cuts down on the number of interrupts to and interactions with the CPU.

Physical Region Descriptor Table Address

Before the controller starts a master transfer it is given a pointer (shown in Table 4-57) to a Physical Region Descriptor Table. This pointer sets the starting memory location of the Physical Region Descriptors (PRDs). The PRDs describe the areas of memory that are used in the data transfer. The PRDs must be aligned on a 4-byte boundary and the table cannot cross a 64 KB boundary in memory.

Primary and Secondary IDE Bus Master Registers

The IDE Bus Master Registers for each channel (primary and secondary) have an IDE Bus Master Command Register and Bus Master Status Register. These registers must be accessed individually; a 32-bit DWORD access attempting to include both the Command and Status registers may not operate correctly. Bit formats of these registers are given in Table 4-58.

Table 4-57. IDE Bus Master PRD Table Address Registers

Bit	Description					
F2BAR+I/O	Offset 04h-07h IDE Bus Master 0 PRD Table Address — Primary (R/W) Reset Value = 00000000h					
Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus Master 0. When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled (Command Re 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.						
1:0	Reserved: Set to 0.					
F2BAR+I/O	Offset 0Ch-0Fh IDE Bus Master 1 PRD Table Address — Secondary (R/W) Reset Value = 00000000h					
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus Master 1. When written, this register points to the first entry in a PRD table. Once IDE Bus Master 1 is enabled (Command Register bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.					
1:0	Reserved: Set to 0.					

Table 4-58. IDE Bus Master Command and Status Registers

Bit	Description	
		Poort Value – 00h
	O Offset 00h IDE Bus Master 0 Command Register — Primary (R/W)	Reset Value = 00h
7:4	Reserved: Set to 0. Must return 0 on reads.	Olta a manufamma ad
3	Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = P	CI writes performed.
0.4	This bit should not be changed when the bus master is active.	
2:1	Reserved: Set to 0. Must return 0 on reads.	
0	Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 to 0. Once an operation has been halted, it can	not be resumed. If hit 0
	is set to 0 while a bus master operation is active, the command is aborted and the data transferred	
	carded. This bit should be reset after completion of data transfer.	
F2BAR+I/0	Offset 02h IDE Bus Master 0 Status Register — Primary (R/W)	Reset Value = 00h
7	Simplex Mode (Read Only): Can both the primary and secondary channel operate independently 0 = Yes; 1 = No (simplex mode).	?
6	Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable.	
5	Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable.	
4:3	Reserved: Set to 0. Must return 0 on reads.	
2	Bus Master Interrupt: Has the bus master detected an interrupt? 0 = No; 1 = Yes.	
	Write 1 to clear.	
1	Bus Master Error: Has the bus master detected an error during data transfer? $0 = No$; $1 = Yes$.	
	Write 1 to clear.	
0	Bus Master Active (Read Only): Is the bus master active? $0 = No$; $1 = Yes$.	
F2BAR+I/0	O Offset 04h-07h IDE Bus Master 0 PRD Table Address — Primary (R/W) Res	et Value = 00000000h
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled $0 = 1$, it loads the pointer and updates this register to the next PRD by adding 08h.	
	When read, this register points to the next PRD.	
1:0	Reserved: Set to 0.	
F2BAR+I/		
	Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W)	Reset Value = 00h
7:4	O Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads.	Reset Value = 00h
7:4		
	Reserved: Set to 0. Must return 0 on reads.	
	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = P This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads.	
3	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = P This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master.	CI writes performed.
3 2:1	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = P This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred	CI writes performed. not be resumed. If bit 0
3 2:1 0	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = P This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can	CI writes performed. not be resumed. If bit 0
3 2:1 0	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = P This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred carded. This bit should be reset after completion of data transfer.	CI writes performed. not be resumed. If bit 0 from the drive is dis- Reset Value = 00h
3 2:1 0	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = P This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred carded. This bit should be reset after completion of data transfer. Offset 0Ah IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independently.	CI writes performed. not be resumed. If bit 0 from the drive is dis- Reset Value = 00h
3 2:1 0 F2BAR+I/0 7	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = P This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred carded. This bit should be reset after completion of data transfer. Offset 0Ah IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independently: 0 = Yes; 1 = No (simplex mode).	CI writes performed. not be resumed. If bit 0 from the drive is dis- Reset Value = 00h
3 2:1 0 F2BAR+I/ 0 7	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = P This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred carded. This bit should be reset after completion of data transfer. Offset 0Ah IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independently 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable.	CI writes performed. not be resumed. If bit 0 from the drive is dis- Reset Value = 00h
3 2:1 0 F2BAR+I/ 0 7 6 5	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = P This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred carded. This bit should be reset after completion of data transfer. Offset 0Ah IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independently 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable.	CI writes performed. not be resumed. If bit 0 from the drive is dis- Reset Value = 00h
3 2:1 0 F2BAR+I/O 7 6 5 4:3	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = P This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred carded. This bit should be reset after completion of data transfer. Offset 0Ah IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independently 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Reserved: Set to 0. Must return 0 on reads.	CI writes performed. not be resumed. If bit 0 from the drive is dis- Reset Value = 00h
3 2:1 0 F2BAR+I/O 7 6 5 4:3	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = P This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred carded. This bit should be reset after completion of data transfer. Offset 0Ah IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independently 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Reserved: Set to 0. Must return 0 on reads. Bus Master Interrupt: Has the bus master detected an interrupt? 0 = No; 1 = Yes. Write 1 to clear. Bus Master Error: Has the bus master detected an error during data transfer? 0 = No; 1 = Yes.	CI writes performed. not be resumed. If bit 0 from the drive is dis- Reset Value = 00h
3 2:1 0 F2BAR+I/ 0 7 6 5 4:3 2	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = P This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred carded. This bit should be reset after completion of data transfer. Offset 0Ah IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independently 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Reserved: Set to 0. Must return 0 on reads. Bus Master Interrupt: Has the bus master detected an interrupt? 0 = No; 1 = Yes. Write 1 to clear.	CI writes performed. not be resumed. If bit 0 from the drive is dis- Reset Value = 00h

IDE Controller Revision 1.1 AMD

Physical Region Descriptor Format

Each physical memory region to be transferred is described by a Physical Region Descriptor (PRD) as illustrated in Table 4-59. When the bus master is enabled (Command Register bit 0 = 1), data transfer proceeds until each PRD in the PRD table has been transferred. The bus master does not cache PRDs.

The PRD table consists of two DWORDs. The first DWORD contains a 32-bit pointer to a buffer to be transferred. This pointer must be 16-byte aligned. The second DWORD contains the size (16 bits) of the buffer and the EOT flag. The size must be in multiples of 16 bytes. The EOT bit (bit 31) must be set to indicate the last PRD in the PRD table.

Programming Model

The following steps explain how to initiate and maintain a bus master transfer between memory and an IDE device.

- Software creates a PRD table in system memory. Each PRD entry is 8 bytes long, consisting of a base address pointer and buffer size. The maximum data that can be transferred from a PRD entry is 64 KB. A PRD table must be aligned on a 4-byte boundary. The last PRD in a PRD table must have the EOT bit set.
- Software loads the starting address of the PRD table by programming the PRD Table Address Register.

- Software must fill the buffers pointed to by the PRDs with IDE data.
- 4) Write 1 to the Bus Master Interrupt bit and Bus Master Error (Status Register bits 2 and 1) to clear the bits.
- 5) Set the correct direction to the Read or Write Control bit (Command Register bit 3).
- 6) Engage the bus master by writing a "1" to the Bus Master Control bit (Command Register bit 0).
- 7) The bus master reads the PRD entry pointed to by the PRD Table Address Register and increments the address by 08h to point to the next PRD. The transfer begins.
- 8) The bus master transfers data to/from memory responding to bus master requests from the IDE device. At the completion of each PRD, the bus master's next response depends on the settings of the EOT flag in the PRD. If the EOT bit is set, then the IDE bus master clears the Bus Master Active bit (Status Register bit 0) and stops. If any errors occurred during the transfer, the bus master sets the Bus Master Error bit (Status Register bit 1).

Table 4-59. Physical Region Descriptor Format

	Byte 3				Byte 2						Byte 1								Byte 0							
DWORD	31	30	80 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8					7	6	5	4	3	2	1	0											
0	Memory Region Physical Base Address [31:4] (IDE Data Buffer) 0 0 0 0											0														
1	E Reserved Size [15:4] 0 0 0 0							0																		

Revision 1.1 IDE Controller

4.6.2.3 Ultra DMA/33 Mode

The CS5530A supports Ultra DMA/33. It utilizes the standard IDE Bus Master functionality to interface, initiate, and control the transfer. Ultra DMA/33 definition also incorporates a Cyclic Redundancy Check (CRC) error checking protocol to detect errors.

The Ultra DMA/33 protocol requires no extra signal pins on the IDE connector. The CS5530A redefines three standard IDE control signals when in Ultra DMA/33 mode. These definitions are shown in Table 4-60.

Table 4-60. Ultra DMA/33 Signal Definitions

CS5530A IDE Channel Signal	Ultra DMA/33 Read Cycle	Ultra DMA/33 Write Cycle				
IDE_IOW#	STOP	STOP				
IDE_IOR#	DMARDY#	STROBE				
IDE_IORDY	STROBE	DMARDY#				

All other signals on the IDE connector retain their functional definitions during the Ultra DMA/33 operation.

IDE_IOW# is defined as STOP for both read and write transfers to request to stop a transaction.

IDE_IOR# is redefined as DMARDY# for transferring data from the IDE device to the CS5530A. It is used by the CS5530A to signal when it is ready to transfer data and to add wait states to the current transaction. IDE_IOR# signal is defined as STROBE for transferring data from the CS5530A to the IDE device. It is the data strobe signal driven by the CS5530A on which data is transferred during each rising and falling edge transition.

IDE_IORDY is redefined as STROBE for transferring data from the IDE device to the CS5530A during a read cycle. It is the data strobe signal driven by the IDE device on which data is transferred during each rising and falling edge transition. IDE_IORDY is defined as DMARDY# during a write cycle for transferring data from the CS5530A to the IDE device. It is used by the IDE device to signal when it is ready to transfer data and to add wait states to the current transaction.

Ultra DMA/33 data transfer consists of three phases, a startup phase, a data transfer phase and a burst termination phase.

The IDE device begins the startup phase by asserting IDE_DREQ. When ready to begin the transfer, the CS5530A asserts IDE_DACK#. When IDE_DACK# is asserted, the CS5530A drives IDE_CS0# and IDE_CS1# asserted, and IDE_ADDR[2:0] low. For write cycles, the CS5530A negates STOP, waits for the IDE device to assert DMARDY#, and then drives the first data WORD and STROBE signal. For read cycles, the CS5530A negates STOP, and asserts DMARDY#. The IDE device then sends the first data WORD and asserts STROBE.

The data transfer phase continues the burst transfers with the CS5530A and the IDE via providing data, toggling STROBE and DMARDY#. IDE_DATA[15:0] is latched by the receiver on each rising and falling edge of STROBE. The transmitter can pause the burst cycle by holding STROBE high or low, and resume the burst cycle by again toggling STROBE. The receiver can pause the burst cycle by negating DMARDY# and resumes the burst cycle by asserting DMARDY#.

The current burst cycle can be terminated by either the transmitter or the receiver. A burst cycle must first be paused as described above before it can be terminated. The CS5530A can then stop the burst cycle by asserting STOP, with the IDE device acknowledging by negating IDE_DREQ. The IDE device stops the burst cycle by negating IDE_DREQ and the CS5530A acknowledges by asserting STOP. The transmitter then drives the STROBE signal to a high level. The CS5530A then puts the result of the CRC calculation onto IDE_DATA[15:0] while deasserting IDE_DACK#. The IDE device latches the CRC value on the rising edge of IDE_DACK#.

The CRC value is used for error checking on Ultra DMA/33 transfers. The CRC value is calculated for all data by both the CS5530A and the IDE device during the Ultra DMA/33 burst transfer cycles. This result of the CRC calculation is based on all data transferred with a valid STROBE edge while IDE_DACK# is asserted. At the end of the burst transfer, the CS5530A drives the result of the CRC calculation onto IDE_DATA[15:0] which is then strobed by the deassertion of IDE_DACK#. The IDE device compares the CRC result of the CS5530A to its own and reports an error if there is a mismatch.

The timings for Ultra DMA/33 are programmed into the DMA control registers:

- Channel 0 Drive 0 DMA Control Register (F2BAR+I/O Offset 24h)
- Channel 0 Drive 1 DMA Control Register (F2BAR+I/O Offset 2Ch)
- Channel 1 Drive 0 DMA Control Register (F2BAR+I/O Offset 34h)
- Channel 1 Drive 1 DMA Control Register (F2BAR+I/O Offset 3Ch)

The bit formats for these registers are given in Table 4-61. Note that F2BAR+I/O Offset 24h[20] is used to select either Multiword or Ultra DMA mode. Bit 20 = 0 selects Multiword DMA mode. If bit 20 = 1, then Ultra DMA/33 mode is selected. Once mode selection is made using this bit, the remaining DMA Control Registers also operate in the selected mode.

Also listed in the bit formats are recommended values for both Multiword DMA Modes 0-2 and Ultra DMA/33 Modes 0-2

Note: These are only recommended settings and are not 100% tested.

IDE Controller Revision 1.1

Table 4-61. MDMA/UDMA Control Registers

Bit	Description						
F2BAR+I/C	Offset 24h-27h Channel 0 Drive 0 DMA Control Register (R/W) Reset Value = 00077771h						
If bit 20 = 0	, Multiword DMA						
Settings for	: Multiword DMA Mode 0 = 00077771h						
	Multiword DMA Mode 1 = 00012121h						
	Multiword DMA Mode 2 = 00002020h						
31	PIO Mode Format: 0 = Format 0; 1 = Format 1.						
30:21	Reserved: Set to 0.						
20	DMA Operation: 0 = Multiword DMA; 1 = Ultra DMA.						
19:16	tKR: IDE_IOR# recovery time (4-bit) (value + 1 cycle)						
15:12	tDR: IDE_IOR# pulse width (value + 1 cycle)						
11:8	tKW: IDE_IOW# recovery time (4-bit) (value + 1 cycle)						
7:4	tDW: IDE_IOW# pulse width (value + 1 cycle)						
3:0	tM: IDE_CS0#/CS1# to IDE_IOR#/IOW# setup; IDE_CS0#/CS1# setup to IDE_DACK0#/DACK1#						
If bit 20 = 1	, Ultra DMA						
Settings for	: Ultra DMA Mode 0 = 00921250h						
	Ultra DMA Mode 1 = 00911140h						
	Ultra DMA Mode 2 = 00911030h						
31	PIO Mode Format: 0 = Format 0; 1 = Format 1.						
30:21	Reserved: Set to 0.						
20	DMA Operation: 0 = Multiword DMA, 1 = Ultra DMA.						
19:16	tCRC: CRC setup UDMA in IDE_DACK# (value + 1 cycle) (for host terminate CRC setup = tMLI + tSS)						
15:12	tSS: UDMA out (value + 1 cycle)						
11:8	tCYC: Data setup and cycle time UDMA out (value + 2 cycles)						
7:4	tRP: Ready to pause time (value + 1 cycle). Note: tRFS + 1 tRP on next clock.						
3:0	tACK: IDE_CS0#/CS1# setup to IDE_DACK0#/DACK1# (value + 1 cycle)						

Offset 2Ch-2Fh

Channel 0 Drive 1 DMA Control Register (R/W)

Reset Value = 00017771h

Channel 0 Drive 1 MDMA/UDMA Control Register: Refer to F2BAR+I/O Offset 24h for bit descriptions.

Note: Once the PIO Mode Format is selected in F2BAR+I/O Offset 24h[31], bit 31 of this register is defined as reserved, read only.

Offset 34h-37h

Channel 1 Drive 0 DMA Control Register (R/W)

Reset Value = 00017771h

Channel 1 Drive 0 MDMA/UDMA Control Register: Refer to F2BAR+I/O Offset 24h for bit descriptions.

Note: Once the PIO Mode Format is selected in F2BAR+I/O Offset 24h[31], bit 31 of this register is defined as reserved, read only.

Offset 3Ch-3Fl

Channel 1 Drive 1 DMA Control Register (R/W)

Reset Value = 00017771h

Channel 1 Drive 1 MDMA/UDMA Control Register: Refer to F2BAR+I/O Offset 24h for bit descriptions.

Note: Once the PIO Mode Format is selected in F2BAR+I/O Offset 24h[31], bit 31 of this register is defined as reserved, read only.

4.7 XpressAUDIO™ Subsystem

Through XpressAUDIO™ architecture, the CS5530A offers a combined hardware/software support solution to meet industry standard audio requirements. The XpressAUDIO architecture uses Virtual System Architecture™ (VSA) technology along with additional hardware features to provide the necessary support for industry standard 16-bit stereo synthesis and OPL3 emulation.

The hardware portion of the XpressAUDIO subsystem is for transporting streaming audio data to/from the system memory and an AC97 codec. This hardware includes:

- Six (three inbound/three outbound) buffered PCI bus mastering engines that drive specific AC97 interface slots.
- Interfaces to AC97 codecs for audio input/output.

Additional hardware provides the necessary functionality for VSA technology. This hardware includes the ability to:

- Generate an SMI to alert software to update required data. An SMI is generated when either audio buffer is half empty or full. If the buffers become completely empty or full, the Empty bit is asserted.
- · Generate an SMI on I/O traps.
- Trap accesses for sound card compatibility at either I/O Port 220h-22Fh, 240h-24Fh, 260h-26Fh, or 280h-28Fh.
- Trap accesses for FM compatibility at I/O Port 388h-38Bh.
- Trap accesses for MIDI UART interface at I/O Port 300h-301h or 330h-331h.

- Trap accesses for serial input and output at COM2 (I/O Port 2F8h-2FFh) or COM4 (I/O Port 2E8h-2EFh).
- Support trapping for low (I/O Port 00h-0Fh) and/or high (I/O Port C0h-DFh) DMA accesses.
- Support hardware status register reads in CS5530A, minimizing SMI overhead.
- Support is provided for software-generated IRQs on IRQ 2, 3, 5, 7, 10, 11, 12, 13, 14, and 15.

Included in the following subsections are details regarding the registers used for configuring the audio interface. The registers are accessed through F3 Index 10h, the Base Address Register (F3BAR) in Function 3. F3BAR sets the base address for XpressAUDIO subsystem support registers as shown in Table 4-62.

4.7.1 Subsystem Data Transport Hardware

The data transport hardware can be broadly divided into two sections: bus mastering and the codec interface.

4.7.1.1 Audio Bus Masters

The CS5530A audio hardware includes six PCI bus masters (three for input and three for output) for transferring digitized audio between memory and the external codec. With these bus master engines, the CS5530A off-loads the CPU and improves system performance.

The programming interface defines a simple scatter/gather mechanism allowing large transfer blocks to be scattered to or gathered from memory. This cuts down on the number of interrupts to and interactions with the CPU.

Table 4-62. Base Address Register (F3BAR) for XpressAUDIO™ Subsystem Support Registers

Bit	Description						
f3 Index 10h-13h Base Address Register - F3BAR (R/W) Reset Value =							
This register sets the base address of the memory mapped audio interface control register block. This is a 128-byte block of registers used to control the audio FIFO and codec interface, as well as to support SMIs produced by VSA technology. Bits [6:0] are read only (0000 0000), indicating a 128-byte memory address range. Refer to Table 5-21 for the bit formats and reset values of the XpressAUD subsystem support registers.							
31:7	Audio Interface Base Address						
6:0	Address Range (Read Only)						

The six bus masters that directly drive specific slots on the AC97 interface:

- · Audio Bus Master 0
 - Output to codec
 - PCI read
 - 32-Bit
 - Left and right channels
 - Slots 3 and 4
- Audio Bus Master 1
 - Input from codec
 - PCI write
 - 32-Bit
 - Left and right channels
 - Slots 3 and 4
- Audio Bus Master 2
 - Output to codec
 - PCI read
 - 16-Bit
 - Slot 5
- Audio Bus Master 3
 - Input from codec
 - PCI write
 - 16-Bit
 - Slot 5

- Audio Bus Master 4
 - Output to codec
 - PCI read
 - 16-Bit
 - Slot 6 or 11 (F3BAR+Memory Offset 08h[19] selects slot)
- Audio Bus Master 5
 - Input from codec
 - PCI write
 - 16-Bit
 - Slot 6 or 11 (F3BAR+Memory Offset 08h[20] selects slot)

Bus Master Audio Configuration Registers

The format for the bus master audio configuration registers is similar in that each bus master has a Command Register, an SMI Status Register and a PRD Table Address Register. Programming of the bus masters is generic in many ways, although specific programming is required of bit 3 in the Command Register. This bit selects read or write control and is dependent upon which Audio Bus Master is being programmed. For example, Audio Bus Master 0 is defined as an output only, so bit 3 of Audio Bus Master 0 Command Register (F3BAR+Memory Offset 20h[3]) must always be set to 1.

Table 4-63. Generic Bit Formats for Audio Bus Master Configuration Registers

Bit	Description								
Command Register (R/W)									
7:4	7:4 Reserved: Set to 0. Must return 0 on reads.								
3	Read or Write Control: Set the transfer direction of Audio Bus Master X: 0 = Memory reads performed (output to codec); 1 = Memory writes performed (input from codec).								
	This bit should not be changed when the bus master is active. The setting of this bit is dependent upon the assigned bus master.								
2:1	Reserved: Set to 0. Must return 0 on reads.								
0	Bus Master Control: Controls the state of the Audio Bus Master X: 0 = Disable; 1 = Enable.								
	Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master must either be paused or have reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictable behavior including the possibility of the bus master state machine crashing. The only recovery from this condition is a PCI reset.								
Note: This	register must be read and written as a BYTE.								
SMI Status Register (RC)									
7:2	Reserved (Read to Clear)								
1	Bus Master Error (Read to Clear): Hardware encountered a second EOP (end of page) before software has cleared the first? 0 = No; 1 = Yes.								
	If hardware encounters a second EOP before software has cleared the first, it causes the bus master to pause until this register is read to clear the error.								
	Must be R/W as a byte.								
0	End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes.								
Note: Mus	t be read and written as a BYTE.								
PRD Table Address (R/W)									
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master X.								
	When written, this register points to the first entry in a PRD table. Once Audio Bus Master X is enabled (Command Register bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h.								
	When read, this register points to the next PRD.								
1:0	Reserved: Set to 0.								

Table 4-63 on page 119 explains the generic format for the six audio bus masters. Table 4-64 gives the register locations, reset values and specific programming information of

bit 3, Read or Write Control, in the Command Register for the Audio Bus Masters.

Table 4-64. Audio Bus Master Configuration Register Summary

Bit Description	<u> </u>					
Audio Bus Master 0: Output to Codec; 32-	Bit; Left and Right Channels; Slots 3 and 4.					
F3BAR+Memory Offset 20h F3BAR+Memory Offset 21h F3BAR+Memory Offset 22h-23h F3BAR+Memory Offset 24h-27h Refer to Table 4-63 on page 119 for bit descri Note: Bit 3 of the Command Register must be	Command Register (R/W) SMI Status Register (RC) Reserved PRD Table Address (R/W) ptions. e set to 0 (memory read) for correct operation.	Reset Value = 00h Reset Value = 00h Reset Value = xxh Reset Value = 00000000h				
Audio Bus Master 1: Input from Codec; 32	-Bit; Left and Right Channels; Slots 3 and 4.					
F3BAR+Memory Offset 28h F3BAR+Memory Offset 29h F3BAR+Memory Offset 2Ah-2Bh F3BAR+Memory Offset 2Ch-2Fh Refer to Table 4-63 on page 119 for bit descri Note: Bit 3 of the Command Register must b	Command Register (R/W) SMI Status Register (RC) Reserved PRD Table Address (R/W) ptions. e set to 1 (memory write) for correct operation.	Reset Value = 00h Reset Value = 00h Reset Value = xxh Reset Value = 00000000h				
Audio Bus Master 2: Output to Codec; 16-	Bit; Slot 5.					
F3BAR+Memory Offset 30h F3BAR+Memory Offset 31h F3BAR+Memory Offset 32h-33h F3BAR+Memory Offset 34h-37h Refer to Table 4-63 on page 119 for bit descri Note: Bit 3 of the Command Register must b	Command Register (R/W) SMI Status Register (RC) Reserved PRD Table Address (R/W) ptions. e set to 0 (memory read) for correct operation.	Reset Value = 00h Reset Value = 00h Reset Value = xxh Reset Value = 00000000h				
Audio Bus Master 3: Input from Codec; 16	-Bit; Slot 5.					
F3BAR+Memory Offset 38h F3BAR+Memory Offset 39h F3BAR+Memory Offset 3Ah-3Bh F3BAR+Memory Offset 3Ch-3Fh Refer to Table 4-63 for bit descriptions. Note: Bit 3 of the Command Register must be	Command Register (R/W) SMI Status Register (RC) Reserved PRD Table Address (R/W) e set to 1 (memory write) for correct operation.	Reset Value = 00h Reset Value = 00h Reset Value = xxh Reset Value = 00000000h				
Audio Bus Master 4: Output to Codec; 16-	Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[19] s	elects slot).				
F3BAR+Memory Offset 40h F3BAR+Memory Offset 41h F3BAR+Memory Offset 42h-43h F3BAR+Memory Offset 44h-47h Refer to Table 4-63 on page 119 for bit descri Note: Bit 3 of the Command Register must b	Command Register (R/W) SMI Status Register (RC) Reserved PRD Table Address (R/W) ptions. e set to 0 (memory read) for correct operation.	Reset Value = 00h Reset Value = 00h Reset Value = xxh Reset Value = 00000000h				
Audio Bus Master 5: Input from Codec; 16	-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[20]	selects slot).				
F3BAR+Memory Offset 48h F3BAR+Memory Offset 49h F3BAR+Memory Offset 4Ah-4Bh F3BAR+Memory Offset 4Ch-4Fh	Command Register (R/W) SMI Status Register (RC) Reserved PRD Table Address (R/W)	Reset Value = 00h Reset Value = 00h Reset Value = xxh Reset Value = 00000000h				
Refer to Table 4-63 on page 119 for bit descriptions. Note: Bit 3 of the Command Register must be set to 1 (memory write) for correct operation.						

 XpressAUDIO™ Subsystem
 Revision 1.1

4.7.1.2 Physical Region Descriptor Table Address

Before the bus master starts a master transfer it must be programmed with a pointer (PRD Table Address Register) to a Physical Region Descriptor Table. This pointer sets the starting memory location of the Physical Region Descriptors (PRDs). The PRDs describe the areas of memory that are used in the data transfer. The descriptor table entries must be aligned on a 4-byte boundary and the table cannot cross a 64 KB boundary in memory.

4.7.1.3 Physical Region Descriptor Format

Each physical memory region to be transferred is described by a Physical Region Descriptor (PRD) as illustrated in Table 4-65. When the bus master is enabled (Command Register bit 0 = 1), data transfer proceeds until each PRD in the PRD table has been transferred. The bus master does not cache PRDs.

The PRD table consists of two DWORDs. The first DWORD contains a 32-bit pointer to a buffer to be transferred. The second DWORD contains the size (16 bits) of the buffer and flags (EOT, EOP, JMP). The description of the flags are as follows:

- EOT bit If set in a PRD, this bit indicates the last entry in the PRD table (bit 31). The last entry in a PRD table must have either the EOT bit or the JMP bit set. A PRD can not have both the JMP and EOT bits set.
- EOP bit If set in a PRD and the bus master has completed the PRD's transfer, the End of Page bit is set (Status Register bit 0 = 1) and an SMI is generated. If a second EOP is reached due to the completion of another PRD before the End of Page bit is cleared, the Bus Master Error bit is set (Status Register bit 1 = 1) and the bus master pauses. In this paused condition, reading the Status Register clears both the Bus Master Error and the End of Page bits and the bus master continues.
- JMP bit This PRD is special. If set, the Memory Region
 Physical Base Address is now the target address of the
 JMP. There is no data transfer with this PRD. This PRD
 allows the creation of a looping mechanism. If a PRD
 table is created with the JMP bit set in the last PRD, the
 PRD table does not need a PRD with the EOT bit set. A
 PRD can not have both the JMP and EOT bits set.

Table 4-65. Physical Region Descriptor Format

	Byte 3				Byte 2			Byte 1				Byte 0																				
DWORD	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Memory Region Base Address [31:1] (Audio Data Buffer) 0																															
1	1 E E J Reserved Size [15:1] O O M T P P				0																											

4.7.1.4 Programming Model

The following discussion explains, in steps, how to initiate and maintain a bus master transfer between memory and an audio slave device.

In the steps listed below, the reference to "Example" refers to Figure 4-20, PRD Table Example.

 Software creates a PRD table in system memory. Each PRD entry is 8 bytes long; consisting of a base address pointer and buffer size. The maximum data that can be transferred from a PRD entry is 64 KB. A PRD table must be aligned on a 4-byte boundary. The last PRD in a PRD table must have the EOT or JMP bit set.

Example - Assume the data is outbound. There are three PRDs in the example PRD table. The first two PRDs (PRD_1, PRD_2) have only the EOP bit set. The last PRD (PRD_3) has only the JMP bit set. This example creates a PRD loop.

Software loads the starting address of the PRD table by programming the PRD Table Address Register.

Example - Program the PRD Table Address Register with Address 3.

3) Software must fill the buffers pointed to by the PRDs with audio data. It is not absolutely necessary to fill the buffers; however, the buffer filling process must stay ahead of the buffer emptying. The simplest way to do this is by using the EOP flags to generate an SMI when a PRD is empty.

Example - Fill Audio Buffer_1 and Audio Buffer_2. The SMI generated by the EOP from the first PRD allows the software to refill Audio Buffer_1. The second SMI will refill Audio Buffer_2. The third SMI will refill Audio Buffer_1 and so on.

4) Read the SMI Status Register to clear the Bus Master Error and End of Page bits (bits 1 and 0).

Set the correct direction to the Read or Write Control bit (Command Register bit 3). Note that the direction of the data transfer of a particular bus master is fixed and therefore the direction bit must be programmed accordingly. It is assumed that the codec has been properly programmed to receive the audio data.

Engage the bus master by writing a "1" to the Bus Master Control bit (Command Register bit 0).

The bus master reads the PRD entry pointed to by the PRD Table Address Register and increments the address by 08h to point to the next PRD. The transfer begins.

Example - The bus master is now properly programmed to transfer Audio Buffer_1 to a specific slot(s) in the AC97 interface.

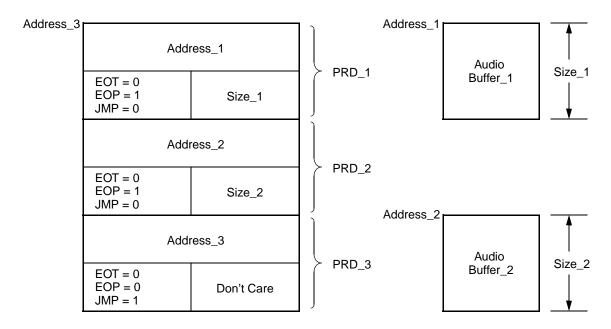


Figure 4-20. PRD Table Example

5) The bus master transfers data to/from memory responding to bus master requests from the AC97 interface. At the completion of each PRD, the bus master's next response depends on the settings of the flags in the PRD.

Example - At the completion of PRD_1 an SMI is generated because the EOP bit is set while the bus master continues on to PRD_2. The address in the PRD Table Address Register is incremented by 08h and is now pointing to PRD_3. The SMI Status Register is read to clear the End of Page status flag. Since Audio Buffer_1 is now empty, the software can refill it.

At the completion of PRD_2 an SMI is generated because the EOP bit is set. The bus master then continues on to PRD_3. The address in the PRD Table Address Register is incremented by 08h. The DMA SMI Status Register is read to clear the End of Page status flag. Since Audio Buffer_2 is now empty, the software can refill it. Audio Buffer_1 has been refilled from the previous SMI.

PRD_3 has the JMP bit set. This means the bus master uses the address stored in PRD_3 (Address_3) to locate the next PRD. It does not use the address in the PRD Table Address Register to get the next PRD. Since Address_3 is the location of PRD_1, the bus master has looped the PRD table.

Stopping the bus master can be accomplished by not reading the SMI Status Register End of Page status flag. This leads to a second EOP which causes a Bus Master Error and pauses the bus master. In effect, once a bus master has been enabled it never needs to be disabled, just paused. The bus master cannot be disabled unless the bus master has been paused or has reached an EOT.

4.7.1.5 AC97 Codec Interface

The CS5530A provides an AC97 Specification Revision 1.3, 2.0, and 2.1 compatible interface. Any AC97 codec that supports sample rate conversion (SRC) can be used with the CS5530A. This type of codec allows for a design which meets the requirements for PC97 and PC98-compliant audio as defined by Microsoft Corporation.

The AC97 codec is the master of the serial interface and generates the clocks to CS5530A, Figure 4-21 shows the codec and CS5530A signal connections. For specifications on the serial interface, refer to the appropriate codec manufacturer's data sheet.

For PC speaker synthesis, the CS5530A outputs the PC speaker signal on the PC_BEEP pin which is connected to the PC_BEEP input of the AC97 codec.

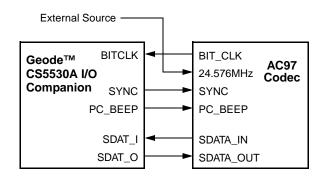


Figure 4-21. AC97 Signal Connections

Codec Configuration/Control Registers

The codec related registers consist of four 32-bit registers:

- · Codec GPIO Status Register
- Codec GPIO Control Register
- · Codec Status Register
- · Codec Command Register

Codec GPIO Status and Control Registers (F3BAR+ Memory Offset 00h and 04h)

The Codec GPIO Status and Control Registers are used for codec GPIO related tasks such as enabling a codec GPIO interrupt to cause an SMI.

Codec Status Register (F3BAR+Memory Offset 08h)

The Codec Status Register stores the codec status word. It updates every valid Status Word slot.

Codec Control Register (F3BAR+Memory Offset 0Ch)

The Codec Control Register writes the control word to the codec. By writing the appropriate control words to this port, the features of the codec can be controlled. The contents of this register are written to the codec during the Control Word slot.

The bit formats for these registers are given in Table 4-66.

Table 4-66. Codec Configuration/Control Registers

Bit	Description		
F3BAR+M	emory Offset 00h-03h	Codec GPIO Status Register (R/W)	Reset Value = 00100000h
31	Codec GPIO Interface: 0 =	Disable; 1 = Enable.	
30	Codec GPIO SMI: Allow co	dec GPIO interrupt to generate an SMI. 0 = Disable; 1= E	Enable.
		rted at F1BAR+Memory Offset 00h/02h[1]. eported at F3BAR+Memory Offset 10h/12h[1].	
29:21	Reserved: Set to 0.		
20	Codec GPIO Status Valid	(Read Only): Is the status read valid? 0 = Yes; 1 = No.	
19:0	Codec GPIO Pin Status (R signal.	ead Only): This is the GPIO pin status that is received fr	om the codec in slot 12 on SDATA_IN
F3BAR+M	emory Offset 04h-07h	Codec GPIO Control Register (R/W)	Reset Value = 00000000h
31:20	Reserved: Set to 0.		
19:0	Codec GPIO Pin Data: Thi	s is the GPIO pin data that is sent to the codec in slot 12	on the SDATA_OUT signal.
F3BAR+M	emory Offset 08h-0Bh	Codec Status Register (R/W)	Reset Value = 00000000h
31:24	Codec Status Address (Reslot 1 bits [19:12].	ead Only): Address of the register for which status is being	ng returned. This address comes from
23	Codec Serial INT SMI: Allo	w codec serial interrupt to generate an SMI. 0 = Disable;	1= Enable.
		rted at F1BAR+Memory Offset 00h/02h[1]. eported at F3BAR+Memory Offset 10h/12h[1].	
22	SYNC Pin: Selects SYNC p	in level. 0 = Low; 1 = High.	
21	Enable SDATA_IN2: Pin AB	E24 function selection. 0 = GPIO1; 1 = SDATA_IN2.	
	For this pin to function as S	DATA_IN2, it must first be configured as an input (F0 Inde	ex 90h[1] = 0).
20	Audio Bus Master 5 AC97	Slot Select: Selects slot for Audio Bus Master 5 to recei	ve data. 0 = Slot 6; 1 = Slot 11.
19		Slot Select: Selects slot for Audio Bus Master 4 to trans	mit data. 0 = Slot 6; 1 = Slot 11.
18	Reserved: Set to 0.		
17		etermines if the status in bits [15:0] is new or not. 0 = No	t new; 1 = New.
16	•	Only): Is the status in bits [15:0] valid? 0 = No; 1 = Yes.	
15:0	Codec Status (Read Only) [19:4] are used from slot 2.	: This is the codec status data that is received from the c	codec in slot 2 on SDATA_IN. Only bits
F3BAR+M	emory Offset 0Ch-0Fh	Codec Command Register (R/W)	Reset Value = 00000000h
31:24	Codec Command Address in slot 1 bits [19:12] on SDA	s: Address of the codec control register for which the com TA_OUT.	mand is being sent. This address goes
23:22	00 = Primary codec 01 = Secondary codec	ication: Selects which codec to communicate with. 10 = Third codec 11 = Fourth codec ly valid settings for these bits.	
21:17	Reserved: Set to 0.		
16	Codec Command Valid: Is	the command in bits [15:0] valid? 0 = No; 1 = Yes.	
	,	when a command is loaded. It remains set until the comm	
15:0	Codec Command: This is t	he command being sent to the codec in bits [19:12] of sle	ot 2 on SDATA_OUT.

XpressAUDIO™ Subsystem Revision 1.1 AMD

4.7.2 VSA Technology Support Hardware

The CS5530A companion device incorporates the required hardware in order to support the Virtual System Architecture (VSA) technology for capture and playback of audio using an external codec. This eliminates much of the hardware traditionally associated with industry standard audio functions.

XpressAUDIO software provides 16-bit compatible sound. This software is available to OEMs for incorporation into the system BIOS ROM.

4.7.2.1 VSA Technology

VSA technology provides a framework to enable software implementation of traditionally hardware-only components. VSA technology software executes in System Management Mode (SMM), enabling it to execute transparently to the operating system, drivers, and applications.

The VSA technology design is based upon a simple model for replacing hardware components with software. Hardware to be virtualized is merely replaced with simple access detection circuitry which asserts the SMI# (System Management Interrupt) pin when hardware accesses are detected. The current execution stream is immediately preempted, and the processor enters SMM. The SMM system software then saves the processor state, initializes the VSA technology execution environment, decodes the SMI source and dispatches handler routines which have registered requests to service the decoded SMI source. Once all handler routines have completed, the processor state is restored and normal execution resumes. In this manner, hardware accesses are transparently replaced with the execution of SMM handler software.

Historically, SMM software was used primarily for the single purpose of facilitating active power management for note-book designs. That software's only function was to manage the power up and down of devices to save power. With high performance processors now available, it is feasible to implement, primarily in SMM software, PC capabilities traditionally provided by hardware. In contrast to power management code, this virtualization software generally has strict performance requirements to prevent application performance from being significantly impacted.

4.7.2.2 Audio SMI Related Registers

The SMI related registers consist of:

- · Second Level Audio SMI Status Registers
- I/O Trap SMI and Fast Write Status Register
- I/O Trap SMI Enable Register

The Top SMI Status Mirror and Status Registers are the top level of hierarchy for the SMI handler in determining the source of an SMI. These two registers are at F1BAR+Memory Offset 00h (Status Mirror) and F1BAR+Memory Offset 02h (Status). The registers are identical except that reading the register at F1BAR+Memory Offset 02h clears the status.

Second Level Audio SMI Status Registers

The second level of audio SMI status reporting is set up very much like the top level. There are two status reporting registers, one "read only" (mirror) and one "read to clear". The data returned by reading either offset is the same (i.e., SMI was caused by an audio related event). The difference between F3BAR+Memory Offset 12h and 10h (mirror) is in the ability to clear the SMI source at 10h.

Figure 4-22 shows an SMI tree for checking and clearing the source of an audio SMI. Only the audio SMI bit is detailed here. For details regarding the remaining bits in the Top SMI Status Mirror and Status Registers refer to Table 5-17 "F1BAR+Memory Offset xxh: SMI Status and ACPI Timer Registers" on page 181.

I/O Trap SMI and Fast Write Status Register

This 32-bit read-only register (F3BAR+Memory Offset 14h) not only indicates if the enabled I/O trap generated an SMI, but also contains Fast Path Write related bits.

I/O Trap SMI Enable Register

The I/O Trap SMI Enable Register (F3BAR+Memory Offset 18h) allows traps for specified I/O addresses and configures generation for I/O events. It also contains the enabling bit for Fast Path Write/Read features.

If Status Fast Path Read is enabled, the CS5530A intercepts and responds to reads to several status registers. This speeds up operations, and prevents SMI generation for reads to these registers. Status Fast Path Read is enabled via F3BAR+Memory Offset 18h[4].

In Status Fast Path Read the CS5530A responds to reads of the following addresses:

388h-38Bh

2x0h, 2x1h, 2x2h, 2x3h, 2x8h, and 2x9h

Note that if neither sound card nor FM I/O mapping is enabled, then status read trapping is not possible.

If Fast Path Write is enabled, the CS5530A captures certain writes to several I/O locations. This feature prevents two SMIs from being asserted for write operations that are known to take two accesses (the first access is an index and the second is data). Fast Path Write is enabled via F3BAR+Memory Offset 18h[11].

Fast Path Write captures the data and address bit 1 (A1) of the first access, but does not generate an SMI. A1 is stored in F3BAR+Memory Offset 14h[15]. The second access causes an SMI, and the data and address are captured as in a normal trapped I/O.

In Fast Path Write, the CS5530A responds to writes to the following addresses:

388h, 38Ah, and 38Bh 2x0h, 2x2h, and 2x8h

Table 4-67 on page 127 and Table 4-68 on page 129 show the bit formats of the second and third level SMI status reporting registers, respectively. Table 4-69 on page 130

shows the sound card I/O trap and Fast Path Read/Write programming bits.

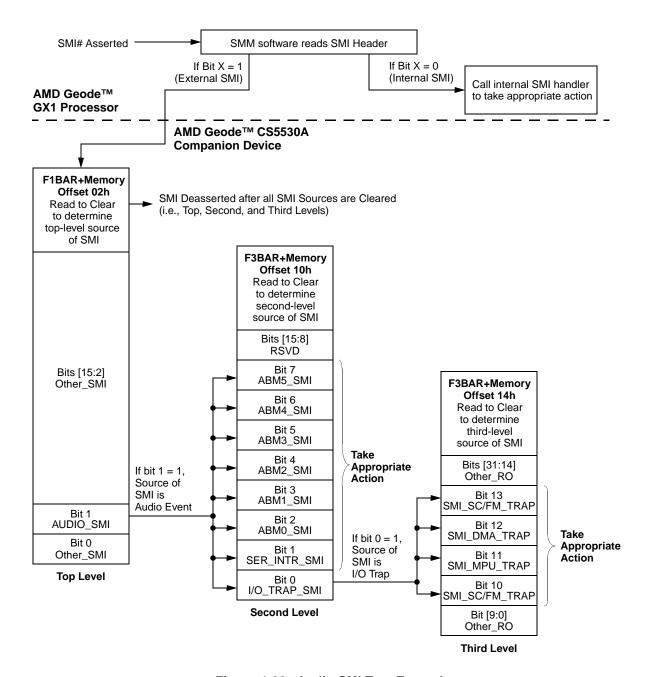


Figure 4-22. Audio SMI Tree Example

Table 4-67. Second Level SMI Status Reporting Registers

Bit	Description							
F3BAR+M	emory Offset 10h-11h Second Level Audio SMI Status Register (RC)	Reset Value = 0000h						
15:8	Reserved: Set to 0.							
7	Audio Bus Master 5 SMI Status (Read to Clear): SMI was caused by an event occurring on Audio Bus Master 5? 0 = No; 1 = Yes.							
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory SMI generation is enabled when Audio Bus Master 5 is enabled (F3BAR+Memory Offset 48h generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset)	[0] = 1). An SMI is then						
6	Audio Bus Master 4 SMI Status (Read to Clear): SMI was caused by an event occurring on 0 = No; 1 = Yes.	Audio Bus Master 4?						
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory	Offset 00h/02h[1].						
	SMI generation is enabled when Audio Bus Master 4 is enabled (F3BAR+Memory Offset 40hl generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 40hl)	,						
5	Audio Bus Master 3 SMI Status (Read to Clear): SMI was caused by an event occurring on $0 = No; 1 = Yes.$	Audio Bus Master 3?						
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory	• •						
	SMI generation is enabled when Audio Bus Master 3 is enabled (F3BAR+Memory Offset 38hl generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 38hl)	,						
4	Audio Bus Master 2 SMI Status (Read to Clear): SMI was caused by an event occurring on Audio Bus Master 2? 0 = No; 1 = Yes.							
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory							
	SMI generation is enabled when Audio Bus Master 2 is enabled (F3BAR+Memory Offset 30hl generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 30hl)	,						
3	Audio Bus Master 1 SMI Status (Read to Clear): SMI was caused by an event occurring on Audio Bus Master 1? 0 = No; 1 = Yes.							
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory							
	SMI generation is enabled when Audio Bus Master 1 is enabled (F3BAR+Memory Offset 28hl generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 28hl)	,						
2	Audio Bus Master 0 SMI Status (Read to Clear): SMI was caused by an event occurring on 0 = No; 1 = Yes.							
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory							
	SMI generation is enabled when Audio Bus Master 0 is enabled (F3BAR+Memory Offset 20hl generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 20hl)	,						
1	Codec Serial or GPIO Interrupt SMI Status (Read to Clear): SMI was caused by a serial or 0 = No; 1 = Yes.	GPIO interrupt from codec?						
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory	Offset 00h/02h[1].						
	SMI generation enabling for codec serial interrupt: F3BAR+Memory Offset 08h[23] = 1. SMI generation enabling for codec GPIO interrupt: F3BAR+Memory Offset 00h[30] = 1.							
0	I/O Trap SMI Status (Read to Clear): SMI was caused by an I/O trap? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The next level (third level) of SMI status reporting.	rting is at F3BAR+Memory						
Note: Pos	Offset 14h. The top level is reported at F1BAR+Memory Offset 00h/02h[1]. ding this register clears the status bits. Note that bit 0 has another level (third) of SMI status reports.	porting						
A re	ad-only "Mirror" version of this register exists at F3BAR+Memory Offset 12h. If the value of the ring the SMI source (and consequently deasserting SMI), the Mirror register may be read inste	register must be read withou						
	emory Offset 12h-13h Second Level Audio SMI Status Mirror Register (RO)	Reset Value = 0000h						
15:8	Reserved: Set to 0.							
7	Audio Bus Master 5 SMI Status (Read Only): SMI was caused by an event occurring on Au 0 = No; 1 = Yes.	dio Bus Master 5?						
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory	Offset 00h/02h[1].						
	SMI generation is enabled when Audio Bus Master 5 is enabled (F3BAR+Memory Offset 48hl generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offse							

Table 4-67. Second Level SMI Status Reporting Registers (Continued)

Bit	Description						
6	Audio Bus Master 4 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 4? 0 = No; 1 = Yes.						
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].						
	SMI generation is enabled when Audio Bus Master 4 is enabled (F3BAR+Memory Offset 40h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 41h[0] = 1).						
5	Audio Bus Master 3 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 3? 0 = No; 1 = Yes.						
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].						
	SMI generation is enabled when Audio Bus Master 3 is enabled (F3BAR+Memory Offset 38h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 39h[0] = 1).						
4	Audio Bus Master 2 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 2? 0 = No; 1 = Yes.						
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].						
	SMI generation is enabled when Audio Bus Master 2 is enabled (F3BAR+Memory Offset 30h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 31h[0] = 1).						
3	Audio Bus Master 1 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 1? 0 = No; 1 = Yes.						
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].						
	SMI generation is enabled when Audio Bus Master 1 is enabled (F3BAR+Memory Offset 28h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 29h[0] = 1).						
2	Audio Bus Master 0 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 0? 0 = No; 1 = Yes.						
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].						
	SMI generation is enabled when Audio Bus Master 0 is enabled (F3BAR+Memory Offset 20h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 21h[0] = 1).						
1	Codec Serial or GPIO Interrupt SMI Status (Read Only): SMI was caused by a serial or GPIO interrupt from codec? 0 = No; 1 = Yes.						
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].						
	SMI generation enabling for codec serial interrupt: F3BAR+Memory Offset 08h[23] = 1. SMI generation enabling for codec GPIO interrupt: F3BAR+Memory Offset 00h[30] = 1.						
0	I/O Trap SMI Status (Read Only): SMI was caused by an I/O trap? 0 = No; 1 = Yes.						
	This is the second level of SMI status reporting. The next level (third level) of SMI status reporting is at F3BAR+Memory Offset 14h. The top level is reported at F1BAR+Memory Offset 00h/02h[1].						

Table 4-68. Third Level SMI Status Reporting Registers

Bit	Description						
F3BAR+M	Memory Offset 14h-17h I/O Trap SMI and Fast Write Status Register (RO/RC) Reset Value = 00000000h						
31:24	Fast Path Write Even Access Data (Read Only): These bits contain the data from the last Fast Path Write Even access. These bits change only on a fast write to an even address.						
23:16	Fast Path Write Odd Access Data (Read Only): These bits contain the data from the last Fast Path Write Odd access. These bits change on a fast write to an odd address, and also on any non-fast write.						
15	Fast Write A1 (Read Only): This bit contains the A1 value for the last Fast Write access.						
14	Read or Write I/O Access (Read Only): Last trapped I/O access was a read or a write? 0 = Read; 1 = Write.						
13	Sound Card or FM Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the sound card or FM I/O Trap? 0 = No; 1 = Yes. (Note)						
	Fast Path Write must be enabled, F3BAR+Memory Offset 18h[11] = 1, for the SMI to be reported here. If Fast Path Write is disabled, the SMI is reported in bit 10 of this register.						
	This is the third level of SMI status reporting. The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. The top level is reported at F1BAR+Memory Offset 00h/02h[1].						
	SMI generation enabling is at F3BAR+Memory Offset 18h[2].						
12	DMA Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the DMA I/O Trap? 0 = No; 1 = Yes. (Note) This is the third level of SMI status reporting. The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. The top level is reported at F1BAR+Memory Offset 00h/02h[1].						
	SMI generation enabling is at F3BAR+Memory Offset 18h[8:7].						
11	MPU Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the MPU I/O Trap? 0 = No; 1 = Yes. (Note)						
	This is the third level of SMI status reporting. The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. The top level is reported at F1BAR+Memory Offset 00h/02h[1].						
	SMI generation enabling is at F3BAR+Memory Offset 18h[6:5].						
10	Sound Card or FM Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the sound card or FM I/O Trap? 0 = No; 1 = Yes. (Note)						
	Fast Path Write must be disabled, F3BAR+Memory Offset 18h[11] = 0, for the SMI to be reported here. If Fast Path Write is enabled, the SMI is reported in bit 13 of this register.						
	This is the third level of SMI status reporting. The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. The top level is reported at F1BAR+Memory Offset 00h/02h[1].						
	SMI generation enabling is at F3BAR+Memory Offset 18h[2].						
9:0	X-Bus Address (Read Only): Bits [9:0] contain the captured ten bits of X-Bus address.						

Note: For the four SMI status bits (bits [13:10]), if the activity was a fast write to an even address, no SMI is generated regardless of the DMA, MPU, or sound card status. If the activity was a fast write to an odd address, an SMI is generated but bit 13 is set to a 1.

Table 4-69. Sound Card I/O Trap and Fast Path Enable Registers

Bit	Description							
F3BAR+N	Memory Offset 18h-19h I/O Trap SMI Enable Register (R/W)	Reset Value = 0000h						
15:12	Reserved: Set to 0.							
11	Fast Path Write Enable: Fast Path Write (an SMI is not generated on certain writes to specified addresses). 0 = Disable; 1 = Enable.							
	In Fast Path Write, the CS5530A responds to writes to the following addresses: 388h, 38Ah and 2x8h.	38Bh; 2x0h, 2x2h, and						
10:9	Fast Read: These two bits hold part of the response that the CS5530A returns for reads to seve	eral I/O locations.						
8	High DMA I/O Trap: 0 = Disable; 1 = Enable.							
	If this bit is enabled and an access occurs at I/O Port C0h-DFh, an SMI is generated.							
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].							
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].							
	Third level SMI status is reported at F3BAR+Memory Offset 14h[12].							
7	Low DMA I/O Trap: 0 = Disable; 1 = Enable.							
	If this bit is enabled and an access occurs at I/O Port 00h-0Fh, an SMI is generated.							
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1]. Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].							
	Third level SMI status is reported at F3BAR+Memory Offset 14h[12].							
6	High MPU I/O Trap: 0 = Disable; 1 = Enable.							
Ü	If this bit is enabled and an access occurs at I/O Port 330h and 331h, an SMI is generated.							
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].							
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].							
	Third level SMI status is reported at F3BAR+Memory Offset 14h[11].							
5	Low MPU I/O Trap: I0 = Disable; 1 = Enable.							
	If this bit is enabled and an access occurs at I/O Port 300h and 301h, an SMI is generated.							
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].							
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].							
	Third level SMI status is reported at F3BAR+Memory Offset 14h[11].							
4	Fast Path Read Enable/SMI Disable: Read Fast Path (an SMI is not generated on reads from significantly 1 = Enable.	specified addresses).						
	In Fast Path Read the CS5530A responds to reads of the following addresses: 388h-38Bh; 2x0h	2x1h 2x2h 2x3h 2x8h						
	and 2x9h.	i, EXTI, EXEII, EXOII, EXOII						
	Note that if neither sound card nor FM I/O mapping is enabled, then status read trapping is not p	oossible.						
3	FM I/O Trap: 0 = Disable; 1 = Enable.							
	If this bit is enabled and an access occurs at I/O Port 388h to 38Bh, an SMI is generated.							
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].							
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].							
2	Sound Card I/O Trap: 0 = Disable; 1 = Enable							
	If this bit is enabled and an access occurs in the address ranges selected by bits [1:0], an SMI is	s generated.						
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].							
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].							
4.0	Third level SMI status is reported at F3BAR+Memory Offset 14h[10].	O t						
1:0	Sound Card Address Range Select: These bits select the address range for the sound card I/O	о тар.						
	00 = I/O Port 220h-22Fh 10 = I/O Port 260h-26Fh 01 = I/O Port 240h-24Fh 11 = I/O Port 280h-28Fh							
	01 = #0 1 01 2 TO 1 2 TO 1 2 TO 1 TO 1 TO 1 TO 1 TO							

XpressAUDIO™ Subsystem Revision 1.1 AMD

4.7.2.3 IRQ Configuration Registers

The CS5530A provides the ability to set and clear IRQs internally through software control. If the IRQs are configured for software control, they will not respond to external hardware. There are three registers provided for this feature:

- Internal IRQ Enable Register
- Internal IRQ Mask Register
- Internal IRQ Control Register

Internal IRQ Enable Register

This register configures the IRQs as internal (software) interrupts or external (hardware) interrupts. Any IRQ used

as an internal software driven source must be configured as internal.

Internal IRQ Mask Register

Each bit in the Mask register individually disables the corresponding bit in the Control Register.

Internal IRQ Control Register

This register allows individual software assertion/deassertion of the IRQs that are enabled as internal and unmasked.

The bit formats for these registers are given in Table 4-70.

Table 4-70. IRQ Configuration Registers

	Table 4-70. INQ Configuration Registers	
Bit	Description	
F3BAR+I	Memory Offset 1Ah-1Bh Internal IRQ Enable Register (R/W)	Reset Value = 0000h
15	IRQ15 Internal: Configure IRQ15 for internal (software) or external (hardware) use. 0 = External	; 1 = Internal.
14	IRQ14 Internal: Configure IRQ14 for internal (software) or external (hardware) use. 0 = External	; 1 = Internal.
13	Reserved: Set to 0.	
12	IRQ12 Internal: Configure IRQ12 for internal (software) or external (hardware) use. 0 = External	; 1 = Internal.
11	IRQ11 Internal: Configure IRQ11 for internal (software) or external (hardware) use. 0 = External	; 1 = Internal.
10	IRQ10 Internal: Configure IRQ10 for internal (software) or external (hardware) use. 0 = External	; 1 = Internal.
9	IRQ9 Internal: Configure IRQ9 for internal (software) or external (hardware) use. 0 = External; 1	= Internal.
8	Reserved: Set to 0.	
7	IRQ7 Internal: Configure IRQ7 for internal (software) or external (hardware) use. 0 = External; 1	= Internal.
6	Reserved: Set to 0.	
5	IRQ5 Internal: Configure IRQ5 for internal (software) or external (hardware) use. 0 = External; 1	= Internal.
4	IRQ4 Internal: Configure IRQ4 for internal (software) or external (hardware) use. 0 = External; 1	= Internal.
3	IRQ3 Internal: Configure IRQ3 for internal (software) or external (hardware) use. 0 = External; 1	= Internal.
2:0	Reserved: Set to 0.	
Note: Mu	st be read and written as a WORD.	
F3BAR+I	Memory Offset 1Ch-1Dh Internal IRQ Control Register (R/W)	Reset Value = 0000h
15	Assert Masked Internal IRQ15: 0 = Disable; 1 = Enable.	
14	Assert Masked Internal IRQ14: 0 = Disable; 1 = Enable.	
13	Reserved: Set to 0.	
12	Assert Masked Internal IRQ12: 0 = Disable; 1 = Enable.	
11	Assert masked internal IRQ11: 0 = Disable; 1 = Enable.	
10	Assert Masked Internal IRQ10: 0 = Disable; 1 = Enable.	
9	Assert Masked Internal IRQ9: 0 = Disable; 1 = Enable.	
8	Reserved: Set to 0.	
7	Assert Masked Internal IRQ7: 0 = Disable; 1 = Enable.	
6	Reserved: Set to 0.	
5	Assert Masked Internal IRQ5: 0 = Disable; 1 = Enable.	
4	Assert Masked Internal IRQ4: 0 = Disable: 1 = Enable.	-

Table 4-70. IRQ Configuration Registers (Continued)

	rabio i roi inta domigaramen itogretere (domina	/				
Bit	Description					
3	Assert Masked Internal IRQ3: 0 = Disable; 1 = Enable.					
2:0	Reserved: Set to 0.					
F3BAR+I	Memory Offset 1Eh-1Fh Internal IRQ Mask Register (Write Only)	Reset Value = xxxxh				
15	Mask Internal IRQ15: 0 = Disable; 1 = Enable.					
14	Mask Internal IRQ14: 0 = Disable; 1 = Enable.					
13	Reserved: Set to 0.					
12	Mask Internal IRQ12: 0 = Disable; 1 = Enable.					
11	Mask Internal IRQ11: 0 = Disable; 1 = Enable.					
10	Mask Internal IRQ10: 0 = Disable; 1 = Enable.					
9	Mask Internal IRQ9: 0 = Disable; 1 = Enable.					
8	Reserved: Set to 0.					
7	Mask Internal IRQ7: 0 = Disable; 1 = Enable.					
6	Reserved: Set to 0.					
5	Mask Internal IRQ5: 0 = Disable; 1 = Enable.					
4	Mask Internal IRQ4: 0 = Disable; 1 = Enable.					
3	Mask Internal IRQ3: 0 = Disable; 1 = Enable.					
2:0	Reserved: Set to 0.					

4.8 Display Subsystem Extensions

The CS5530A incorporates extensions to the GX1 processor's' display subsystem. These include:

- · Video Interface Configuration Registers
 - Line Buffers
 - Video Port Protocol
 - Video Format
 - X and Y Scaler / Filter
 - Color-Space-Converter
- Video Accelerator
- Gamma RAM
- Display Interface
 - Video DACs
 - VESA DDC2B / DPMS
 - Flat Panel Support

Figure 4-23 shows the data path of the display subsystem extensions.

4.8.1 Video Interface Configuration Registers

Registers for configuring the video interface are accessed through F4 Index 10h, the Base Address Register (F4BAR) in Function 4. F4BAR sets the base address for the Video Interface Configuration Registers as shown in Table 4-71.

Note: All Video Interface Configuration Registers have a 32-bit access granularity (only).

The following subsections describe the video interface and the registers used for programming purposes. However, for complete bit information refer to Section 5.3.5 "Video Controller Registers - Function 4" on page 198.

Table 4-71. Base Address Register (F4BAR) for Video Controller Support Registers

Bit	Description						
F4 Index 10h-13h Base Address Register — F4BAR (R/W) Reset Value = 00000000							
This register sets the base address of the memory mapped video controller registers. Bits [11:0] are read only (0000 0000 0000), indicating a 4 KB memory address range. Refer to Table 5-23 for the video controller register bit formats and reset values.							
31:12	Video Controller and Clock Control Base I/O Address						
11:0	Address Range (Re	Address Range (Read Only)					

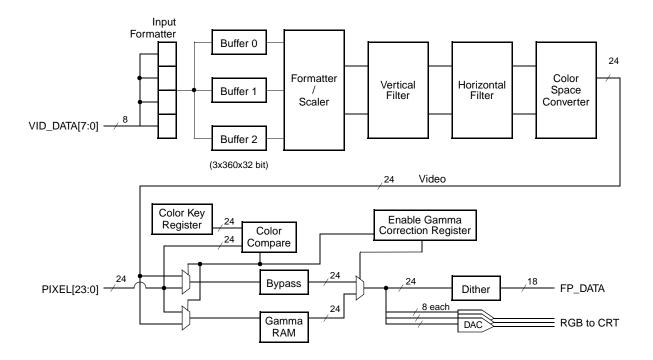
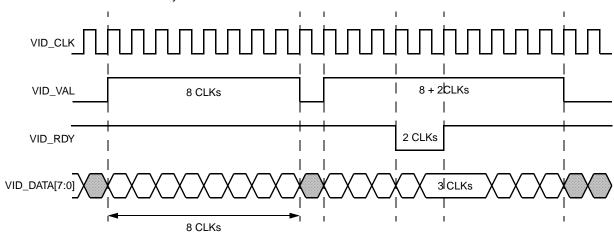


Figure 4-23. 8-Bit Display Subsystem Extensions

4.8.2 Video Accelerator

The CS5530A off-loads the processor from several computing-intensive tasks related to the playback of full motion video. By incorporating this level of hardware-assist, a CS5530A/GX1 processor based system can sustain 30 frames-per-second of MPEG quality video.

4.8.2.1 Line Buffers


The CS5530A accepts an 8-bit video stream from the processor and provides three full MPEG resolution line buffers (3x360x32-bit). MPEG source horizontal resolutions up to 720 pixels are supported. By having three line buffers, the display pipeline can read from two lines while the next line of data is being loaded from the processor. This minimizes memory bandwidth utilization by requiring that a source line be transferred only once per frame. Peak bandwidth is also reduced by requiring that the video source line be transferred within the horizontal line time rather than forcing the transfer to occur during the active video window. This efficient utilization of memory bandwidth allows the

processor and graphics accelerator an increased opportunity to access the memory subsystem and improves overall system performance during video playback.

4.8.2.2 Video Port Protocol

The video port operates at one-half the processor's core clock rate and utilizes a two-wire handshake protocol. The VID_VAL input signal indicates that valid data has been placed on the VID_DATA[7:0] bus. When the CS5530A is ready to accept data, it asserts VID_RDY to indicate that a line buffer is free to accept the next line. When both VID_VAL and VID_RDY are asserted, VID_DATA advances.

The VID_RDY signal is driven by the CS5530A one clock early to the processor while the VID_VAL signal is driven by the processor coincident with valid data on VID_DATA. A sample timing diagram is shown in Figure 4-24.

Note: VID_CLK = CORE_CLK/2

Figure 4-24. Video Port Protocol

4.8.2.3 Video Format

The video input data can be in interleaved YUV 4:2:2 or RGB 5:6:5 format. The sequence of the individual YUV components is selectable to one of four formats via bits

[3:2] in the Video Configuration Register (F4BAR+Memory Offset 00h[3:2]). The decode for these bits is shown in Table 4-72.

Table 4-72. Video Input Format Bits

Bit	Description							
F4BAR+N	lemory Offset 00h-03h	Video Configuration	on Register (R/W)	Reset Value = 00000000h				
31	Reserved: Set to 0							
30	High Speed Timing for Video Interface: High speed timings for the video interface. 0 = Disable; 1= Enable. If bit 30 is enabled, bit 25 should be set to 0.							
29	· · · · · · · · · · · · · · · · · · ·		hits 0 = Disable: 1= Enable					
20	16-bit Video Interface: Allow video interface to be 16 bits. 0 = Disable; 1= Enable. If bit 29 is enabled, 8 bits of pixel data is used for video. The 24-bit pixel data is then dithered to 16 bits.							
	Note: F4BAR+Memory Offset 04h[25] should be set to the same value as this bit (bit 29).							
28	YUV 4:2:2 or 4:2:0 Mode:	• •	,	• • • •				
		•	for 8-bit video mode and 10 f	or 16-bit video mode.				
	Note: The GX1 processor							
27	-		ideo Line Size (DWORDs). S	ee bits [15:8] for description.				
26	Reserved: Set to 0	·	, , , , , , , , , , , , , , , , , , , ,					
25	Early Video Ready: Generate VID_RDY output signal one-half VID_CLK period early to improve the speed of the vide operation. 0 = Disable; 1 = Enable.							
	If bit 30 is enabled, this bit (bit 25) should be set to 0.							
24	Initial Buffer Read Address: This is the MSB of the Initial Buffer Read Address. See bits [23:16] for description.							
23:16	Initial Buffer Read Address: This field is used to preload the starting read address for the line buffers at the beginning of each display line. It is used for hardware clipping of the video window at the left edge of the active display. It represents the DWORD address of the source pixel which is to be displayed first. For an unclipped window, this value should be 0.							
15:8	Video Line Size (DWORDs	s): This field represents the	horizontal size of the source	video data in DWORDs.				
7	Y Filter Enable: Vertical filt	er. 0 = Disable; 1= Enable.						
6	X Filter Enable: Horizontal	filter. 0 = Disable; 1 = Enal	ole.					
5			assed. Primarily used for dispough CSC; 1 = Overlay data l	laying an RGB graphics overlay rather bypasses CSC.				
4	GV Select: Selects whethe 0 = Video data; 1 = Graphic		be passed through the scale	er hardware.				
3:2	Video Input Format: This f	ield defines the byte orderi	ng of the video data on the VI	ID_DATA bus.				
	8-Bit Mode (Value Byte Or	der [0:3])	16-Bit Mode (Value B	yte Order [0:3])				
	00 = U Y0 V Y1 (also used	for RGB 5:6:5 input)	•	used for RGB 5:6:5 input)				
	01 = Y1 V Y0 U or 4:2:0 10 = Y0 U Y1 V		01 = Y0 U Y1 V	.0				
	10 = Y0 U Y1 V 11 = Y0 V Y1 U		10 = Y1 V Y0 U or 4:2 11 = Reserved	.0				
	If bit 28 is set for 4:2:0 mode, these bits (bits [3:2]) should be set to 01 for 8-bit video mode and 10 for 16-bit video mode.							
	Note: U = Cb, V = Cr							
1	· · · · · · · · · · · · · · · · · · ·		e registers to be updated sim	ultaneously on next occurrence of				
0		eration hardware. 0 = Disal	ole: 1 = Fnable					

4.8.2.4 X and Y Scaler / Filter

The CS5530A supports horizontal and vertical scaling of the video stream up to eight times the source resolution. The scaler uses a Digital-Differential-Analyzer (DDA) based upon the values programmed in the Video Scale Register (F4BAR+Memory Offset 10h, see Table 4-73)

The scaled video stream is then passed through horizontal and vertical filters which perform a 2-tap, 8-phase bilinear filter on the resulting stream. The filtering function removes the "blockiness" of the scaled video thereby significantly improving the quality of the displayed image.

By performing the scaling and filtering function in hardware, video performance is substantially improved over pure software implementations by requiring that the decompression software only output the video stream at the native source resolution. This saves both processor overhead and memory bandwidth.

4.8.2.5 Color-Space-Converter

After scaling and filtering have been applied, the YUV video data is passed through the color-space converter to obtain 24-bit RGB video data. The color-space conversion equations are based on the CCIR Recommendation 601-1 as follows:

$$R = 1.164(Y-16) + 1.596(V-128)$$

$$G = 1.164(Y-16) - 0.813(V-128) - 0.391(U-128)$$

$$B = 1.164(Y-16) + 2.018(U-128)$$

The color-space converter clamps inputs to acceptable limits if the data is not well behaved. The color-space converter is bypassed for overlaying 16 bpp RGB graphics data.

Table 4-73. Video Scale Register

Bit	Description							
F4BAR+N	lemory Offset 10h-13h	Video Scale Register (R/W)	Reset Value = xxxxxxxxh					
31:30	Reserved: Set to 0.							
29:16	Video Y Scale Factor: This field represents the video window vertical scale factor according to the following formula. VID_Y_SCL = 8192 * (Ys - 1) / (Yd - 1) Where: Ys = Video source vertical size in lines Yd = Video destination vertical size in lines							
15:14	Reserved: Set to 0.							
13:0	Video X Scale Factor: This field represents the video window horizontal scale factor according to the following formula.							
	VID_X_SCL = 8192 * (Xs - 1) / (Xd - 1)							
	Where:							
	Xs = Video source horizontal size in pixels							
	Xd = Video destina	ion horizontal size in pixels						

4.8.3 Video Overlay

The video data from the color-space converter is then mixed with the graphics data based upon the video window position. The video window position is programmable via the Video X and Y Position Registers (F4BAR+Memory Offset 08h and 0Ch). A color-keying mechanism is employed to compare either the source (video) or destination (graphics) color to the color key programmed via the Video Color Key Register (FBAR+Offset 14h) and to select the appropriate pixel for display within the video window. The range of the color key is programmable by setting the appropriate bits in the Video Color Mask Register (F4BAR+Memory Offset 18h). This mechanism greatly

reduces the software overhead for computing visible pixels, and ensures that the video display window may be partially occluded by overlapping graphics data. Tables 4-74 and 4-75 show the bit formats for these registers

The CS5530A accepts graphics data over the PIXEL[23:0] interface from the GX1 processor at the screen DOT clock rate. The CS5530A is capable of displaying graphics resolutions up to 1600x1200 at color depths up to 24 bits per pixel (bpp) while simultaneously overlaying a video window. However, system maximum resolution is not determined by the CS5530A since it is not the source of the graphics data and timings.

Table 4-74. Video X and Y Position Registers

Bit	Description					
F4BAR+N	lemory Offset 08h-0Bh	Video X Register (R/W)	Reset Value = xxxxxxxxxh			
31:27	Reserved: Set to 0.					
26:16		eld represents the horizontal end position of the vio = screen position + (H_TOTAL - H_SYNC_END) -				
15:11	Reserved: Set to 0.					
10:0	Video X Start Position: This field represents the horizontal start position of the video window according to the following formula. Position programmed = screen position + (H_TOTAL - H_SYNC_END) - 13.					
F4BAR+N	lemory Offset 0Ch-0Fh	Video Y Register (R/W)	Reset Value = xxxxxxxxh			
31:27	Reserved: Set to 0.					
26:16	Video Y End Position: This field represents the vertical end position of the video window according to the following formula. Position programmed = screen position + (V_TOTAL – V_SYNC_END) + 1.					
15:11	Reserved: Set to 0.					
10:0	Video Y Start Position: This field represents the vertical start position of the video window according to the following formula. Position programmed = screen position + (V_TOTAL - V_SYNC_END) + 1.					

Table 4-75. Video Color Registers

Bit	Description				
F4BAR+Memory Offset 14h-17h		Video Color Key Register (R/W)	Reset Value = xxxxxxxxxh		
31:24	Reserved: Set to 0.				
23:0	Video Color Key: This field represents the video color key. It is a 24-bit RGB value. The graphics or video data being compared may be masked prior to the compare by programming the Video Color Mask Register (F4BAR+Memory Offset 18h) appropriately.				
F4BAR+Memory Offset 18h-1Bh		Video Color Mask Register (R/W)	Reset Value = xxxxxxxxxh		
31:24	Reserved: Set to 0.				
23:0	Video Color Mask: This field represents the video color mask. It is a 24-bit RGB value. Zeroes in the mask cause the corresponding bits in the graphics or video stream being compared to be ignored.				

4.8.4 Gamma RAM

Either the graphics or video stream may be routed through an on-chip gamma RAM (3x256x8-bit) which can be used for gamma-correction of either data stream, or contrast/ brightness adjustments in the case of video data.

A bypass path is provided for either the graphics or video stream (depending on which is sent through the gamma

RAM). The two streams are merged based on the results of the color key compare.

Configuration for this feature and the display interface are through the Display Configuration Register (F4BAR+Memory Offset 04h). Table 4-76 shows the bit formats for this register.

Table 4-76. Display Configuration Register

Bit	Description				
F4BAR+M	lemory Offset 04h-07h Display Configuration Register (R/W) Reset Value = 00000000h				
31	DDC Input Data (Read Only): This is the DDC input data bit for reads.				
30:28	Reserved: Set to 0.				
27	Flat Panel On (Read Only): This bit indicates whether the attached flat panel display is powered on or off. The bit transitions at the end of the power-up or power-down sequence. 0 = Off; 1 = On.				
26	Reserved: Set to 0.				
25	16-Bit Graphics Enable: This bit works in conjunction with the 16-bit Video Interface bit at F4BAR+Memory Offset 00h[29]. This bit should be set to the same value as the 16-bit Video Interface bit.				
24	DDC Output Enable: This bit enables the DDC_SDA line to be driven for write data. 0 = DDC_SDA (pin M4) is an input; 1 = DDC_SDA (pin M4) is an output.				
23	DDC Output Data: This is the DDC data bit.				
22	DDC Clock: This is the DDC clock bit. It is used to clock the DDC_SDA bit.				
21	Palette Bypass: Selects whether graphics or video data should bypass the gamma RAM. 0 = Video data; 1 = Graphics data.				
20	Video/Graphics Color Key Select: Selects whether the video or graphics data stream will be used for color/chroma keying 0 = Graphics data is compared to color key; 1 = Video data is compared to color key.				
19:17	Power Sequence Delay: This field selects the number of frame periods that transpire between successive transitions of th power sequence control lines. Valid values are 001 to 111.				
16:14	CRT Sync Skew: This 3-bit field represents the number of pixel clocks to skew the horizontal and vertical syncs that are sent to the CRT. This field should be programmed to 100 as the baseline. The syncs may be moved forward or backward ative to the pixel data via this register. It is used to compensate for the pipeline delay through the graphics pipeline.				
13	Flat Panel Dither Enable: This bit enables flat panel dithering. It enables 24 bpp display data to be approximated with an 18-bit flat panel display. 0 = Disable; 1 = Enable.				
12	XGA Flat Panel: This bit enables the FP_CLK_ EVEN output signal which can be used to demultiplex the FP_DATA bus int even and odd pixels. 0 = Standard flat panel; 1 = XGA flat panel.				
11	Flat Panel Vertical Synchronization Polarity: Selects the flat panel vertical sync polarity. 0 = FP vertical sync is normally low, transitioning high during sync interval. 1 = FP vertical sync is normally high, transitioning low during sync interval.				
10	Flat Panel Horizontal Synchronization Polarity: Selects the flat panel horizontal sync polarity. 0 = FP horizontal sync is normally low, transitioning high during sync interval. 1 = FP horizontal sync is normally high, transitioning low during sync interval.				
9	CRT Vertical Synchronization Polarity: Selects the CRT vertical sync polarity. 0 = CRT vertical sync is normally low, transitioning high during sync interval.				
	1 = CRT vertical sync is normally high, transitioning low during sync interval.				
8	CRT Horizontal Synchronization Polarity: Selects the CRT horizontal sync polarity. 0 = CRT horizontal sync is normally low, transitioning high during sync interval. 1 = CRT horizontal sync is normally high, transitioning low during sync interval.				
7	Flat Panel Data Enable: Enables the flat panel data bus. 0 = FP_DATA [17:0] is forced low; 1 = FP_DATA [17:0] is driven based upon power sequence control.				
6	Flat Panel Power Enable: The transition of this bit initiates a flat panel power-up or power-down sequence. 0 -> 1 = Power-up flat panel; 1 -> 0 = Power-down flat panel.				
5	DAC Power-Down (active low): This bit must be set to power-up the video DACs. It can be cleared to power-down the video DACs when not in use. 0 = DACs are powered down; 1 = DACs are powered up.				
4	Reserved: Set to 0.				

Table 4-76. Display Configuration Register (Continued)

Bit	Description
3	DAC Blank Enable: This bit enables the blank to the video DACs. 0 = DACs are constantly blanked; 1 = DACs are blanked normally.
2	CRT Vertical Sync Enable: Enables the CRT vertical sync. Used for VESA DPMS support. 0 = Disable; 1 = Enable.
1	CRT Horizontal Sync Enable: Enables the CRT horizontal sync. Used for VESA DPMS support. 0 = Disable; 1 = Enable.
0	Display Enable: Enables the graphics display pipeline. It is used as a reset for the display control logic. 0 = Reset display control logic; 1 = Enable display control logic.

4.8.5 Display Interface

The CS5530A interfaces directly to a variety of display devices including conventional analog CRT displays, TFT flat panels, or optionally to digital NTSC/PAL encoder devices.

4.8.5.1 Video DACs

The CS5530A incorporates three 8-bit video Digital-to-Analog Converters (DACs) for interfacing directly to CRT displays. The video DACs meet the VESA specification and are capable of operation up to 157.5 MHz for supporting up to 1280x1024 display at a 85 Hz refresh rate and are VESA compliant.

4.8.5.2 VESA DDC2B / DPMS

The CS5530A supports the VESA DDC2B and DPMS standards for enhanced monitor communications and power management support.

4.8.5.3 Flat Panel Support

The CS5530A also interfaces directly to industry standard 18-bit Active Matrix Thin-Film-Transistor (TFT) flat panels. The CS5530A includes 24-bit to 18-bit dithering logic to increase the apparent number of colors displayed on 18-bit flat panels.

In addition, the CS5530A incorporates power sequencing logic to simplify the design of a portable system.

If flat panel support is not required, the flat panel output port may be used to supply digital video data to one of several types of NTSC/PAL encoder devices on the market.

Flat Panel Power-Up/Down Sequence

When the Flat Panel Power Enable bit (F4BAR+Memory Offset 04h[6]) transitions from a 0 to 1, the FP_ENA_VDD signal is enabled. This is followed by the data bus (including syncs and ENA_DISP). Finally, FP_ENA_BKL is enabled. The time between each of these successive stages is set by the value of the Power Sequence Delay bits (F4BAR+Memory Offset 04h[19:17]). The value in these bits refer to the number of graphics frames that will elapse between each successive enabling of the TFT signals. For example, if the Power Sequence Delay is set to 3h (011b), then three frame times will elapse between the time when FP ENA VDD is transitioned and the data bus is transitioned. Likewise, three frame times will elapse between the data bus getting enabled and the FP_ENA_BKL is transitioned. If the panel is being refreshed at 100 Hz, each frame lasts 1 ms. So, if the Power Sequence Delay is set to 3, 3 ms will elapse between transitions. When powering off the panel, the signals are transitioned in the opposite order (FP_ENA_BKL, data bus, FP_ENA_VDD) using the same Power Sequence Delay in the power-down sequence.

4.9 Universal Serial Bus Support

The CS5530A integrates a Universal Serial Bus (USB) controller which supports two ports. The USB controller is OpenHCI compliant, a standard developed by Compaq, Microsoft, and National Semiconductor. The USB core consists of three main interface blocks: the USB PCI interface controller, the USB host controller, and the USB interface controller. Legacy keyboard and mouse controllers are also supported for DOS compatibility with those USB devices.

This document must be used along with the following public domain reference documents for a complete functional description of the USB controller:

- USB Specification Revision 1.0
- · OpenHCI Specification, Revision 1.0
- · PCI Specification, Version 2.1

4.9.1 USB PCI Controller

The PCI controller interfaces the host controller to the PCI bus. As a master, the PCI controller is responsible for running cycles on the PCI bus on behalf of the host controller. As a target, the PCI controller monitors the cycles on the PCI bus and determines when to respond to these cycles. The USB core is a PCI target when it decodes cycles to its internal PCI configuration registers or to its internal PCI memory mapped I/O registers.

The USB core is implemented as a unique PCI device in the CS5530A. It has its own PCI Header and Configuration space. It is a single-function device, containing only Function #0. Depending on the state of the HOLD_REQ# strap pin at reset, its PCI Device Number for Configuration accesses varies:

If HOLD_REQ# is low, it uses pin AD29 as its IDSEL input, appearing as Device #13h in a Geode system.

If HOLD_REQ# is high, it uses pin AD27 as its IDSEL input, appearing as Device #11h in a Geode system.

The USB core is also affected by some bits in registers belonging to the other (Chipset) device of the CS5530A. In particular, the USB device can be disabled through the Chipset device, F0 Index 43h[0], and its IDSEL can be remapped by changing F0 Index 44h[6] (though this also affects the Chipset device's IDSEL and is not recommended).

All registers can be accessed via 8-, 16-, or 32-bit cycles (i.e., each byte is individually selected by the byte enables). Registers marked as Reserved, and reserved bits within a register are not implemented and should not be modified. These registers are summarized in Table 4-77. For complete bit information, see Table 5-25 "USB Index xxh: USB PCI Configuration Registers" on page 205.

Table 4-77. USB PCI Configuration Registers

USB Index	Туре	Name		
00h-01h	RO	Vendor Identification		
02h-03h	RO	Device Identification		
04h-05h	R/W	Command Register		
06h-07h	R/W	Status Register		
08h	RO	Device Revision ID		
09h-0Bh	RO	Class Code		
0Ch	R/W	Cache Line Size		
0Dh	R/W	Latency Timer		
0Eh	RO	Header Type		
0Fh	RO	BIST Register		
10h-13h	R/W	Base Address Register (USB BAR): Sets the base address of the memory mapped USB controller registers.		
14h-3Bh		Reserved		
3Ch	R/W	Interrupt Line Register		
3Dh	RO	Interrupt Pin Register		
3Eh	RO	Min. Grant Register		
3Fh	RO	Max. Latency Register		
40h-43h R/W		ASIC Test Mode Enable Register		
44h-45h R/W		ASIC Operational Mode Enable		
46h-47h		Reserved		
48h-FFh		Reserved		

4.9.2 USB Host Controller

In the USB core is the operational control block. It is responsible for the host controller's operational states (Suspend, Disable, Enable), special USB signals (Reset, Resume), status, interrupt control, and host controller configuration.

The host controller interface registers are memory mapped registers, mapped by USB F0 Index 10h (Base Address Register). These memory mapped registers are summarized in Table 4-78. For bit definitions, refer to Table 5-26 "USB BAR+Memory Offset xxh: USB Controller Registers" on page 208.

4.9.3 USB Power Management

At this time, USB supports minimal system level power management features. The only power management feature implemented is the disabling of the USB clock generator in USB Suspend state. Additional power management features require slight modifications.

The design supports PCICLK frequencies from 0 to 33 MHz. Synchronization between the PCI and USB clock domains is frequency independent. Remote wakeup of USB is asynchronously implemented from the USB Ports to PCI INTA#.

The design needs USBCLK to be operational at all times. If it is necessary to stop the 48 MHz clock, the system design requires that the signal used to enable/disable the USB clock generators is also used to wake the 48 MHz clock source. Currently, the RemoteWakeupConnected and RemoteWakeupEnable bits in the HcControl register are not implemented.

Table 4-78. USB Controller Registers

USB BAR+ Memory Offset	Туре	Name	
00h-03h	R/W	HcRevision	
04h-07h	R/W	HcControl	
08h-0Bh	R/W	HcCommandStatus	
0Ch-0Fh	R/W	HcInterruptStatus	
10h-13h	R/W	HcInterruptEnable	
14h-17h	R/W	HcInterruptDisable	
18h-1Bh	R/W	HcHCCA	
1Ch-1Fh	R/W	HcPeriodCurrentED	
20h-23h	R/W	HcControlHeadED	
24h-27h	R/W	HcControlCurrentED	
28h-2Bh	R/W	HcBulkHeadED	
2Ch-2Fh	R/W	HcBulkCurrentED	
30h-33h	R/W	HcDoneHead	
34h-37h	R/W	HcFmInterval	
38h-3Bh	RO	HcFrameRemaining	
3Ch-3Fh	RO	HcFmNumber	
40h-43h	R/W	HcPeriodicStart	
44h-47h	R/W	HcLSThreshold	
48h-4Bh	R/W	HcRhDescriptorA	
4Ch-4Fh	R/W	HcRhDescriptorB	
50h-53h	R/W	HcRhStatus	
54h-57h	R/W	HcRhPortStatus[1]	
58h-5Bh	R/W	HcRhPortStatus[2]	
5Ch-5Fh		Reserved	
60h-9Fh		Reserved	
100h-103h	R/W	HceControl	
104h-107h	R/W	HceInput	
108h-10Dh	R/W	HceOutput	
10Ch-10Fh	R/W	HceStatus	

Register Descriptions Revision 1.1 AMD

Register Descriptions

The Geode CS5530A is a multi-function device. Its register space can be broadly divided into four categories in which specific types of registers are located:

- 1) Chipset Register Space (F0-F4)
- 2) USB Controller Register Space (PCIUSB)
- 3) ISA Legacy I/O Register Space (I/O Port)
- 4) V-ACPI I/O Register Space (I/O Port)

The Chipset and the USB Controller Register Spaces are accessed through the PCI interface using the PCI Type One Configuration Mechanism.

The **Chipset Register Space** of the CS5530A is comprised of five separate functions (F0-F4) each with its own register space consisting of PCI header registers and memory or I/O mapped registers.

F0: Bridge Configuration Registers

F1: SMI Status and ACPI Timer Registers

F2: IDE Controller Registers

F3: XpressAUDIO™ Subsystem Registers

F4: Video Controller Registers

The PCI header is a 256-byte region used for configuring a PCI device or function. The first 64 bytes are the same for all PCI devices and are predefined by the PCI specification. These registers are used to configure the PCI for the device. The rest of the 256-byte region is used to configure the device or function itself.

The **USB Controller Register Space** consists of the standard PCI header registers. The USB controller supports two ports and is OpenHCI-compliant.

The ISA Legacy I/O Register Space contains all the legacy compatibility I/O ports that are internal, trapped, shadowed, or snooped.

The V-ACPI I/O Register Space contains two types of registers: Fixed Feature and General Purpose. These registers are emulated by the SMI handling code rather than existing in physical hardware. To the ACPI-compliant operating system, the SMI-base virtualization is transparent. An ACPI compliant system is one whose underlying BIOS, device drivers, chipset and peripherals conform to revision 1.0 or newer of the Advanced Control and Power Interface specification.

The CS5530A V-ACPI (Virtual ACPI) solution provides the following support:

- CPU States C1, C2
- Sleep States S1, S2, S4, S4BIOS, S5
- Embedded Controller (Optional) SCI and SWI event inputs
- General Purpose Events Fully programmable GPE0 Event Block registers

The remaining subsections of this chapter are as follows:

- A brief discussion on how to access the registers located in the PCI Configuration Space
- · Register summary
- · Detailed bit formats of all registers

5.1 PCI Configuration Space and Access Methods

Configuration cycles are generated in the processor. All configuration registers in the CS5530A are accessed through the PCI interface using the PCI Type One Configuration Mechanism. This mechanism uses two DWORD I/O locations at 0CF8h and 0CFCh. The first location (0CF8h) references the Configuration Address Register. The second location (0CFCh) references the Configuration Data Register.

To access PCI configuration space, write the Configuration Address (0CF8h) Register with data that specifies the CS5530A as the device on PCI being accessed, along with the configuration register offset. On the following cycle, a

read or write to the Configuration Data Register (CDR) causes a PCI configuration cycle to the CS5530A. BYTE, WORD, or DWORD accesses are allowed to the CDR at 0CFCh, 0CFDh, 0CFEh, or 0CFFh.

The CS5530A has six configuration register sets, one for each function (F0-F4) and USB (PCIUSB). Base Address Registers (BARs) in the PCI header registers are pointers for additional I/O or memory mapped configuration registers.

Table 4-1 shows the PCI Configuration Address Register (0CF8h) and how to access the PCI header registers.

Table 5-1. PCI Configuration Address Register (0CF8h)

31	30 24	23 16	15 11	10 8	7 2	1 0	
Configuration Space Mapping	RSVD	Bus Number	Device Number	Function	Index	DWORD 00	
1 (Enable)	000 0000	0000 0000	xxxx x (Note)	XXX	xxxx xx	00 (Always)	
Function 0 (F0): E	Function 0 (F0): Bridge Configuration Register Space						
80h		0000 0000	1001 0 or 1000 0	000	Index		
Function 1 (F1): S	SMI Status and ACI	PI Timer Register S	Space				
80)h	0000 0000	1001 0 or 1000 0	001	Index		
Function 2 (F2): I	DE Controller Regi	ster Space					
80h		0000 0000	1001 0 or 1000 0	010	Index		
Function 3 (F3): X	(pressAUDIO™ Su	bsystem Register	Space				
80)h	0000 0000	1001 0 or 1000 0	011	Index		
Function 4 (F4): V	/ideo Controller Re	egister Space					
80h		0000 0000	1001 0 or 1000 0	100	Index		
PCIUSB: USB Co	ntroller Register S	pace					
80h		0000 0000	1001 1 or 1000 1	000	Inc	lex	
Note: The device number depends upon the strapping of pin H26 (HOLD_REQ#) during POR. Strap pin H26 low: IDSEL = AD28 for Chipset Register Space and AD29 for USB Register Space Strap pin H26 high: IDSEL = AD26 for Chipset Register Space and AD27 for USB Register Space							
The strapping of pin H26 can be read back in F0 Index 44h[6].							

Register Summary Revision 1.1 AMD

5.2 Register Summary

The tables in this subsection summarize all the registers of the CS5530A. Included in the tables are the register's reset values and page references where the bit formats are found.

Table 5-2. Function 0: PCI Header and Bridge Configuration Registers Summary

F0 Index	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-15)
00h-01h	16	RO	Vendor Identification Register	1078h	Page 155
02h-03h	16	RO	Device Identification Register	0100h	Page 155
04h-05h	16	R/W	PCI Command Register	000Fh	Page 155
06h-07h	16	R/W	PCI Status Register	0280h	Page 155
08h	8	RO	Device Revision ID Register	xxh	Page 156
09h-0Bh	24	RO	PCI Class Code Register	060100h	Page 156
0Ch	8	R/W	PCI Cache Line Size Register	00h	Page 156
0Dh	8	R/W	PCI Latency Timer Register	00h	Page 156
0Eh	8	RO	PCI Header Type Register	80h	Page 156
0Fh	8	RO	PCI BIST Register	00h	Page 156
10h-1Fh			Reserved	xxh	Page 156
20h-3Fh			Reserved	00h	Page 156
40h	8	R/W	PCI Function Control Register 1	89h	Page 156
41h	8	R/W	PCI Function Control Register 2	10h	Page 157
42h	8	R/W	PCI Function Control Register 3	ACh	Page 157
43h	8	R/W	USB Shadow Register	03h	Page 157
44h	8	R/W	Reset Control Register	01h	Page 158
45h-4Fh			Reserved	00h	Page 158
50h	8	R/W	PIT Control/ISA CLK Divider	7Bh	Page 158
51h	8	R/W	ISA I/O Recovery Control Register	40h	Page 159
52h	8	R/W	ROM/AT Logic Control Register	F8h	Page 159
53h	8	R/W	Alternate CPU Support Register	00h	Page 159
54h-59h			Reserved	xxh	Page 160
5Ah	8	R/W	Decode Control Register 1	03h	Page 160
5Bh	8	R/W	Decode Control Register 2	20h	Page 160
5Ch	8	R/W	PCI Interrupt Steering Register 1	00h	Page 160
5Dh	8	R/W	PCI Interrupt Steering Register 2	00h	Page 161
5Eh-6Fh			Reserved	xxh	Page 161
70h-71h	16	R/W	General Purpose Chip Select Base Address Register	0000h	Page 161
72h	8	R/W	General Purpose Chip Select Control Register	00h	Page 161
73h-7Fh			Reserved	xxh	Page 161
80h	8	R/W	Power Management Enable Register 1	00h	Page 161
81h	8	R/W	Power Management Enable Register 2	00h	Page 162
82h	8	R/W	Power Management Enable Register 3	00h	Page 163
83h	8	R/W	Power Management Enable Register 4	00h	Page 164
84h	8	RO	Second Level Power Management Status Mirror Register 1	00h	Page 165
85h	8	RO	Second Level Power Management Status Mirror Register 2	00h	Page 165
86h	8	RO	Second Level Power Management Status Mirror Register 3	00h	Page 166
87h	8	RO	Second Level Power Management Status Mirror Register 4	00h	Page 166
88h	8	R/W	General Purpose Timer 1 Count Register	00h	Page 167
89h	8	R/W	General Purpose Timer 1 Control Register	00h	Page 167
8Ah	8	R/W	General Purpose Timer 2 Count Register	00h	Page 168
8Bh	8	R/W	General Purpose Timer 2 Control Register	00h	Page 168
8Ch	8	R/W	IRQ Speedup Timer Count Register	00h	Page 168
8Dh	8	R/W	Video Speedup Timer Count Register	00h	Page 169
8Eh	8	R/W	VGA Timer Count Register	00h	Page 169

Table 5-2. Function 0: PCI Header and Bridge Configuration Registers Summary (Continued)

F0 Index	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-15)
8Fh			Reserved	xxh	Page 169
90h	8	R/W	GPIO Pin Direction Register 1	00h	Page 169
91h	8	R/W	GPIO Pin Data Register 1	00h	Page 169
92h	8	R/W	GPIO Control Register 1	00h	Page 169
93h	8	R/W	Miscellaneous Device Control Register	00h	Page 170
94h	8	R/W	Suspend Modulation OFF Count Register	00h	Page 170
95h	8	R/W	Suspend Modulation ON Count Register	00h	Page 170
96h	8	R/W	Suspend Configuration Register	00h	Page 171
97h	8	R/W	GPIO Control Register 2	00h	Page 171
98h-99h	16	R/W	Primary Hard Disk Idle Timer Count Register	0000h	Page 172
9Ah-9Bh	16	R/W	Floppy Disk Idle Timer Count Register	0000h	Page 172
9Ch-9Dh	16	R/W	Parallel / Serial Idle Timer Count Register	0000h	Page 172
9Eh-9Fh	16	R/W	Keyboard / Mouse Idle Timer Count Register	0000h	Page 172
A0h-A1h	16	R/W	User Defined Device 1 Idle Timer Count Register	0000h	Page 172
A2h-A3h	16	R/W	User Defined Device 2 Idle Timer Count Register	0000h	Page 172
A4h-A5h	16	R/W	User Defined Device 3 Idle Timer Count Register	0000h	Page 173
A6h-A7h	16	R/W	Video Idle Timer Count Register	0000h	Page 173
A8h-A9h	16	R/W	Video Overflow Count Register	0000h	Page 173
AAh-ABh			Reserved	xxh	Page 173
ACh-ADh	16	R/W	Secondary Hard Disk Idle Timer Count Register	0000h	Page 173
AEh	8	WO	CPU Suspend Command Register	00h	Page 173
AFh	8	WO	Suspend Notebook Command Register	00h	Page 174
B0h-B3h			Reserved	xxh	Page 174
B4h	8	RO	Floppy Port 3F2h Shadow Register	xxh	Page 174
B5h	8	RO	Floppy Port 3F7h Shadow Register	xxh	Page 174
B6h	8	RO	Floppy Port 1F2h Shadow Register	xxh	Page 174
B7h	8	RO	Floppy Port 1F7h Shadow Register	xxh	Page 174
B8h	8	RO	DMA Shadow Register	xxh	Page 174 Page 174
B9h	8	RO	PIC Shadow Register	xxh	Page 174 Page 175
BAh	8	RO		xxh	
BBh	8	RO	PIT Shadow Register RTC Index Shadow Register	xxh	Page 175
BCh	8			00h	Page 175
		R/W	Clock Stop Control Register		Page 175
BDh-BFh		 D/M/	Reserved	xxh	Page 176
C0h-C3h	32	R/W	User Defined Device 1 Base Address Register	00000000h	Page 176
C4h-C7h	32	R/W	User Defined Device 2 Base Address Register	00000000h	Page 176
C8h-CBh	32	R/W	User Defined Device 3 Base Address Register	00000000h	Page 176
CCh	8	R/W	User Defined Device 1 Control Register	00h	Page 176
CDh	8	R/W	User Defined Device 2 Control Register	00h	Page 176
CEh	8	R/W	User Defined Device 3 Control Register	00h	Page 176
CFh			Reserved	xxh	Page 177
D0h	8	WO	Software SMI Register	00h	Page 177
D1h-EBh			Reserved	xxh	Page 177
ECh	8	R/W	Timer Test Register	00h	Page 177
EDh-F3h			Reserved	xxh	Page 177
F4h	8	RC	Second Level Power Management Status Register 1	00h	Page 177
F5h	8	RC	Second Level Power Management Status Register 2	00h	Page 177
F6h	8	RC	Second Level Power Management Status Register 3	00h	Page 178
F7h	8	RO/RC	Second Level Power Management Status Register 4	00h	Page 179
F8h-FFh			Reserved	xxh	Page 179

Table 5-3. Function 1: PCI Header Registers for SMI Status and ACPI Timer Summary

F1 Index	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-16)
00h-01h	16	RO	Vendor Identification Register	1078h	Page 180
02h-03h	16	RO	Device Identification Register	0101h	Page 180
04h-05h	16	R/W	PCI Command Register	0000h	Page 180
06h-07h	16	RO	PCI Status Register	0280h	Page 180
08h	8	RO	Device Revision ID Register	00h	Page 180
09h-0Bh	24	RO	PCI Class Code Register	068000h	Page 180
0Ch	8	RO	PCI Cache Line Size Register	00h	Page 180
0Dh	8	RO	PCI Latency Timer Register	00h	Page 180
0Eh	8	RO	PCI Header Type Register	00h	Page 180
0Fh	8	RO	PCI BIST Register	00h	Page 180
10h-13h	32	R/W	Base Address Register (F1BAR): Sets base address for memory mapped SMI status and ACPI timer support registers (summarized in Table 4-4).	00000000h	Page 180
14h-3Fh			Reserved	00h	Page 180
40h-FFh			Reserved	xxh	Page 180

Table 5-4. F1BAR: SMI Status and ACPI Timer Registers Summary

F1BAR+ Memory Offset	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-17)	
00h-01h	16	RO	Top SMI Status Mirror Register	0000h	Page 181	
02h-03h	16	RC	Top SMI Status Register	0000h	Page 181	
04h-05h	16	RO	Second Level General Traps & Timers Status Mirror	0000h	Page 182	
06h-07h	16	RC	Second Level General Traps & Timers Status Register	0000h	Page 182	
08h-09h	16	Read to Enable	SMI Speedup Disable Register	0000h	Page 183	
0Ah-1Bh			Reserved	xxh	Page 183	
1Ch-1Fh	32	RO	ACPI Timer Count Note: The ACPI Timer Count Register is accessible through I/O Port 121Ch.	00FFFFFCh	Page 183	
20h-4Fh			Reserved	xxh	Page 183	
50h-FFh	Oh-FFh Note: The registers located at F1BAR+Memory Offset 50h-FFh can also be accessed at F0 Index 50h-FFh. The preferred method is to program these registers through the F0 Register Space. Refer to Table 5-2 "Function 0: PCI Header and Bridge Configuration Registers Summary" on page 145 for summary information.					

Table 5-5. Function 2: PCI Header Registers for IDE Controller Summary

F2 Index	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-18)
00h-01h	16	RO	Vendor Identification Register	1078h	Page 184
02h-03h	16	RO	Device Identification Register	0102h	Page 184
04h-05h	16	R/W	PCI Command Register	0000h	Page 184
06h-07h	16	RO	PCI Status Register	0280h	Page 184
08h	8	RO	Device Revision ID Register	00h	Page 184
09h-0Bh	24	RO	PCI Class Code Register	010180h	Page 184
0Ch	8	RO	PCI Cache Line Size Register	00h	Page 184
0Dh	8	RO	PCI Latency Timer Register	00h	Page 184
0Eh	8	RO	PCI Header Type Register	00h	Page 184
0Fh	8	RO	PCI BIST Register	00h	Page 184
10h-1Fh			Reserved	00h	Page 184
20h-23h	32	R/W	Base Address Register (F2BAR): Sets base address for I/O mapped IDE controller configuration registers (summarized in Table 4-6).	0000001h	Page 184
24h-3Fh			Reserved	00h	Page 184
40h-FFh			Reserved	xxh	Page 184

Table 5-6. F2BAR: IDE Controller Configuration Registers Summary

F2BAR+ I/O Offset	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-19)
00h	8	R/W	IDE Bus Master 0 Command Register: Primary	00h	Page 185
01h			Reserved	xxh	Page 185
02h	8	R/W	IDE Bus Master 0 Status Register: Primary	00h	Page 185
03h			Reserved	xxh	Page 185
04h-07h	32	R/W	IDE Bus Master 0 PRD Table Address: Primary	00000000h	Page 185
08h	8	R/W	IDE Bus Master 1 Command Register: Secondary	00h	Page 185
09h			Reserved	xxh	Page 185
0Ah	8	R/W	IDE Bus Master 1 Status Register: Secondary	00h	Page 185
0Bh			Reserved	xxh	Page 186
0Ch-0Fh	32	R/W	IDE Bus Master 1 PRD Table Address: Secondary	00000000h	Page 186
10h-1Fh			Reserved	xxh	Page 186
20h-23h	32	R/W	Channel 0 Drive 0: PIO Register	0000E132h	Page 186
24h-27h	32	R/W	Channel 0 Drive 0: DMA Control Register	00077771h	Page 187
28h-2Bh	32	R/W	Channel 0 Drive 1: PIO Register	0000E132h	Page 187
2Ch-2Fh	32	R/W	Channel 0 Drive 1: DMA Control Register	00077771h	Page 187
30h-33h	32	R/W	Channel 1 Drive 0: PIO Register	0000E132h	Page 187
34h-37h	32	R/W	Channel 1 Drive 0: DMA Control Register	00077771h	Page 187
38h-3Bh	32	R/W	Channel 1 Drive 1: PIO Register	0000E132h	Page 187
3Ch-3Fh	32	R/W	Channel 1 Drive 1: DMA Control Register	00077771h	Page 187
40h-FFh			Reserved	xxh	Page 187

Register Summary

Table 5-7. Function 3: PCI Header Registers for XpressAUDIO™ Subsystem Summary

F3 Index	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-20)
00h-01h	16	RO	Vendor Identification Register	1078h	Page 188
02h-03h	16	RO	Device Identification Register	0103h	Page 188
04h-05h	16	R/W	PCI Command Register	0000h	Page 188
06h-07h	16	RO	PCI Status Register	0280h	Page 188
08h	8	RO	Device Revision ID Register	00h	Page 188
09h-0Bh	24	RO	PCI Class Code Register	040100h	Page 188
0Ch	8	RO	PCI Cache Line Size Register	00h	Page 188
0Dh	8	RO	PCI Latency Timer Register	00h	Page 188
0Eh	8	RO	PCI Header Type Register	00h	Page 188
0Fh	8	RO	PCI BIST Register	00h	Page 188
10h-13h	32	R/W	Base Address Register (F3BAR): Sets base address for memory mapped XpressAUDIO™ subsystem configuration registers (summarized in Table 4-8).	00000000h	Page 188
14h-3Fh			Reserved	00h	Page 188
40h-FFh			Reserved	xxh	Page 188

Table 5-8. F3BAR: XpressAUDIO™ Subsystem Configuration Registers Summary

F3BAR+ Memory Offset	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-21)
00h-03h	32	R/W	Codec GPIO Status Register	00100000h	Page 189
04h-07h	32	R/W	Codec GPIO Control Register	00000000h	Page 189
08h-0Bh	32	R/W	Codec Status Register	00000000h	Page 189
0Ch-0Fh	32	R/W	Codec Command Register	00000000h	Page 189
10h-11h	16	RO	Second Level Audio SMI Source Mirror Register	0000h	Page 189
12h-13h	16	RC	Second Level Audio SMI Source Register	0000h	Page 190
14h-17h	32	RO/RC	I/O Trap SMI and Fast Write Status Register	00000000h	Page 191
18h-19h	16	R/W	I/O Trap SMI Enable Register	0000h	Page 192
1Ah-1Bh	16	R/W	Internal IRQ Enable Register	0000h	Page 193
1Ch-1Dh	16	R/W	Internal IRQ Control Register	0000h	Page 193
1Eh-1Fh	16	WO	Internal IRQ Mask Register	xxxxh	Page 193
20h	8	R/W	Audio Bus Master 0 Command Register	00h	Page 194
21h	8	RC	Audio Bus Master 0 SMI Status Register	00h	Page 194
22h-23h			Reserved	xxh	Page 194
24h-27h	32	R/W	Audio Bus Master 0 PRD Table Address	00000000h	Page 194
28h	8	R/W	Audio Bus Master 1 Command Register	00h	Page 194
29h	8	RC	Audio Bus Master 1 SMI Status Register	00h	Page 194
2Ah-2Bh			Reserved	xxh	Page 195
2Ch-2Fh	32	R/W	Audio Bus Master 1 PRD Table Address	00000000h	Page 195
30h	8	R/W	Audio Bus Master 2 Command Register	00h	Page 195
31h	8	RC	Audio Bus Master 2 SMI Status Register	00h	Page 195
32h-33h			Reserved	xxh	Page 195
34h-37h	32	R/W	Audio Bus Master 2 PRD Table Address	00000000h	Page 195
38h	8	R/W	Audio Bus Master 3 Command Register	00h	Page 195
39h	8	RC	Audio Bus Master 3 SMI Status Register	00h	Page 196
3Ah-3Bh			Reserved	xxh	Page 196
3Ch-3Fh	32	R/W	Audio Bus Master 3 PRD Table Address	00000000h	Page 196

Table 5-8. F3BAR: XpressAUDIO™ Subsystem Configuration Registers Summary (Continued)

F3BAR+ Memory Offset	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-21)
40h	8	R/W	Audio Bus Master 4 Command Register	00h	Page 196
41h	8	RC	Audio Bus Master 4 SMI Status Register	00h	Page 196
42h-43h			Reserved	xxh	Page 196
44h-47h	32	R/W	Audio Bus Master 4 PRD Table Address	00000000h	Page 197
48h	8	R/W	Audio Bus Master 5 Command Register	00h	Page 197
49h	8	RC	Audio Bus Master 5 SMI Status Register	00h	Page 197
4Ah-4Bh			Reserved	xxh	Page 197
4Ch-4Fh	32	R/W	Audio Bus Master 5 PRD Table Address	00000000h	Page 197
50h-FFh			Reserved	xxh	Page 197

Table 5-9. Function 4: PCI Header Registers for Video Controller Summary

F4 Index	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-22)
00h-01h	16	RO	Vendor Identification	1078h	Page 198
02h-03h	16	RO	Device Identification	0104h	Page 198
04h-05h	16	R/W	PCI Command	0000h	Page 198
06h-07h	16	RO	PCI Status	0280h	Page 198
08h	8	RO	Device Revision ID	00h	Page 198
09h-0Bh	24	RO	PCI Class Code	030000h	Page 198
0Ch	8	RO	PCI Cache Line Size	00h	Page 198
0Dh	8	RO	PCI Latency Timer	00h	Page 198
0Eh	8	RO	PCI Header Type	00h	Page 198
0Fh	8	RO	PCI BIST Register	00h	Page 198
10h-13h	32	R/W	Base Address Register (F4BAR): Sets base address for memory mapped video controller configuration registers (summarized in Table 4-10).	00000000h	Page 198
14h-3Fh			Reserved	00h	Page 198
40h-FFh			Reserved	xxh	Page 198

Table 5-10. F4BAR: Video Controller Configuration Registers Summary

F4BAR+ Memory Offset	Width (Bits)	Туре	Register Name	Reset Value	Reference (Table 5-23)
00h-03h	32	R/W	Video Configuration Register	00000000h	Page 199
04h-07h	32	R/W	Display Configuration Register	x0000000h	Page 200
08h-0Bh	32	R/W	Video X Register	xxxxxxxxxh	Page 201
0Ch-0Fh	32	R/W	Video Y Register	xxxxxxxxh	Page 201
10h-13h	32	R/W	Video Scale Register	xxxxxxxxxh	Page 201
14h-17h	32	R/W	Video Color Key Register	xxxxxxxxxh	Page 201
18h-1Bh	32	R/W	Video Color Mask Register	xxxxxxxxxh	Page 201
1Ch-1Fh	32	R/W	Palette Address Register	xxxxxxxxxh	Page 201
20h-23h	32	R/W	Palette Data Register	xxxxxxxxxh	Page 201
24h-27h	32	R/W	Dot Clock Configuration Register	0000000h	Page 202
28h-2Bh	32	R/W	CRC Signature and TFT/TV Configuration Register	00000100h	Page 203
2Ch-FFh			Reserved	xxh	Page 203

Register Summary

Table 5-11. USB PCI Configuration Registers Summary

USB Index	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-25)
00h-01h	16	RO	Vendor Identification	0E11h	Page 205
02h-03h	16	RO	Device Identification	A0F8h	Page 205
04h-05h	16	R/W	Command Register	0000h	Page 205
06h-07h	16	R/W	Status Register	0280h	Page 205
08h	8	RO	Device Revision ID	06h	Page 206
09h-0Bh	24	RO	Class Code	0C0310h	Page 206
0Ch	8	R/W	Cache Line Size	00h	Page 206
0Dh	8	R/W	Latency Timer	00h	Page 206
0Eh	8	RO	Header Type	00h	Page 206
0Fh	8	RO	BIST Register	00h	Page 206
10h-13h	32	R/W	Base Address Register (USB BAR): Sets the base address of the memory mapped USB controller registers. Refer to Table 5-26 for the USB controller register bit formats and reset values.	00000000h	Page 206
14h-3Bh			Reserved	xxh	Page 206
3Ch	8	R/W	Interrupt Line Register	00h	Page 206
3Dh	8	RO	Interrupt Pin Register	01h	Page 206
3Eh	8	RO	Min. Grant Register	00h	Page 206
3Fh	8	RO	Max. Latency Register	50h	Page 206
40h-43h	32	R/W	ASIC Test Mode Enable Register	000F0000h	Page 206
44h-45h	16	R/W	ASIC Operational Mode Enable	0000h	Page 206
46h-47h			Reserved	00h	Page 207
48h-FFh			Reserved	xxh	Page 207

Table 5-12. USB BAR: USB Controller Registers Summary

USB BAR+ Memory Offset	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-26)
00h-03h	32	R/W	HcRevision	00000110h	Page 208
04h-07h	32	R/W	HcControl	00000000h	Page 208
08h-0Bh	32	R/W	HcCommandStatus	00000000h	Page 208
0Ch-0Fh	32	R/W	HcInterruptStatus	00000000h	Page 208
10h-13h	32	R/W	HcInterruptEnable	00000000h	Page 209
14h-17h	32	R/W	HcInterruptDisable	C000006Fh	Page 209
18h-1Bh	32	R/W	HcHCCA	00000000h	Page 209
1Ch-1Fh	32	R/W	HcPeriodCurrentED	00000000h	Page 209
20h-23h	32	R/W	HcControlHeadED	00000000h	Page 209
24h-27h	32	R/W	HcControlCurrentED	00000000h	Page 209
28h-2Bh	32	R/W	HcBulkHeadED	00000000h	Page 209
2Ch-2Fh	32	R/W	HcBulkCurrentED	00000000h	Page 209
30h-33h	32	R/W	HcDoneHead	00000000h	Page 210
34h-37h	32	R/W	HcFmInterval	00002EDFh	Page 210
38h-3Bh	32	RO	HcFrameRemaining	00002Exxh	Page 210
3Ch-3Fh	32	RO	HcFmNumber	00000000h	Page 210
40h-43h	32	R/W	HcPeriodicStart	00000000h	Page 210
44h-47h	32	R/W	HcLSThreshold	00000628h	Page 210
48h-4Bh	32	R/W	HcRhDescriptorA	01000002h	Page 210

Table 5-12. USB BAR: USB Controller Registers Summary (Continued)

USB BAR+ Memory Offset	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-26)
4Ch-4Fh	32	R/W	HcRhDescriptorB	00000000h	Page 211
50h-53h	32	R/W	HcRhStatus	00000000h	Page 211
54h-57h	32	R/W	HcRhPortStatus[1]	00000628h	Page 212
58h-5Bh	32	R/W	HcRhPortStatus[2]	01000002h	Page 213
5Ch-5Fh	32		Reserved	00000000h	Page 213
60h-9Fh	-		Reserved	xxh	Page 213
100h-103h	32	R/W	HceControl	00000000h	Page 214
104h-107h	32	R/W	HceInput	000000xxh	Page 214
108h-10Dh	32	R/W	HceOutput	000000xxh	Page 214
10Ch-10Fh	32	R/W	HceStatus	00000000h	Page 214

Table 5-13. ISA Legacy I/O Registers Summary

I/O Port	Туре	Name	Reference			
DMA Channel Control Registers (Table 5-27)						
000h	R/W	DMA Channel 0 Address Register	Page 215			
001h	R/W	DMA Channel 0 Transfer Count Register	Page 215			
002h	R/W	DMA Channel 1 Address Register	Page 215			
003h	R/W	DMA Channel 1 Transfer Count Register	Page 215			
004h	R/W	DMA Channel 2 Address Register	Page 215			
005h	R/W	DMA Channel 2 Transfer Count Register	Page 215			
006h	R/W	DMA Channel 3 Address Register	Page 215			
007h	R/W	DMA Channel 3 Transfer Count Register	Page 215			
008h	Read	DMA Status Register, Channels 3:0	Page 215			
	Write	DMA Command Register, Channels 3:0	Page 215			
009h	WO	Software DMA Request Register, Channels 3:0	Page 216			
00Ah	R/W	DMA Channel Mask Register, Channels 3:0	Page 216			
00Bh	WO	DMA Channel Mode Register, Channels 3:0	Page 216			
00Ch	WO	DMA Clear Byte Pointer Command, Channels 3:0	Page 216			
00Dh	WO	DMA Master Clear Command, Channels 3:0	Page 216			
00Eh	WO	DMA Clear Mask Register Command, Channels 3:0	Page 216			
00Fh	WO	DMA Write Mask Register Command, Channels 3:0	Page 216			
0C0h	R/W	DMA Channel 4 Address Register (Not used)	Page 216			
0C2h	R/W	DMA Channel 4 Transfer Count Register (Not Used)	Page 216			
0C4h	R/W	DMA Channel 5 Address Register	Page 216			
0C6h	R/W	DMA Channel 5 Transfer Count Register	Page 216			
0C8h	R/W	DMA Channel 6 Address Register	Page 216			
0CAh	R/W	DMA Channel 6 Transfer Count Register	Page 216			
0CCh	R/W	DMA Channel 7 Address Register	Page 216			
0CEh	R/W	DMA Channel 7 Transfer Count Register	Page 216			
0D0h	Read	DMA Status Register, Channels 7:4	Page 217			
	Write	DMA Command Register, Channels 7:4	Page 217			
0D2h	WO	Software DMA Request Register, Channels 7:4	Page 217			
0D4h	R/W	DMA Channel Mask Register, Channels 7:0	Page 217			
0D6h	WO	DMA Channel Mode Register, Channels 7:4	Page 217			
0D8h	WO	DMA Clear Byte Pointer Command, Channels 7:4	Page 217			

Table 5-13. ISA Legacy I/O Registers Summary (Continued)

I/O Port	Туре	Type Name	
0DAh	WO	DMA Master Clear Command, Channels 7:4	Page 217
0DCh	WO	DMA Clear Mask Register Command, Channels 7:4	Page 217
0DEh	WO	DMA Write Mask Register Command, Channels 7:4	Page 217
DMA Page Reg	jisters (Table :	5-28)	
081h	R/W	DMA Channel 2 Low Page Register	Page 218
082h	R/W	DMA Channel 3 Low Page Register	Page 218
083h	R/W	DMA Channel 1 Low Page Register	Page 218
087h	R/W	DMA Channel 0 Low Page Register	Page 218
089h	R/W	DMA Channel 6 Low Page Register	Page 218
08Ah	R/W	DMA Channel 7 Low Page Register	Page 218
08Bh	R/W	DMA Channel 5 Low Page Register	Page 218
08Fh	R/W	ISA Refresh Low Page Register	Page 218
481h	R/W	DMA Channel 2 High Page Register	Page 218
482h	R/W	DMA Channel 3 High Page Register	Page 218
483h	R/W	DMA Channel 1 High Page Register	Page 218
487h	R/W	DMA Channel 0 High Page Register	Page 218
489h	R/W	DMA Channel 6 High Page Register	Page 218
48Ah	R/W	DMA Channel 7 High Page Register	Page 218
48Bh	R/W	DMA Channel 5 High Page Register	Page 218
Programmable	Interval Time	r Registers (Table 5-29)	
040h	Write	PIT Timer 0 Counter	Page 219
	Read	PIT Timer 0 Status	Page 219
041h	Write	PIT Timer 1 Counter (Refresh)	Page 219
	Read	PIT Timer 1 Status (Refresh)	Page 219
042h	Write	PIT Timer 2 Counter (Speaker)	Page 219
	Read	PIT Timer 2 Status (Speaker)	Page 219
043h	Write	PIT Mode Control Word Register	Page 219
043h	R/W	PIT Read-Back Command	
		Read Status Command	
		Counter Latch Command	
Programmable	Interrupt Con	troller Registers (Table 5-30)	
020h / 0A0h	WO	Master / Slave PCI IWC1	Page 220
021h / 0A1h	WO	Master / Slave PIC ICW2	Page 220
021h / 0A1h	WO	Master / Slave PIC ICW3	Page 220
021h / 0A1h	WO	Master / Slave PIC ICW4	Page 220
021h / 0A1h	R/W	Master / Slave PIC OCW1	Page 220
020h / 0A0h	WO	Master / Slave PIC OCW2	Page 220
020h / 0A0h	WO	Master / Slave PIC OCW3	Page 221
020h / 0A0h	RO	Master / Slave PIC Interrupt Request and Service Registers for OCW3 Commands	Page 221
Keyboard Cont	troller Registe	rs (Table 5-31)	
060h	R/W	External Keyboard Controller Data Register	Page 222
061h	R/W	Port B Control Register	Page 222
062h	R/W	External Keyboard Controller Mailbox Register	Page 222
064h	R/W	External Keyboard Controller Command Register	Page 222
066h	R/W	External Keyboard Controller Mailbox Register	Page 222
092h	R/W	Port A Control Register	Page 222

Table 5-13. ISA Legacy I/O Registers Summary (Continued)

I/O Port	Туре	Name	Reference
Real Time Cloc	k Registers (Table 5-32)	
070h	WO	RTC Address Register	Page 222
071h	R/W	RTC Data Register	Page 222
Miscellaneous	Registers (Ta	ble 5-33)	
170h-177h/ 376h	R/W	Secondary IDE Registers	Page 223
1F0h-1F7h/ 3F6h	R/W	Primary IDE Registers	Page 223
4D0h	R/W	Interrupt Edge/Level Select Register 1	Page 223
4D1h	R/W	Interrupt Edge/Level Select Register 2	Page 223
121Ch-121Fh	RO	ACPI Timer Count Register Note: The ACPI Timer Count Register is accessible through I/O Port 121Ch. Otherwise use F1BAR+Offset 1Ch.	Page 223

Table 5-14. V-ACPI I/O Register Space Summary

ACPI_ BASE	Туре	Align	Length	Name	Reset Value	Reference (Table 5-34)
00h-03h	R/W	4	4	P_CNT: Processor Control Register	00000000h	Page 224
04h	RO	1	1	P_LVL2: Enter C2 Power State Register	00h	Page 224
05h		1	1	Reserved	00h	Page 224
06h	R/W	1	1	SMI_CMD: OS/BIOS Requests Register (ACPI Enable/ Disable Port)	00h	Page 224
07h		1	1	Reserved	00h	Page 225
08h-09h	R/W	2	2	PM1A_STS: PM1A Status Register	0000h	Page 225
0Ah-0Bh	R/W	2	2	PM1A_EN: PM1A Enable Register	0000h	Page 225
0Ch-0Dh	R/W	4	2	PM1A_CNT: PM1A Control Register	0000h	Page 225
0Eh-0Fh	R/W	2	2	SETUP_IDX: Setup Index Register (V-ACPI internal index register)	0000h	Page 226
10h-11h	R/W	2	2	GPE0_STS: General Purpose Event 0 Status Register	0000h	Page 226
12h-13h	R/W	2	2	GPE0_EN: General Purpose Event 0 Enable Register	0000h	Page 226
14h-17h	R/W	4	4	SETUP_DATA: Setup Data Register (V-ACPI internal data register)	00000000h	Page 227
18h-1Fh			8	Reserved: For Future V-ACPI Implementations		Page 227

Revision 1.1

Register Descriptions

5.3 Chipset Register Space

The Chipset Register Space of the CS5530A is comprised of five separate functions (Function 0 through 4, F0-F4), each with its own register space and PCI header registers. F1-F4 have memory or I/O mapped registers from a Base Address Register (BAR). The PCI header registers in all functions are very similar.

F0: Bridge Configuration Register Space

F1: SMI Status and ACPI Timer Register Space

F2: IDE Controller Register Space

F3: XpressAUDIO™ Subsystem Register Space

F4: Video Controller Register Space

5.3.1 **Bridge Configuration Registers - Func-**

The register space designated as Function 0 (F0) contains registers used to configure features (e.g., power management) and functionality unique to the CS5530A. All registers in Function 0 are directly accessed (i.e., there are no memory or I/O mapped registers in F0). Table 5-15 gives the bit formats for these registers.

The registers at F0 Index 50h-FFh can also be accessed at F1BAR+Memory Offset 50h-FFh. The preferred method is to program these registers through the F0 register space.

If the F0 PCI Configuration Trap bit (F0 Index 41h[0]) is enabled and an access is attempted to any of the F0 PCI header and bridge configuration registers except F0 Index 40h-43h, an SMI is generated instead.

Table 5-15. F0 Index xxh: PCI Header and Bridge Configuration Registers

Bit	Description			
Index 00h	r-01h Vendor Identification Register (RO)	Reset Value = 1078h		
15:0	Vendor Identification Register (Read Only)			
Index 02h	n-03h Device Identification Register (RO)	Reset Value = 0100h		
15:0	Device Identification Register (Read Only)			
Index 04h	n-05h PCI Command Register (R/W)	Reset Value = 000Fh		
15:10	Reserved: Set to 0.			
9	Fast Back-to-Back Enable (Read Only): This function is not supported when the CS disabled (always reads 0).	5530A is a master. It is always		
8	SERR#: Allow SERR# assertion on detection of special errors. 0 = Disable (Default);	1 = Enable.		
7	Wait Cycle Control (Read Only): This function is not supported in the CS5530A. It is (always reads 0).	always disabled		
6	Parity Error: Allow the CS5530A to check for parity errors on PCI cycles for which it is a target, and to assert PERR# when a parity error is detected. 0 = Disable (Default); 1 = Enable.			
5	VGA Palette Snoop Enable (Read Only): This function is not supported in the CS5530A. It is always disabled (always reads 0).			
4	Memory Write and Invalidate: Allow the CS5530A to do memory write and invalidate cycles, if the PCI Cache Line Size Register (F0 Index 0Ch) is set to 16 bytes (04h). 0 = Disable (Default); 1 = Enable.			
3	Special Cycles: Allow the CS5530A to respond to special cycles. 0 = Disable; 1 = En	able (Default).		
	This bit must be enabled to allow the CPU Warm Reset internal signal to be triggered	from a CPU Shutdown cycle.		
2	Bus Master: Allow the CS5530A bus mastering capabilities. 0 = Disable; 1 = Enable ((Default).		
1	This bit must be set to 1. Mamory Space Allow the CS5520A to represent to memory sugles from the PCI but to	O Dischler 1 Enghle (Default)		
0	Memory Space: Allow the CS5530A to respond to memory cycles from the PCI bus. (I/O Space: Allow the CS5530A to respond to I/O cycles from the PCI bus. 0 = Disable			
Index 06h		Reset Value = 0280h		
15		110001 Value - 02001		
15	Detected Parity Error: This bit is set whenever a parity error is detected. Write 1 to clear.			
14	Signaled System Error: This bit is set whenever the CS5530A asserts SERR# active Write 1 to clear.	Э.		
13	Received Master Abort: This bit is set whenever a master abort cycle occurs while the abort occurs when a PCI cycle is not claimed, except for special cycles. Write 1 to clear.	he CS5530A is the master. A master		

	able 5 16. 10 mack Axii. 1 of fictaci and Bridge Comigaration Registers	(55111111454)				
Bit	Description					
12	Received Target Abort: This bit is set whenever a target abort is received while the CS5530A is cycle. Write 1 to clear	the master for the PCI				
11	Write 1 to clear. Signaled Target Abort: This bit is set whenever the CS5530A signals a target abort. This occur	s when an address parity				
	error occurs for an address that hits in the active address decode space of the CS5530A. Write 1 to clear.					
10:9	DEVSEL# Timing (Read Only): These bits are always 01, as the CS5530A always responds to cycles for which it is an active target with medium DEVSEL# timing. 00 = Fast; 01 = Medium; 10 = Slow; 11 = Reserved					
8	Data Parity Detected: This bit is set when:					
	 1) The CS5530A asserted PERR# or observed PERR# asserted. 2) The CS5530A is the master for the cycle in which a parity error occurred and the Parity Error bit is set (F0 Index 04h[6] = 1). 					
	Write 1 to clear.					
7	Fast Back-to-Back Capable (Read Only): As a target, the CS5530A is capable of accepting fast transactions. 0 = Disable; 1 = Enable.	t back-to-back				
	This bit is always set to 1.					
6:0	Reserved: Set to 0.					
Index 08h	Device Revision ID Register (RO)	Reset Value = xxh				
7:0	Device Revision ID (Read Only): Device revision level. 20h for revision A; 30h for revision B.					
Index 09h-	0Bh PCI Class Code Register (RO)	Reset Value = 060100h				
Index 0Ch	PCI Cache Line Size Register (R/W)	Reset Value = 00h				
7:0	PCI Cache Line Size Register: This register sets the size of the PCI cache line, in increments of write and invalidate cycles, the PCI cache line size must be set to 16 bytes (04h), and the Memormust be set (F0 Index 04h[4] = 1).					
Index 0Dh	PCI Latency Timer Register (R/W)	Reset Value = 00h				
7:4	Reserved: Set to 0.					
3:0	PCI Latency Timer Value: The PCI Latency Timer Register prevents system lockup when a slave cycle that the CS5530A masters. If the value is set to 00h (default), the timer is disabled. If the timer value, bits [3:0] become the four most significant bytes in a timer that counts PCI clocks for slave reset on each valid data transfer. If the timer expires before the next assertion of TRDY# is received transaction with a master abort and asserts SERR#, if enabled to do so (F0 Index 04h[8] = 1).	er is written with any other response. The timer is				
Index 0Eh	PCI Header Type Register (RO)	Reset Value = 80h				
7:0	PCI Header Type Register (Read Only): This register defines the format of this header. This he Additionally, bit 7 defines whether this PCI device is a multifunction device (bit 7 = 1) or not (bit 7					
Index 0Fh	PCI BIST Register (RO)	Reset Value = 00h				
7	BIST Capable (Read Only): Is device capable of running a built-in self-test (BIST)? 0 = No; 1 =	Yes,				
6	Start BIST: Setting this bit to a one starts up a BIST on the device. The device resets this bit who	en the BIST has been com-				
	pleted. (Not supported.)					
5:4	Reserved (Read Only)					
5:4 3:0		ed in these bits. A comple-				
	Reserved (Read Only) BIST Completion Code (Read Only): Upon completion of the BIST, the completion code is stortion code of zero indicates the BIST has successfully been completed. All other values indicate stortions.	ed in these bits. A comple-				
3:0	Reserved (Read Only) BIST Completion Code (Read Only): Upon completion of the BIST, the completion code is stortion code of zero indicates the BIST has successfully been completed. All other values indicate step. 1Fh Reserved	ed in these bits. A comple- ome type of BIST failure.				
3:0	Reserved (Read Only) BIST Completion Code (Read Only): Upon completion of the BIST, the completion code is stortion code of zero indicates the BIST has successfully been completed. All other values indicate step. 1Fh Reserved	ed in these bits. A comple- come type of BIST failure. Reset Value = xxh				
3:0 Index 10h- Index 20h-	Reserved (Read Only) BIST Completion Code (Read Only): Upon completion of the BIST, the completion code is stortion code of zero indicates the BIST has successfully been completed. All other values indicate step 1Fh Reserved 3Fh Reserved	ed in these bits. A comple- come type of BIST failure. Reset Value = xxh 00h Reset Value = 89h				
3:0 Index 10h- Index 20h- Index 40h	Reserved (Read Only) BIST Completion Code (Read Only): Upon completion of the BIST, the completion code is stortion code of zero indicates the BIST has successfully been completed. All other values indicate stem 1Fh Reserved 3Fh Reserved PCI Function Control Register 1 (R/W) PCI Interrupt Acknowledge Cycle Response: Allow the CS5530A responds to PCI interrupt acknowledge.	ed in these bits. A comple- come type of BIST failure. Reset Value = xxh 00h Reset Value = 89h cknowledge cycles.				
3:0 Index 10h- Index 20h- Index 40h 7	Reserved (Read Only) BIST Completion Code (Read Only): Upon completion of the BIST, the completion code is stortion code of zero indicates the BIST has successfully been completed. All other values indicate is 1Fh Reserved 3Fh Reserved PCI Function Control Register 1 (R/W) PCI Interrupt Acknowledge Cycle Response: Allow the CS5530A responds to PCI interrupt according to 2 Disable; 1 = Enable. Single Write Mode: The CS5530A accepts only single cycle write transfers as a slave on the PCI	ed in these bits. A comple- ome type of BIST failure. Reset Value = xxh 00h Reset Value = 89h cknowledge cycles. bus and performs a target				
3:0 Index 10h- Index 20h- Index 40h 7	Reserved (Read Only) BIST Completion Code (Read Only): Upon completion of the BIST, the completion code is stortion code of zero indicates the BIST has successfully been completed. All other values indicate stortion code of zero indicates the BIST has successfully been completed. All other values indicate stortion code of zero indicates the BIST has successfully been completed. All other values indicate stortion code of zero indicates the BIST has successfully been completed. All other values indicate stortion code of zero indicates the BIST, the completion code is stortion code of zero indicates the BIST, the completion code is stortion code of zero indicates the BIST, the completion code is stortion code of zero indicates the BIST, the completion code is stortion code of zero indicates the BIST, the completion code is stortion code of zero indicates the BIST, the completion code is stortion code of zero indicates the BIST, the completion code is stortion code of zero indicates the BIST, the completion code is stortion code of zero indicates the BIST, the completion code is stortion code of zero indicates the BIST, the completion code is stortion code of zero indicates the BIST, the completion code is stortion code of zero indicates the BIST, the completion code is stortion code of zero indicates the BIST, the completion code is stortion code of zero indicates the BIST, the completion code is stortion code of zero indicates the BIST, the completion code is stortion code of zero indicates the BIST, the completion code is stortion code of zero indicates the BIST, the completion code is stortion code of zero indicates the BIST, the completion code is stortion code of zero indicates the BIST, the completion code is stortion code of zero indicates the BIST, the code of zero indicates the BIST that successful the BIST, the code of zero indicates the BIST that successful the BIST, the code of zero indicates the BIST that successful the BIST that successful the BIST that successful the BIST that successful the BIST t	ed in these bits. A comple- ome type of BIST failure. Reset Value = xxh 00h Reset Value = 89h cknowledge cycles. bus and performs a target bus and performs a target				

Bit	Description
3	Write Buffer: PCI slave write buffer. 0 = Disable; 1 = Enable.
2:1	Reserved: Set to 0.
0	BS8/16: This bit can not be written. Always = 1.
	6 and 5 emulate the behavior of first generation SIO devices developed for PCI. They should normally remain cleared.
Index 41h	PCI Function Control Register 2 (R/W) Reset Value = 10h
7	Burst to Beat: If this bit is set to 1, the CS5530A performs a single access from the PCI bus. If set to 0, burst accesses are enabled.
6	F2 IDE Configuration Trap: 0 = Disable; 1 = Enable.
	If this bit is enabled and an access is attempted to one of the F2 PCI header registers, an SMI is generated instead.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5].
5	PERR# Signals SERR#: Assert SERR# any time that PERR# is asserted or detected active by the CS5530A (allows PERR# assertion to be cascaded to NMI (SMI) generation in the system). 0 = Disable; 1 = Enable.
4	Write Buffer Enable: Allow 16-byte buffering for X-Bus to PCI bus writes. 0 = Disable; 1 = Enable.
3	F1 Power Management Configuration Trap: 0 = Disable; 1 = Enable.
	If this bit is enabled and an access occurs to one of the F1 PCI configuration header registers, an SMI is generated.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5].
2:1	Subtractive Decode: These bits determine the point at which the CS5530A accepts cycles that are not claimed by anothe device. The CS5530A defaults to taking subtractive decode cycles in the default cycle clock, but can be moved up to the Slow Decode cycle point if all other PCI devices decode in the fast or medium clocks. Disabling subtractive decode must be done with care, as all ISA and ROM cycles are decoded subtractively.
	00 = Default sample (4th clock from FRAME# active) 01 = Slow sample (3rd clock from FRAME# active)
	1x = No subtractive decode
0	F0 PCI Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead.
U	If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is
	If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9].
	If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5].
Index 42h	If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable;
7	If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory
7 6	If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable.
7 6 5	If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Also see F0 Index 43h[1].
7 6 5 4 3	If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Also see F0 Index 43h[1]. DMA Priority: Allow USB DMA to have priority over other DMA requests. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus arbitration. 0 = Disable; 1 = Enable.
7 6 5	If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Also see F0 Index 43h[1]. DMA Priority: Allow USB DMA to have priority over other DMA requests. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus
7 6 5 4 3	If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Also see F0 Index 43h[1]. DMA Priority: Allow USB DMA to have priority over other DMA requests. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus arbitration. 0 = Disable; 1 = Enable. HOLD_REQ# (Pin H26): HOLD_REQ# signal (pin H26). 0 = Disable; 1 = Enable. Note: Although the HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset value (i.e.,
7 6 5 4 3	If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Also see F0 Index 43h[1]. DMA Priority: Allow USB DMA to have priority over other DMA requests. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus arbitration. 0 = Disable; 1 = Enable. HOLD_REQ# (Pin H26): HOLD_REQ# signal (pin H26). 0 = Disable; 1 = Enable. Note: Although the HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset value (i.e., enabled, set to 1) for non-preemptive arbitration to operate correctly.
7 6 5 4 3	If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Also see F0 Index 43h[1]. DMA Priority: Allow USB DMA to have priority over other DMA requests. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus arbitration. 0 = Disable; 1 = Enable. HOLD_REQ# (Pin H26): HOLD_REQ# signal (pin H26). 0 = Disable; 1 = Enable. Note: Although the HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset value (i.e., enabled, set to 1) for non-preemptive arbitration to operate correctly. F4 Video Configuration Trap: 0 = Disable; 1 = Enable.
1ndex 42h 7 6 5 4 3	If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Also see F0 Index 43h[1]. DMA Priority: Allow USB DMA to have priority over other DMA requests. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus arbitration. 0 = Disable; 1 = Enable. HOLD_REQ# (Pin H26): HOLD_REQ# signal (pin H26). 0 = Disable; 1 = Enable. Note: Although the HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset value (i.e., enabled, set to 1) for non-preemptive arbitration to operate correctly. F4 Video Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to one of the F4 PCI header registers, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9].
1 1 Index 42h 7 6 5 4 3 2	If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Also see F0 Index 43h[1]. DMA Priority: Allow USB DMA to have priority over other DMA requests. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus arbitration. 0 = Disable; 1 = Enable. HOLD_REQ# (Pin H26): HOLD_REQ# signal (pin H26). 0 = Disable; 1 = Enable. Note: Although the HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset value (i.e., enabled, set to 1) for non-preemptive arbitration to operate correctly. F4 Video Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to one of the F4 PCI header registers, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 00h/06h[5].
1 1 Index 42h 7 6 5 4 3 2	If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Also see F0 Index 43h[1]. DMA Priority: Allow USB DMA to have priority over other DMA requests. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus arbitration. 0 = Disable; 1 = Enable. HOLD_REQ# (Pin H26): HOLD_REQ# signal (pin H26). 0 = Disable; 1 = Enable. Note: Although the HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset value (i.e., enabled, set to 1) for non-preemptive arbitration to operate correctly. F4 Video Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to one of the F4 PCI header registers, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5].
1 1 Index 42h 7 6 5 4 3 2	If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Also see F0 Index 43h[1]. DMA Priority: Allow USB DMA to have priority over other DMA requests. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus arbitration. 0 = Disable; 1 = Enable. HOLD_REQ# (Pin H26): HOLD_REQ# signal (pin H26). 0 = Disable; 1 = Enable. Note: Although the HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset value (i.e., enabled, set to 1) for non-preemptive arbitration to operate correctly. F4 Video Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to one of the F4 PCI header registers, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. F3 Audio Configuration Trap: 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9].

Bit	Description					
6	Enable SA20: Pin AD22 configuration. 0 = GPIO4; 1 = SA20. If bit 6 or bit 2 is set to 1, then pin AD2	2 = SA20.				
5	Legacy Cycles Assert HOLD_REQ#: Allow legacy cycles to cause HOLD_REQ# to be asserted. 0	= Disable; 1 = Enable				
	Note: The HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset value (i.e., disable).					
4	Read Cycles Assert HOLD_REQ#: Allow read cycles to cause HOLD_REQ# to be asserted. 0 = Dis	sable; 1 = Enable.				
	Note: The HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset value	e (i.e., disable).				
3	Any Cycle Asserts HOLD_REQ#: Allow any cycle to cause HOLD_REQ# to be asserted. 0 = Disab	le; 1 = Enable.				
	Note: The HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset value	e (i.e., disable).				
2	Enable SA[23:20]: Pins AF23, AE23, AC21, and AD22 configuration. 0 = GPIO[7:4]; 1 = SA[23:20]. If F0 Index 43h bit 6 or bit 2 is set to 1, then pin AD22 = SA20.					
1	PCI Retry Cycles: When the CS5530A is a PCI target and the PCI buffer is not empty, allow the PCI 0 = Disable; 1 = Enable.	bus to retry cycles.				
	This bit works in conjunction with PCI bus delayed transactions bit. F0 Index 42h[5] must = 1 for this l	oit to be valid.				
0	USB Core: 0 = Disable; 1 = Enable.					
Index 44h	Reset Control Register (R/W)	Reset Value = 01h				
7	ISA Mode: This bit is set to read back the strap value of the INTR pin (pin P26) during POR. 0 = ISA Limited; 1 = ISA Master.					
	This bit can be written after POR# deasserts to change the ISA mode selected. However, writing to the mended due to the actual strapping done on the board.	nis bit is not recom-				
6	IDSEL Mode: This bit is set to read back the strap value of the HOLD_REQ# pin (pin H26) during PC 0 = AD28 is IDSEL for Chipset Register Space and AD29 is IDSEL for USB Register Space; 1 = AD26 is IDSEL for Chipset Register Space and AD27 is IDSEL for USB Register Space.	DR.				
	This bit can be written after POR# deasserts to change the IDSEL settings. However, writing to this b due to the actual strapping done on the board.	it is not recommended				
5:4	Clock 32K Control: Controls the source of the CLK_32K pin (AE3). 00 = CLK_32K is internally derived from CLK_14MHZ (pin P24) and is not output on pin AE3 (Defaul 01 = CLK_32K is internally derived from CLK_14MHZ (pin P24) and is output on pin AE3 10 = CLK_32K is an input 11 = Invalid	lt)				
3	IDE Controller Reset: Reset both of the CS5530A IDE controllers' internal state machines. 0 = Run;	1 = Reset.				
	This bit is level-sensitive and must be explicitly cleared to 0 to remove the reset.					
2	IDE Reset: Reset IDE bus. 0 = Deassert IDE bus reset signal; 1 = Assert IDE bus reset signal.					
	This bit is level-sensitive and must be explicitly cleared to 0 to remove the reset.					
1	PCI Reset: Reset PCI bus. 0 = Disable; 1 = Enable.					
	When set, the CS5530A PCI_RST# output signal (pin C14) is asserted and all devices on the PCI but asserted and all devices are all the PCI but asserted and all devices on the PCI but asserted and all devices are all the PCI but asserted and all devices are all the PCI but asserted and all devices are all the PCI but asserted and all devices are all the PCI but asserted and all devices are all the PCI but asserted and all devices are all the PCI but asserted and all devices are all the PCI but asserted and all devices are all the PCI but asserted and all devices are all the PCI but asserted and all devices are all the PCI but asserted and all devices are all the PCI but asserted and all devices are all the PCI but asserted and all devices are all the PCI but asserted and all devices are all the PCI but asserted and all devices are all the PCI but asserted and all devices are all the PCI but asserted and all	-				
	are reset. No other function within the CS5530A is affected by this bit. It does not reset PCI registers.					
0	Write 0 to clear. This bit is level-sensitive and must be cleared after the reset is enabled. Y-Rus Warm Start: Reading and writing this bit has two different meanings/functions.					
U	X-Bus Warm Start: Reading and writing this bit has two different meanings/functions. Reading this bit: Has a warm start occurred since power-up? 0 = Yes; 1 = No					
	Writing this bit: 0 = NOP; 1 = Execute system wide reset (used only for clock configuration at power-up.	(מו				
	Note: X-Bus warm start will toggle the CPU_RST and PCI_RST# lines.	·r/·				
Index 45h-		Reset Value = 00h				
Index 50h	PIT Control/ISA CLK Divider (R/W)	Reset Value = 7Bh				
7	PIT Software Reset: 0 = Disable; 1 = Enable.					

Index 45h-	Fh Reserved	Reset Value = 00h		
Index 50h	PIT Control/ISA CLK Divider (R/W) Reset Value			
7	PIT Software Reset: 0 = Disable; 1 = Enable.			
6	PIT Counter 1: 0 = Forces Counter 1 output (OUT1) to zero; 1 = Allows Counter 1 output (OUT1) to pass to I/O Port 061h[4].			
5	PIT Counter 1 Enable: 0 = Sets GATE1 input low; 1 = Sets GATE1 input high.			
4	PIT Counter 0: 0 = Forces Counter 0 output (OUT0) to zero; 1 = Allows Counter 0 output (OUT0) to pass to IRQ0.			
3	PIT Counter 0 Enable: 0 = Sets GATE0 input low: 1 = Sets GATE0 input high.			

Table 5-15. F0 Index xxh: PCI Header and Bridge Configuration Registers (Continued)

Bit	Description						
2:0	ISA Clock Divisor: Dete approximately 8 MHz.	rmines the divisor of the PCI cl	ock used to make the ISA clock	c, which is typically programmed for			
	000 = Reserved 100 = Divide by five						
	001 = Divide by two	101 = Divide by					
	010 = Divide by three	110 = Divide by					
	011 = Divide by four	111 = Divide by		setting of 011 (divide by 4)			
Index 51h	If 25 MHz PCI clock, use setting of 010 (divide by 3). If 30 or 33 MHz PCI clock, use a setting of 011 (divide by 4). ISA I/O Recovery Control Register (R/W) Reset Value = 40h						
7:4	8-Bit I/O Pacayary: The						
7.4	8-Bit I/O Recovery: These bits determine the number of ISA bus clocks between back-to-back 8-bit I/O read cycles. Th count is in addition to a preset one-clock delay built into the controller.						
	0000 = 1 ISA clock	0100 = 5 ISA clocks	1000 = 9 ISA clocks	1100 = 13 ISA clocks			
	0001 = 2 ISA clocks	0101 = 6 ISA clocks	1001 = 10 ISA clocks	1101 = 14 ISA clocks			
	0010 = 3 ISA clocks 0011 = 4 ISA clocks	0110 = 7 ISA clocks 0111 = 8 ISA clocks	1010 = 11 ISA clocks 1011 = 12 ISA clocks	1110 = 15 ISA clocks 1111 = 16 ISA clocks			
3:0				k-to-back 16-bit I/O cycles. This			
		reset one-clock delay built into		,			
	0000 = 1 ISA clock	0100 = 5 ISA clocks	1000 = 9 ISA clocks	1100 = 13 ISA clocks			
	0001 = 2 ISA clocks 0010 = 3 ISA clocks	0101 = 6 ISA clocks 0110 = 7 ISA clocks	1001 = 10 ISA clocks 1010 = 11 ISA clocks	1101 = 14 ISA clocks 1110 = 15 ISA clocks			
	0011 = 4 ISA clocks	0111 = 8 ISA clocks	1011 = 12 ISA clocks	1111 = 16 ISA clocks			
Index 52h		ROM/AT Logic Conti	ol Register (R/W)	Reset Value = F8h			
7	Snoop Fast Keyboard C			d with keyboard commands for A20			
	Mask and Reset. 0 = Disable; 1 = Enable (snooping).						
	If disabled, the keyboard	controller handles the commar	nds.				
6	Game Port GPORT_CS 201h). 0 = Disable; 1 = E	-	S# to be asserted for writes to the	he game port (I/O Port 200h and			
5	Game Port GPORT_CS 201h). 0 = Disable; 1 = E		S# to be asserted for reads to the	ne game port (I/O Port 200h and			
4		tion on Warm Reset: Force Af state of A20). 0 = Disable; 1 = E		et (guarantees that A20M# is deas-			
3	Enable I/O Port 092h De	ecode (Port A): I/O Port 092h	decode and the logical functions	s. 0 = Disable; 1 = Enable.			
2		ange: KBROMCS# is asserted FFh (256 KB, Default); 1 = FF	for ISA memory read accesses 000000h-FFFFFFFFh (16 MB)	s.			
	Note: PCI Positive deco	ding for the ROM space is enal	oled at F0 Index 5Bh[5]).				
1		ert KBROMCS# during writes t ing. 0 = Disable; 1 = Enable.	o configured ROM space (confi	gured in bits 2 and 0),			
0			for ISA memory read accesses	3.			
		Fh (64 KB, Default); 1 = 000E ding for the ROM space is enal	` ,				
Index 52h	Note. PCI Positive deco			Deact Value 00h			
Index 53h	Decemed Catter C	Alternate CPU Suppo	ort Register (R/W)	Reset Value = 00h			
7 6	Reserved: Set to 0.	RIGA: Block ISA cycle on some	a port (I/O Port 200h and 201h)	write. 0 = Disable; 1 = Enable.			
5		e: 0 = Disable; 1 = Enable.	5 POIT (I/O FOIT 20011 AIIU 20 III)	WITE. U = DISADIE, I = ETIADIE.			
5	This bit must be set to 0.	C. V - DISADIC, I - LIIADIC.					
4	Game Port Read Block	ISA: Block ISA cycle on game	port (I/O Port 200h and 201h) r	read. 0 = Disable; 1 = Enable.			
3				d 201h). 0 = Disable; 1 = Enable.			
	Top level SMI status is re	ported at F1BAR+Memory Offs is reported at F0 Index 84h/F4l	set 00h/02h[0].				
	For "Game Port Read SN						
2	RTC Enable/RTC Pin Co		in AF3) and SMEMR# (Pin AD4 ecode enabled.	4), RTC decode disabled;			
			is independent of the setting o	f this bit.			
1	Becominds Cot to 1 offer	register reset Failure to do this	s leaves IRQ13 in an unsupport	and made			

Bit	Description	
0	Generate SMI on A20M# toggle: 0 = Disable; 1 = Enable. This bit must be set to 1.	
	SMI status is reported in F1BAR+Memory Offset 00h/02h[7] (only).	
Index 54h-	S9h Reserved	Reset Value = xxh
Index 5Ah	Decode Control Register 1 (R/W)	Reset Value = 03h
7	Secondary Floppy Positive Decode: Selects PCI positive or subtractive decoding for accesses 372h, 373h, 375h, and 377h. 0 = Subtractive; 1 = Positive.	to I/O Port
6	Primary Floppy Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 3F2h, 3F5h, and 3F7h. 0 = Subtractive; 1 = Positive.	
5	COM4 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 2E8h-2EFh. 0 = Subtractive; 1 = Positive.	
4	COM3 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 38 0 = Subtractive; 1 = Positive.	E8h-3EFh.
3	COM2 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 2f 0 = Subtractive; 1 = Positive.	F8h-2FFh.
2	COM1 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 3f 0 = Subtractive; 1 = Positive.	F8h-3FFh.
1	Keyboard Controller Positive Decode: Selects PCI positive or subtractive decoding for accesse 060h and 064h (and 062h/066h if enabled). 0 = Subtractive; 1 = Positive.	es to I/O Port
0	Real Time Clock Positive Decode: Selects PCI positive or subtractive decoding for accesses to 070h-7Fh. 0 = Subtractive; 1 = Positive.	I/O Port
	ive decoding by the CS5530A speeds up the I/O cycle time. These I/O Ports do not exist in the CS sitive decode is enabled, the port exists on the ISA bus.	65530A. It is assumed tha
Index 5Bh	Decode Control Register 2 (R/W)	Reset Value = 20h
7	Keyboard I/O Port 062h/066h Decode: This alternate port to the keyboard controller is provided notebook keyboard controller mailbox. 0 = Disable; 1 = Enable.	in support of the 8051SL
6	Reserved: Set to 0.	
5	BIOS ROM Positive Decode: Selects PCI positive or subtractive decoding for accesses to the contractive; 1 = Positive.	onfigured ROM space.
	ROM configuration is at F0 Index 52h[2:0].	
4	Secondary IDE Controller Positive Decode: Selects PCI positive or subtractive decoding for ac 177h and 376h. 0 = Subtractive; 1 = Positive.	cesses to I/O Port 170h-
	Note: Subtractive Decode mode disables this IDE controller entirely and routes any register refe	
2		rences to the ISA bus.
3	Primary IDE Controller Positive Decode: Selects PCI positive or subtractive decoding for acces and 3F6h. 0 = Subtractive; 1 = Positive.	ses to I/O Port 1F0h-1F7h
	and 3F6h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register refe	ses to I/O Port 1F0h-1F7h
2	and 3F6h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register refe LPT3 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 276 0 = Subtractive; 1 = Positive.	ses to I/O Port 1F0h-1F7h
2	and 3F6h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register refe LPT3 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 27t 0 = Subtractive; 1 = Positive. This bit does not affect 7BCh-7BEh, which is always decoded subtractively.	ses to I/O Port 1F0h-1F7h rences to the ISA bus. Bh-27Fh.
	and 3F6h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register refe LPT3 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 276 0 = Subtractive; 1 = Positive. This bit does not affect 7BCh-7BEh, which is always decoded subtractively. LPT2 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 376 0 = Subtractive; 1 = Positive.	ses to I/O Port 1F0h-1F7h rences to the ISA bus. Bh-27Fh.
2	and 3F6h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register refe LPT3 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 276 0 = Subtractive; 1 = Positive. This bit does not affect 7BCh-7BEh, which is always decoded subtractively. LPT2 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 376	ses to I/O Port 1F0h-1F7h rences to the ISA bus. 8h-27Fh.
2	and 3F6h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register refe LPT3 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 276 0 = Subtractive; 1 = Positive. This bit does not affect 7BCh-7BEh, which is always decoded subtractively. LPT2 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 376 0 = Subtractive; 1 = Positive. This bit does not affect 678h-67Ah, which is always decoded subtractively. LPT1 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 3B 0 = Subtractive; 1 = Positive.	ses to I/O Port 1F0h-1F7h rences to the ISA bus. Bh-27Fh. Bh-37Fh.
1 0	and 3F6h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register refe LPT3 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 276 0 = Subtractive; 1 = Positive. This bit does not affect 7BCh-7BEh, which is always decoded subtractively. LPT2 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 376 0 = Subtractive; 1 = Positive. This bit does not affect 678h-67Ah, which is always decoded subtractively. LPT1 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 3B 0 = Subtractive; 1 = Positive. This bit does not affect 778h-77Ah, which is always decoded subtractively.	ses to I/O Port 1F0h-1F7h rences to the ISA bus. Bh-27Fh. Bh-37Fh. Ch-3BFh.
2 1 0 Note: Posi	and 3F6h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register refe LPT3 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 276 0 = Subtractive; 1 = Positive. This bit does not affect 7BCh-7BEh, which is always decoded subtractively. LPT2 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 376 0 = Subtractive; 1 = Positive. This bit does not affect 678h-67Ah, which is always decoded subtractively. LPT1 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 3B 0 = Subtractive; 1 = Positive.	ses to I/O Port 1F0h-1F7l rences to the ISA bus. Bh-27Fh. Bh-37Fh. Ch-3BFh.

Index 5Ch		PCI Interrupt Stee	ring Register 1 (R/W)	Reset Value = 00h
7:4	INTB# Target Interrup	ot: Selects target interrupt for I	NTB#.	
	0000 = Disable	0100 = IRQ4	1000 = RSVD	1100 = IRQ12
	0001 = IRQ1	0101 = IRQ5	1001 = IRQ9	1101 = RSVD
	0010 = RSVD	0110 = IRQ6	1010 = IRQ10	1110 = IRQ14
	0011 = IRQ3	0111 = IRQ7	1011 = IRQ11	1111 = IRQ15

Bit	Description					
3:0	INTA# Target Interrup	t: Selects target interrupt for I	NTA#.			
	0000 = Disable	0100 = IRQ4	1000 = RSVD	4	1100 = IRQ12	
	0001 = IRQ1	0101 = IRQ5	1001 = IRQ9		1101 = RSVD	
	0010 = RSVD	0110 = IRQ6	1010 = IRQ10		1110 = IRQ14	
	0011 = IRQ3	0111 = IRQ7	1011 = IRQ11		1111 = IRQ15	

Note: The target interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to maintain PCI interrupt compatibility.

Index 5Dh		PCI Interrupt Stee	ering Register 2 (R/W)	Reset Value = 00h
7:4	INTD# Target Interrup	t: Selects target interrupt for	INTD#.	
	0000 = Disable	0100 = IRQ4	1000 = RSVD	1100 = IRQ12
	0001 = IRQ1	0101 = IRQ5	1001 = IRQ9	1101 = RSVD
	0010 = RSVD	0110 = IRQ6	1010 = IRQ10	1110 = IRQ14
	0011 = IRQ3	0111 = IRQ7	1011 = IRQ11	1111 = IRQ15
3:0	INTC# Target Interrup	t: Selects target interrupt for	INTC#.	
	0000 = Disable	0100 = IRQ4	1000 = RSVD	1100 = IRQ12
	0001 = IRQ1	0101 = IRQ5	1001 = IRQ9	1101 = RSVD
	0010 = RSVD	0110 = IRQ6	1010 = IRQ10	1110 = IRQ14
	0011 = IRQ3	0111 = IRQ7	1011 = IRQ11	1111 = IRQ15

Note: The target interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to maintain PCI interrupt compatibility.

	Index 5Eh-6Fh	h Reserved	Reset Value = xxh
Index 70h-71h General Purpose Chip Select Base Address Register (R/W) Reset Value = 0	Index 70h-71h	General Purpose Chip Select Base Address Register (R/W)	Reset Value = 0000h

15:0 General Purpose Chip Select I/O Base Address: This 16-bit value represents the I/O base address used to enable the assertion of the GPCS# signal.

This register, together with General Purpose Chip Select Control Register (F0 Index 72h) is used to configure the operation of the GPCS# pin.

Index 72h		General Purpose Chip Select Control Register (R/W)	Reset Value = 00h
7	General Purpose Chip	Select: GPCS# (pin AF26). 0 = Disable; 1 = Enable.	
	If the GPCS# signal is	disabled (i.e., this bit = 0) its output is permanently driven high.	
6	•	Select: Writes to configured I/O address (base address configured in F uses GPCS# signal to be asserted. 0 = Disable; 1 = Enable.	70 Index 70h and range con-
5	•	Select: Reads from configured I/O address (base address configured in causes GPCS# signal to be asserted. 0 = Disable; 1 = Enable.	n F0 Index 70h and range
4:0	General Purpose Chip 00000 = 1 byte 00001 = 2 bytes 00011 = 4 bytes 00111 = 8 bytes	D Select I/O Address Range: This 5-bit field selects the range of GPCS 01111 = 16 bytes 11111 = 32 bytes All other combinations are reserved.	6# signal.

Note: This register, together with General Purpose Chip Select Base Address Register (F0 Index 70h) is used to configure the operation of the GPCS# pin.

Index 73h-	7Fh Reserved	Reset Value = xxh
Index 80h	Power Management Enable Register 1 (R/W)	Reset Value = 00h
7:6	Reserved: Set to 0.	
5	Codec SDATA_IN SMI: Allow AC97 codec to generate an SMI due to codec producing a positive 0 = Disable; 1 = Enable.	e edge on SDATA_IN.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 87h/F7h[2].	
4	Video Speedup: Any video activity, as decoded from the serial connection (PSERIAL register, bit sor disables clock throttling (via SUSP#/SUSPA# handshake) for a configurable duration when the aged using CPU Suspend modulation. 0 = Disable; 1 = Enable.	, .
	The duration of the speedup is configured in the Video Speedup Timer Count Register (F0 Index external VGA access (3Bxh, 3Cxh, 3Dxh and A000h-B7FFh) on the PCI bus is also supported. T standard, but it does allow the power management routines to support an external VGA chip.	,

Bit	Description
3	IRQ Speedup: Any unmasked IRQ (per I/O Port 021h/0A1h) or SMI disables clock throttling (via SUSP#/SUSPA# handshake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable; 1 = Enable.
	The duration of the speedup is configured in the IRQ Speedup Timer Count Register (F0 Index 8Ch).
2	Traps: Globally enable all power management device I/O traps. 0 = Disable; 1 = Enable. This excludes the audio I/O traps. They are enabled at F3BAR+Memory Offset 18h.
1	Idle Timers: Globally enable all power management device idle timers. 0 = Disable; 1 = Enable.
	Note, disable at this level does not reload the timers on the enable. The timers are disabled at their current counts.
	This bit has no effect on the Suspend Modulation OFF/ON Timers (F0 Index 94h/95h), nor on the General Purpose (UDEFx) Timers (F0 Index 88h-8Bh). This bit must be set for the command to trigger the SUSP#/SUSPA# feature to function (see F0 Index AEh).
0	Power Management: Global power management. 0 = Disable; 1 = Enabled.
	This bit must be set (1) immediately after POST for some power management resources to function. Until this is done, the command to trigger the SUSP#/SUSPA# feature is disabled (see F0 Index AEh) and all SMI# trigger events listed for F0 Index 84h-87h are disabled. A '0' in this bit does NOT stop the Idle Timers if bit 1 of this register is a '1', but only prevents them from generating an SMI# interrupt. It also has no effect on the UDEF traps.
Index 81h	Power Management Enable Register 2 (R/W) Reset Value = 00h
7	Video Access Idle Timer Enable : Load timer from Video Idle Timer Count Register (F0 Index A6h) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.
	If an access occurs in the video address range (sets bit 0 of the GX1 processor's PSERIAL register) the timer is reloaded with the programmed count.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[7].
6	User Defined Device 3 (UDEF3) Idle Timer Enable: Load timer from UDEF3 Idle Timer Count Register (F0 Index A4h) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.
	If an access occurs in the programmed address range the timer is reloaded with the programmed count. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register).
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[6].
5	User Defined Device 2 (UDEF2) Idle Timer Enable: Load timer from UDEF2 Idle Timer Count Register (F0 Index A2h) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.
	If an access occurs in the programmed address range the timer is reloaded with the programmed count. UDEF2 address programming is at F0 Index C4h (base address register) and CDh (control register).
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[5].
4	User Defined Device 1 (UDEF1) Idle Timer Enable: Load timer from UDEF1 Idle Timer Count Register (F0 Index A0h) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.
	If an access occurs in the programmed address range the timer is reloaded with the programmed count. UDEF1 address programming is at F0 Index C0h (base address register) and CCh (control register).
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[4].
3	Keyboard/Mouse Idle Timer Enable: Load timer from Keyboard/Mouse Idle Timer Count Register (F0 Index 9Eh) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.
	If an access occurs in the address ranges (listed below) the timer is reloaded with the programmed count. Keyboard Controller: I/O Ports 060h/064h COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is included) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is included)
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[3].

Bit	Description
2	Parallel/Serial Idle Timer Enable: Load timer from Parallel/Serial Port Idle Timer Count Register (F0 Index 9Ch) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.
	If an access occurs in the address ranges (listed below) the timer is reloaded with the programmed count. LPT1: I/O Port 378h-37Fh, 778h-77Ah LPT2: I/O Port 278h-27Fh, 678h-67Ah COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is excluded) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is excluded) COM3: I/O Port 3E8h-3EFh COM4: I/O Port 2E8h-2EFh
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[2].
1	Floppy Disk Idle Timer Enable: Load timer from Floppy Disk Idle Timer Count Register (F0 Index 9Ah) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.
	If an access occurs in the address ranges (listed below) the timer is reloaded with the programmed count. Primary floppy disk: I/O Port 3F2h, 3F4h, 3F5h, and 3F7 Secondary floppy disk: I/O Port 372h, 373h, 375h, and 377h
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[1].
0	Primary Hard Disk Idle Timer Enable: Load timer from Primary Hard Disk Idle Timer Count Register (F0 Index 98h) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.
	If an access occurs in the address ranges selected in F0 Index 93h[5], the timer is reloaded with the programmed count. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[0].
Index 82h	Power Management Enable Register 3 (R/W) Reset Value = 00h
7	Video Access Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the video address range (sets bit 0 of the GX1 processor's PSERIAL
	register) an SMI is generated. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[7].
6	User Defined Device 3 (UDEF3) Trap: 0 = Disable; 1 = Enable.
	If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register).
	If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF3 address
5	If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[4]. User Defined Device 2 (UDEF2) Trap: 0 = Disable; 1 = Enable.
5	If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[4]. User Defined Device 2 (UDEF2) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF2 address programming is at F0 Index C4h (base address register) and CDh (control register).
5	If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[4]. User Defined Device 2 (UDEF2) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF2 address
5	If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[4]. User Defined Device 2 (UDEF2) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF2 address programming is at F0 Index C4h (base address register) and CDh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[3]. User Defined Device 1 (UDEF1) Trap: 0 = Disable; 1 = Enable.
	If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[4]. User Defined Device 2 (UDEF2) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF2 address programming is at F0 Index C4h (base address register) and CDh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[3]. User Defined Device 1 (UDEF1) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF1 address programming is at F0 Index C0h (base address register), and CCh (control register).
	If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[4]. User Defined Device 2 (UDEF2) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF2 address programming is at F0 Index C4h (base address register) and CDh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[3]. User Defined Device 1 (UDEF1) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF1 address
	If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[4]. User Defined Device 2 (UDEF2) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF2 address programming is at F0 Index C4h (base address register) and CDh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[3]. User Defined Device 1 (UDEF1) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF1 address programming is at F0 Index C0h (base address register), and CCh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[2]. Keyboard/Mouse Trap: 0 = Disable; 1 = Enable.
4	If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[4]. User Defined Device 2 (UDEF2) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF2 address programming is at F0 Index C4h (base address register) and CDh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[3]. User Defined Device 1 (UDEF1) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF1 address programming is at F0 Index C0h (base address register), and CCh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[2]. Keyboard/Mouse Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the address ranges (listed below) an SMI is generated. Keyboard Controller: I/O Ports 060h/064h
4	If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[4]. User Defined Device 2 (UDEF2) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF2 address programming is at F0 Index C4h (base address register) and CDh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[3]. User Defined Device 1 (UDEF1) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF1 address programming is at F0 Index C0h (base address register), and CCh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[2]. Keyboard/Mouse Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the address ranges (listed below) an SMI is generated.

Bit	Description
2	Parallel/Serial Trap: 0 = Disable; 1 = Enable.
	If this bit is enabled and an access occurs in the address ranges (listed below) an SMI is generated. LPT1: I/O Port 378h-37Fh, 778h-77Ah LPT2: I/O Port 278h-27Fh, 678h-67Ah COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is excluded) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is excluded) COM3: I/O Port 3E8h-3EFh COM4: I/O Port 2E8h-2EFh Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].
	Second level SMI status is reported at F0 Index 86h/F6h[2].
1	Floppy Disk Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the address ranges (listed below) an SMI is generated. Primary floppy disk: I/O Port 3F2h, 3F4h, 3F5h, or 3F7 Secondary floppy disk: I/O Port 372h, 373h, 375h, or 377h Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[1].
0	Primary Hard Disk Trap: 0 = Disable; 1 = Enable.
	If this bit is enabled and an access occurs in the address ranges selected in F0 Index 93h[5], an SMI is generated.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[0].
Index 83h	Power Management Enable Register 4 (R/W) Reset Value = 00h
7	Secondary Hard Disk Idle Timer Enable: Load timer from Secondary Hard Disk Idle Timer Count Register (F0 Index ACh) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.
	If an access occurs in the address ranges selected in F0 Index 93h[4], the timer is reloaded with the programmed count.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[4].
6	Secondary Hard Disk Trap: 0 = Disable; 1 = Enable.
	If this bit is enabled and an access occurs in the address ranges selected in F0 Index 93h[4], an SMI is generated. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[5].
5	ACPI Timer SMI: Allow SMI generation for MSB toggles on the ACPI Timer (F1BAR+Memory Offset 1Ch or I/O Port 121Ch). 0 = Disable; 1 = Enable.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 87h/F7h[0].
4	Game Port Read SMI: Allow SMI generation on reads to game port (I/O Port 200h and 201h). 0 = Disable; 1 = Enable.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 84h/F4h[4]. For "Game Port Write SMI" see F0 Index 53h[3].
3	VGA Timer Enable: Turn on VGA Timer and generate an SMI when the timer reaches 0. 0 = Disable; 1 = Enable.
	VGA Timer programming is at F0 Index 8Eh and F0 Index 8Bh[6].
	To reload the count in the VGA timer, disable it, optionally change the count value in F0 Index 8Eh[7:0], and reenable it
	before enabling power management. SMI Status reporting is at F1BAR+Memory Offset 00h/02h[6] (only).
	Although grouped with the power management Idle Timers, the VGA Timer is not a power management function. The VGA Timer counts whether power management is enabled or disabled.
2	Video Retrace Interrupt SMI: Allow SMI generation whenever video retrace occurs. 0 = Disable; 1 = Enable.
	This information is decoded from the serial connection (PSERIAL register, bit 7) from the GX1 processor. This function is normally not used for power management but for softVGA routines.
1	SMI status reporting is at F1BAR+Memory Offset 00h/02h[5] (only). General Purpose Timer 2 (GR Timer 2) Enable: Turn on GR Timer 2 and generate an SMI when the timer expires
1	General Purpose Timer 2 (GP Timer 2) Enable: Turn on GP Timer 2 and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.
	This idle timer is reloaded from the assertion of GPIO7 (if programmed to do so). GP Timer 2 programming is at F0 Index 8Ah and 8Bh[5,3,2].
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[1].

Bit	Description	
0	General Purpose Timer 1 (GP Timer 1) Enable: Turn on GP Timer 1 and generate an SMI when the timer expires.	
Ü	0 = Disable; 1 = Enable.	
	This idle timer's load is multi-sourced and is reloaded any time an enabled event (F0 Index 89h[6:0]) occurs.	
	GP Timer 1 programming is at F0 Index 88h and 8Bh[4].	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[0]	
Index 84h		0h
7:5	Reserved	
4	Game Port SMI Status (Read Only): SMI was caused by R/W access to game port (I/O Port 200h and 201h)?	
4	0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].	
	Game Port Read SMI generation enabling is at F0 Index 83h[4].	
	Game Port Write SMI generation enabling is at F0 Index 53h[3].	
3	GPIO7 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO7 pin?	
	0 = No; 1 = Yes. This is the accord level of SMI status reporting. The ten level is reported at E1BAB Memory Offset 00b/03b[0].	
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 97h[3].	
2	GPIO5 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO5 pin?	
_	0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].	
	SMI generation enabling is at F0 Index 97h[2].	
1	GPIO4 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO4 pin?	
	0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].	
0	SMI generation enabling is at F0 Index 97h[1].	
U	GPIO3 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO3 pin? 0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].	
	SMI generation enabling is at F0 Index 97h[0].	
Note: Prop	perly-configured means that the GPIO pin must be enabled as a GPIO (if multiplexed pin), as an input, and to cause an S	MI.
	s register provides status on various power management SMI events to the SMI handler. It is called a Mirror register since	
	ntical register exists at F0 Index F4h. Reading this register does not clear the status, while reading its counterpart at F0 Inc n does clear the status.	xet
Index 85h		Ωh
7		JII
1	Video Idle Timer SMI Status (Read Only): SMI was caused by expiration of the Video Idle Timer Count Register (F0 Index A6h)? 0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].	
	SMI generation enabling is at F0 Index 81h[7].	
6	User Defined Device 3 (UDEF3) Idle Timer SMI Status (Read Only): SMI was caused by expiration of the UDEF3 Idle)
	Timer Count Register (F0 Index A4h)? 0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].	
	SMI generation enabling is at F0 Index 81h[6].	
5	User Defined Device 2 (UDEF2) Idle Timer SMI Status (Read Only): SMI was caused by expiration of the UDEF2 Idle Timer Count Register (F0 Index A2h)? 0 = No; 1 = Yes.)
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].	
	SMI generation enabling is at F0 Index 81h[5].	
4	User Defined Device 1 (UDEF1) Idle Timer SMI Status (Read Only): SMI was caused by expiration of the UDEF1 Idle	 Э
	Timer Count Register (F0 Index A0h)? 0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].	
	SMI generation enabling is at F0 Index 81h[4].	
3	Keyboard/Mouse Idle Timer SMI Status (Read Only): SMI was caused by expiration of the Keyboard/Mouse Idle Time	∍r
	Count Register (F0 Index 9Eh)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].	
	SMI generation enabling is at F0 Index 81h[3].	

Bit	Description
2	Parallel/Serial Idle Timer SMI Status (Read Only): SMI was caused by expiration of the Parallel/Serial Port Idle Timer
	Count Register (F0 Index 9Ch)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[2].
1	Floppy Disk Idle Timer SMI Status (Read Only): SMI was caused by expiration of the Floppy Disk Idle Timer Count Register (F0 Index 9Ah)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 81h[1].
0	Primary Hard Disk Idle Timer SMI Status (Read Only): SMI was caused by expiration of the Primary Hard Disk Idle Timer
	Count Register (F0 Index 98h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[0].
dura regi:	register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the tion configured in the Idle Timer Count register for that device, causing an SMI. It is called a Mirror register since an identical ster exists at F0 Index F5h. Reading this register does not clear the status, while reading its counterpart at F0 Index F5h does r the status.
Index 86h	Second Level Power Management Status Mirror Register 3 (RO) Reset Value = 00h
7	Video Access Trap SMI Status (Read Only): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[7].
6	Reserved (Read Only)
5	Secondary Hard Disk Access Trap SMI Status (Read Only): SMI was caused by a trapped I/O access to the secondary hard disk? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 83h[6].
4	Secondary Hard Disk Idle Timer SMI Status (Read Only): SMI was caused by expiration of Hard Disk Idle Timer Count Register (F0 Index ACh)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 83h[7].
3	Keyboard/Mouse Access Trap SMI Status (Read Only): SMI was caused by a trapped I/O access to the keyboard or mouse? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[3].
2	Parallel/Serial Access Trap SMI Status (Read Only): SMI was caused by a trapped I/O access to either the serial or parallel ports? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[2].
1	Floppy Disk Access Trap SMI Status (Read Only): SMI was caused by a trapped I/O access to the floppy disk? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[1].
0	Primary Hard Disk Access Trap SMI Status (Read Only): SMI was caused by a trapped I/O access to the primary hard disk? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[0].
devi	register provides status on the Device Traps to the SMI handler. A bit set here indicates that an access occurred to the ce while the trap was enabled, causing an SMI. It is called a Mirror register since an identical register exists at F0 Index F6h. ding this register does not clear the status, while reading its counterpart at F0 Index F6h does clear the status.
Index 87h	Second Level Power Management Status Mirror Register 4 (RO) Reset Value = 00h
7	GPIO2 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO2 pin? 0 = No. 1 = Yes.
7	GPIO2 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO2 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].

Bit	Description		
6	GPIO1 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO	1 pin? 0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory C	Offset 00h/02h[0].	
	SMI generation enabling is at F0 Index 92h[1].		
5	GPIO0 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO	0 pin? 0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory C	Offset 00h/02h[0].	
	SMI generation enabling is at F0 Index 92h[0].		
4	Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pin is configured as the lid switch indicator, this bit reflects the state of the pin.		
3	Lid Switch SMI Status (Read Only): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes.	
	For this to happen, the GPIO6 pin must be configured both as an input (F0 Index $90h[6] = 0$) are (F0 Index $92h[6] = 1$).	nd as the lid switch	
2	Codec SDATA_IN SMI Status (Read Only): SMI was caused by AC97 codec producing a pos 0 = No; 1 = Yes.	itive edge on SDATA_IN?	
	This is the second level of status is reporting. The top level status is reported at F1BAR+Memo	ory Offset 00h/02h[0].	
	SMI generation enabling is at F0 Index 80h[5].		
1	RTC Alarm (IRQ8) SMI Status (Read Only): SMI was caused by an RTC interrupt? 0 = No; 1	= Yes.	
	This SMI event can only occur while in 3V Suspend and an RTC interrupt occurs.		
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory C	Offset 00h/02h[0].	
0	ACPI Timer SMI Status (Read Only): SMI was caused by an ACPI Timer MSB toggle? 0 = No	o; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory C	Offset 00h/02h[0].	
	SMI generation configuration is at F0 Index 83h[5].		
Note: Prop	perly-configured means that the GPIO pin must be enabled as a GPIO (if multiplexed pin), an inp	out, and to cause an SMI.	
the I	register provides status on several miscellaneous power management events that generate SM Lid Switch. It is called a Mirror register since an identical register exists at F0 Index F7h. Reading status, while reading its counterpart at F0 Index F7h does clear the status.		
Index 88h	General Purpose Timer 1 Count Register (R/W)	Reset Value = 00h	
7:0	General Purpose Timer 1 Count: This register holds the load value for GP Timer 1. This value		
	bit or 16-bit timer (selected at F0 Index 8Bh[4]). It is loaded into the timer when the timer is ena Once enabled, an enabled event (configured in F0 Index 89h[6:0]) reloads the timer.	•	
	bit or 16-bit timer (selected at F0 Index 8Bh[4]). It is loaded into the timer when the timer is ena	abled (F0 Index 83h[0] =1). ner, an SMI is generated and	
	bit or 16-bit timer (selected at F0 Index 8Bh[4]). It is loaded into the timer when the timer is ena Once enabled, an enabled event (configured in F0 Index 89h[6:0]) reloads the timer. The timer is decremented with each clock of the configured timebase. Upon expiration of the time the top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. The second level SMI	abled (F0 Index 83h[0] =1). ner, an SMI is generated and II status is reported at	
	bit or 16-bit timer (selected at F0 Index 8Bh[4]). It is loaded into the timer when the timer is enar Once enabled, an enabled event (configured in F0 Index 89h[6:0]) reloads the timer. The timer is decremented with each clock of the configured timebase. Upon expiration of the times to plevel SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. The second level SMF1BAR+Memory Offset 04h/06h[0]).	abled (F0 Index 83h[0] =1). ner, an SMI is generated and II status is reported at	
Index 89h	bit or 16-bit timer (selected at F0 Index 8Bh[4]). It is loaded into the timer when the timer is ena Once enabled, an enabled event (configured in F0 Index 89h[6:0]) reloads the timer. The timer is decremented with each clock of the configured timebase. Upon expiration of the tim the top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. The second level SM F1BAR+Memory Offset 04h/06h[0]). Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a new content of the timer must be re-initialized by either disabling and enabling it, or writing a new content of the timer must be re-initialized by either disabling and enabling it, or writing a new content of the timer is enabled to the timer	abled (F0 Index 83h[0] =1). ner, an SMI is generated and MI status is reported at	
Index 89h	bit or 16-bit timer (selected at F0 Index 8Bh[4]). It is loaded into the timer when the timer is ena Once enabled, an enabled event (configured in F0 Index 89h[6:0]) reloads the timer. The timer is decremented with each clock of the configured timebase. Upon expiration of the time to plevel SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. The second level SM F1BAR+Memory Offset 04h/06h[0]). Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a net This timer's timebase can be configured as 1 msec or 1 sec at F0 Index 89h[7].	abled (F0 Index 83h[0] =1). ner, an SMI is generated and MI status is reported at ew count value here. Reset Value = 00h	
	bit or 16-bit timer (selected at F0 Index 8Bh[4]). It is loaded into the timer when the timer is end Once enabled, an enabled event (configured in F0 Index 89h[6:0]) reloads the timer. The timer is decremented with each clock of the configured timebase. Upon expiration of the tim the top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. The second level SM F1BAR+Memory Offset 04h/06h[0]). Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a net This timer's timebase can be configured as 1 msec or 1 sec at F0 Index 89h[7]. General Purpose Timer 1 Control Register (R/W)	abled (F0 Index 83h[0] =1). There, an SMI is generated and old status is reported at the ew count value here. Reset Value = 00h = 1 sec; 1 = 1 msec.	
7	bit or 16-bit timer (selected at F0 Index 8Bh[4]). It is loaded into the timer when the timer is ena Once enabled, an enabled event (configured in F0 Index 89h[6:0]) reloads the timer. The timer is decremented with each clock of the configured timebase. Upon expiration of the time the top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. The second level SM F1BAR+Memory Offset 04h/06h[0]). Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a net This timer's timebase can be configured as 1 msec or 1 sec at F0 Index 89h[7]. General Purpose Timer 1 Control Register (R/W) Timebase for General Purpose Timer 1: Selects timebase for GP Timer 1 (F0 Index 88h). 0 =	abled (Fo Index 83h[0] =1). ner, an SMI is generated and off status is reported at ew count value here. Reset Value = 00h = 1 sec; 1 = 1 msec. ble; 1 = Enable.	
7	bit or 16-bit timer (selected at F0 Index 8Bh[4]). It is loaded into the timer when the timer is ena Once enabled, an enabled event (configured in F0 Index 89h[6:0]) reloads the timer. The timer is decremented with each clock of the configured timebase. Upon expiration of the time the top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. The second level SM F1BAR+Memory Offset 04h/06h[0]). Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a net This timer's timebase can be configured as 1 msec or 1 sec at F0 Index 89h[7]. General Purpose Timer 1 Control Register (R/W) Timebase for General Purpose Timer 1: Selects timebase for GP Timer 1 (F0 Index 88h). 0 = Re-trigger General Purpose Timer 1 on User Defined Device 3 (UDEF3) Activity: 0 = Disal Any access to the configured (memory or I/O) address range for UDEF3 reloads GP Timer 1. User Defined Device 3 (UDEF3) Reloads GP Timer 1. User Defined Device 3 (UDEF3) Reloads GP Timer 1. User Defined Device 3 (UDEF3) Reloads GP Timer 1. User Defined Device 3 (UDEF3) Reloads GP Timer 1. User Defined Device 3 (UDEF3) Reloads GP Timer 1. User Defined Device 3 (UDEF3) Reloads GP Timer 1. User Defined Device 3 (UDEF3) Reloads GP Timer 1. User Defined Device 3 (UDEF3) Reloads GP Timer 1. User Defined Device 3 (UDEF3) Reloads GP Timer 3. User Defined Device 3 (UDEF3) Reloads GP Timer 3. User Defined Device 3 (UDEF3) Reloads GP Timer 3. User Defined Device 3 (UDEF3) Reloads GP Timer 3. User Defined Device 3 (UDEF3) Reloads GP Timer 3. User Defined Device 3 (UDEF3) Reloads GP Timer 3. User Defined Device 3 (UDEF3) Reloads GP Timer 3. User Defined Device 3 (UDEF3) Reloads GP Timer 3. User Defined Device 3 (UDEF3) Reloads GP Timer 3. User Defined Device 3 (UDEF3) Reloads GP Timer 3. User Defined Device 3 (UDEF3) Reloads GP Timer 3. User Defined Device 3 (UDEF3) Reloads GP Timer 3. User Defined Device 3 (UDEF3) Reloads GP Timer 3. User Defined Device 3 (UDEF3) Reloads GP Timer 3. User Defined Device 3 (UDEF3) Reloads GP	abled (Fo Index 83h[0] =1). Therefore, an SMI is generated and office the status is reported at the sew count value here. Reset Value = 00h = 1 sec; 1 = 1 msec. ble; 1 = Enable. JDEF3 address	
7 6	bit or 16-bit timer (selected at F0 Index 8Bh[4]). It is loaded into the timer when the timer is ena Once enabled, an enabled event (configured in F0 Index 89h[6:0]) reloads the timer. The timer is decremented with each clock of the configured timebase. Upon expiration of the time the top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. The second level SM F1BAR+Memory Offset 04h/06h[0]). Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a net This timer's timebase can be configured as 1 msec or 1 sec at F0 Index 89h[7]. General Purpose Timer 1 Control Register (R/W) Timebase for General Purpose Timer 1: Selects timebase for GP Timer 1 (F0 Index 88h). 0 = Re-trigger General Purpose Timer 1 on User Defined Device 3 (UDEF3) Activity: 0 = Disal Any access to the configured (memory or I/O) address range for UDEF3 reloads GP Timer 1. Upogramming is at F0 Index C8h (base address register) and CEh (control register).	abled (F0 Index 83h[0] =1). There, an SMI is generated and old status is reported at the ew count value here. Reset Value = 00h = 1 sec; 1 = 1 msec. ble; 1 = Enable. JDEF3 address ble; 1 = Enable.	
7 6	bit or 16-bit timer (selected at F0 Index 8Bh[4]). It is loaded into the timer when the timer is ena Once enabled, an enabled event (configured in F0 Index 89h[6:0]) reloads the timer. The timer is decremented with each clock of the configured timebase. Upon expiration of the time the top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. The second level SM F1BAR+Memory Offset 04h/06h[0]). Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a net This timer's timebase can be configured as 1 msec or 1 sec at F0 Index 89h[7]. General Purpose Timer 1 Control Register (R/W) Timebase for General Purpose Timer 1: Selects timebase for GP Timer 1 (F0 Index 88h). 0 = Re-trigger General Purpose Timer 1 on User Defined Device 3 (UDEF3) Activity: 0 = Disable Any access to the configured (memory or I/O) address range for UDEF3 reloads GP Timer 1. Uprogramming is at F0 Index C8h (base address register) and CEh (control register). Re-trigger General Purpose Timer 1 on User Defined Device 2 (UDEF2) Activity: 0 = Disable Any access to the configured (memory or I/O) address range for UDEF2 reloads GP Timer 1. Upon address to the configured (memory or I/O) address range for UDEF2 reloads GP Timer 1. Upon address to the configured (memory or I/O) address range for UDEF2 reloads GP Timer 1. Upon address to the configured (memory or I/O) address range for UDEF2 reloads GP Timer 1. Upon address range for UDEF2 reloads GP Timer 1. Upon address range for UDEF2 reloads GP Timer 1. Upon address range for UDEF2 reloads GP Timer 1. Upon address range for UDEF2 reloads GP Timer 1. Upon address range for UDEF2 reloads GP Timer 1. Upon address range for UDEF2 reloads GP Timer 1. Upon address range for UDEF2 reloads GP Timer 1. Upon address range for UDEF2 reloads GP Timer 1. Upon address range for UDEF2 reloads GP Timer 1. Upon address range for UDEF3 reloads GP Timer 1. Upon address range for UDEF3 reloads GP Timer 1. Upon address range for UDEF3 reloads GP Timer 1. Upon address	abled (Fo Index 83h[0] =1). There, an SMI is generated and old status is reported at the ew count value here. Reset Value = 00h = 1 sec; 1 = 1 msec. ble; 1 = Enable. JDEF3 address ble; 1 = Enable. JDEF2 address	
7 6 5	bit or 16-bit timer (selected at F0 Index 8Bh[4]). It is loaded into the timer when the timer is enar Once enabled, an enabled event (configured in F0 Index 89h[6:0]) reloads the timer. The timer is decremented with each clock of the configured timebase. Upon expiration of the time the top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. The second level SM F1BAR+Memory Offset 04h/06h[0]). Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a new This timer's timebase can be configured as 1 msec or 1 sec at F0 Index 89h[7]. General Purpose Timer 1 Control Register (R/W) Timebase for General Purpose Timer 1: Selects timebase for GP Timer 1 (F0 Index 88h). 0 = Re-trigger General Purpose Timer 1 on User Defined Device 3 (UDEF3) Activity: 0 = Disable Any access to the configured (memory or I/O) address range for UDEF3 reloads GP Timer 1. Uprogramming is at F0 Index C8h (base address register) and CEh (control register). Re-trigger General Purpose Timer 1 on User Defined Device 2 (UDEF2) Activity: 0 = Disable Any access to the configured (memory or I/O) address range for UDEF2 reloads GP Timer 1. Uprogramming is at F0 Index C4h (base address register) and CDh (control register).	abled (Fo Index 83h[0] =1). There, an SMI is generated and old status is reported at the ew count value here. Reset Value = 00h = 1 sec; 1 = 1 msec. ble; 1 = Enable. JDEF3 address ble; 1 = Enable. JDEF2 address ble; 1 = Enable.	
5	bit or 16-bit timer (selected at F0 Index 8Bh[4]). It is loaded into the timer when the timer is ena Once enabled, an enabled event (configured in F0 Index 89h[6:0]) reloads the timer. The timer is decremented with each clock of the configured timebase. Upon expiration of the time the top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. The second level SM F1BAR+Memory Offset 04h/06h[0]). Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a near This timer's timebase can be configured as 1 msec or 1 sec at F0 Index 89h[7]. General Purpose Timer 1 Control Register (R/W) Timebase for General Purpose Timer 1: Selects timebase for GP Timer 1 (F0 Index 88h). 0 = Re-trigger General Purpose Timer 1 on User Defined Device 3 (UDEF3) Activity: 0 = Disal Any access to the configured (memory or I/O) address range for UDEF3 reloads GP Timer 1. Uprogramming is at F0 Index C8h (base address register) and CEh (control register). Re-trigger General Purpose Timer 1 on User Defined Device 2 (UDEF2) Activity: 0 = Disal Any access to the configured (memory or I/O) address range for UDEF2 reloads GP Timer 1. Uprogramming is at F0 Index C4h (base address register) and CDh (control register). Re-trigger General Purpose Timer 1 on User Defined Device 1 (UDEF1) Activity: 0 = Disal Any access to the configured (memory or I/O) address range for UDEF1 reloads GP Timer 1. Uprogramming is at F0 Index C4h (base address register) and CDh (control register).	abled (F0 Index 83h[0] =1). Therefore, an SMI is generated and office the second status is reported at the second status is reporte	
7 6 5	bit or 16-bit timer (selected at F0 Index 8Bh[4]). It is loaded into the timer when the timer is ena Once enabled, an enabled event (configured in F0 Index 89h[6:0]) reloads the timer. The timer is decremented with each clock of the configured timebase. Upon expiration of the time the top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. The second level SM F1BAR+Memory Offset 04h/06h[0]). Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a net This timer's timebase can be configured as 1 msec or 1 sec at F0 Index 89h[7]. General Purpose Timer 1 Control Register (R/W) Timebase for General Purpose Timer 1: Selects timebase for GP Timer 1 (F0 Index 88h). 0 = Re-trigger General Purpose Timer 1 on User Defined Device 3 (UDEF3) Activity: 0 = Disal Any access to the configured (memory or I/O) address range for UDEF3 reloads GP Timer 1. Uprogramming is at F0 Index C8h (base address register) and CEh (control register). Re-trigger General Purpose Timer 1 on User Defined Device 2 (UDEF2) Activity: 0 = Disal Any access to the configured (memory or I/O) address range for UDEF2 reloads GP Timer 1. Uprogramming is at F0 Index C4h (base address register) and CDh (control register). Re-trigger General Purpose Timer 1 on User Defined Device 1 (UDEF1) Activity: 0 = Disal Any access to the configured (memory or I/O) address range for UDEF1 reloads GP Timer 1. Uprogramming is at F0 Index C0h (base address register) and CCh (control register) Re-trigger General Purpose Timer 1 on Keyboard or Mouse Activity: 0 = Disable; 1 = Enable Any access to the keyboard or mouse I/O address range (listed below) reloads GP Timer 1.	abled (F0 Index 83h[0] =1). Therefore, an SMI is generated and office the second status is reported at the second status is reporte	
7 6 5	bit or 16-bit timer (selected at F0 Index 8Bh[4]). It is loaded into the timer when the timer is ena Once enabled, an enabled event (configured in F0 Index 89h[6:0]) reloads the timer. The timer is decremented with each clock of the configured timebase. Upon expiration of the time the top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. The second level SMI F1BAR+Memory Offset 04h/06h[0]). Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a new This timer's timebase can be configured as 1 msec or 1 sec at F0 Index 89h[7]. General Purpose Timer 1 Control Register (R/W) Timebase for General Purpose Timer 1: Selects timebase for GP Timer 1 (F0 Index 88h). 0 selecting General Purpose Timer 1 on User Defined Device 3 (UDEF3) Activity: 0 = Disable Any access to the configured (memory or I/O) address range for UDEF3 reloads GP Timer 1. Upogramming is at F0 Index C8h (base address register) and CEh (control register). Re-trigger General Purpose Timer 1 on User Defined Device 2 (UDEF2) Activity: 0 = Disable Any access to the configured (memory or I/O) address range for UDEF2 reloads GP Timer 1. Upogramming is at F0 Index C4h (base address register) and CDh (control register). Re-trigger General Purpose Timer 1 on User Defined Device 1 (UDEF1) Activity: 0 = Disable Any access to the configured (memory or I/O) address range for UDEF1 reloads GP Timer 1. Upogramming is at F0 Index C4h (base address register) and CCh (control register). Re-trigger General Purpose Timer 1 on User Defined Device 1 (UDEF1) Activity: 0 = Disable; 1 = Enable Centrigger General Purpose Timer 1 on Keyboard or Mouse Activity: 0 = Disable; 1 = Enable Centrigger General Purpose Timer 1 on Keyboard or Mouse Activity: 0 = Disable; 1 = Enable Centrigger General Purpose Timer 1 on Keyboard or Mouse Activity: 0 = Disable; 1 = Enable Centrigger General Purpose Timer 1 on Keyboard or Mouse Activity: 0 = Disable; 1 = Enable Centrigger General Purpose Timer 1 on Keyboard or Mouse Activity: 0 =	abled (F0 Index 83h[0] =1). Therefore, an SMI is generated and office the second status is reported at the second status is reporte	

Bit	Description	· · · · · · · · · · · · · · · · · · ·
2	Re-trigger General Purpose Timer 1 on Parallel/Serial Port Activity: 0 = Disable; 1 = Enable.	
	Any access to the parallel or serial port I/O address range (listed below) reloads the GP Timer 1. LPT1: I/O Port 378h-37Fh, 778h-77Ah LPT2: I/O Port 278h-27Fh, 678h-67Ah COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is excluded) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is excluded) COM3: I/O Port 3E8h-3EFh COM4: I/O Port 2E8h-2EFh	
1	Re-trigger General Purpose Timer 1 on Floppy Disk Activity: 0 = Disable; 1 = Enable.	
	Any access to the floppy disk drive address ranges (listed below) reloads GP Timer 1. Primary floppy disk: I/O Port 3F2h, 3F4h, 3F5h, and 3F7 Secondary floppy disk: I/O Port 372h, 373h, 375h, and 377h The active floppy drive is configured via F0 Index 93h[7].	
0	Re-trigger General Purpose Timer 1 on Primary Hard Disk Activity: 0 = Disable; 1 = Enable.	
	Any access to the primary hard disk drive address range selected in F0 Index 93h[5] reloads GP Tin	ner 1.
Index 8Ah	General Purpose Timer 2 Count Register (R/W)	Reset Value = 00h
7:0	General Purpose Timer 2 Count: This register holds the load value for GP Timer 2. This value can bit or 16-bit timer (configured in F0 Index 8Bh[5]). It is loaded into the timer when the timer is enabled Once the timer is enabled and a transition occurs on GPIO7, the timer is re-loaded.	i (F0 Index 83h[1] = 1).
	The timer is decremented with each clock of the configured timebase. Upon expiration of the timer, at the top level of status is F1BAR+Memory Offset 00h/02h[9] and the second level of status is reporte Offset 04h/06h[1]).	0
	Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a new containing and enabling it, or writing a new containing and enabling it.	unt value here.
	For GPIO7 to act as the reload for this timer, it must be enabled as such (F0 Index 8Bh[2]) and be cor Index 90h[7]).	figured as an input (F0
	This timer's timebase can be configured as 1 msec or 1 sec in F0 Index 8Bh[3].	
Index 8Bh	General Purpose Timer 2 Control Register (R/W)	Reset Value = 00h
7	Re-trigger General Purpose Timer 1 on Secondary Hard Disk Activity: 0 = Disable; 1 = Enable.	
	Any access to the secondary hard disk drive address range selected in F0 Index 93h[4] reloads GP	Timer 1.
6	VGA Timer Base: Selects timebase for VGA Timer Register (F0 Index 8Eh). 0 = 1 ms; 1 = 32 μs.	
5	General Purpose Timer 2 Shift: GP Timer 2 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-b	it.
	As an 8-bit timer, the count value is loaded into GP Timer 2 Count Register (F0 Index 8Ah). As a 16-bit timer, the value loaded into GP Timer 2 Count Register is shifted left by eight bits, the low	ver eight bits become
4	zero, and this 16-bit value is used as the count for GP Timer 2. General Purpose Timer 1 Shift: GP Timer 1 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-bit.	.i+
7	As an 8-bit timer, the count value is that loaded into GP Timer 1 Count Register (F0 Index 88h).	т.
	As a 16-bit timer, the value loaded into GP Timer 1 Count Register is shifted left by eight bit, the low zero, and this 16-bit value is used as the count for GP Timer 1.	er eight bits become
3	Timebase for General Purpose Timer 2: Selects timebase for GP Timer 2 (F0 Index 8Ah). 0 = 1 sec; 1 = 1 msec.	
2	Re-trigger General Purpose Timer 2 on GPIO7 Pin Transition: A configured transition on the GPI Timer 2 (F0 Index 8Ah). 0 = Disable; 1 = Enable.	O7 pin reloads GP
	F0 Index 92h[7] selects whether a rising- or a falling-edge transition acts as a reload. For GPIO7 to we	ork here, it must first be
	configured as an input (F0 Index 90h[7] = 0).	
1:0	Reserved: Set to 0.	
1:0		Reset Value = 00h
	Reserved: Set to 0.	ed into the timer when curs. When the event Jpon expiration, no SMI

Bit	Description	
Index 8Dh	Video Speedup Timer Count Register (R/W)	Reset Value = 00h
7:0	Video Speedup Timer Count: This register holds the load value for the Video speedup timer. when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics coraccess occurs, the Suspend Modulation logic is inhibited, permitting full-performance operatio tion, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's ti	ntroller occurs. When a video n of the CPU. Upon expira-
	This speedup mechanism allows instantaneous response to video activity for full speed during tions. A typical value here would be 50 to 100 ms.	video processing calcula-
Index 8Eh	VGA Timer Count Register (R/W)	Reset Value = 00h
7:0	VGA Timer Load Value: This register holds the load value for the VGA timer. The value is loaded into the timer when the timer is enabled (F0 Index 83h[3] = 1). The timer is decremented with each clock of the configured timebase (F0 Index 8Bh[6]). Upon expiration of the timer, an SMI is generated and the status is reported in F1BAR+Memory Offset 00h/02h[(only). Once expired, this timer must be re-initialized by disabling it (F0 Index 83h[3] = 0) and then enabling it (F0 Index 83h[3] = 1). When the count value is changed in this register, the timer must be re-initialized in order for the new value to loaded. This timer's timebase is selectable as 1 ms (default) or 32 μs. (F0 Index 8Bh). Note: Although grouped with the power management Idle Timers, the VGA Timer is not a power management function. It not affected by the Global Power Management Enable setting at F0 Index 80h[0].	
Index 8Fh	Reserved	Reset Value = xxh
Index 90h	GPIO Pin Direction Register 1 (R/W)	Reset Value = 00h
7	GPIO7 Direction: Selects if GPIO7 is an input or output. 0 = Input; 1 = Output.	
6	GPI06 Direction: Selects if GPI06 is an input or output. 0 = Input; 1 = Output.	
5	GPIO5 Direction: Selects if GPIO5 is an input or output. 0 = Input; 1 = Output.	
4	GPIO4 Direction: Selects if GPIO4 is an input or output. 0 = Input; 1 = Output.	
3	GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output.	
2	GPIO2 Direction: Selects if GPIO2 is an input or output. 0 = Input; 1 = Output.	
1	GPIO1 Direction: Selects if GPIO1 is an input or output. 0 = Input; 1 = Output.	
0	GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output.	
	ral of these pins have specific alternate functions. The direction configured here must be consist nate function.	stent with the pins' use as the
Index 91h	GPIO Pin Data Register 1 (R/W)	Reset Value = 00h
7	GPIO7 Data: Reflects the level of GPIO7. 0 = Low; 1 = High.	
6	GPI06 Data: Reflects the level of GPI06. 0 = Low; 1 = High.	
5	GPIO5 Data: Reflects the level of GPIO5. 0 = Low; 1 = High.	
4	GPIO4 Data: Reflects the level of GPIO4. 0 = Low; 1 = High.	
3	GPIO3 Data: Reflects the level of GPIO3. 0 = Low; 1 = High.	
2	GPIO2 Data: Reflects the level of GPIO2. 0 = Low; 1 = High.	
1	GPIO1 Data: Reflects the level of GPIO1. 0 = Low; 1 = High.	
0	GPIO0 Data: Reflects the level of GPIO0. 0 = Low; 1 = High.	
Note: This	GPIO0 Data: Reflects the level of GPIO0. 0 = Low; 1 = High. register contains the direct values of GPIO[7:0] pins. Write operations are valid only for bits degister read the last written value if the pin is an output. The pins are configured as inputs or o	
Note: This	register contains the direct values of GPIO[7:0] pins. Write operations are valid only for bits de	
Note: This this	register contains the direct values of GPIO[7:0] pins. Write operations are valid only for bits de- egister read the last written value if the pin is an output. The pins are configured as inputs or o	utputs in F0 Index 90h. Reset Value = 00h
Note: This this	register contains the direct values of GPIO[7:0] pins. Write operations are valid only for bits de egister read the last written value if the pin is an output. The pins are configured as inputs or o GPIO Control Register 1 (R/W) GPIO7 Edge Sense for Reload of General Purpose Timer 2: Selects which edge transition	utputs in F0 Index 90h. Reset Value = 00h of GPIO7 causes
Note: This this this	register contains the direct values of GPIO[7:0] pins. Write operations are valid only for bits deregister read the last written value if the pin is an output. The pins are configured as inputs or o GPIO Control Register 1 (R/W) GPIO7 Edge Sense for Reload of General Purpose Timer 2: Selects which edge transition GP Timer 2 to reload. 0 = Rising; 1 = Falling (Note 2).	Reset Value = 00h of GPIO7 causes
Note: This this this	register contains the direct values of GPIO[7:0] pins. Write operations are valid only for bits detegister read the last written value if the pin is an output. The pins are configured as inputs or one of the last written value if the pin is an output. The pins are configured as inputs or one of the last written value if the pin is an output. The pins are configured as inputs or of the pins are configured as inputs or of the last of th	Reset Value = 00h of GPIO7 causes
Note: This this this	register contains the direct values of GPIO[7:0] pins. Write operations are valid only for bits detegister read the last written value if the pin is an output. The pins are configured as inputs or of GPIO Control Register 1 (R/W) GPIO7 Edge Sense for Reload of General Purpose Timer 2: Selects which edge transition GP Timer 2 to reload. 0 = Rising; 1 = Falling (Note 2). GPIO6 Enabled as Lid Switch: Allow GPIO6 to act as the lid switch input. 0 = GPIO6; 1 = Lid When enabled, every transition of the GPIO6 pin causes the lid switch status to toggle and get The top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 87h/F7h[3].	Reset Value = 00h of GPIO7 causes I switch. herate an SMI.
Note: This this this	register contains the direct values of GPIO[7:0] pins. Write operations are valid only for bits detegister read the last written value if the pin is an output. The pins are configured as inputs or one of the last written value if the pin is an output. The pins are configured as inputs or one of the last written value if the pin is an output. The pins are configured as inputs or of the pins are configured as inputs or of the last of th	Reset Value = 00h of GPIO7 causes I switch. nerate an SMI.

Bit	Description
4	GPIO1 Edge Sense for SMI: Selects which edge transition of the GPIO1 pin generates an SMI. 0 = Rising; 1 = Falling.
	Bit 1 must be set to enable this bit.
3	GPIO0 Edge Sense for SMI: Selects which edge transition of the GPIO0 pin generates an SMI. 0 = Rising; 1 = Falling.
	Bit 1 must be set to enable this bit.
2	Enable GPIO2 as an External SMI Source: Allow GPIO2 to be an external SMI source and generate an SMI on either a rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3).
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].
	Second level SMI status reporting is at F0 Index 87h/F7h[7].
1	Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and generate an SMI on either a rising- or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3).
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].
	Second level SMI status reporting is at F0 Index 87h/F7h[6].
0	Enable GPIO0 as an External SMI Source: Allow GPIO0 to be an external SMI source and generate an SMI on either a rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3)
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].
	Second level SMI status reporting is at F0 Index 87h/F7h[5].

Notes: 1) For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h).

- 2) GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 8Bh[2]) or both.
- 3) If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to wake-up the system from Suspend when the clocks are stopped.

Index 93h	93h Miscellaneous Device Control Register (R/W) Reset Value :		
7	Floppy Drive Port Select: All system resources used to power manage the floppy drive use the primary or secondary FDC addresses for decode. 0 = Primary; 1 = Primary and Secondary.		
6	Reserved: This bit must always be set to 1.		
5	Partial Primary Hard Disk Decode: This bit is used to restrict the addresses which are decoded accesses.	as primary hard disk	
	0 = Power management monitors all reads and writes I/O Port 1F0h-1F7h, 3F6h 1 = Power management monitors only writes to I/O Port 1F6h and 1F7h		
4	Partial Secondary Hard Disk Decode: This bit is used to restrict the addresses which are decode Disk accesses.	ed as secondary hard	
	0 = Power management monitors all reads and writes I/O Port 170h-177h, 376h 1 = Power management monitors only writes to I/O Port 176h and 177h		
3:2	Reserved: Set to 0.		
1	Mouse on Serial Enable: Mouse is present on a serial port. 0 = No; 1 = Yes. (Note)		
0	Mouse Port Select: Selects which serial port the mouse is attached to. 0 = COM1; 1 = COM2. (N	ote)	
mor mou	1 and 0 - If a mouse is attached to a serial port (bit $1 = 1$), that port is removed from the serial devicitor serial port access for power management purposes and added to the keyboard/mouse decode se, along with the keyboard, is considered an input device and is used only to determine when to be a serial port of the serial port of the serial port access for power management purposes and added to the keyboard/mouse decode se, along with the keyboard, is considered an input device and is used only to determine when to be a serial port of the serial port of	. This is done because a lank the screen.	
	se bits determine the decode used for the Keyboard/Mouse Idle Timer Count Register (F0 Index 9E al Port Idle Timer Count Register (F0 Index 9Ch).	h) as well as the Parallel	
Index 94h	Suspend Modulation OFF Count Register (R/W)	Reset Value = 00h	
7:0	Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin values deasserted to the GX1 processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95 form the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effect (emulated) clock frequency, allowing the power manager to reduce CPU power consumption.		
	This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups.	speedups and video	
Index 95h	Suspend Modulation ON Count Register (R/W)	Reset Value = 00h	
7:0	Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock fre-		

This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video

quency, allowing the power manager to reduce CPU power consumption.

speedups.

Table 5-15. F0 Index xxh: PCI Header and Bridge Configuration Registers (Continued)

7:5 4 3 2		Reset Value = 00h	
4 3 2	Power Savings Mode: 0 = Enable; 1 = Disable. Include ISA Clock in Power Savings Mode: 0 = ISA clock not included; 1 = ISA clock included. Suspend Mode Configuration: "Special 3 Volt Suspend" mode to support powering down the Garage.		
3 2	Include ISA Clock in Power Savings Mode: 0 = ISA clock not included; 1 = ISA clock included. Suspend Mode Configuration: "Special 3 Volt Suspend" mode to support powering down the G		
2	Suspend Mode Configuration: "Special 3 Volt Suspend" mode to support powering down the G		
1	porta. 0 - Bloable, 1 - Ertable.	Suspend Mode Configuration: "Special 3 Volt Suspend" mode to support powering down the GX1 processor during Suspend. 0 = Disable; 1 = Enable.	
	SMI Speedup Configuration: Selects how Suspend Modulation function reacts when an SMI occ	curs.	
	0 = Use the IRQ Speedup Timer Count Register (F0 Index 8Ch) to temporarily disable Suspend N occurs.	Modulation when an SMI	
	1 = Disable Suspend Modulation when an SMI occurs until a read to the SMI Speedup Disable Re Offset 08h).	egister (F1BAR+Memory	
	The purpose of this bit is to disable Suspend Modulation while the CPU is in the System Manager technology and power management operations occur at full speed. Two methods for accomplishin the SMI into the IRQ Speedup Timer Count Register (F0 Index 8Ch), or to have the SMI disable Sthe SMI handler reads the SMI Speedup Disable Register (F1BAR+Memory Offset 08h). The latter The IRQ speedup method is provided for software compatibility with earlier revisions of the CS553 if the Suspend Modulation feature is disabled (bit $0=0$).	ng this are either to map Suspend Modulation until or is the preferred method.	
0	Suspend Modulation Feature: 0 = Disable; 1 = Enable.		
	When enabled, the SUSP# pin will be asserted and deasserted for the durations programmed in to OFF/ON Count Registers (F0 Index 94h/95h).	he Suspend Modulation	
Index 97h	GPIO Control Register 2 (R/W)	Reset Value = 00h	
7	GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 Bit 3 must be set to enable this bit.) = Rising; 1 = Falling.	
6	GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0) = Rising; 1 = Falling.	
	Bit 2 must be set to enable this bit.		
5	GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI.) = Rising; 1 = Falling.	
	Bit 1 must be set to enable this bit.		
4	GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 Bit 0 must be set to enable this bit.	0 = Rising; 1 = Falling.	
3	Enable GPIO7 as an External SMI Source: Allow GPIO7 to be an external SMI source and to generate an SMI on either a rising or falling edge transition (depends upon setting of bit 7). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[3].		
2	Enable GPIO5 as an External SMI Source: Allow GPIO5 to be an external SMI source and to generate an SMI on either a rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[2].		
1	Enable GPIO4 as an External SMI Source: Allow GPIO4 to be an external SMI source and to generate an SMI on either a rising- or falling-edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[1].		
0 Note: For	Enable GPIO3 as an External SMI Source: Allow GPIO3 to be an external SMI source and to ge rising or falling edge transition (depends upon setting of bit 4) 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[0]. any of the above bits to function properly, the respective GPIO pin must be configured as an input of the second se		

Revision 1.1 Register Descriptions

Bit	Description	
Index 98h	-99h Primary Hard Disk Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	Primary Hard Disk Idle Timer Count: The idle timer loaded from this register is used to disk is not in use so that it can be powered down. The 16-bit value programmed here repredisk inactivity after which the system is alerted via an SMI. The timer is automatically reloadever an access occurs to the configured primary hard disk's data port (configured in F0 Ind second timebase.	sents the period of primary hard ded with the count value when-
	To enable this timer set F0 Index 81h[0] = 1.	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[0].	
Index 9Al		Reset Value = 0000h
15:0	Floppy Disk Idle Timer Count: The idle timer loaded from this register is used to determin not in use so that it can be powered down. The 16-bit value programmed here represents the inactivity after which the system is alerted via an SMI. The timer is automatically reloaded we access occurs to any of I/O Ports 3F2h, 3F4h, 3F5h, and 3F7h (primary) or 372h, 374h, 37 timer uses a 1 second timebase. To enable this timer set F0 Index 81h[1] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].	he period of floppy disk drive vith the count value whenever an
	Second level SMI status is reported at F0 Index 85h/F5h[1].	
Index 9CI	n-9Dh Parallel / Serial Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	Parallel / Serial Idle Timer Count: The idle timer loaded from this register is used to detern ports are not in use so that the ports can be power managed. The 16-bit value programmer inactivity for these ports after which the system is alerted via an SMI. The timer is automati value whenever an access occurs to the parallel (LPT) or serial (COM) I/O address spaces serial port, that port is not considered here. The timer uses a 1 second timebase.	d here represents the period of cally reloaded with the count
	To enable this timer set F0 Index 81h[2] = 1.	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[2].	
Index 9El	1-9Fh Keyboard / Mouse Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	Keyboard / Mouse Idle Timer Count: The idle timer loaded from this register determines when the keyboard and m are not in use so that the LCD screen can be blanked. The 16-bit value programmed here represents the period of ina for these ports after which the system is alerted via an SMI. The timer is automatically reloaded with the count value ever an access occurs to either the keyboard or mouse I/O address spaces, including the mouse serial port address when a mouse is enabled on a serial port. The timer uses a 1 second timebase. To enable this timer set F0 Index 81h[3] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].	
	Second level SMI status is reported at F0 Index 85h/F5h[3].	
Index A0I	n-A1h User Defined Device 1 Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	User Defined Device 1 (UDEF1) Idle Timer Count: The idle timer loaded from this register determines when the device configured as UDEF1 is not in use so that it can be power managed. The 16-bit value programmed here represents the period of inactivity for this device after which the system is alerted via an SMI. The timer is automatically reloaded with the count value whenever an access occurs to memory or I/O address space configured at F0 Index C0h (base address register) and F0 Index CCh (control register). The timer uses a 1 second timebase. To enable this timer set F0 Index 81h[4] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[4].	
Index A2I		Reset Value = 0000h
15:0	User Defined Device 2 (UDEF2) Idle Timer Count: The idle timer loaded from this registed configured as UDEF2 is not in use so that it can be power managed. The 16-bit value progression of inactivity for this device after which the system is alerted via an SMI. The timer is count value whenever an access occurs to memory or I/O address space configured at F0 ter) and F0 Index CDh (control register). The timer uses a 1 second timebase.	er determines when the device rammed here represents the automatically reloaded with the
	To enable this timer set F0 Index 81h[5] = 1.	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[5].	

Register Descriptions Revision 1.1

Bit	Description	
Index A4h	A5h User Defined Device 3 Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	User Defined Device 3 (UDEF3) Idle Timer Count: The idle timer loaded from this registed configured as UDEF3 is not in use so that it can be power managed. The 16-bit value progperiod of inactivity for this device after which the system is alerted via an SMI. The timer is count value whenever an access occurs to memory or I/O address space configured at F0 ter) and F0 Index CEh (control register). The timer uses a 1 second timebase. To enable this timer set F0 Index 81h[6] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[6].	rammed here represents the automatically reloaded with the
Index A6h	A7h Video Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	Video Idle Timer Count: The idle timer loaded from this register determines when the grap part of the Suspend determination algorithm. The 16-bit value programmed here represent after which the system is alerted via an SMI. The count in this timer is automatically reset w graphics controller space. The timer uses a 1 second timebase.	s the period of video inactivity
	In a GX1 processor based system the graphics controller is embedded in the CPU, so vided CS5530A via the serial connection (PSERIAL register, bit 0) from the processor. The CS55 standard VGA space on PCI (3Bxh, 3Cxh, 3Dxh and A000h-B7FFh) in the event an external control of the control of t	530A also detects accesses to
	To enable this timer set F0 Index 81h[7] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[7].	
Index A8h		Reset Value = 0000h
15:0	Video Overflow Count: Each time the Video Speedup timer (F0 Index 8Dh) is triggered, a 100 ms timer is started. If the 100 ms timer expires before the Video Speedup timer lapses, the Video Overflow Count Register increments and the 100 ms timer re-triggers. Software clears the overflow register when new evaluations are to begin. The count contained in this register may be combined with other data to determine the type of video accesses present in the system.	
Index AAh	ABh Reserved	Reset Value = xxh
Index ACh	ADh Secondary Hard Disk Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	Secondary Hard Disk Idle Timer Count: The idle timer loaded from this register is used to hard disk is not in use so that it can be powered down. The 16-bit value programmed here ary hard disk inactivity after which the system is alerted via an SMI. The timer is automatica whenever an access occurs to the configured secondary hard disk's data port (configured i uses a 1 second timebase. To enable this timer set F0 Index 83h[7] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[4].	represents the period of second- ally reloaded with the count value
Index AEh	CPU Suspend Command Register (WO)	Reset Value = 00h
7:0	Software CPU Suspend Command (Write Only): If bit 0 in the Clock Stop Control Regist 0) and all SMI status bits are 0, a write to this register causes a SUSP#/SUSPA# handshakin a low-power state. The data written is irrelevant. Once in this state, any unmasked IRQ or dition. If F0 Index BCh[0] = 1, writing to this register invokes a full system Suspend. In this case, the SUSP#/SUSPA# halt. Upon a Resume event (see Note), the PLL delay programmed in the suspending th	e with the CPU, placing the CPU r SMI releases the CPU halt con- e SUSP_3V pin is asserted after
	allowing the clock chip and CPU PLL to stabilize before deasserting the SUSP# pin. Note: If the clocks are stopped, the external IRQ4 and IRQ3 pins, when enabled (F3BAR+N only IRQ pins that can be used as a Resume event. If GPIO2, GPIO1, and GPIO0 a source (F0 Index 92h[2:0]), they too can be used as a Resume event. No other CS5 up the system from Suspend when the clocks are stopped. As long as the 32 KHz clevents are also Resume events.	Memory Offset 1Ah[4:3]), are the are enabled as an external SMI 5530A pins can be used to wake-

Bit	Description	
Index AFh	Suspend Notebook Command Register (WO)	Reset Value = 00h
7:0	Software CPU Stop Clock Suspend (Write Only): A write to this register causes a SUSP#/SUS CPU, placing the CPU in a low-power state. Following this handshake, the SUSP_3V pin is assert intended to be used to stop all system clocks. Upon a Resume event (see Note), the SUSP_3V pin is deasserted. After a slight delay, the CS553 signal. Once the clocks are stable, the processor deasserts SUSPA# and system operation resum Note: If the clocks are stopped the external IRQ4 and IRQ3 pins, who enabled (F3BAR+Memory)	ed. The SUSP_3V pin is 0A deasserts the SUSP# les. v Offset 1Ah[4:3]), are the
	only IRQ pins that can be used as a Resume event. If GPIO2, GPIO1, and GPIO0 are enal source (F0 Index 92h[2:0]), they too can be used as a Resume event. No other CS5530A pup the system from Suspend when the clocks are stopped.	
Index B0h	B3h Reserved	Reset Value = xxh
Index B4h	Floppy Port 3F2h Shadow Register (RO)	Reset Value = xxh
7:0	Floppy Port 3F2h Shadow (Read Only): Last written value of I/O Port 3F2h. Required for support of FDC power ON/OFF and Save-to-Disk/RAM coherency. This register is a copy of an I/O register which cannot safely be directly read. Value in register is not deterministic of when	
Index B5h	the register is being read. It is provided here to assist in a Save-to-Disk operation. Floppy Port 3F7h Shadow Register (RO)	Reset Value = xxh
7:0	Floppy Port 3F7h Shadow (Read Only): Last written value of I/O Port 3F7h. Required for support of FDC power ON/OF and Save-to-Disk/RAM coherency.	
	This register is a copy of an I/O register which cannot safely be directly read. Value in register is n the register is being read. It is provided here to assist in a Save-to-Disk operation.	ot deterministic of when
Index B6h	Floppy Port 1F2h Shadow Register (RO)	Reset Value = xxh
7:0	Floppy Port 1F2h Shadow (Read Only): Last written value of I/O Port 1F2h. Required for support and Save-to-Disk/RAM coherency. This register is a copy of an I/O register which cannot safely be directly read. Value in register is n	·
	the register is being read. It is provided here to assist in a Save-to-Disk operation.	
Index B7h	Floppy Port 1F7h Shadow Register (RO)	Reset Value = xxh
7:0	Floppy Port 1F7h Shadow (Read Only): Last written value of I/O Port 1F7h. Required for support and Save-to-Disk/RAM coherency. This register is a copy of an I/O register which cannot safely be directly read. Value in register is n	
	the register is being read. It is provided here to assist in a Save-to-Disk operation.	or deterministic of when
Index B8h	DMA Shadow Register (RO)	Reset Value = xxh
7:0	DMA Shadow (Read Only): This 8-bit port sequences through the following list of shadowed DMA power on, a pointer starts at the first register in the list and consecutively reads incrementally thro ister resets the read sequence to the first register. Each shadow register in the sequence contains that location. The read sequence for this register is: 1. DMA Channel 0 Mode Register 2. DMA Channel 1 Mode Register 3. DMA Channel 2 Mode Register 4. DMA Channel 3 Mode Register 5. DMA Channel 4 Mode Register 6. DMA Channel 5 Mode Register 7. DMA Channel 6 Mode Register 8. DMA Channel 7 Mode Register 9. DMA Channel Mask Register (bit 0 is channel 0 mask, etc.) 10. DMA Busy Register (bit 0 or 1 means a DMA occurred within last 1 ms, all other bits are 0)	ugh it. A write to this reg-

Register Descriptions Revision 1.1

Table 5-15. F0 Index xxh: PCI Header and Bridge Configuration Registers (Continued)

Bit	Description			
Index B9h		PIC Shadow	Register (RO)	Reset Value = xxh
7:0	troller registers. At pow A write to this register data written to that loca The read sequence for 1. PIC1 ICW1 2. PIC1 ICW2 3. PIC1 ICW3 4. PIC1 ICW4 - Bits [5. PIC1 OCW2 - Bits 6. PIC1 OCW3 - Bits 7. PIC2 ICW1 8. PIC2 ICW2 9. PIC2 ICW3 10. PIC2 ICW4 - Bits [11. PIC2 OCW2 - Bits 12. PIC2 OCW3 - Bits Note: To restore OCW	ver on, a pointer starts at the firesets the read sequence to thation. this register is: 7:5] of ICW4 are always 0 [6:3] of OCW2 are always 0 (N [7, 4] are 0 and bit [6, 3] are 1 7:5] of ICW4 are always 0 [6:3] of OCW2 are always 0 [6:3] of OCW2 are always 0 (N [7, 4] are 0 and bit [6, 3] are 1	est register in the list and consider first register. Each shadow residence of the shadow residence of	nadowed Programmable Interrupt Conecutively reads incrementally through it. egister in the sequence contains the last sice. First with the shadow register value,
Index BAh			Register (RO)	Reset Value = xxh
7:0	registers. At power on, to this register resets t written to that location. The read sequence for 1. Counter 0 LSB (leas 2. Counter 0 MSB 3. Counter 1 LSB 4. Counter 1 MSB 5. Counter 2 LSB 6. Counter 2 MSB 7. Counter 0 Comman 8. Counter 1 Comman 9. Counter 2 Comman Note: The LSB/MSB 6.	a pointer starts at the first regine read sequence to the first regine read sequence to the first regine read sequence to the first regine this register is: at significant byte)	ster in the list and consecutive egister. Each shadow register begister. Each shadow register begister as a consecutive begister.	nadowed Programmable Interval Timer sely reads to increment through it. A write in the sequence contains the last data
Index BBh		RTC Index Shac	low Register (RO)	Reset Value = xxh
7:0	RTC Index Shadow (Fregister (I/O Port 070h	Read Only): The RTC Shadow).	register contains the last writt	en value of the RTC Index
Index BCh		Clock Stop Con	rol Register (R/W)	Reset Value = 00h
7:4	pin is deasserted to the tion. This delay is only		to allow the clock chip and CP	a break event occurs before the SUSP# U PLL to stabilize before starting execu- 1100 = 12 ms 1101 = 13 ms 1110 = 14 ms 1111 = 15 ms
	Reserved: Set to 0.			

Bit	Description	ndex xxn: PCI Header and Bridge Configuration Reg	(**************************************
0	CPU Clock Stop:	0 = Normal SUSP#/ SUSPA# handshake; 1 = Full system Suspend.	
Note:	This register configures appropriate conditions,	the CS5530A to support a 3 Volt Suspend. Setting bit 0 causes the Stopping the system clocks. A delay of 0 to 15 ms is programmable (bit of stabilize when an event Resumes the system.	- ·
,	A write to the CPU Susp	pend Command Register (F0 Index AEh) with bit 0 written as:	
l	break/resume event occ 1 = SUSP#/SUSPA# ha	ndshake occurs. The CPU is put into a low-power state, and the syste urs, it releases the CPU halt condition. ndshake occurs and the SUSP_3V pin is asserted, thus invoking a full ed). When a break event occurs, the SUSP_3V pin will deassert, the F	I system Suspend (both CPU and
		ows the clock chip and CPU PLL to stabilize before deasserting the S	
Index E	BDh-BFh	Reserved	Reset Value = xxh
Index C	C0h-C3h	User Defined Device 1 Base Address Register (R/W)	Reset Value = 00000000h
31:0	timer resources) fo	ice 1 (UDEF1) Base Address [31:0]: This 32-bit register supports por a PCMCIA slot or some other device in the system. The value written ap/timer logic. The device can be memory or I/O mapped (configured	n is used as the address compara-
Index C	C4h-C7h	User Defined Device 2 Base Address Register (R/W)	Reset Value = 00000000h
31:0	timer resources) fo	ice 2 (UDEF2) Base Address [31:0]: This 32-bit register supports por a PCMCIA slot or some other device in the system. The value written ap/timer logic. The device can be memory or I/O mapped (configured	n is used as the address compara-
Index C	C8h-CBh	User Defined Device 3 Base Address Register (R/W)	Reset Value = 00000000h
31:0	timer resources) fo	ice 3 (UDEF3) Base Address [31:0]: This 32-bit register supports por a PCMCIA slot or some other device in the system. The value written ap/timer logic. The device can be memory or I/O mapped (configured	n is used as the address compara-
Index C	CCh	User Defined Device 1 Control Register (R/W)	Reset Value = 00h
7	Memory or I/O Ma	pped: User Defined Device 1 is: 0 = I/O; 1 = Memory.	
6:0	Mask If bit 7 = 0 (I/O):		
	Bit 6	0 = Disable write cycle tracking1 = Enable write cycle tracking	
	Bit 5	0 = Disable read cycle tracking1 = Enable read cycle tracking	
	Bits 4:0	Mask for address bits A[4:0]	
	If bit 7 = 1 (M/IO):	Mask for address memory bits A[15:9] (512 bytes min. and 64 KB m	ov) and A[O:O] are imported
	Bits 6:0 Note: A "1" in a m	ask bit means that the address bit is ignored for comparison.	ax.) and A[6.0] are ignored.
Index C		User Defined Device 2 Control Register (R/W)	Reset Value = 00h
7	Memory or I/O Ma	pped: User Defined Device 2 is: 0 = I/O; 1 = Memory.	
6:0	Mask	·	
	If bit $7 = 0$ (I/O):		
	Bit 6	0 = Disable write cycle tracking 1 = Enable write cycle tracking	
	Bit 5	0 = Disable read cycle tracking 1 = Enable read cycle tracking	
	Bits 4:0	Mask for address bits A[4:0]	
	If bit 7 = 1 (M/IO): Bits 6:0	Mask for address memory bits A[15:9] (512 bytes min. and 64 KB m	ax.) and A[8:0] are ignored
		ask bit means that the address bit is ignored for comparison.	and right of the ignored.
Index C	CEh	User Defined Device 3 Control Register (R/W)	Reset Value = 00h
7	Memory or I/O Ma	pped: User Defined Device 3 is: 0 = I/O; 1 = Memory.	

Table 5-15. F0 Index xxh: PCI Header and Bridge Configuration Registers (Continued)

Bit	Description			
6:0	Mask			
	If bit $7 = 0$ (I/O):			
	Bit 6 0 = Disable write cycle tracking			
	1 = Enable write cycle tracking			
	Bit 5 0 = Disable read cycle tracking			
	1 = Enable read cycle tracking Bits 4:0 Mask for address bits A[4:0]			
	If bit 7 = 1 (M/IO):			
	Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB ma	ax) and A[8:0] are ignored		
	Note: A "1" in a mask bit means that the address bit is ignored for comparison.	ax.) and A[0.0] are ignored.		
Index CFh		Reset Value = xxh		
Index D0h	Software SMI Register (WO)	Reset Value = 00h		
7:0	Software SMI (Write Only): A write to this location generates an SMI. The data written is	s irrelevant. This register allows		
	software entry into SMM via normal bus access instructions.			
Index D1h	-EBh Reserved	Reset Value = xxh		
Index ECh	Timer Test Register (R/W)	Reset Value = 00h		
7:0	Timer Test Value: The Timer Test Register is intended only for test and debug purposes ational timebases.	It is not intended for setting oper-		
Index EDh	-F3h Reserved	Reset Value = xxh		
Index F4h	Second Level Power Management Status Register 1 (RC)	Reset Value = 00h		
7:5	Reserved			
4	Game Port SMI Status (Read to Clear): SMI was caused by a R/W access to game por 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Mem Game Port Read SMI generation enabling is at F0 Index 83h[4]. Game Port Write SMI generation enabling is at F0 Index 53h[3].			
3	GPIO7 SMI Status (Read to Clear): SMI was caused by transition on (properly-configure	ed) GPIO7 pin? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Mem	ory Offset 00h/02h[0].		
	SMI generation enabling is at F0 Index 97h[3].			
2	GPIO5 SMI Status (Read to Clear): SMI was caused by transition on (properly-configure			
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].			
	SMI generation enabling is at F0 Index 97h[2].	" ODIO4 : 0.0 N 4 V		
1	GPIO4 SMI Status (Read to Clear): SMI was caused by transition on (properly-configure			
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Mem	lory Offset 00n/02n[0].		
0	SMI generation enabling is at F0 Index 97h[1]. GPIO3 SMI Status (Read to Clear): SMI was caused by transition on (properly-configure	nd/ CPIO3 nin3 0 = No. 1 = Vaa		
U	This is the second level of SMI status reporting. The top level is reported in F1BAR+Mem	•		
	SMI generation enabling is at F0 Index 97h[0].	ory offset oor/oznijoj.		
Note: Pro	perly-configured means that the GPIO pin must be enabled as a GPIO, an input, and to ca	use an SMI		
	s register provides status on various power-management SMI events. Reading this register			
	γ (mirror) version of this register exists at F0 Index 84h.			
Index F5h	Second Level Power Management Status Register 2 (RC)	Reset Value = 00h		
7	Video Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Vide (F0 Index A6h)? 0 = No; 1 = Yes.	eo Idle Timer Count Register		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Mem	orv Offset 00h/02h[0].		
	1			
	SMI generation enabling is at F0 Index 81h[7].	.,		
6	User Defined Device 3 (UDEF3) Idle Timer SMI Status (Read to Clear): SMI was cause			
6		ed by expiration of the UDEF3 Idle		

1	Table 5-15. F0 Index xxh: PCI Header and Bridge Configuration Registers (Continued)		
Bit	Description		
5	User Defined Device 2 (UDEF2) Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the UDEF2 Idle Timer Count Register (F0 Index A2h)? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].		
	SMI generation enabling is at F0 Index 81h[5].		
4	User Defined Device 1 (UDEF1) Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the UDEF1 Idle Timer Count Register (F0 Index A0h)? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].		
	SMI generation enabling is at F0 Index 81h[4].		
3	Keyboard/Mouse Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Keyboard/Mouse Idle Timer Count Register (F0 Index 9Eh)? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].		
	SMI generation enabling is at F0 Index 81h[3].		
2	Parallel/Serial Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Parallel/Serial Port Idle Timer Count Register (F0 Index 9Ch)? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].		
	SMI generation enabling is at F0 Index 81h[2].		
1	Floppy Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Floppy Disk Idle Timer Count Register (F0 Index 9Ah)? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].		
	SMI generation enabling is at F0 Index 81h[1].		
0	Primary Hard Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Primary Hard Disk Idle Timer Count Register (F0 Index 98h)? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].		
	SMI generation enabling is at F0 Index 81h[0].		
bits	ration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status s. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing sSMI source (and consequently deasserting SMI), F0 Index 85h may be read instead.		
Index F6h	Second Level Power Management Status Register 3 (RC) Reset Value = 00h		
7	Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[7].		
6	Reserved (Read Only)		
5	Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the secondary hard disk? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].		
	SMI generation enabling is at F0 Index 83h[6].		
4	Secondary Hard Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Hard Disk Idle Timer Count Register (F0 Index ACh)? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[7].		
3	Keyboard/Mouse Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the keyboard or mouse? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].		
_	SMI generation enabling is at F0 Index 82h[3].		
2	Parallel/Serial Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to either the serial or parallel ports? 0 = No; 1 = Yes.		
I			
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].		
	SMI generation enabling is at F0 Index 82h[2].		
1			

Bit	Description		
0	Primary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O ac primary hard disk? 0 = No; 1 = Yes.	cess to the	
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset (SMI generation enabling is at F0 Index 82h[0].	00h/02h[0].	
dev of th	register provides status on the Device Traps to the SMI handler. A bit set here indicates that an access ce while the trap was enabled, causing an SMI. Reading this register clears the SMI status bits. A read is register exists at F0 Index 86h. If the value of the register must be read without clearing the SMI sousserting SMI), F0 Index 86h may be read instead.	d-only (mirror) version	
Index F7h	Second Level Power Management Status Register 4 (RO/RC)	Reset Value = 00h	
7	GPIO2 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO2 prices that the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset (SMI generation enabling is at F0 Index 92h[2].		
6	GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[1].		
5	GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[0].		
4	Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pin is switch indicator, this bit reflects the state of the pin.	s configured as the lid	
3	Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Index 92h[6] = 1).		
2	Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a pos SDATA_IN? 0 = No; 1 = Yes.	sitive edge on	
	This is the second level of status is reporting. The top level status is reported in F1BAR+Memory Off SMI generation enabling is at F0 Index 80h[5].	set 00h/02h[0].	
1	RTC Alarm (IRQ8) SMI Status (Read to Clear): SMI was caused by an RTC interrupt? 0 = No; 1 = This SMI event can only occur while in 3V Suspend and RTC interrupt occurs. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset (
0	ACPI Timer SMI Status (Read to Clear): SMI was caused by an ACPI Timer MSB toggle? $0 = \text{No}$; This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset (SMI generation configuration is at F0 Index 83h[5].		
This the	perly-configured means that the GPIO pin must be enabled as a GPIO, an input, and to cause an SMI register provides status on several miscellaneous power management events that generate SMIs, as Lid Switch. Reading this register clears the SMI status bits. A read-only (mirror) version of this register ndex 87h.	well as the status of	
Index F8h	FFh Reserved	Reset Value = xxh	

AMD Geode™ CS5530A Companion Device Data Book

5.3.2 SMI Status and ACPI Timer Registers - Function 1

The register space for the SMI status and ACPI Timer registers is divided into two sections. The first section is used to configure the PCI portion of this support hardware. A Base Address Register at F1 Index 10h (F1BAR) points to the base address of where the second portion of the register space is located. This second section contains the SMI status and ACPI timer support registers.

Note: The ACPI Timer Count Register is accessible through F1BAR+Memory Offset 1Ch and I/O Port 121Ch.

Table 5-16 shows the PCI header registers of F1. The memory mapped registers accessed through F1BAR are shown in Table 5-17.

If the Power Management Configuration Trap bit (F0 Index 41h[3]) is enabled, an access to the PCI header registers causes an SMI. Access through F1BAR is not affected by this bit.

Table 5-16. F1 Index xxh: PCI Header Registers for SMI Status and ACPI Timer

Bit	Description		
Index 00h	01h Vendor Identification Register (RO)	Reset Value = 1078h	
Index 02h	03h Device Identification Register (RO)	Reset Value = 0101h	
Index 04h	05h PCI Command Register (R/W)	Reset Value = 0000h	
15:2	Reserved (Read Only)		
1	lemory Space : Allow CS5530A to respond to memory cycles from the PCI bus. 0 = Disable; 1 = Enable. his bit must be enabled to access memory offsets through F1BAR (F1 Index 10h).		
0	Reserved (Read Only)		
Index 06h	07h PCI Status Register (RO)	Reset Value = 0280h	
Index 08h	Device Revision ID Register (RO)	Reset Value = 00h	
Index 09h	0Bh PCI Class Code Register (RO)	Reset Value = 068000h	
Index 0Ch	PCI Cache Line Size Register (RO)	Reset Value = 00h	
Index 0Dh	PCI Latency Timer Register (RO)	Reset Value = 00h	
Index 0Eh	PCI Header Type (RO)	Reset Value = 00h	
Index 0Fh	PCI BIST Register (RO)	Reset Value = 00h	
Index 10h	13h Base Address Register — F1BAR (R/W)	Reset Value = 00000000h	
This register sets the base address of the memory mapped SMI status and ACPI timer related registers. Bits [7:0] are regindicating a 256-byte memory address range. Refer to Table 5-17 for the SMI status and ACPI timer registers bit formats ues. The upper 16 bytes are always mapped to the ACPI timer, and are always memory mapped.			
Note: The	ACPI Timer Count Register is accessible through F1BAR+Memory Offset 1Ch and I/O Port	t 121Ch.	
31:8	SMI Status/Power Management Base Address		
7:0	Address Range (Read Only)		
Index 14h	3Fh Reserved	Reset Value = 00h	
Index 40h	FFh Reserved	Reset Value = xxh	

Table 5-17. F1BAR+Memory Offset xxh: SMI Status and ACPI Timer Registers

Bit	Description	
Offset 00h	-01h Top Level SMI Status Mirror Register (RO)	Reset Value = 0000h
15	Suspend Modulation Enable Mirror (Read Only): This bit mirrors the Suspend Mode Conlt is used by the SMI handler to determine if the SMI Speedup Disable Register (F1BAR+Mocleared on exit.	
14	SMI Source is USB (Read Only): SMI was caused by USB activity? 0 = No; 1 = Yes. SMI generation is configured in F0 Index 42h[7:6].	
13	SMI Source is Warm Reset Command (Read Only): SMI was caused by Warm Reset cor	mmand? 0 = No; 1 = Yes.
12	SMI Source is NMI (Read Only): SMI was caused by NMI activity? 0 = No; 1 = Yes.	
11:10	Reserved (Read Only): Always reads 0.	
9	SMI Source is General Purpose Timers/User Defined Device Traps/Register Space Trap (Read Only): SMI was caused by expiration of GP Timer 1/2; trapped access to UDEF3/2/1; trapped access to F1-F4 or ISA Legacy Register Space? 0 = No; 1 = Yes.	
	The next level of status is found at F1BAR+Memory Offset 04h/06h.	V ₂ -
8	SMI Source is Software Generated (Read Only): SMI was caused by software? 0 = No; 1	
7	SMI on an A20M# Toggle (Read Only): SMI was caused by an access to either Port 092h of initiates an A20M# SMI? 0 = No; 1 = Yes.	•
	This method of controlling the internal A20M# in the GX1 processor is used instead of a pin SMI generation enabling is at F0 Index 53h[0].	
6	SMI Source is a VGA Timer Event (Read Only): SMI was caused by the expiration of the VGA Timer (F0 Index 8Eh)? 0 = No; 1 = Yes.	
5	 SMI generation enabling is at F0 Index 83h[3]. SMI Source is Video Retrace (IRQ2) (Read Only): SMI was caused by a video retrace event as decoded from connection (PSERIAL register, bit 7) from the GX1 processor? 0 = No; 1 = Yes. 	
	SMI generation enabling is at F0 Index 83h[2].	
4:2	Reserved (Read Only): Always reads 0.	
1	SMI Source is Audio Interface (Read Only): SMI was caused by the audio interface? 0 =	No; 1 = Yes.
	The next level SMI status registers is found in F3BAR+Memory Offset 10h/12h.	,
0	SMI Source is Power Management Event (Read Only): SMI was caused by one of the power management resources 0 = No; 1 = Yes.	
	The next level of status is found at F0 Index 84h-87h/F4h-F7h.	
	Note: The status for the General Purpose Timers and the User Device Defined Traps are c	hecked separately in bit 9.
Note: Rea	ding this register does not clear the status bits. See F1BAR+Memory Offset 02h.	
Offset 02h	-03h Top Level SMI Status Register (RC)	Reset Value = 0000h
15	Suspend Modulation Enable Mirror (Read to Clear): This bit mirrors the Suspend Mode (96h[0]). It is used by the SMI handler to determine if the SMI Speedup Disable Register (F1 be cleared on exit.	
14	SMI Source is USB (Read to Clear): SMI was caused by USB activity? 0 = No; 1 = Yes. SMI generation is configured in F0 Index 42h[7:6].	
13	SMI Source is Warm Reset Command (Read to Clear): SMI was caused by Warm Reset command? 0 = No; 1 = Yes.	
12	SMI Source is NMI (Read to Clear): SMI was caused by NMI activity? 0 = No; 1 = Yes.	
11:10	Reserved (Read to Clear): Always reads 0.	
9	SMI Source is General Purpose Timers/User Defined Device Traps/Register Space Tracaused by expiration of GP Timer 1/2; trapped access to UDEF3/2/1; trapped access to F1-Space? 0 = No; 1 = Yes. The next level of status is found at F1BAR+Memory Offset 04h/06h.	
	SMI Source is Software Generated (Read to Clear): SMI was caused by software? 0 = No	o; 1 = Yes.
8		
7	SMI on an A20M# Toggle (Read to Clear): SMI was caused by an access to either Port 09 which initiates an A20M# SMI? 0 = No; 1 = Yes.	

Bit	Description	
6	SMI Source is a VGA Timer Event (Read to Clear): SMI was caused by the expiration of the VGA Timer (F0 Index 8E 0 = No; 1 = Yes.	
	SMI generation enabling is at F0 Index 83h[3].	
5	SMI Source is Video Retrace (IRQ2) (Read to Clear): SMI was caused by a video retrace event as decoded from the serial connection (PSERIAL register, bit 7) from the GX1 processor? 0 = No; 1 = Yes.	
	SMI generation enabling is at F0 Index 83h[2].	
4:2	Reserved (Read to Clear): Always reads 0.	
1	SMI Source is Audio Interface (Read to Clear): SMI was caused by the audio interface? 0 = No; 1 = Yes.	
	The next level SMI status registers is found in F3BAR+Memory Offset 10h/12h.	
0	SMI Source is Power Management Event (Read to Clear): SMI was caused by one of the power management resource 0 = No; 1 = Yes.	
	The next level of status is found at F0 Index 84h-87h/F4h-F7h.	
	Note: The status for the General Purpose Timers and the User Device Defined Traps are checked separately in bit 9.	
Note: Re	eading this register clears all the SMI status bits. Note that bits 9, 1, and 0 have another level (second) of status reporting.	
	read-only "Mirror" version of this register exists at F1BAR+Memory Offset 00h. If the value of the register must be read with earing the SMI source (and consequently deasserting SMI), the Mirror register may be read instead.	
Offset 04	h-05h Second Level General Traps & Timers SMI Status Mirror Register (RO) Reset Value = 000	
15:6	Reserved (Read Only)	
5	PCI Function Trap (Read Only): SMI was caused by a trapped configuration cycle (listed below)? 0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].	
	Trapped access to F0 PCI header registers other than F0 Index 40h-43h; SMI generation enabling is at F0 Index 41h[0]. Trapped access to F1 PCI header registers; SMI generation enabling is at F0 Index 41h[3]. Trapped access to F2 PCI header registers; SMI generation enabling is at F0 Index 41h[6].	
	Trapped access to F3 PCI header registers; SMI generation enabling is at F0 Index 42h[0]. Trapped access to F4 PCI header registers; SMI generation enabling is at F0 Index 42h[1].	
4	happed access to 1 4 1 of header registers, own generation chabiling is at 1 of hidex 42h[1].	
4	SMI Source is Trapped Access to User Defined Device 3 (Read Only): SMI was caused by a trapped I/O or memory	
4	SMI Source is Trapped Access to User Defined Device 3 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes.	
4	SMI Source is Trapped Access to User Defined Device 3 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].	
	SMI Source is Trapped Access to User Defined Device 3 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[6].	
3	SMI Source is Trapped Access to User Defined Device 3 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[6]. SMI Source is Trapped Access to User Defined Device 2 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 2 (F0 Index C4h)? 0 = No; 1 = Yes.	
	SMI Source is Trapped Access to User Defined Device 3 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[6]. SMI Source is Trapped Access to User Defined Device 2 (Read Only): SMI was caused by a trapped I/O or memory	
	SMI Source is Trapped Access to User Defined Device 3 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[6]. SMI Source is Trapped Access to User Defined Device 2 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 2 (F0 Index C4h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].	
3	SMI Source is Trapped Access to User Defined Device 3 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[6]. SMI Source is Trapped Access to User Defined Device 2 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 2 (F0 Index C4h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[5]. SMI Source is Trapped Access to User Defined Device 1 (Read Only): SMI was caused by a trapped I/O or memory	
3	SMI Source is Trapped Access to User Defined Device 3 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[6]. SMI Source is Trapped Access to User Defined Device 2 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 2 (F0 Index C4h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[5]. SMI Source is Trapped Access to User Defined Device 1 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 1 (F0 Index C0h)? 0 = No; 1 = Yes.	
3	SMI Source is Trapped Access to User Defined Device 3 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[6]. SMI Source is Trapped Access to User Defined Device 2 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 2 (F0 Index C4h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI Source is Trapped Access to User Defined Device 1 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 1 (F0 Index C0h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].	
3	SMI Source is Trapped Access to User Defined Device 3 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[6]. SMI Source is Trapped Access to User Defined Device 2 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 2 (F0 Index C4h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI Source is Trapped Access to User Defined Device 1 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 1 (F0 Index C0h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[4]. SMI Source is Expired General Purpose Timer 2 (Read Only): SMI was caused by the expiration of General	
3	SMI Source is Trapped Access to User Defined Device 3 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[6]. SMI Source is Trapped Access to User Defined Device 2 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 2 (F0 Index C4h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI Source is Trapped Access to User Defined Device 1 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 1 (F0 Index C0h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[4]. SMI Source is Expired General Purpose Timer 2 (Read Only): SMI was caused by the expiration of General Purpose Timer 2 (F0 Index 8Ah)? 0 = No; 1 = Yes.	
3	SMI Source is Trapped Access to User Defined Device 3 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[6]. SMI Source is Trapped Access to User Defined Device 2 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 2 (F0 Index C4h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI Source is Trapped Access to User Defined Device 1 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 1 (F0 Index C0h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[4]. SMI Source is Expired General Purpose Timer 2 (Read Only): SMI was caused by the expiration of General Purpose Timer 2 (F0 Index 8Ah)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].	
2	SMI Source is Trapped Access to User Defined Device 3 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[6]. SMI Source is Trapped Access to User Defined Device 2 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 2 (F0 Index C4h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI Source is Trapped Access to User Defined Device 1 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 1 (F0 Index C0h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI Source is Expired General Purpose Timer 2 (Read Only): SMI was caused by the expiration of General Purpose Timer 2 (F0 Index 8Ah)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI Source is Expired General Purpose Timer 2 (Read Only): SMI was caused by the expiration of General Purpose Timer 3 (Read Only): SMI was caused by the expiration of General SMI generation enabling is at F0 Index 83h[1].	

Offset 06h	07h Second Level General Traps & Timers SMI Status Register (RC)	Reset Value = 0000h
15:6 Reserved (Read to Clear)		

Table 5-17. F1BAR+Memory Offset xxh: SMI Status and ACPI Timer Registers (Continued)

Bit	Description	
5	PCI Function Trap (Read to Clear): SMI was caused by a trapped configuration cycle (lister 0 = No; 1 = Yes.	d below)?
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory	Offset 00h/02h[9].
	Trapped access to F0 PCI header registers other than Index 40h-43h; SMI generation enabli Trapped access to F1 PCI header registers; SMI generation enabling is at F0 Index 41h[3]. Trapped access to F2 PCI header registers; SMI generation enabling is at F0 Index 41h[6]. Trapped access to F3 PCI header registers; SMI generation enabling is at F0 Index 42h[0]. Trapped access to F4 PCI header registers; SMI generation enabling is at F0 Index 42h[1].	ng is at F0 Index 41h[0].
4	SMI Source is Trapped Access to User Defined Device 3 (Read to Clear): SMI was cause access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes.	, ,,
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory SMI generation enabling is at F0 Index 82h[6].	Offset 00h/02h[9].
3	SMI Source is Trapped Access to User Defined Device 2 (Read to Clear): SMI was cause access to the User Defined Device 2 (F0 Index C4h)? 0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory SMI generation enabling is at F0 Index 82h[5].	Offset 00h/02h[9].
2	SMI Source is Trapped Access to User Defined Device 1 (Read to Clear): SMI was cause access to the User Defined Device 1 (F0 Index C0h)? 0 = No; 1 = Yes.	ed by a trapped I/O or memory
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory SMI generation enabling is at F0 Index 82h[4].	Offset 00h/02h[9].
1	SMI Source is Expired General Purpose Timer 2 (Read to Clear): SMI was caused by the Purpose Timer 2 (F0 Index 8Ah)? 0 = No; 1 = Yes.	expiration of General
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory SMI generation enabling is at F0 Index 83h[1].	Offset 00h/02h[9].
0	SMI Source is Expired General Purpose Timer 1 (Read to Clear): SMI was caused by the Purpose Timer 1 (F0 Index 88h)? 0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory SMI generation enabling is at F0 Index 83h[0].	Offset 00h/02h[9].
Note: Rea	ding this register clears all the SMI status bits.	
	ad-only "Mirror" version of this register exists at F1BAR+Memory Offset 04h. If the value of the ring the SMI source (and consequently deasserting SMI), the Mirror register may be read inst	
Offset 08h	-09h SMI Speedup Disable Register (Read to Enable)	Reset Value = 0000h
15:0	SMI Speedup Disable: If bit 1 in the Suspend Configuration Register is set (F0 Index 96h[1] invokes the SMI handler to re-enable Suspend Modulation.	= 1), a read of this register
	The data read from this register can be ignored. If the Suspend Modulation feature is disable no effect.	d, reading this I/O location has
Offset 0Ah	-1Bh Reserved	Reset Value = xxh
Offset 1Ch	-1Fh (Note) ACPI Timer Count Register (RO)	Reset Value = 00FFFFFCh
	NT (Read Only): This read-only register provides the current value of the ACPI timer. The tim MHz). If SMI generation is enabled via F0 Index 83h[5], an SMI is generated when the MSB to add.	
	MI status is reported at F1BAR+Memory Offset 00h/02h[0]. el SMI status is reported at F0 Index 87h/F7h[0].	
31:24	Reserved: Always returns 0.	
23:0	Counter	
Note: The	ACPI Timer Count Register is also accessible through I/O Port 121Ch.	
Offset 20h	-4Fh Reserved	Reset Value = xxh
	The memory mapped registers located here (F1BAR+Memory Offset 50h-FFh) can also be a	

5.3.3 IDE Controller Registers - Function 2

The register space for the IDE controllers is divided into two sections. The first section is used to configure the PCI portion of the controller. A Base Address Register at F2 Index 20h points to the base address of where the second portion of the register space is located. This second section contains the registers used by the IDE controllers to carry out operations.

Table 5-18 shows the PCI header registers of F2. The I/O mapped registers, accessed through F2BAR, are shown in Table 5-19.

If the IDE Configuration Trap bit (F0 Index 41h[6]) is set, access to the PCI header registers causes an SMI. Access through F2BAR is not affected by this bit.

Table 5-18. F2 Index xxh: PCI Header Registers for IDE Configuration

Bit	Description		
Index 00h	-01h Vendor	r Identification Register (RO)	Reset Value = 1078h
Index 02h	-03h Device	Identification Register (RO)	Reset Value = 0102h
Index 04h	-05h PCI	Command Register (R/W)	Reset Value = 0000h
15:3	Reserved (Read Only)		
2	Reserved		
1	Reserved (Read Only)		
0	I/O Space: Allow CS5530A to respond to I. This bit must be enabled to access I/O offs	/O cycles from the PCI bus. 0 = Disable; 1 : sets through F2BAR (F2 Index 20h).	= Enable.
Index 06h	-07h P	CI Status Register (RO)	Reset Value = 0280h
Index 08h	Device	e Revision ID Register (RO)	Reset Value = 00h
Index 09h	-0Bh PCI	Class Code Register (RO)	Reset Value = 010180h
Index 0Ch	PCI Ca	ache Line Size Register (RO)	Reset Value = 00h
Index 0Dł	PCI L	atency Timer Register (RO)	Reset Value = 00h
Index 0Eh		PCI Header Type (RO)	Reset Value = 00h
Index 0Fh	F	PCI BIST Register (RO)	Reset Value = 00h
Index 10h	-1Fh	Reserved	ReservedReset Value = 00h
Index 20h	-23h Base Ad	ldress Register - F2BAR (R/W)	Reset Value = 00000001h
	er sets the base address of the I/O mapped a 128-byte I/O address range. Refer to Table		
31:7	Bus Mastering IDE Base Address		
6:0	Address Range (Read Only)		
Index 24h	-3Fh	Reserved	Reset Value = 00h
Index 40h	-FFh	Reserved	Reset Value = xxh

Table 5-19. F2BAR+I/O Offset xxh: IDE Configuration Registers

Bit	Description	
	<u> </u>	D ()/ 001
Offset 00h	IDE Bus Master 0 Command Register — Primary (R/W)	Reset Value = 00h
7:4	Reserved: Set to 0. Must return 0 on reads.	
3	Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PCI	CI writes performed.
	This bit should not be changed when the bus master is active.	
2:1	Reserved: Set to 0. Must return 0 on reads.	
0	Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 to 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred to carded. This bit should be reset after completion of data transfer.	
Offset 01h	Reserved	Reset Value = xxh
Offset 02h	IDE Bus Master 0 Status Register — Primary (R/W)	Reset Value = 00h
7	Simplex Mode (Read Only): Can both the primary and secondary channel operate independently? 0 = Yes; 1 = No (simplex mode).	
6	Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable.	
5	Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable.	
4:3	Reserved: Set to 0. Must return 0 on reads.	
2	Bus Master Interrupt: Has the bus master detected an interrupt? 0 = No; 1 = Yes. Write 1 to clear.	
1	Bus Master Error: Has the bus master detected an error during data transfer? $0 = No$; $1 = Yes$.	
	Write 1 to clear.	
0	Bus Master Active (Read Only): Is the bus master active? 0 = No; 1 = Yes.	
Offset 03h	Reserved	Reset Value = xxh
Offset 04h	-07h IDE Bus Master 0 PRD Table Address — Primary (R/W) Reso	et Value = 00000000h
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus	
		Master 0.
	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled $0 = 1$], it loads the pointer and updates this register to the next PRD by adding 08h.	
	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled	
1:0	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled $0 = 1$], it loads the pointer and updates this register to the next PRD by adding 08h.	
1:0 Offset 08h	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.	
· ·	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0.	(Command Register bit
Offset 08h	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W)	(Command Register bit Reset Value = 00h
Offset 08h 7:4	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads.	(Command Register bit Reset Value = 00h
Offset 08h 7:4	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PCI	(Command Register bit Reset Value = 00h
7:4 3	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PCI reads perfor	(Command Register bit Reset Value = 00h
7:4 3 2:1	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PCI reads performed; 1 = PCI reserved: Set to 0. Must return 0 on reads. Reserved: Set to 0. Must return 0 on reads.	(Command Register bit Reset Value = 00h CI writes performed. not be resumed. If bit 0
7:4 3 2:1 0	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PCI reads be performed; 1 = PCI reads be performed; 1 = PCI reads be performed; 2 = PCI reads be performed; 3 = PCI reads be performed; 4 = PCI reads be performed; 5 = PCI reads be performed; 6 = PCI reads be performed; 7 = PCI reads be performed; 8 = PCI reads be performed; 9 = PCI reads be performed; 1 = PCI reads be performed;	Reset Value = 00h Cl writes performed. not be resumed. If bit 0 from the drive is dis-
7:4 3 2:1	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PCI reads be performed; 1 = PCI reads be performed; 1 = PCI reads be performed; 2 = PCI reads be performed; 3 = PCI reads be performed; 4 = PCI reads be performed; 5 = PCI reads be performed; 6 = PCI reads be performed; 7 = PCI reads be performed; 8 = PCI reads be performed; 9 = PCI reads be performed; 1 = PCI reads be performed;	(Command Register bit Reset Value = 00h CI writes performed. not be resumed. If bit 0
7:4 3 2:1 0	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PCI This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred of carded. This bit should be reset after completion of data transfer. Reserved	Reset Value = 00h Cl writes performed. not be resumed. If bit 0 from the drive is dis-
7:4 3 2:1 0	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PCI This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred of carded. This bit should be reset after completion of data transfer. Reserved	Reset Value = 00h CI writes performed. not be resumed. If bit 0 from the drive is dis- Reset Value = xxh Reset Value = 00h
Offset 08h 7:4 3 2:1 0 Offset 09h Offset 0Ah	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PCI reads be performed; 2 = PCI reads be performed; 3 = PCI reads be performed; 4 = PCI reads be performed; 5 = PCI reads be performed; 6 = PCI reads be performed; 8 = PCI reads be performed; 9 = PCI reads be performed; 1 = PCI reads be performed;	Reset Value = 00h Cl writes performed. not be resumed. If bit 0 from the drive is dis- Reset Value = xxh Reset Value = 00h
Offset 08h 7:4 3 2:1 0 Offset 09h Offset 0Ah 7	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PCI reads be performed; 1 = PCI reads performed; 1 = PCI read	Reset Value = 00h Cl writes performed. not be resumed. If bit 0 from the drive is dis- Reset Value = xxh Reset Value = 00h
Offset 08h 7:4 3 2:1 0 Offset 09h Offset 0Ah 7 6	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PCI This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred of carded. This bit should be reset after completion of data transfer. Reserved IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independently? 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable.	Reset Value = 00h Cl writes performed. not be resumed. If bit 0 from the drive is dis- Reset Value = xxh Reset Value = 00h
Offset 08h 7:4 3 2:1 0 Offset 09h Offset 0Ah 7 6 5	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PCI This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred for carded. This bit should be reset after completion of data transfer. Reserved IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independently? 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable.	Reset Value = 00h If writes performed. Inot be resumed. If bit 0 from the drive is dis- Reset Value = xxh Reset Value = 00h
Offset 08h 7:4 3 2:1 0 Offset 09h Offset 0Ah 7 6 5 4:3	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PCI This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred (carded. This bit should be reset after completion of data transfer. Reserved IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independently? 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Reserved: Set to 0. Must return 0 on reads. Bus Master Interrupt: Has the bus master detected an interrupt? 0 = No; 1 = Yes.	Reset Value = 00h If writes performed. Inot be resumed. If bit 0 from the drive is dis- Reset Value = xxh Reset Value = 00h

Table 5-19. F2BAR+I/O Offset xxh: IDE Configuration Registers (Continued)

Bit	Description	
0	Bus Master Active (Read Only): Is the bus master active? 0 = No; 1 = Yes.	
Offset 0Bh	Reserved	Reset Value = xxh
Offset 0Ch	-0Fh IDE Bus Master 1 PRD Table Address — Secondary (R/W)	Reset Value = 00000000h
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointed	er for IDE Bus Master 1.
	When written, this register points to the first entry in a PRD table. Once IDE Bus Master $0 = 1$], it loads the pointer and updates this register to the next PRD by adding 08h.	r 1 is enabled (Command Register bit
	When read, this register points to the next PRD.	
1:0	Reserved: Set to 0.	
Offset 10h	-1Fh Reserved	Reset Value = xxh
Offset 20h	-23h Channel 0 Drive 0 PIO Register (R/W)	Reset Value = 0000E132h (Note)
If Offset 24	Ih[31] = 0, Format 0: Selects slowest PIOMODE per channel for commands.	
Format 0 se	ettings for: PIO Mode 0 = 00009172h	
	PIO Mode 1 = 00012171h	
	PIO Mode 2 = 00020080h	
	PIO Mode 3 = 00032010h	
	PIO Mode 4 = 00040010h	
31:20	Reserved: Set to 0.	
19:16	PIOMODE: PIO mode	
15:12	t2I: Recovery time (value + 1 cycle)	
11:8	t3: IDE_IOW# data setup time (value + 1 cycle)	
7:4	t2W: IDE_IOW# width minus t3 (value + 1 cycle)	
3:0	t1: Address Setup Time (value + 1 cycle)	
If Offset 24	h[31] = 1, Format 1: Allows independent control of command and data.	
Format 1 se	ettings for: PIO Mode 0 = 9172D132h	
	PIO Mode 1 = 21717121h	
	PIO Mode 2 = 00803020h	
	PIO Mode 3 = 20102010h	
	PIO Mode 4 = 00100010h	
31:28	t2IC: Command cycle recovery time (value + 1 cycle)	
27:24	t3C: Command cycle IDE_IOW# data setup (value + 1 cycle)	
23:20	t2WC: Command cycle IDE_IOW# pulse width minus t3 (value + 1 cycle)	
19:16	t1C: Command cycle address setup time (value + 1 cycle)	
15:12	t2ID: Data cycle recovery time (value + 1 cycle)	
11:8	t3D: Data cycle IDE_IOW# data setup (value + 1 cycle)	
7:4	t2WD: Data cycle IDE_IOW# pulse width minus t3 (value + 1 cycle)	
3:0	t1D: Data cycle address Setup Time (value + 1 cycle)	
Note: The	reset value of this register is not a valid PIO Mode.	

Table 5-19. F2BAR+I/O Offset xxh: IDE Configuration Registers (Continued)

Bit	Description Description	· · · · · · · · · · · · · · · · · · ·
Offset 24h	-27h Channel 0 Drive 0 DMA Control Register (R/W)	Reset Value = 00077771h
	D, Multiword DMA : Multiword DMA Mode 0 = 00077771h Multiword DMA Mode 1 = 00012121h Multiword DMA Mode 2 = 00002020h	
31	PIO Mode Format: 0 = Format 0; 1 = Format 1.	
30:21	Reserved: Set to 0.	
20	DMA Operation: 0 = Multiword DMA; 1 = Ultra DMA.	
19:16	tKR: IDE_IOR# recovery time (4-bit) (value + 1 cycle)	
15:12	tDR: IDE_IOR# pulse width (value + 1 cycle)	
11:8	tKW: IDE_IOW# recovery time (4-bit) (value + 1 cycle)	
7:4	tDW: IDE_IOW# pulse width (value + 1 cycle)	
3:0	tM: IDE_CS0#/CS1# to IDE_IOR#/IOW# setup; IDE_CS0#/CS1# setup to IDE_DACK0#/DAC	K1#
	I, Ultra DMA Ultra DMA Mode 0 = 00921250h Ultra DMA Mode 1 = 00911140h Ultra DMA Mode 2 = 00911030h	
31	PIO Mode Format: 0 = Format 0; 1 = Format 1.	
30:21	Reserved: Set to 0.	
20	DMA Operation: 0 = Multiword DMA, 1 = Ultra DMA.	
19:16	tCRC: CRC setup UDMA in IDE_DACK# (value + 1 cycle) (for host terminate CRC setup = tN	/ILI + tSS)
15:12	tSS: UDMA out (value + 1 cycle)	,
11:8	tCYC: Data setup and cycle time UDMA out (value + 2 cycles)	
7:4	tRP: Ready to pause time (value + 1 cycle). Note: tRFS + 1 tRP on next clock.	
3:0	tACK: IDE_CS0#/CS1# setup to IDE_DACK0#/DACK1# (value + 1 cycle)	
Offset 28h	-2Bh Channel 0 Drive 1 PIO Register (R/W)	Reset Value = 0000E132h
Channel 0	Drive 1 Programmed I/O Control Register: Refer to F2BAR+I/O Offset 20h for bit description	ns.
Offset 2CI	-2Fh Channel 0 Drive 1 DMA Control Register (R/W)	Reset Value = 00077771h
	Drive 1 MDMA/UDMA Control Register: Refer to F2BAR+I/O Offset 24h for bit descriptions. e the PIO Mode Format is selected in F2BAR+I/O Offset 24h[31], bit 31 of this register is defin	ed as reserved, read only.
Offset 30h	-33h Channel 1 Drive 0 PIO Register (R/W)	Reset Value = 0000E132h
Channel 1	Drive 0 Programmed I/O Control Register: Refer to F2BAR+I/O Offset 20h for bit description	ns.
Offset 34h	-37h Channel 1 Drive 0 DMA Control Register (R/W)	Reset Value = 00077771h
	Drive 0 MDMA/UDMA Control Register: Refer to F2BAR+I/O Offset 24h for bit descriptions. e the PIO Mode Format is selected in F2BAR+I/O Offset 24h[31], bit 31 of this register is defin	ed as reserved, read only.
Offset 38h	-3Bh Channel 1 Drive 1 PIO Register (R/W)	Reset Value = 0000E132h
Channel 1	Drive 1 Programmed I/O Control Register: Refer to F2BAR+I/O Offset 20h for bit description	ns
Offset 3CI	-3Fh Channel 1 Drive 1 DMA Control Register (R/W)	Reset Value = 00077771h
	Drive 1 MDMA/UDMA Control Register: Refer to F2BAR+I/O Offset 24h for bit descriptions. e the PIO Mode Format is selected in F2BAR+I/O Offset 24h[31], bit 31 of this register is defin	ed as reserved, read only.
Offset 40h	-FFh Reserved	Reset Value = xxh

5.3.4 XpressAUDIO™ Subsystem Registers - Function 3

The register space for the XpressAUDIO™ subsystem is divided into two sections. The first section is used to configure the PCI portion of the audio interface hardware. A Base Address Register at F3 Index 10h (F3BAR) points to the base address of where the second portion of the register space is located. This second section contains the control and data registers of the audio interface.

Table 5-20 shows the PCI header registers of F3. The memory mapped registers accessed through F3BAR are shown in Table 5-21.

If the F3 Audio Configuration Trap bit (F0 Index 42h[0]) is enabled, an access to the PCI header registers causes an SMI. Access through F3BAR is not affected by this bit.

Table 5-20. F3 Index xxh: PCI Header Registers for XpressAUDIO™ Subsystem

Bit	Description	
Index 00h-01h Vendor Identification Register (RO) Reset Value = 1		Reset Value = 1078h
Index 02h-03h Device Identification Register (RO) Reset Value		Reset Value = 0103h
Index 04h	ndex 04h-05h PCI Command Register (R/W) Reset Value = 00	
15:3	Reserved (Read Only)	
2	Reserved (Read/Write)	
1	Memory Space : Allow CS5530A to respond to memory cycles from the PCI bus. 0 = Disable; 1 = Enable. This bit must be enabled to access memory offsets through F3BAR (F3 Index 10h).	
0	Reserved (Read Only)	
Index 06h	07h PCI Status Register (RO)	Reset Value = 0280h
Index 08h	Device Revision ID Register (RO)	Reset Value = 00h
Index 09h	0Bh PCI Class Code Register (RO)	Reset Value = 040100h
Index 0Ch	Index 0Ch PCI Cache Line Size Register (RO) Reset Value =	
Index 0Dh	0Dh PCI Latency Timer Register (RO) Reset Value = 00	
Index 0Eh	ndex 0Eh PCI Header Type (RO) Reset Value =00	
Index 0Fh	PCI BIST Register (RO)	Reset Value = 00h
Index 10h	13h Base Address Register - F3BAR (R/W)	Reset Value = 00000000h
This register sets the base address of the memory mapped audio interface control register block. This is a 128-byte block of registers used to control the audio FIFO and codec interface, as well as to support SMIs produced by VSA technology. Bits [6:0] are read only (0000000), indicating a 128-byte memory address range. Refer to Table 5-21 for the bit formats and reset values of the XpressAUDIO subsystem support registers.		
31:7	Audio Interface Base Address	
6:0	Address Range (Read Only)	
Index 14h	3Fh Reserved	Reset Value = 00h
Index 40h-FFh Reserved Reset Value		Reset Value = xxh

Table 5-21. F3BAR+Memory Offset xxh: XpressAUDIO™ Subsystem Configuration Registers

Bit	Description	
Offset 00h	-03h Codec GPIO Status Register (R/W)	Reset Value = 00100000h
31	Codec GPIO Interface: 0 = Disable; 1 = Enable.	
30	Codec GPIO SMI: Allow codec GPIO interrupt to generate an SMI. 0 = Disable; 1= Enab	le.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1]. Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[1].	
29:21	Reserved: Set to 0.	
20	Codec GPIO Status Valid (Read Only): Is the status read valid? 0 = Yes; 1 = No.	
19:0	Codec GPIO Pin Status (Read Only): This is the GPIO pin status that is received from t signal.	he codec in slot 12 on SDATA_IN
Offset 04h	-07h Codec GPIO Control Register (R/W)	Reset Value = 00000000h
31:20	Reserved: Set to 0.	
19:0	Codec GPIO Pin Data: This is the GPIO pin data that is sent to the codec in slot 12 on the	ne SDATA_OUT signal.
Offset 08h	-0Bh Codec Status Register (R/W)	Reset Value = 00000000h
31:24	Codec Status Address (Read Only): Address of the register for which status is being re slot 1 bits [19:12].	turned. This address comes from
23	Codec Serial INT SMI: Allow codec serial interrupt to generate an SMI. 0 = Disable; 1= E	Enable.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1]. Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[1].	
22	SYNC Pin: Selects SYNC pin level. 0 = Low; 1 = High.	
21	Enable SDATA_IN2: Pin AE24 function selection. 0 = GPIO1; 1 = SDATA_IN2.	
	For this pin to function as SDATA_IN2, it must first be configured as an input (F0 Index 90	h[1] = 0).
20	Audio Bus Master 5 AC97 Slot Select: Selects slot for Audio Bus Master 5 to receive da	ata. 0 = Slot 6; 1 = Slot 11.
19	Audio Bus Master 4 AC97 Slot Select: Selects slot for Audio Bus Master 4 to transmit d	lata. 0 = Slot 6; 1 = Slot 11.
18	Reserved: Set to 0.	
17	Status Tag (Read Only): Determines if the status in bits [15:0] is new or not. 0 = Not new	v; 1 = New.
16	Codec Status Valid (Read Only): Is the status in bits [15:0] valid? 0 = No; 1 = Yes.	
15:0	Codec Status (Read Only): This is the codec status data that is received from the codec [19:4] are used from slot 2.	c in slot 2 on SDATA_IN. Only bits
Offset 0Ch	-0Fh Codec Command Register (R/W)	Reset Value = 00000000h
31:24	Codec Command Address: Address of the codec control register for which the command in slot 1 bits [19:12] on SDATA_OUT.	d is being sent. This address goes
23:22	CS5530A Codec Communication: Selects which codec to communicate with. 00 = Primary codec 10 = Third codec 11 = Fourth codec	
	Note: 00 and 01 are the only valid settings for these bits.	
21:17	Reserved: Set to 0.	
16	Codec Command Valid: Is the command in bits [15:0] valid? 0 = No; 1 = Yes.	hh
45.0	This bit is set by hardware when a command is loaded. It remains set until the command	
15:0	Codec Command: This is the command being sent to the codec in bits [19:12] of slot 2 c	
Offset 10h		Reset Value = 0000h
15:8	Reserved: Set to 0.	
7	Audio Bus Master 5 SMI Status (Read to Clear): SMI was caused by an event occurrin 0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Mem SMI generation is enabled when Audio Bus Master 5 is enabled (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset generated generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset generated gener	48h[0] = 1). An SMI is then

Bit	Description
6	Audio Bus Master 4 SMI Status (Read to Clear): SMI was caused by an event occurring on Audio Bus Master 4? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 4 is enabled (F3BAR+Memory Offset 40h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 41h[0] = 1).
5	Audio Bus Master 3 SMI Status (Read to Clear): SMI was caused by an event occurring on Audio Bus Master 3? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 3 is enabled (F3BAR+Memory Offset 38h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 39h[0] = 1).
4	Audio Bus Master 2 SMI Status (Read to Clear): SMI was caused by an event occurring on Audio Bus Master 2? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 2 is enabled (F3BAR+Memory Offset 30h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 31h[0] = 1).
3	Audio Bus Master 1 SMI Status (Read to Clear): SMI was caused by an event occurring on Audio Bus Master 1? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 1 is enabled (F3BAR+Memory Offset 28h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 29h[0] = 1).
2	Audio Bus Master 0 SMI Status (Read to Clear): SMI was caused by an event occurring on Audio Bus Master 0? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 0 is enabled (F3BAR+Memory Offset 20h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 21h[0] = 1).
1	Codec Serial or GPIO Interrupt SMI Status (Read to Clear): SMI was caused by a serial or GPIO interrupt from codec? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation enabling for codec serial interrupt: F3BAR+Memory Offset 08h[23] = 1. SMI generation enabling for codec GPIO interrupt: F3BAR+Memory Offset 00h[30] = 1.
0	I/O Trap SMI Status (Read to Clear): SMI was caused by an I/O trap? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The next level (third level) of SMI status reporting is at F3BAR+Memory Offset 14h. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	ading this register clears the status bits. Note that bit 0 has another level (third) of SMI status reporting.
	ead-only "Mirror" version of this register exists at F3BAR+Memory Offset 12h. If the value of the register must be read withou aring the SMI source (and consequently deasserting SMI), the Mirror register may be read instead.
Offset 12I	n-13h Second Level Audio SMI Status Mirror Register (RO) Reset Value = 0000h
15:8	Reserved: Set to 0.
7	Audio Bus Master 5 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 5? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 5 is enabled (F3BAR+Memory Offset 48h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 49h[0] = 1).
6	Audio Bus Master 4 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 4? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1]. SMI generation is enabled when Audio Bus Master 4 is enabled (F3BAR+Memory Offset 40h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 41h[0] = 1).
5	Audio Bus Master 3 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 3? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 3 is enabled (F3BAR+Memory Offset 38h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 39h[0] = 1).

Register Descriptions Revision 1.1 AMD

Table 5-21. F3BAR+Memory Offset xxh: XpressAUDIO™ Subsystem Configuration Registers (Contin-

Bit	Description
4	Audio Bus Master 2 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 2? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 2 is enabled (F3BAR+Memory Offset 30h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 31h[0] = 1).
3	Audio Bus Master 1 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 1? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 1 is enabled (F3BAR+Memory Offset 28h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 29h[0] = 1).
2	Audio Bus Master 0 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 0? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 0 is enabled (F3BAR+Memory Offset 20h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 21h[0] = 1).
1	Codec Serial or GPIO Interrupt SMI Status (Read Only): SMI was caused by a serial or GPIO interrupt from codec? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation enabling for codec serial interrupt: F3BAR+Memory Offset 08h[23] = 1. SMI generation enabling for codec GPIO interrupt: F3BAR+Memory Offset 00h[30] = 1.
0	I/O Trap SMI Status (Read Only): SMI was caused by an I/O trap? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The next level (third level) of SMI status reporting is at F3BAR+Memory Offset 14h. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
Note: Rea	ding this register does not clear the status bits. See F3BAR+Memory Offset 10h.
Offset 14h	-17h I/O Trap SMI and Fast Write Status Register (RO/RC) Reset Value = 00000000h
31:24	Fast Path Write Even Access Data (Read Only): These bits contain the data from the last Fast Path Write Even access. These bits change only on a fast write to an even address.
23:16	Fast Path Write Odd Access Data (Read Only): These bits contain the data from the last Fast Path Write Odd access. These bits change on a fast write to an odd address, and also on any non-fast write.
15	Fast Write A1 (Read Only): This bit contains the A1 value for the last Fast Write access.
14	Read or Write I/O Access (Read Only): Last trapped I/O access was a read or a write? 0 = Read; 1 = Write.
13	Sound Card or FM Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the sound card or FM I/O Trap? 0 = No; 1 = Yes. (Note)
	Fast Path Write must be enabled, F3BAR+Memory Offset 18h[11] = 1, for the SMI to be reported here. If Fast Path Write is disabled, the SMI is reported in bit 10 of this register.
	This is the third level of SMI status reporting.
	The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation enabling is at F3BAR+Memory Offset 18h[2].
12	DMA Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the DMA I/O Trap? 0 = No; 1 = Yes. (Note)
	This is the third level of SMI status reporting.
	The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0].
	The top level is reported at F1BAR+Memory Offset 00h/02h[1]. SMI generation enabling is at F3BAR+Memory Offset 18h[8:7].
11	MPU Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the MPU I/O Trap?
	0 = No; 1 = Yes. (Note) This is the third level of SMI status reporting.
	The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0].
	The top level is reported at F1BAR+Memory Offset 00h/02h[1].
Ī	SMI generation enabling is at F3BAR+Memory Offset 18h[6:5].

Bit	Description		
10	Sound Card or FM Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the sound card or FM I/		
	O Trap? 0 = No; 1 = Yes. (Note)		
	Fast Path Write must be disabled, F3BAR+Memory Offset 18h[11] = 0, for the SMI to be reported here. If Fast Path Write is enabled, the SMI is reported in bit 13 of this register.		
	This is the third level of SMI status reporting.		
	The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0].		
	The top level is reported at F1BAR+Memory Offset 00h/02h[1].		
	SMI generation enabling is at F3BAR+Memory Offset 18h[2].		
9:0	X-Bus Address (Read Only): Bits [9:0] contain the captured ten bits of X-Bus address.		
	the four SMI status bits (bits [13:10]), if the activity was a fast write to an even address, no SMI is generated regardless of the A, MPU, or sound card status. If the activity was a fast write to an odd address, an SMI is generated but bit 13 is set to a 1.		
Offset 18h	n-19h I/O Trap SMI Enable Register (R/W) Reset Value = 0000h		
15:12	Reserved: Set to 0.		
11	Fast Path Write Enable: Fast Path Write (an SMI is not generated on certain writes to specified addresses).		
	0 = Disable; 1 = Enable.		
	In Fast Path Write, the CS5530A responds to writes to the following addresses: 388h, 38Ah and 38Bh; 2x0h, 2x2h, and 2x8h.		
10:9	Fast Read: These two bits hold part of the response that the CS5530A returns for reads to several I/O locations.		
8	High DMA I/O Trap: 0 = Disable; 1 = Enable.		
	If this bit is enabled and an access occurs at I/O Port C0h-DFh, an SMI is generated.		
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].		
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].		
	Third level SMI status is reported at F3BAR+Memory Offset 14h[12].		
7	Low DMA I/O Trap: 0 = Disable; 1 = Enable.		
	If this bit is enabled and an access occurs at I/O Port 00h-0Fh, an SMI is generated.		
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1]. Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. Third level SMI status is reported at F3BAR+Memory Offset 14h[12].		
6	High MPU I/O Trap: 0 = Disable; 1 = Enable.		
	If this bit is enabled and an access occurs at I/O Port 330h and 331h, an SMI is generated.		
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].		
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].		
	Third level SMI status is reported at F3BAR+Memory Offset 14h[11].		
5	Low MPU I/O Trap: I0 = Disable; 1 = Enable.		
	If this bit is enabled and an access occurs at I/O Port 300h and 301h, an SMI is generated.		
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1]. Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].		
	Third level SMI status is reported at F3BAR+Memory Offset 14h[11].		
4	Fast Path Read Enable/SMI Disable: Read Fast Path (an SMI is not generated on reads from specified addresses). 0 = Disable: 1 = Enable.		
	In Fast Path Read the CS5530A responds to reads of the following addresses: 388h-38Bh; 2x0h, 2x1h, 2x2h, 2x3h, 2x8h		
	and 2x9h.		
	Note that if neither sound card nor FM I/O mapping is enabled, then status read trapping is not possible.		
3	FM I/O Trap: 0 = Disable; 1 = Enable. If this hit is anabled and an access accurs at I/O Part 399h to 39Ph, an SMI is generated.		
	If this bit is enabled and an access occurs at I/O Port 388h to 38Bh, an SMI is generated. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].		
	Second level SMI status is reported at F1BAR+Memory Offset 10h/12h[0].		
2	Sound Card I/O Trap: 0 = Disable; 1 = Enable		
=	If this bit is enabled and an access occurs in the address ranges selected by bits [1:0], an SMI is generated.		
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].		
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].		
	Third level SMI status is reported at F3BAR+Memory Offset 14h[10].		
1:0	Sound Card Address Range Select: These bits select the address range for the sound card I/O trap.		
	00 = I/O Port 220h-22Fh		
	01 = I/O Port 240h-24Fh		

Table 5-21. F3BAR+Memory Offset xxh: XpressAUDIO™ Subsystem Configuration Registers (Contin-

= 0000h
= 0000h
= xxxxh
= XXXXII

Revision 1.1 Register Descriptions

Bit	Description			
Offset 20h	Audio Bus Master 0 Command Register (R/W)	Reset Value = 00h		
Audio Bus	Master 0: Output to Codec; 32-Bit; Left and Right Channels; Slots 3 and 4.			
7:4	Reserved: Set to 0. Must return 0 on reads.			
3	Read or Write Control: Set the transfer direction of Audio Bus Master 0. 0 = PCI reads performed; 1 = PCI writes performed.			
	This bit must be set to 0 (read) and should not be changed when the bus master is active.			
2:1	Reserved: Set to 0. Must return 0 on reads.			
0	Bus Master Control: Controls the state of the Audio Bus Master 0. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the begin data transfers. When writing this bit to 0, the begin data transfers. When writing this bit to 0, the begin data transfers are possibility of the bus master state machine crashing. The only recovery from this condition is a PC	e behavior; including the		
Note: Mus	t be read and written as a BYTE.			
Offset 21h	Audio Bus Master 0 SMI Status Register (RC)	Reset Value = 00h		
Audio Bus	Master 0: Output to Codec; 32-Bit; Left and Right Channels; Slots 3 and 4.			
7:4	Reserved (Read to Clear)			
1	Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has cle 0 = No; 1 = Yes.			
	If hardware encounters a second EOP (end of page) before software has cleared the first, it causes until this register is read to clear the error.			
0	End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRI 0 = No; 1 = Yes.	D table (bit 30)?		
Note: Mus	t be read and written as a BYTE.			
Offset 22h	23h Reserved	Reset Value = xxh		
Offset 24h	27h Audio Bus Master 0 PRD Table Address (R/W) Re	set Value = 00000000h		
Audio Bus	Master 0: Output to Codec; 32-Bit; Left and Right Channels; Slots 3 and 4.			
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio 6	Bus Master 0.		
	When written, this register points to the first entry in a PRD table. Once Audio Bus Master 0 is enal bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h.	bled (Command Register		
4.0				
1:0	When read, this register points to the next PRD.			
	Reserved: Set to 0.			
Offset 28h	Reserved: Set to 0. Audio Bus Master 1 Command Register (R/W)	Reset Value = 00h		
	Reserved: Set to 0.	Reset Value = 00h		
Audio Bus 7:4	Reserved: Set to 0. Audio Bus Master 1 Command Register (R/W)	Reset Value = 00h		
Audio Bus	Reserved: Set to 0. Audio Bus Master 1 Command Register (R/W) Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 1. 0 = PCI reads performed 1 = PCI writes performed.			
Audio Bus 7:4 3	Reserved: Set to 0. Audio Bus Master 1 Command Register (R/W) Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 1. 0 = PCI reads performed. 1 = PCI writes performed. This bit must be set to 1 (write) and should not be changed when the bus master is active.			
Audio Bus 7:4 3	Reserved: Set to 0. Audio Bus Master 1 Command Register (R/W) Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 1. 0 = PCI reads performed 1 = PCI writes performed. This bit must be set to 1 (write) and should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads.			
Audio Bus 7:4 3	Reserved: Set to 0. Audio Bus Master 1 Command Register (R/W) Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 1. 0 = PCI reads performed. 1 = PCI writes performed. This bit must be set to 1 (write) and should not be changed when the bus master is active.	d; us master must be either ble behavior including the		
Audio Bus 7:4 3 2:1 0	Reserved: Set to 0. Audio Bus Master 1 Command Register (R/W) Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 1. 0 = PCI reads performed. 1 = PCI writes performed. This bit must be set to 1 (write) and should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the Audio Bus Master 1. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bepaused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictable.	d; us master must be either ble behavior including the		
Audio Bus 7:4 3 2:1 0	Reserved: Set to 0. Audio Bus Master 1 Command Register (R/W) Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 1. 0 = PCI reads performed. This bit must be set to 1 (write) and should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the Audio Bus Master 1. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the be paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictate possibility of the bus master state machine crashing. The only recovery from this condition is a PC	d; us master must be either ble behavior including the		
Audio Bus 7:4 3 2:1 0 Note: Mus Offset 29h	Audio Bus Master 1 Command Register (R/W) Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 1. 0 = PCI reads performed 1 = PCI writes performed. This bit must be set to 1 (write) and should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the Audio Bus Master 1. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the begaused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictate possibility of the bus master state machine crashing. The only recovery from this condition is a PC to be read and written as a BYTE.	us master must be either ble behavior including the Il reset.		
Audio Bus 7:4 3 2:1 0 Note: Mus Offset 29h	Audio Bus Master 1 Command Register (R/W) Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 1. 0 = PCI reads performed. 1 = PCI writes performed. This bit must be set to 1 (write) and should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the Audio Bus Master 1. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the becaused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictate possibility of the bus master state machine crashing. The only recovery from this condition is a PC to be read and written as a BYTE. Audio Bus Master 1 SMI Status Register (RC)	us master must be either ble behavior including the Il reset.		
Audio Bus 7:4 3 2:1 0 Note: Mus Offset 29h Audio Bus	Audio Bus Master 1 Command Register (R/W) Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 1. 0 = PCI reads performed. 1 = PCI writes performed. This bit must be set to 1 (write) and should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the Audio Bus Master 1. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the broaded or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictate possibility of the bus master state machine crashing. The only recovery from this condition is a PC to be read and written as a BYTE. Audio Bus Master 1 SMI Status Register (RC) Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4.	us master must be either ble behavior including the lareset. Reset Value = 00h eared the first?		

Bit	Description	3 (
0	End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the	PRD table (bit 30)?
	0 = No; 1 = Yes.	
Note: Mus	t be read and written as a BYTE.	
Offset 2Ah	-2Bh Reserved	Reset Value = xxh
Offset 2Ch	-2Fh Audio Bus Master 1 PRD Table Address (R/W)	Reset Value = 00000000h
Audio Bus	Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4.	
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Au	
	When written, this register points to the first entry in a PRD table. Once Audio Bus Master 1 is bit $0 = 1$], it loads the pointer and updates this register to the next PRD by adding 08h.	enabled (Command Register
	When read, this register points to the next PRD.	
1:0	Reserved: Set to 0.	
Offset 30h	Audio Bus Master 2 Command Register (R/W)	Reset Value = 00h
Audio Bus	Master 2: Output to Codec; 16-Bit; Slot 5.	
7:4	Reserved: Set to 0. Must return 0 on reads.	
3	Read or Write Control: Set the transfer direction of Audio Bus Master 2. 0 = PCI reads perfo 1 = PCI writes performed.	rmed;
	This bit must be set to 0 (read) and should not be changed when the bus master is active.	
2:1	Reserved: Set to 0. Must return 0 on reads.	
0	Bus Master Control: Controls the state of the Audio Bus Master 2. 0 = Disable; 1 = Enable.	
	Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, t paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpreconssibility of the bus master state machine crashing. The only recovery from this condition is	lictable behavior including the
Note: Mus	t be read and written as a BYTE.	
Offset 31h	Audio Bus Master 2 SMI Status Register (RC)	Reset Value = 00h
Audio Bus	Master 2: Output to Codec; 16-Bit; Slot 5.	
7:4	Reserved (Read to Clear)	
1	Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has $0 = No$; $1 = Yes$.	as cleared the first?
	If hardware encounters a second EOP (end of page) before software has cleared the first, it cauntil this register is read to clear the error.	uses the bus master to pause
0	End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the $0 = No$; $1 = Yes$.	PRD table (bit 30)?
Note: Mus	t be read and written as a BYTE.	
Offset 32h	33h Reserved	Reset Value = xxh
Offset 34h	37h Audio Bus Master 2 PRD Table Address (R/W)	Reset Value = 00000000h
Audio Bus	Master 2: Output to Codec; 16-Bit; Slot 5.	
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for At When written, this register points to the first entry in a PRD table. Once Audio Bus Master 2 is bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.	
1:0	Reserved: Set to 0.	
Offset 38h	Audio Bus Master 3 Command Register (R/W)	Reset Value = 00h
Audio Bus	Master 3: Input from Codec; 16-Bit; Slot 5.	
7:4	Reserved: Set to 0. Must return 0 on reads.	
3	Read or Write Control: Set the transfer direction of Audio Bus Master 3. 0 = PCI reads perfo 1 = PCI writes performed.	rmed;
	This bit must be set to 1 (write) and should not be changed when the bus master is active.	

Revision 1.1 Register Descriptions

Bit	Description		
0	Bus Master Control: Controls the state of the Audio Bus Master 3. 0 = Disable; 1 = Enable.		
	Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredict possibility of the bus master state machine crashing. The only recovery from this condition is a F	able behavior including the	
Note: Mus	t be read and written as a BYTE.		
Offset 39h	Audio Bus Master 3 SMI Status Register (RC)	Reset Value = 00h	
Audio Bus	Master 3: Input from Codec; 16-Bit; Slot 5.		
7:4	Reserved (Read to Clear)		
1	Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has cleared the first? 0 = No; 1 = Yes. If hardware encounters a second EOP (end of page) before software has cleared the first, it causes the bus master to paus		
0	until this register is read to clear the error. End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the P 0 = No; 1 = Yes.	RD table (bit 30)?	
Note: Mus	t be read and written as a BYTE.		
Offset 3Ah	-3Bh Reserved	Reset Value = xxh	
Offset 3Ch	-3Fh Audio Bus Master 3 PRD Table Address (R/W) F	Reset Value = 00000000h	
Audio Bus	Master 3: Input from Codec; 16-Bit; Slot 5.		
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audi	o Bus Master 3.	
	When written, this register points to the first entry in a PRD table. Once Audio Bus Master 3 is er bit $0 = 1$], it loads the pointer and updates this register to the next PRD by adding 08h.		
	When read, this register points to the next PRD.		
1:0	Reserved: Set to 0.		
Offset 40h	Audio Bus Master 4 Command Register (R/W)	Reset Value = 00h	
Audio Bus	Master 4: Output to Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[19] selects slot).		
7:4	Reserved: Set to 0. Must return 0 on reads.		
7:4 3		ed;	
	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 4. 0 = PCI reads perform	ed;	
	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 4. 0 = PCI reads perform 1 = PCI writes performed. This bit must be set to 0 (read) and should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads.	ed;	
3	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 4. 0 = PCI reads perform 1 = PCI writes performed. This bit must be set to 0 (read) and should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the Audio Bus Master 4. 0 = Disable; 1 = Enable.		
3 2:1	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 4. 0 = PCI reads perform 1 = PCI writes performed. This bit must be set to 0 (read) and should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads.	bus master must be either able behavior including the	
3 2:1 0	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 4. 0 = PCI reads perform 1 = PCI writes performed. This bit must be set to 0 (read) and should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the Audio Bus Master 4. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unprediction.	bus master must be either able behavior including the	
3 2:1 0	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 4. 0 = PCI reads perform 1 = PCI writes performed. This bit must be set to 0 (read) and should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the Audio Bus Master 4. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredict possibility of the bus master state machine crashing. The only recovery from this condition is a Fernance of the Audio Bus Master 4. 0 = Disable; 1 = Enable.	bus master must be either able behavior including the	
3 2:1 0 Note: Mus	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 4. 0 = PCI reads perform 1 = PCI writes performed. This bit must be set to 0 (read) and should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the Audio Bus Master 4. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredict possibility of the bus master state machine crashing. The only recovery from this condition is a Fe to be read and written as a BYTE.	bus master must be either be behavior including the PCI reset.	
3 2:1 0 Note: Mus	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 4. 0 = PCI reads perform 1 = PCI writes performed. This bit must be set to 0 (read) and should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the Audio Bus Master 4. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredict possibility of the bus master state machine crashing. The only recovery from this condition is a Fe to be read and written as a BYTE. Audio Bus Master 4 SMI Status Register (RC)	bus master must be either be behavior including the PCI reset.	
3 2:1 0 Note: Mus Offset 41h Audio Bus	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 4. 0 = PCI reads perform 1 = PCI writes performed. This bit must be set to 0 (read) and should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the Audio Bus Master 4. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredict possibility of the bus master state machine crashing. The only recovery from this condition is a Feat and written as a BYTE. Audio Bus Master 4 SMI Status Register (RC) Master 4: Output to Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[19] selects slot).	bus master must be either able behavior including the PCI reset. Reset Value = 00h	
3 2:1 0 Note: Mus Offset 41h Audio Bus 7:4	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 4. 0 = PCI reads perform 1 = PCI writes performed. This bit must be set to 0 (read) and should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the Audio Bus Master 4. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredict possibility of the bus master state machine crashing. The only recovery from this condition is a Fet be read and written as a BYTE. Audio Bus Master 4 SMI Status Register (RC) Master 4: Output to Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[19] selects slot). Reserved (Read to Clear) Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has	bus master must be either able behavior including the PCI reset. Reset Value = 00h cleared the first?	
2:1 0 Note: Mus Offset 41h Audio Bus 7:4	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 4. 0 = PCI reads perform 1 = PCI writes performed. This bit must be set to 0 (read) and should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the Audio Bus Master 4. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredict possibility of the bus master state machine crashing. The only recovery from this condition is a Fet be read and written as a BYTE. Audio Bus Master 4 SMI Status Register (RC) Master 4: Output to Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[19] selects slot). Reserved (Read to Clear) Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has 0 = No; 1 = Yes. If hardware encounters a second EOP (end of page) before software has cleared the first, it cause	bus master must be either able behavior including the PCI reset. Reset Value = 00h cleared the first?	
3 2:1 0 Note: Mus Offset 41h Audio Bus 7:4 1	Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 4. 0 = PCI reads perform 1 = PCI writes performed. This bit must be set to 0 (read) and should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the Audio Bus Master 4. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredict possibility of the bus master state machine crashing. The only recovery from this condition is a Feb to be read and written as a BYTE. Audio Bus Master 4 SMI Status Register (RC) Master 4: Output to Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[19] selects slot). Reserved (Read to Clear) Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has 0 = No; 1 = Yes. If hardware encounters a second EOP (end of page) before software has cleared the first, it caus until this register is read to clear the error. End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the Page (Read to Clear):	bus master must be either able behavior including the PCI reset. Reset Value = 00h cleared the first?	

Register Descriptions Revision 1.1

Bit	Description	
Offset 44	n-47h Audio Bus Master 4 PRD Table Address (R/W)	Reset Value = 00000000h
Audio Bus	Master 4: Output to Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[19] selects slot)	
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 4. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 4 is enabled (Command Registe bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.	
1:0	Reserved: Set to 0.	
Offset 48	Audio Bus Master 5 Command Register (R/W)	Reset Value = 00h
Audio Bus	Master 5: Input from Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[20] selects slot).
7:4	Reserved: Set to 0. Must return 0 on reads.	
3	Read or Write Control: Set the transfer direction of Audio Bus Master 5. 0 = PCI reads performed; 1 = PCI writes performed.	
	This bit must be set to 1 (write) and should not be changed when the bus master is active.	
2:1	Reserved: Set to 0. Must return 0 on reads.	
0	Bus Master Control: Controls the state of the Audio Bus Master 5. 0 = Disable; 1 = Enable Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0 paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unprossibility of the bus master state machine crashing. The only recovery from this condition in), the bus master must be either edictable behavior including the
Note: Mu	st be read and written as a BYTE.	
Offset 49	Audio Bus Master 5 SMI Status Register (RC)	Reset Value = 00h
Audio Bus	Master 5: Input from Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[20] selects slot).
7:4	Reserved (Read to Clear)	
1	Bus Master Error (Read to Clear): Hardware encountered a second EOP before software $0 = No; 1 = Yes$.	has cleared the first?
	If hardware encounters a second EOP (end of page) before software has cleared the first, it until this register is read to clear the error.	causes the bus master to pause
0	End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in t 0 = No; 1 = Yes.	he PRD table (bit 30)?
Note: Mu	st be read and written as a BYTE.	
Offset 4A	h-4Bh Reserved	Reset Value = xxh
Offset 4C	h-4Fh Audio Bus Master 5 PRD Table Address (R/W)	Reset Value = 00000000h
Audio Bus	Master 5: Input from Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[20] selects slot).
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for When written, this register points to the first entry in a PRD table. Once Audio Bus Master 5 bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.	
1:0	Reserved: Set to 0.	

5.3.5 Video Controller Registers - Function 4

The register space for the video controller is divided into two sections. The first section is used to configure the PCI portion of the controller. A Base Address Register at F4 Index 10h (F4BAR) points to the base address of where the second portion of the register space is located. The second section contains the registers used by the video controller to carry out video operations.

Table 5-22 shows the PCI header registers of F4. The memory mapped registers accessed through F4BAR, and shown in Table 5-23, must be accessed using DWORD operations. When writing to one of these 32-bit registers, all four bytes must be written.

If the F4 Video Configuration Trap bit (F0 Index 42h[1]) is set, access to the PCI header registers causes an SMI. Access through F4BAR is not affected by this bit.

Table 5-22. F4 Index xxh: PCI Header Registers for Video Controller Configuration

	_		
Bit	Description		
Index 00h-01h Vendor Identification Register (RO)		gister (RO) Reset Value = 107	
Index 02h-03h Device Identification Register (RO)		gister (RO) Reset Value = 010	
Index 04h-05h PCI Command Register (R/W)		er (R/W) Reset Value = 000	
15:2	Reserved (Read Only)		
1	Memory Space: Allow CS5530A to respond to memory cycles from the PCI bus. 0 = Disable; 1 = Enable. This bit must be enabled to access memory offsets through F4BAR (F4 Index 10h).		
0	Reserved (Read Only)		
Index 06h	n-07h PCI Status Register	(RO) Reset Value = 028	
Index 08h	Device Revision ID Reg	ister (RO) Reset Value = 0	
Index 09h	n-0Bh PCI Class Code Regis	ter (RO) Reset Value = 03000	
Index 0Ch	PCI Cache Line Size Reg	gister (RO) Reset Value = 0	
Index 0Dh	n PCI Latency Timer Regi	ster (RO) Reset Value = 0	
Index 0Eh	PCI Header Type (RO) Reset Value = 0	
Index 0Fh	PCI BIST Register	(RO) Reset Value = 0	
Index 10h	n-13h Base Address Register - F	F4BAR (R/W) Reset Value = 0000000	
•	ter sets the base address of the memory mapped video controlle a 4 KB memory address range. Refer to Table 5-23 for the video	, ,	
31:12	Video Controller and Clock Control Base I/O Address		
11:0	Address Range (Read Only)		
Index 14h	n-3Fh Reserved	Reset Value = 0	
Index 40h	n-FFh Reserved	Reset Value = x	

Table 5-23. F4BAR+Memory Offset xxh: Video Controller Configuration Registers

Bit	Description				
Offset 00h	-03h Video Configurati	on Register (R/W)	Reset Value = 00000000h		
31	Reserved: Set to 0				
30	High Speed Timing for Video Interface: High speed timings for the video interface. 0 = Disable; 1= Enable.				
	If bit 30 is enabled, bit 25 should be set to 0.				
29	16-bit Video Interface: Allow video interface to be 16	bits. 0 = Disable; 1= Enable.			
	If bit 29 is enabled, 8 bits of pixel data is used for video	nabled, 8 bits of pixel data is used for video. The 24-bit pixel data is then dithered to 16 bits.			
	Note: F4BAR+Memory Offset 04h[25] should be set to the same value as this bit (bit 29).				
28	YUV 4:2:2 or 4:2:0 Mode: 0 = 4:2:2 mode; 1= 4:2:0 m	node.			
	If 4:2:0 mode is selected, bits [3:2] should be set to 01	for 8-bit video mode and 10 f	or 16-bit video mode.		
	Note: The GX1 processor does not support 4:2:0 mo	de.			
27	Video Line Size (DWORDs): This is the MSB of the V	/ideo Line Size (DWORDs). Se	ee bits [15:8] for description.		
26	Reserved: Set to 0				
25	Early Video Ready: Generate VID_RDY output signal one-half VID_CLK period early to improve the speed of the video port operation. 0 = Disable; 1 = Enable.				
	If bit 30 is enabled, this bit (bit 25) should be set to 0.				
24	Initial Buffer Read Address: This is the MSB of the Initial Buffer Read Address. See bits [23:16] for description.				
23:16	Initial Buffer Read Address: This field is used to preload the starting read address for the line buffers at the beginning of each display line. It is used for hardware clipping of the video window at the left edge of the active display. It represents the DWORD address of the source pixel which is to be displayed first. For an unclipped window, this value should be 0.				
15:8	Video Line Size (DWORDs): This field represents the horizontal size of the source video data in DWORDs.				
7	Y Filter Enable: Vertical filter. 0 = Disable; 1= Enable.				
6	X Filter Enable: Horizontal filter. 0 = Disable; 1 = Ena	ble.			
5	CSC Bypass: Allows color-space-converter to be bypassed. Primarily used for displaying an RGB graphics overlay rather than a YUV video overlay. 0 = Overlay data passes through CSC; 1 = Overlay data bypasses CSC.				
4	GV Select: Selects whether graphics or video data will 0 = Video data; 1 = Graphics data.	ll be passed through the scale	r hardware.		
3:2	Video Input Format: This field defines the byte order	ing of the video data on the VI	D_DATA bus.		
	8-Bit Mode (Value Byte Order [0:3])	16-Bit Mode (Value B	yte Order [0:3])		
	00 = U Y0 V Y1 (also used for RGB 5:6:5 input)	,	used for RGB 5:6:5 input)		
	01 = Y1 V Y0 U or 4:2:0 10 = Y0 U Y1 V	01 = Y0 U Y1 V 10 = Y1 V Y0 U or 4:2:	.0		
	11 = Y0 V Y1 U	10 = 11 V 10 0 01 4.2.	.0		
	If bit 28 is set for 4:2:0 mode, these bits (bits [3:2]) should be set to 01 for 8-bit video mode and 10 for 16-bit video mode.				
	Note: U = Cb, V = Cr				
1	Video Register Update: Allow video position and scale registers to be updated simultaneously on next occurrence of vertical sync. 0 = Disable; 1 = Enable.				
0	Video Enable: Video acceleration hardware. 0 = Disa	ble: 1 = Enable.			

Table 5-23. F4BAR+Memory Offset xxh: Video Controller Configuration Registers (Continued)

Bit	Description	
Offset 04h	-07h Display Configuration Register (R/W)	Reset Value = 00000000h
31	DDC Input Data (Read Only): This is the DDC input data bit for reads.	
30:28	Reserved: Set to 0.	
27	Flat Panel On (Read Only): This bit indicates whether the attached flat panel display is powered on or off. The bit transitions at the end of the power-up or power-down sequence. 0 = Off; 1 = On.	
26	Reserved: Set to 0.	
25	16-Bit Graphics Enable: This bit works in conjunction with the 16-bit Video Interface bit at F4BAR+Memory Offset 00h[29]. This bit should be set to the same value as the 16-bit Video Interface bit.	
24	DDC Output Enable: This bit enables the DDC_SDA line to be driven for write data. 0 = 1 = DDC_SDA (pin M4) is an output.	= DDC_SDA (pin M4) is an input;
23	DDC Output Data: This is the DDC data bit.	
22	DDC Clock: This is the DDC clock bit. It is used to clock the DDC_SDA bit.	
21	Palette Bypass: Selects whether graphics or video data should bypass the gamma RAI 0 = Video data; 1 = Graphics data.	
20	Video/Graphics Color Key Select: Selects whether the video or graphics data stream v 0 = Graphics data is compared to color key; 1 = Video data is compared to color key.	
19:17	Power Sequence Delay: This field selects the number of frame periods that transpire be power sequence control lines. Valid values are 001 to 111.	etween successive transitions of the
16:14	CRT Sync Skew: This 3-bit field represents the number of pixel clocks to skew the horizes sent to the CRT. This field should be programmed to 100 as the baseline. The syncs may ative to the pixel data via this register. It is used to compensate for the pipeline delay through the compensate for t	y be moved forward or backward rel-
13	Flat Panel Dither Enable: This bit enables flat panel dithering. It enables 24 bpp displated 18-bit flat panel display. 0 = Disable; 1 = Enable.	y data to be approximated with an
12	XGA Flat Panel: This bit enables the FP_CLK_ EVEN output signal which can be used to demultiplex the FP_DATA bus interest even and odd pixels. 0 = Standard flat panel; 1 = XGA flat panel.	
11	Flat Panel Vertical Synchronization Polarity: Selects the flat panel vertical sync polar 0 = FP vertical sync is normally low, transitioning high during sync interval. 1 = FP vertical sync is normally high, transitioning low during sync interval.	ity.
10	Flat Panel Horizontal Synchronization Polarity: Selects the flat panel horizontal sync 0 = FP horizontal sync is normally low, transitioning high during sync interval. 1 = FP horizontal sync is normally high, transitioning low during sync interval.	polarity.
9	CRT Vertical Synchronization Polarity: Selects the CRT vertical sync polarity.	
	0 = CRT vertical sync is normally low, transitioning high during sync interval.1 = CRT vertical sync is normally high, transitioning low during sync interval.	
8	CRT Horizontal Synchronization Polarity: Selects the CRT horizontal sync polarity. 0 = CRT horizontal sync is normally low, transitioning high during sync interval. 1 = CRT horizontal sync is normally high, transitioning low during sync interval.	
7	Flat Panel Data Enable: Enables the flat panel data bus. 0 = FP_DATA [17:0] is forced low;	
	1 = FP_DATA [17:0] is driven based upon power sequence control.	<u>.</u>
6	Flat Panel Power Enable: The transition of this bit initiates a flat panel power-up or pow 0 -> 1 = Power-up flat panel; 1 -> 0 = Power-down flat panel.	ver-down sequence.
5	DAC Power-Down (active low): This bit must be set to power-up the video DACs. It can video DACs when not in use. 0 = DACs are powered down; 1 = DACs are powered up.	n be cleared to power-down the
4	Reserved: Set to 0.	
3	DAC Blank Enable: This bit enables the blank to the video DACs. 0 = DACs are constantly blanked; 1 = DACs are blanked normally.	
2	CRT Vertical Sync Enable: Enables the CRT vertical sync. Used for VESA DPMS supp	port. 0 = Disable; 1 = Enable.
1	CRT Horizontal Sync Enable: Enables the CRT horizontal sync. Used for VESA DPMS 0 = Disable; 1 = Enable.	S support.
0	Display Enable: Enables the graphics display pipeline. It is used as a reset for the display 0 = Reset display control logic; 1 = Enable display control logic.	lay control logic.

Table 5-23. F4BAR+Memory Offset xxh: Video Controller Configuration Registers (Continued)

Bit	Description	
Offset 08	n-0Bh Video X Register (R/W)	Reset Value = xxxxxxxxxh
31:27	Reserved: Set to 0.	
26:16	Video X End Position: This field represents the horizontal end position of the video formula. Position programmed = screen position + (H_TOTAL - H_SYNC_END) - 13	
15:11	Reserved: Set to 0.	
10:0	Video X Start Position: This field represents the horizontal start position of the video formula. Position programmed = screen position + (H_TOTAL - H_SYNC_END) - 13	
Offset 0C	n-0Fh Video Y Register (R/W)	Reset Value = xxxxxxxxh
31:27	Reserved: Set to 0.	
26:16	Video Y End Position: This field represents the vertical end position of the video wind Position programmed = screen position + (V_TOTAL - V_SYNC_END) + 1.	dow according to the following formula.
15:11	Reserved: Set to 0.	
10:0	Video Y Start Position: This field represents the vertical start position of the video w formula. Position programmed = screen position + (V_TOTAL - V_SYNC_END) + 1.	rindow according to the following
Offset 10	n-13h Video Scale Register (R/W)	Reset Value = xxxxxxxxxh
31:30	Reserved: Set to 0.	
29:16	Video Y Scale Factor: This field represents the video window vertical scale factor ac formula.	ccording to the following
	VID_Y_SCL = 8192 * (Ys - 1) / (Yd - 1)	
	Where: Ys = Video source vertical size in lines	
	Yd = Video Source vertical size in lines Yd = Video destination vertical size in lines	
15:14	Reserved: Set to 0.	
13:0	Video X Scale Factor: This field represents the video window horizontal scale factor formula.	according to the following
	VID_X_SCL = 8192 * (Xs - 1) / (Xd - 1)	
	Where:	
	Xs = Video source horizontal size in pixels Xd = Video destination horizontal size in pixels	
Offset 14	· ·	Reset Value = xxxxxxxxh
	1	Reset Value = XXXXXXXXII
31:24	Reserved: Set to 0.	The graphics or video data being
23:0	Video Color Key: This field represents the video color key. It is a 24-bit RGB value. To compared may be masked prior to the compare by programming the Video Color Mas 18h) appropriately.	
Offset 18	n-1Bh Video Color Mask Register (R/W)	Reset Value = xxxxxxxxxh
31:24	Reserved: Set to 0.	
23:0	Video Color Mask: This field represents the video color mask. It is a 24-bit RGB value	ue. Zeroes in the mask cause the
	corresponding bits in the graphics or video stream being compared to be ignored.	
Offset 1C	n-1Fh Palette Address Register (R/W)	Reset Value = xxxxxxxxh
31:8	Reserved: Set to 0.	
7:0	Palette Address: The value programmed is used to initialize the palette address cou	nter.
Offset 20	n-23h Palette Data Register (R/W)	Reset Value = xxxxxxxxh
31:24	Reserved: Set to 0.	
23:0	Palette Data: This register contains the read or write data for a Gamma RAM access).

Register Descriptions

Table 5-23. F4BAR+Memory Offset xxh: Video Controller Configuration Registers (Continued)

Bit	Description				
Offset 24	h-27h	DOT Clock Configuration	n Register (R/W)	Reset Value = 00000000h	
31		PLL postscaler and feedback t description is provided in bit	divider. 0 = Normal operation; 8.	1 = Reset.	
30	Half Clock: 0 = Enable; 1 =	Disable.			
	For odd post divisors, half clock enables the falling edge of the VCO clock to be used to generate the falling edge of the post divider output to more closely approximate a 50% output duty cycle.				
29	Reserved: Set to 0.				
28:24	5-Bit DCLK PLL Post Divisor (PD) Value: Selects value of 1 to 31.				
	00000 = PD divisor of 8 00001 = PD divisor of 6 00010 = PD divisor of 18 00011 = PD divisor of 4 00100 = PD divisor of 12 00101 = PD divisor of 16 00110 = PD divisor of 24 00111 = PD divisor of 2 *See bit 11 description.	01000 = PD divisor of 10 01001 = PD divisor of 20 01010 = PD divisor of 14 01011 = PD divisor of 26 01100 = PD divisor of 22 01101 = PD divisor of 28 01110 = PD divisor of 30 01111 = PD divisor of 1*	10000 = PD divisor of 9 10001 = PD divisor of 7 10010 = PD divisor of 19 10011 = PD divisor of 5 10100 = PD divisor of 13 10101 = PD divisor of 17 10110 = PD divisor of 25 10111 = PD divisor of 3	11000 = PD divisor of 11 11001 = PD divisor of 21 11010 = PD divisor of 15 11011 = PD divisor of 27 11100 = PD divisor of 23 11101 = PD divisor of 29 11110 = PD divisor of 31 11111 = Reserved	
23	Plus 1 (+1): Adds 1 or 0 to F 0 = Add 0 to FD; 1 = Add 1 t		Divisor) parameter in equation	n (see Note).	
22:12	N: This bit represents "N" in the equation (see Note). It is used to solve the value of FD (DCLK PLL VCO feedback divisor). N can be a value of 1 to 400. For all values of N, refer to Table 5-24 on page 204.				
11	CLK_ON: 0 = PLL disable; 1 = PLL enable. If PD = 1 (i.e., bits [28:24] = 01111) the PLL is always enabled and cannot be disabled by this bit.				
10	DOT Clock Select: 0 = DCL	K; 1 = TV_CLK.			
9	Reserved: Set to 0				
8	Bypass PLL: Connects the input of the PLL directly to the output of the PLL. 0 = Normal Operation; 1 = Bypass PLL. If this bit is set to 1, the input of the PLL bypasses the PLL and resets the VCO control voltage, which in turn powers down the PLL. Allow 0.5 ms for the control voltage to be driven to 0V.				
7:6	Reserved: Set to 0.				
5	Reserved (Read Only): Wri	te as read			
4:3	Reserved: Set to 0.				
2:0	PLL Input Divide (ID) Value	e: Selects value of 2 to 9 (see	Note).		
	000 = ID divisor of 2	100 = ID divisor of 6	001 = ID divisor of 3	101 = ID divisor of 7	
Nete	010 = ID divisor of 4	110 = ID divisor of 8	011 = ID divisor of 5	111 = ID divisor of 9	
	PD is deriv ID is deriv Equation #2: If FD is an odd n Equation #3: If FD is an even i Where: N is derive +1 is achi	#MHZ * FD] ÷ [PD *ID] * PD] < 300 MHz IHZ is pin P24 ved from N see equation #2 ar ved from bits [28:24] red from bits [2:0] umber then: FD = 2*N +1	nd #3		

Register Descriptions Revision 1.1

Table 5-23. F4BAR+Memory Offset xxh: Video Controller Configuration Registers (Continued)

Bit	Description		
Offset 28	h-2Bh CRC Signature and TFT/TV Configuration Register (R/W)	Reset Value = 00000100h	
31:8	24-Bit Video Signature Data (Read Only)		
7	SYNC Override: Drive VSYNC_OUT on FP_VSYNC_OUT and HSYNC_OUT on FP_HSYNC_OUT. 0 = Disable; 1 = Enable.		
6	Invert FP_CLK: 0 = Disable; 1 = Enable. (Applicable for TV not TFT.)		
5	Invert FP_CLK_EVEN: 0 = Disable; 1 = Enable.		
4	Reserved (Read Only)		
3	Signature Source Select: 0 = RGB data; 1 = FP data. (FP data occupies the top 6 bits of each color byte to the signature with the bottom two bits always zero.)		
2	Signature Free Run: 0 = Disable; 1 = Enable.		
	When high, with the signature enabled, the signature generator captures data continuously across multiple frames. This may be set high when the signature is started, then later set low, which causes the signature generation process to stop the end of the current frame.		
1	FP_HSYNC_OUT Delay: 0 = Disable; 1 = Enable. (Applicable for TFT not TV.)		
	When SYNC Override (bit 7) is high, this bit (bit 1) can be set high to delay FP_HSYNC_OUT by an extra two clock cycles When the SYNC Override (bit 7) is low, this bit should also be set low.		
0	Signature Enable: 0 = Disable; 1= Enable.		
	When low, the signature register is reset to 000001h and held (no capture). When high, the pixel data signature with each pixel clock beginning with the next vsync.	e signature register captures the	
Offset 20	h-FFh Reserved	Reset Value = xxh	

Revision 1.1 Register Descriptions

Table 5-24. F4BAR+Memory Offset 24h[22:12] Decode (Value of "N")

N	Reg. Value		N	Reg. Value	N	Reg. Value		N	Reg. Value	N	Reg. Value	N	Reg. Value		N	Reg. Value		N	Reg. Value
400	33A	3	349	23	298	331		247	7D0	196	143	145	551	F	94	19E		43	161
399	674	3	348	47	297	662		246	7A1	195	286	144	2A3	Ī	93	33C		42	2C2
398	4E8	3	347	8F	296	4C4		245	743	194	50D	143	547		92	678		41	585
397	1D0	3	346	11F	295	188		244	687	193	21B	142	28F		91	4F0		40	30B
396	3A0	3	345	23E	294	310		243	50E	192	437	141	51F		90	1E0		39	616
395	740	3	344	47D	293	620		242	21D	191	6E	140	23F		89	3C0		38	42C
394	681	3	343	FA	292	440		241	43B	190	DD	139	47F		88	780		37	58
393	502	3	342	1F5	291	80		240	76	189	1BB	138	FE	L	87	701		36	B1
392	205	_	341	3EA	290	101		239	ED	188	376	137	1FD	L	86	603		35	163
391	40B	3	340	7D4	289	202		238	1DB	187	6EC	136	3FA	L	85	406		34	2C6
390	16	3	339	7A9	288	405		237	3B6	186	5D8	135	7F4	_	84	С		33	58D
389	2D	_	338	753	287	Α		236	76C	185	3B1	134	7E9	_	83	19		32	31B
388	5B	3	337	6A7	286	15		235	6D9	184	762	133	7D3	_	82	33		31	636
387	B7	_	336	54E	285	2B		234	5B2	183	6C5	132	7A7	_	81	67		30	46C
386	16F	_	335	29D	284	57		233	365	182	58A	131	74F	_	80	CF		29	D8
385	2DE	<u> </u>	334	53B	283	AF		232	6CA	181	315	130	69F		79	19F		28	1B1
384	5BD	_	333	277	282	15F		231	594	180	62A	129	53E	_	78	33E		27	362
383	37B	<u> </u>	332	4EF	281	2BE		230	329	179	454	128	27D		77	67C		26	6C4
382	6F6	_	331	1DE	280	57D		229	652	178	A8	127	4FB		76	4F8		25	588
381	5EC	_	330	3BC	279	2FB		228	4A4	177	151	126	1F6		75	1F0		24	311
380	3D9	<u> </u>	329	778	278	5F7		227	148	176	2A2	125	3EC		74	3E0		23	622
379	7B2	_	328	6F1	277	3EF		226	290	175	545	124	7D8	L	73	7C0		22	444
378	765	_	327	5E2	276	7DE		225	521	174	28B	123	7B1	L	72	781		21	88
377	6CB	_	326	3C5	275	7BD		224	243	173	517	122	763	_	71	703		20	111
376	596	_	325	78A	274	77B		223	487	172	22F	121	6C7	_	70	607		19	222
375	32D	<u> </u>	324	715	273	6F7		222	10E	171	45F	120	58E	_	69	40E		18	445
374	65A	_	323	62B	272	5EE		221	21C	170	BE	119	31D	_	68	1C		17	8A
373	4B4	_	322	456	271	3DD		220	439	169	17D	118	63A	_	67	39		16	115
372	168	_	321	AC	270	7BA		219	72	168	2FA	117	474	_	66	73		15	22A
371	2D0	_	320	159	269	775		218	E5	167	5F5	116	E8	_	65	E7		14	455
370	5A1	<u> </u>	319	2B2	268	6EB		217	1CB	166	3EB	115	1D1	_	64	1CF		13	AA
369	343	_	318	565	267	5D6		216	396	165	7D6	114	3A2	L	63	39E	-	12	155
368	686	<u> </u>	317	2CB	266	3AD		215	72C	164	7AD	113	744	-	62	73C	-	11	2AA
367 366	50C 219	_	316 315	597 32F	265 264	75A 6B5		214	659 4B2	163 162	75B 6B7	112	689 512	-	61 60	679 4F2		10 9	555 2AB
365	433	_	314	65E	263	56A		213	164	161	56E	110	225	-	59	1E4	-	8	557
364	66	<u> </u>	313	4BC	262	2D5		212	2C8	160	2DD	109	44B	-	58	3C8	-	7	2AF
363	CD	_	312	178	261	5AB		210	591	159	5BB	108	96	-	57	790	-	6	55F
362	19B	<u> </u>	311	2F0	260	357		209	323	158	377	107	12D	-	56	721	-	5	2BF
361	336	<u> </u>	310	5E1	259	6AE		208	646	157	6EE	106	25A	-	55	643	-	4	57F
360	66C	_	309	3C3	258	55C		207	48C	156	5DC	105	4B5	-	54	486	-	3	2FF
359	4D8	<u> </u>	308	786	257	2B9		206	118	155	3B9	104	16A	H	53	10C	-	2	5FF
358	1B0	l ⊢	307	70D	256	573		205	230	154	772	103	2D4	-	52	218		1	3FF
357	360	<u> </u>	306	61B	255	2E7		204	461	153	6E5	102	5A9	-	51	431	L		0
356	6C0	_	305	436	254	5CF		203	C2	152	5CA	101	353	-	50	62			
355	580	_	304	6C	253	39F		202	185	151	395	100	6A6	-	49	C5			
354	301	<u> </u>	303	D9	252	73E		201	30A	150	72A	99	54C		48	18B			
353	602	_	302	1B3	251	67D		200	614	149	655	98	299	-	47	316			
352	404	<u> </u>	301	366	250	4FA		199	428	148	4AA	97	533		46	62C			
351	8	<u> </u>	300	6CC	249	1F4		198	50	147	154	96	267		45	458			
350	11	_	299	598	248	3E8		197	A1	146	2A8	95	4CF		44	B0			
	· · ·	· L					ı		-					L	-		l		

Register Descriptions Revision 1.1 AMD

5.4 USB Registers

The USB Host Controller exists logically as its own PCI "Device", separate from the Chipset functions. It is a single-function device, and so it contains a PCI Configuration space for only Function 0. Depending on the state of the HOLD_REQ# pin on reset, the USB Controller will respond to one of two Device numbers for access to its PCI Configuration registers:

HOLD_REQ# low: Responds to pin AD29 high (Device 13h in a Geode system).

HOLD_REQ# high: Responds to pin AD27 high (Device 11h in a Geode system).

The PCI Configuration registers are listed in Table 5-25. They can be accessed as any number of bytes within a single 32-bit aligned unit. They are selected by the PCI-stan-

dard Index and Byte-Enable method. Registers marked as "Reserved", and reserved bits within a register, should not be changed by software.

In the PCI Configuration space, there is one Base Address Register (BAR), at Index 10h, which is used to map the USB Host Controller's operational register set into a 4K memory space. Once the BAR register has been initialized, and the PCI Command register at Index 04h has been set to enable the Memory space decoder, these "USB Controller" registers are accessible.

The memory-mapped USB Controller Registers are listed in Table 5-26. They follow the Open Host Controller Interface (OHCI) specification.

Table 5-25. USB Index xxh: USB PCI Configuration Registers

Bit	Description						
Index 00h	-01h Vendor Identification Register (RO)	Reset Value = 0E11h					
Index 02h	-03h Device Identification Register (RO)	Reset Value = A0F8h					
Index 04h	-05h Command Register (R/W)	Reset Value = 0000h					
15:10	Reserved: Set to 0.						
9	Fast Back-to-Back Enable (Read Only): USB only acts as a master to a single device It is always disabled (must always be set to 0).	e, so this functionality is not needed.					
8	SERR#: USB asserts SERR# when it detects an address parity error. 0 = Disable; 1 =	Enable.					
7	Wait Cycle Control: USB does not need to insert a wait state between the address and data on the AD lines. It is always disabled (bit is set to 0).						
6	Parity Error: USB asserts PERR# when it is the agent receiving data and it detects a data parity error. 0 = Disable; 1 = Enable.						
5	VGA Palette Snoop Enable (Read Only): USB does not support this function. It is alv	vays disabled (bit is set to 0).					
4	Memory Write and Invalidate: Allow USB to run Memory Write and Invalidate commands. 0 = Disable; 1 = Enable. The Memory Write and Invalidate command will only occur if the cache line size is set to 32 bytes and the memory write is exactly one cache line.						
	If the CS5530A is being used in a GX1 processor based system, this bit must be set to 0.						
3	Special Cycles: USB does not run special cycles on PCI. It is always disabled (bit is s						
2	PCI Master Enable: Allow USB to run PCI master cycles. 0 = Disable; 1 = Enable.	,					
1	Memory Space: Allow USB to respond as a target to memory cycles. 0 = Disable; 1 =	Enable.					
0	I/O Space: Allow USB to respond as a target to I/O cycles. 0 = Disable; 1 = Enable.						
Index 06h	-07h Status Register (R/W)	Reset Value = 0280h					
15	Detected Parity Error: This bit is set whenever the USB detects a parity error, even if enable bit (PCIUSB 04h[6]) is disabled. Write 1 to clear.	the Parity Error (response) detection					
14	SERR# Status: This bit is set whenever the USB detects a PCI address error. Write 1	to clear.					
13	Received Master Abort Status: This bit is set when the USB, acting as a PCI master, Write 1 to clear.	aborts a PCI bus memory cycle.					
12	Received Target Abort Status: This bit is set when a USB generated PCI cycle (USB PCI target. Write 1 to clear.	is the PCI master) is aborted by a					
11	Signaled Target Abort Status: This bit is set whenever the USB signals a target abor	t. Write 1 to clear.					
10:9	DEVSEL# Timing (Read Only): These bits indicate the DEVSEL# timing when perform DEVSEL# is asserted to meet the medium timing, these bits are encoded as 01b.	ming a positive decode. Since					
8	Data Parity Reported: Set to 1 if the Parity Error Response bit (Command Register bi asserted while acting as PCI master (whether PERR# was driven by USB or not).	t 6) is set, and USB detects PERR#					

Revision 1.1 Register Descriptions

Table 5-25. USB Index xxh: USB PCI Configuration Registers (Continued)

Bit	Description
7	Fast Back-to-Back Capable (Read Only): USB does support fast back-to-back transactions when the transactions are not to the same agent. This bit is always 1.
6:0	Reserved: Set to 0.

Note: The PCI specification defines this register to record status information for PCI related events. This is a read/write register. However, writes can only reset bits. A bit is reset whenever the register is written and the data in the corresponding bit location is a 1.

Index 08h Device Revision ID Register (RO) Reset Value = 06h

Index 09h-0Bh PCI Class Code Register (RO)

Reset Value = 0C0310h

This register identifies this function as an OpenHCl device. The base class is 0Ch (serial bus controller). The sub class is 03h (universal serial bus). The programming interface is 10h (OpenHCl).

Index 0Ch Cache Line Size Register (R/W) Reset Value = 00h

This register identifies the system cache line size in units of 32-bit WORDs. The USB only stores the value of bit 3 in this register since the cache line size of 32 bytes is the only value applicable to the design. Any value other than 08h written to this register is read back as 00h.

In a CS5530A/GX1 processor based system this register must be set to 00h since the GX1 processor has a 16-byte cache line size.

Index 0Dh Latency Timer Register (R/W) Reset Value = 00h

This register identifies the value of the latency timer in PCI clocks for PCI bus master cycles.

Index 0Eh Header Type Register (RO) Reset Value = 00h

This register identifies the type of the predefined header in the configuration space. Since the USB is a single function device and not a PCI-to-PCI bridge, this byte should be read as 00h.

Index 0Fh BIST Register (RO) Reset Value = 00h

This register identifies the control and status of Built In Self Test. The USB does not implement BIST, so this register is read only.

Index 10h-13h Base Address Register (R/W) Reset Value = 00000000h

This BAR sets the base address of the memory mapped USB controller registers. Bits [11:0] are read only (0000 0000 0000), indicating a 4 KB memory address range. Refer to Table 5-26 for the USB controller register bit formats and reset values.

31:12 USB Controller Base Address
11:0 Address Range (Read Only)

Index 14h-3Bh Reserved Reset Value = xxh

Index 3Ch Interrupt Line Register (R/W) Reset Value = 00h

This register identifies which of the system interrupt controllers the devices interrupt pin is connected to. The value of this register is used by device drivers and has no direct meaning to the USB.

Index 3Dh Interrupt Pin Register (RO) Reset Value = 01h

This register identifies which interrupt pin a device uses. Since the USB uses INTA#, this value is set to 01h.

Index 3Eh Min. Grant Register (RO) Reset Value = 00h

This register specifies the desired settings for how long of a burst the USB needs assuming a clock rate of 33 MHz. The value specifies a period of time in units of 1/4 microsecond.

Index 3Fh Max. Latency Register (RO) Reset Value = 50h

This register specifies the desired settings for how often the USB needs access to the PCI bus assuming a clock rate of 33 MHz. The value specifies a period of time in units of 1/4 microsecond.

Index 40h-43h ASIC Test Mode Enable Register (R/W) Reset Value = 000F0000h

Used for internal debug and test purposes only.

Index 44h	n-45h ASIC Operational Mode Enable Register (R/W) Reset Value = 0000h
15:9	Reserved: Read/Write 0s.
8	SIE Pipeline Disable: When set, waits for all USB bus activity to complete prior to returning completion status to the List Processor. This is a fail-safe mechanism to avoid potential problems with the clk_dr transition between 1.5 MHz and 12 MHz.
7:1	Write Only: Read as 0s.
0	Data Buffer Region 16: When set, the size of the region for the data buffer is 16 bytes. Otherwise, the size is 32 bytes.

Revision 1.1

Table 5-25. USB Index xxh: USB PCI Configuration Registers (Continued)

Bit	Description		
Index 46h-	47h	Reserved	Reset Value = 00h
Index 48h-	FFh	Reserved	Reset Value = xxh

Table 5-26. USB BAR+Memory Offset xxh: USB Controller Registers

Bit	Description		
Offset 00h	-03h	HcRevision Register (RO)	Reset Value = 00000110h
31:8	Reserved: Read/Write 0s.		
7:0	Revision (Read Only): Indicate 1.0 specification. (X.Y = XYh).	es the Open HCI Specification revision number imp	lemented by the Hardware. USB supports
Offset 04h	-07h	HcControl Register (R/W)	Reset Value = 00000000h
31:11	Reserved: Read/Write 0s.		
10	RemoteWakeupConnectedEn no remote wakeup signal suppo	able: If a remote wakeup signal is supported, this orted, this bit is ignored.	bit enables that operation. Since there is
9		ead Only): This bit indicated whether the HC supports signal. The bit is hard-coded to 0.	ports a remote wakeup signal. This imple-
8	InterruptRouting: This bit is us 1 = Interrupts routed to SMI.	sed for interrupt routing: 0 = Interrupts routed to no	ormal interrupt mechanism (INT);
7:6		e: This field sets the HC state. The HC may force ume signaling from a downstream port. States are	
5	BulkListEnable: When set, this	s bit enables processing of the Bulk list.	
4	ControlListEnable: When set,	this bit enables processing of the Control list.	
3		ear, this bit disables the Isochronous List when the sing the Periodic List, the HC will check this bit wh	, ,
2	PeriodicListEnable: When set this bit prior to attempting any p	, this bit enables processing of the Periodic (interrueriodic transfers in a frame.	upt and isochronous) list. The HC checks
1:0		ecifies the number of Control Endpoints serviced for ol Endpoints (i.e., 00 = 1 Control Endpoint; 11 = 3	
Offset 08h	-0Bh	HcCommandStatus Register (R/W)	Reset Value = 00000000h
31:18	Reserved: Read/Write 0s.		
17:16	ScheduleOverrunCount: This wraps from 11 to 00.	field increments every time the SchedulingOverrur	n bit in HcInterruptStatus is set. The count
15:4	Reserved: Read/Write 0s.		
3		When set by software, this bit sets the OwnershipCh	nange field in HcInterruptStatus. The bit is
2	OwnershipChangeRequest: V cleared by software. BulkListFilled: Set to indicate cleared by the HC each time it but the set of the se	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List.	be set by either software or the HC and
2	OwnershipChangeRequest: Vicleared by software. BulkListFilled: Set to indicate to cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the ControlListFilled: Set to indicate cleared by the ControlListFilled: Set t	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. It may begins processing the head of the Control List. It may begins processing the head of the Control List.	be set by either software or the HC and be set by either software or the HC and
2	OwnershipChangeRequest: Vicleared by software. BulkListFilled: Set to indicate to cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the HC each time it but the ControlListFilled: Set to indicate cleared by the ControlListFilled: Set to indicate cleared by the ControlListFilled: Set t	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. Ite there is an active ED on the Control List. It may	be set by either software or the HC and be set by either software or the HC and
2	OwnershipChangeRequest: Vicleared by software. BulkListFilled: Set to indicate to cleared by the HC each time it to cleared by the HC each time it to cleared by the HC each time it to the total time it to the time it t	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. It may begins processing the head of the Control List. It may begins processing the head of the Control List.	be set by either software or the HC and be set by either software or the HC and
2 1 0	OwnershipChangeRequest: Vicleared by software. BulkListFilled: Set to indicate to cleared by the HC each time it to cleared by the HC each time it to cleared by the HC each time it to the total time it to the time it t	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. It there is an active ED on the Control List. It may begins processing the head of the Control List. It is set to initiate a software reset. This bit is cleared	be set by either software or the HC and be set by either software or the HC and by be set by either software or the HC and by the HC upon completion of the reset
2 1 0	OwnershipChangeRequest: Vicleared by software. BulkListFilled: Set to indicate to cleared by the HC each time it but the cleared by the HC each time it but the HostControllerReset: This bit is operation. n-0Fh Reserved: Read/Write 0s.	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. It there is an active ED on the Control List. It may begins processing the head of the Control List. It is set to initiate a software reset. This bit is cleared	be set by either software or the HC and be set by either software or the HC and be by the HC upon completion of the reset Reset Value = 00000000h
2 1 0 Offset 0Ch	OwnershipChangeRequest: Vicleared by software. BulkListFilled: Set to indicate to cleared by the HC each time it but the cleared by the HC each time it but the HostControllerReset: This bit is operation. n-0Fh Reserved: Read/Write 0s.	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. It the there is an active ED on the Control List. It may begins processing the head of the Control List. is set to initiate a software reset. This bit is cleared HcInterruptStatus Register (R/W)	be set by either software or the HC and be set by either software or the HC and be by the HC upon completion of the reset Reset Value = 00000000h
2 1 0 Offset 0Cr 31 30	OwnershipChangeRequest: We cleared by software. BulkListFilled: Set to indicate a cleared by the HC each time it be ControlListFilled: Set to indicate a cleared by the HC each time it be HostControllerReset: This bit is operation. HostControllerReset: This bit is peration. Monorphic Reserved: Read/Write 0s. OwnershipChange: This bit is Reserved: Read/Write 0s.	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. It the there is an active ED on the Control List. It may begins processing the head of the Control List. is set to initiate a software reset. This bit is cleared HcInterruptStatus Register (R/W)	be set by either software or the HC and be set by either software or the HC and by the HC upon completion of the reset Reset Value = 00000000h CommandStatus is set.
2 1 0 Offset 0Ch 31 30 29:7	OwnershipChangeRequest: We cleared by software. BulkListFilled: Set to indicate a cleared by the HC each time it but the cleared by the HC each time it but the cleared by the HC each time it but the HostControllerReset: This bit is operation. HostControllerReset: This bit is operation. OwnershipChange: This bit is Reserved: Read/Write 0s. RootHubStatusChange: This but changed.	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. In the there is an active ED on the Control List. It may begins processing the head of the Control List. It is set to initiate a software reset. This bit is cleared HeInterruptStatus Register (R/W) Set when the OwnershipChangeRequest bit of Heiler Control List.	be set by either software or the HC and be set by either software or the HC and by the HC upon completion of the reset Reset Value = 00000000h CommandStatus is set.
2 1 0 Offset 0Ch 31 30 29:7 6	OwnershipChangeRequest: We cleared by software. BulkListFilled: Set to indicate to cleared by the HC each time it it. ControlListFilled: Set to indicate to cleared by the HC each time it it. HostControllerReset: This bit operation. -OFh Reserved: Read/Write 0s. OwnershipChange: This bit is. Reserved: Read/Write 0s. RootHubStatusChange: This is changed. FrameNumberOverflow: Set we	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. It there is an active ED on the Control List. It may begins processing the head of the Control List. It is set to initiate a software reset. This bit is cleared HcInterruptStatus Register (R/W) Set when the OwnershipChangeRequest bit of Hcibit is set when the content of HcRhStatus or the content is set when the content of HcRhStatus or the content of	be set by either software or the HC and the be set by either software or the HC and the be set by either software or the HC and the by the HC upon completion of the reset Reset Value = 00000000h CommandStatus is set.
2 1 0 Offset 0Cr 31 30 29:7 6	OwnershipChangeRequest: Vicleared by software. BulkListFilled: Set to indicate of cleared by the HC each time it is cleared by the HC each time it is cleared by the HC each time it is the HostControllerReset: This bit operation. -OFh Reserved: Read/Write 0s. OwnershipChange: This bit is Reserved: Read/Write 0s. RootHubStatusChange: This is changed. FrameNumberOverflow: Set with UnrecoverableError (Read On	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. It may begins processing the head of the Control List. It may begins processing the head of the Control List. It is set to initiate a software reset. This bit is cleared HcInterruptStatus Register (R/W) set when the OwnershipChangeRequest bit of HcControl is set when the content of HcRhStatus or the content bit 15 of FrameNumber changes value.	be set by either software or the HC and be set by either software or the HC and by the HC upon completion of the reset Reset Value = 00000000h CommandStatus is set. Intent of any HcRhPortStatus register has ded to 0. Writes are ignored.
2 1 0 Offset 0Ch 31 30 29:7 6	OwnershipChangeRequest: Vicleared by software. BulkListFilled: Set to indicate a cleared by the HC each time it is cleared by the HC each time it is the HostControllerReset: This bit is operation. HostControllerReset: This bit is operation. N-OFh Reserved: Read/Write 0s. OwnershipChange: This bit is Reserved: Read/Write 0s. RootHubStatusChange: This is changed. FrameNumberOverflow: Set with History of the HostController Read On ResumeDetected: Set when History of the HostController Read On ResumeDetected: Set when History of the Hist	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. Inter there is an active ED on the Control List. It may begins processing the head of the Control List. It is set to initiate a software reset. This bit is cleared HcInterruptStatus Register (R/W) Set when the OwnershipChangeRequest bit of Hci bit is set when the content of HcRhStatus or the country is set when the content of HcRhStatus or the country is set when the content of HcRhStatus or the country is set when the content of HcRhStatus or the country is set when the content of HcRhStatus or the country is set when the content of HcRhStatus or the country is set when the content of HcRhStatus or the country is set when the content of HcRhStatus or the country is set when the content of HcRhStatus or the country is set when the content of HcRhStatus or the country is set when the content of HcRhStatus or the country is set when the content of HcRhStatus or the country is set when the content of HcRhStatus or the country is set when the content of HcRhStatus or the country is set when the content of HcRhStatus or the country is set when the content of HcRhStatus or the country is set when the content of HcRhStatus or the country is set when the content of HcRhStatus or the country is set when the content of HcRhStatus or the content of HcRhStatus or the country is set when the content of HcRhStatus or the content o	be set by either software or the HC and be set by either software or the HC and by the HC upon completion of the reset Reset Value = 00000000h CommandStatus is set. Intent of any HcRhPortStatus register has ded to 0. Writes are ignored.

Table 5-26. USB BAR+Memory Offset xxh: USB Controller Registers (Continued)

Bit	Description	(22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
0	SchedulingOverrun: Set when the List Processor determines a Schedule Overrun ha	s occurred				
	its are set by hardware and cleared by software.	3 000di10d.				
Offset 10h		Reset Value = 00000000h				
31	MasterInterruptEnable: This bit is a global interrupt enable. A write of 1 allows interru enable bits listed above.	pts to be enabled via the specific				
30	OwnershipChangeEnable: 0 = Ignore; 1 = Enable interrupt generation due to Owners	ship Change.				
29:7	Reserved: Read/Write 0s.					
6	RootHubStatusChangeEnable: 0 = Ignore; 1 = Enable interrupt generation due to Ro	oot Hub Status Change.				
5	FrameNumberOverflowEnable: 0 = Ignore; 1 = Enable interrupt generation due to FrameNumberOverflowEnable: 0	ame Number Overflow.				
4	UnrecoverableErrorEnable: This event is not implemented. All writes to this bit are ignored.					
3	ResumeDetectedEnable: 0 = Ignore; 1 = Enable interrupt generation due to Resume Detected.					
2	StartOfFrameEnable: 0 = Ignore; 1 = Enable interrupt generation due to Start of Frame.					
1	WritebackDoneHeadEnable: 0 = Ignore; 1 = Enable interrupt generation due to Write	back Done Head.				
0	SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to Sched	uling Overrun.				
Note: Wri	ing a 1 to a bit in this register sets the corresponding bit, while writing a 0 leaves the bit	unchanged.				
Offset 14h	-17h HcInterruptDisable Register (R/W)	Reset Value = C000006Fh				
31	MasterInterruptEnable: Global interrupt disable. A write of 1 disables all interrupts.					
30	OwnershipChangeEnable: 0 = Ignore; 1 = Disable interrupt generation due to OwnershipChangeEnable: 0	ship Change.				
29:7	Reserved: Read/Write 0s.	•				
6	RootHubStatusChangeEnable: 0 = Ignore; 1 = Disable interrupt generation due to Root Hub Status Change.					
5	FrameNumberOverflowEnable: 0 = Ignore; 1 = Disable interrupt generation due to Frame Number Overflow.					
4	UnrecoverableErrorEnable: This event is not implemented. All writes to this bit will be ignored.					
3	ResumeDetectedEnable: 0 = Ignore; 1 = Disable interrupt generation due to Resume					
2	StartOfFrameEnable: 0 = Ignore; 1 = Disable interrupt generation due to Start of Fram	ne.				
1	WritebackDoneHeadEnable: 0 = Ignore; 1 = Disable interrupt generation due to Write					
0	SchedulingOverrunEnable: 0 = Ignore; 1 = Disable interrupt generation due to SchedulingOverrunEnable: 0					
Note: Wri	ing a 1 to a bit in this register clears the corresponding bit, while writing a 0 to a bit leave	es the bit unchanged.				
Offset 18h	-1Bh HcHCCA Register (R/W)	Reset Value = 00000000h				
31:8	HCCA: Pointer to HCCA base address.					
7:0	Reserved: Read/Write 0s.					
Offset 1Ch	-1Ch HcPeriodCurrentED Register (R/W)	Reset Value = 00000000h				
31:4	PeriodCurrentED: Pointer to the current Periodic List ED.					
3:0	Reserved: Read/Write 0s.					
Offset 20h	-23h HcControlHeadED Register (R/W)	Reset Value = 00000000h				
31:4	ControlHeadED: Pointer to the Control List Head ED.					
3:0	Reserved: Read/Write 0s.					
Offset 24h		Reset Value = 00000000h				
31:4	ControlCurrentED: Pointer to the current Control List ED.					
3:0	Reserved: Read/Write 0s.					
Offset 28h		Reset Value = 00000000h				
31:4	BulkHeadED: Pointer to the Bulk List Head ED.					
3:0	Reserved: Read/Write 0s.					
Offset 2Ch		Reset Value = 00000000h				
31:4	BulkCurrentED: Pointer to the current Bulk List ED.					
3:0	Reserved: Read/Write 0s.					

Bit	Description	
Offset 30h	-33h HcDoneHead Register (R/W)	Reset Value = 00000000h
31:4	DoneHead: Pointer to the current Done List Head ED.	
3:0	Reserved: Read/Write 0s.	
Offset 34h	-37h HcFmInterval Register (R/W)	Reset Value = 00002EDFh
31	FrameIntervalToggle (Read Only): This bit is toggled by HCD when it loads a ne	w value into FrameInterval.
30:16	FSLargestDataPacket (Read Only): This field specifies a value which is loaded in the beginning of each frame.	nto the Largest Data Packet Counter at
15:14	Reserved: Read/Write 0s.	
13:0	FrameInterval: This field specifies the length of a frame as (bit times - 1). For 12,0 is stored here.	000 bit times in a frame, a value of 11,999
Offset 38h	-3Bh HcFrameRemaining Register (RO)	Reset Value = 00002Exxh
31	FrameRemainingToggle (Read Only): Loaded with FrameIntervalToggle when F	rameRemaining is loaded.
30:14	Reserved: Read 0s.	
13:0	FrameRemaining (Read Only): When the HC is in the UsbOperational state, this clock period. When the count reaches 0, (end of frame) the counter reloads with F loads when the HC transitions into UsbOperational.	
Offset 3Ch	n-3Fh HcFmNumber Register (RO)	Reset Value = 00000000h
31:16	Reserved: Read 0s.	
15:0	FrameNumber (Read Only): This 16-bit incrementing counter field is incremented maining. The count rolls over from FFFFh to 0h.	d coincident with the loading of FrameRe-
Offset 40h	-43h HcPeriodicStart Register (R/W)	Reset Value = 00000000h
31:14	Reserved: Read/Write 0s.	
13:0	PeriodicStart: This field contains a value used by the List Processor to determine cessing must begin.	where in a frame the Periodic List pro-
Offset 44h	-47h HcLSThreshold Register (R/W)	Reset Value = 00000628h
31:12	Reserved: Read/Write 0s.	
11:0	LSThreshold: This field contains a value used by the Frame Management block to transaction can be started in the current frame.	o determine whether or not a low speed
Offset 48h	-4Bh HcRhDescriptorA Register (R/W)	Reset Value = 01000002h
31:24	PowerOnToPowerGoodTime: This field value is represented as the number of 2 switching is effective within 2 ms. Only bits [25:24] are implemented as R/W. The respected that these bits be written to anything other than 1h, but limited adjustment to support system implementation. This field should always be written to a non-zero.	remaining bits are read only as 0. It is not not is provided. This field should be written
23:13	Reserved: Read/Write 0s.	
12	NoOverCurrentProtection: This bit should be written to support the external syst Over-current status is reported; 1 = Over-current status is not reported.	em port over-current implementation. 0 =
11	OverCurrentProtectionMode: This bit should be written 0 and is only valid when Global Over-Current; 1 = Individual Over-Current	NoOverCurrentProtection is cleared. 0 =
10	DeviceType (Read Only): USB is not a compound device.	
9	NoPowerSwitching: This bit should be written to support the external system por Ports are power switched. 1 = Ports are always powered on.	t power switching implementation. 0 =
8	PowerSwitchingMode: This bit is only valid when NoPowerSwitching is cleared. Switching; 1 = Individual Switching	This bit should be written 0. 0 = Global
7:0	NumberDownstreamPorts (Read Only): USB supports two downstream ports.	
	s register is only reset by a power-on reset (PCIRST#). It is written during system in use bit should not be written during normal operation.	itialization to configure the Root Hub.

31:16 PortPowerControlMask: Global-power switching. This field is only valid if NoPowerSwitching is cleared and PowerSwitchingMode is set (individual port switching). When set, the port only responds to individual port power switching commands (Set/ClearPortPower). When cleared, the port only responds to global power switching commands (Set/ClearGlobalPower 0 = Device not removable; 1 = Global-power mask. Port Bit relationship - Unimplemented ports are reserved, read/write 0. 0 = Reserved 1 = Port 1 2 = Port 2 15 = Port 15 DeviceRemoveable: USB ports default to removable devices. 0 = Device not removable; 1 = Device removable. Port Bit relationship 0 = Reserved 1 = Port 1 2 = Port 2 15 = Port 15 Unimplemented ports are reserved, read/write 0. Note: This register is only reset by a power-on reset (PCIRST#). It is written during system initialization to configure the Root Hub. These bit should not be written during normal operation.	Bit	Description	
ingMode is set (individual port switching). When set, the port only responds to individual port power switching commands (Set/ClearPortPower). When cleared, the port only responds to global power switching commands (Set/ClearGlobalPowe 0 = Device not removable; 1 = Global-power mask. Port Bit relationship - Unimplemented ports are reserved, read/write 0. 0 = Reserved 1 = Port 1 2 = Port 2 15 = Port 15 DeviceRemoveable: USB ports default to removable devices. 0 = Device not removable; 1 = Device removable. Port Bit relationship 0 = Reserved 1 = Port 1 2 = Port 2 15 = Port 15 Unimplemented ports are reserved, read/write 0. Iote: This register is only reset by a power-on reset (PCIRST#). It is written during system initialization to configure the Root Hub. These bit should not be written during normal operation. Siffset 50h-53h HcRhStatus Register (R/W) Reset Value = 00000000 1 ClearRemoteWakeupEnable (Write Only): Writing a 1 to this bit clears DeviceRemoteWakeupEnable. Writing a 1 has reffect. 30:18 Reserved: Read/Write 0s. 7 OverCurrentIndicatorChange: This bit is set when OverCurrentIndicator changes. Writing a 1 clears this bit. Writing a 6 has no effect. Read: LocalPowerStatusChange: Not supported. Always read 0. Write: SetGlobalPower: Write a 1 issues a SetGlobalPower command to the ports. Writing a 0 has no effect. Reserved: Read/Write 0s. Reserved: Read/Write 0s. Reserved: Read/Write 0s. Reserved: Read/Write 0s. PoveCurrentIndicator: This bit reflects the state of the OVRCUR pin. This field is only valid if NoOverCurrentProtection a OverCurrentProtection Mode are cleared. 0 = No over-current condition; 1 = Over-current condition.	Offset 4Ch	n-4Fh HcRhDescriptorB Register (R/W)	Reset Value = 00000000h
Port Bit relationship 0 = Reserved 1 = Port 1 2 = Port 2 15 = Port 15 Unimplemented ports are reserved, read/write 0. Iote: This register is only reset by a power-on reset (PCIRST#). It is written during system initialization to configure the Root Hub. These bit should not be written during normal operation. Iote: This register is only reset by a power-on reset (PCIRST#). It is written during system initialization to configure the Root Hub. These bit should not be written during normal operation. Iote: This register is only reset by a power-on reset (PCIRST#). It is written during system initialization to configure the Root Hub. These bit should not be written during normal operation. Iote: This register is only reset by a power-on reset (PCIRST#). It is written during system initialization to configure the Root Hub. These bit should not be written a configure the Root Hub. These bit should not be written a 1 to this bit clears DeviceRemoteWakeupEnable. Writing a 1 has reflect. IoverCurrentIndicatorChange: This bit is set when OverCurrentIndicator changes. Writing a 1 clears this bit. Writing a 0 has no effect. Iore Read: LocalPowerStatusChange: Not supported. Always read 0. Write: SetGlobalPower: Write a 1 issues a SetGlobalPower command to the ports. Writing a 0 has no effect. Iore Read: DeviceRemoteWakeupEnable: Writing a 1 sets DeviceRemoteWakeupEnable. Writing a 0 has no effect. Write: SetRemoteWakeupEnable: Writing a 1 sets DeviceRemoteWakeupEnable. Writing a 0 has no effect. Reserved: Read/Write 0s. OverCurrentIndicator: This bit reflects the state of the OVRCUR pin. This field is only valid if NoOverCurrentProtection a OverCurrentProtectionMode are cleared. 0 = No over-current condition; 1 = Over-current condition.	31:16	ingMode is set (individual port switching). When set, the port only responds to indiv (Set/ClearPortPower). When cleared, the port only responds to global power switch 0 = Device not removable; 1 = Global-power mask. Port Bit relationship - Unimplemented ports are reserved, read/write 0. 0 = Reserved 1 = Port 1 2 = Port 2	vidual port power switching commands
These bit should not be written during normal operation. Offset 50h-53h HcRhStatus Register (R/W) Reset Value = 00000000 ClearRemoteWakeupEnable (Write Only): Writing a 1 to this bit clears DeviceRemoteWakeupEnable. Writing a 1 has a effect. Reserved: Read/Write 0s. OverCurrentIndicatorChange: This bit is set when OverCurrentIndicator changes. Writing a 1 clears this bit. Writing a 0 has no effect. Read: LocalPowerStatusChange: Not supported. Always read 0. Write: SetGlobalPower: Write a 1 issues a SetGlobalPower command to the ports. Writing a 0 has no effect. Read: DeviceRemoteWakeupEnable: This bit enables ports' ConnectStatusChange as a remote wakeup event. 0 = Disabled; 1 = Enabled. Write = SetRemoteWakeupEnable: Writing a 1 sets DeviceRemoteWakeupEnable. Writing a 0 has no effect. Reserved: Read/Write 0s. OverCurrentIndicator: This bit reflects the state of the OVRCUR pin. This field is only valid if NoOverCurrentProtection and OverCurrentProtectionMode are cleared. 0 = No over-current condition; 1 = Over-current condition. Read: LocalPowerStatus: Not Supported. Always read 0.		Port Bit relationship 0 = Reserved 1 = Port 1 2 = Port 2 15 = Port 15 Unimplemented ports are reserved, read/write 0.	
ClearRemoteWakeupEnable (Write Only): Writing a 1 to this bit clears DeviceRemoteWakeupEnable. Writing a 1 has effect. Reserved: Read/Write 0s. OverCurrentIndicatorChange: This bit is set when OverCurrentIndicator changes. Writing a 1 clears this bit. Writing a 0 has no effect. Read: LocalPowerStatusChange: Not supported. Always read 0. Write: SetGlobalPower: Write a 1 issues a SetGlobalPower command to the ports. Writing a 0 has no effect. Read: DeviceRemoteWakeupEnable: This bit enables ports' ConnectStatusChange as a remote wakeup event. 0 = Disabled; 1 = Enabled. Write = SetRemoteWakeupEnable: Writing a 1 sets DeviceRemoteWakeupEnable. Writing a 0 has no effect. Reserved: Read/Write 0s. VerCurrentIndicator: This bit reflects the state of the OVRCUR pin. This field is only valid if NoOverCurrentProtection a OverCurrentProtectionMode are cleared. 0 = No over-current condition; 1 = Over-current condition. Read: LocalPowerStatus: Not Supported. Always read 0.	The	se bit should not be written during normal operation.	lalization to configure the Root Hub.
effect. 30:18 Reserved: Read/Write 0s. 17 OverCurrentIndicatorChange: This bit is set when OverCurrentIndicator changes. Writing a 1 clears this bit. Writing a 0 has no effect. 16 Read: LocalPowerStatusChange: Not supported. Always read 0. Write: SetGlobalPower: Write a 1 issues a SetGlobalPower command to the ports. Writing a 0 has no effect. 15 Read: DeviceRemoteWakeupEnable: This bit enables ports' ConnectStatusChange as a remote wakeup event. 0 = Disabled; 1 = Enabled. Write = SetRemoteWakeupEnable: Writing a 1 sets DeviceRemoteWakeupEnable. Writing a 0 has no effect. 14:2 Reserved: Read/Write 0s. 1 OverCurrentIndicator: This bit reflects the state of the OVRCUR pin. This field is only valid if NoOverCurrentProtection and OverCurrentProtectionMode are cleared. 0 = No over-current condition; 1 = Over-current condition. 0 Read: LocalPowerStatus: Not Supported. Always read 0.	Offset 50h	n-53h HcRhStatus Register (R/W)	Reset Value = 00000000h
17 OverCurrentIndicatorChange: This bit is set when OverCurrentIndicator changes. Writing a 1 clears this bit. Writing a 0 has no effect. 16 Read: LocalPowerStatusChange: Not supported. Always read 0. Write: SetGlobalPower: Write a 1 issues a SetGlobalPower command to the ports. Writing a 0 has no effect. 15 Read: DeviceRemoteWakeupEnable: This bit enables ports' ConnectStatusChange as a remote wakeup event. 0 = Disabled; 1 = Enabled. Write = SetRemoteWakeupEnable: Writing a 1 sets DeviceRemoteWakeupEnable. Writing a 0 has no effect. 14:2 Reserved: Read/Write 0s. 1 OverCurrentIndicator: This bit reflects the state of the OVRCUR pin. This field is only valid if NoOverCurrentProtection and OverCurrentProtectionMode are cleared. 0 = No over-current condition; 1 = Over-current condition. 0 Read: LocalPowerStatus: Not Supported. Always read 0.	31	, , , , , , , , , , , , , , , , , , , ,	moteWakeupEnable. Writing a 1 has no
has no effect. Read: LocalPowerStatusChange: Not supported. Always read 0. Write: SetGlobalPower: Write a 1 issues a SetGlobalPower command to the ports. Writing a 0 has no effect. Read: DeviceRemoteWakeupEnable: This bit enables ports' ConnectStatusChange as a remote wakeup event. 0 = Disabled; 1 = Enabled. Write = SetRemoteWakeupEnable: Writing a 1 sets DeviceRemoteWakeupEnable. Writing a 0 has no effect. Reserved: Read/Write 0s. OverCurrentIndicator: This bit reflects the state of the OVRCUR pin. This field is only valid if NoOverCurrentProtection at OverCurrentProtectionMode are cleared. 0 = No over-current condition; 1 = Over-current condition. Read: LocalPowerStatus: Not Supported. Always read 0.	30:18	Reserved: Read/Write 0s.	
Write: SetGlobalPower: Write a 1 issues a SetGlobalPower command to the ports. Writing a 0 has no effect. Read: DeviceRemoteWakeupEnable: This bit enables ports' ConnectStatusChange as a remote wakeup event. 0 = Disabled; 1 = Enabled. Write = SetRemoteWakeupEnable: Writing a 1 sets DeviceRemoteWakeupEnable. Writing a 0 has no effect. Reserved: Read/Write 0s. OverCurrentIndicator: This bit reflects the state of the OVRCUR pin. This field is only valid if NoOverCurrentProtection and OverCurrentProtectionMode are cleared. 0 = No over-current condition; 1 = Over-current condition. Read: LocalPowerStatus: Not Supported. Always read 0.	17		. Writing a 1 clears this bit. Writing a 0
0 = Disabled; 1 = Enabled. Write = SetRemoteWakeupEnable: Writing a 1 sets DeviceRemoteWakeupEnable. Writing a 0 has no effect. 14:2 Reserved: Read/Write 0s. OverCurrentIndicator: This bit reflects the state of the OVRCUR pin. This field is only valid if NoOverCurrentProtection a OverCurrentProtectionMode are cleared. 0 = No over-current condition; 1 = Over-current condition. Read: LocalPowerStatus: Not Supported. Always read 0.	16		s. Writing a 0 has no effect.
 OverCurrentIndicator: This bit reflects the state of the OVRCUR pin. This field is only valid if NoOverCurrentProtection at OverCurrentProtectionMode are cleared. 0 = No over-current condition; 1 = Over-current condition. Read: LocalPowerStatus: Not Supported. Always read 0. 	15	0 = Disabled; 1 = Enabled.	
OverCurrentProtectionMode are cleared. 0 = No over-current condition; 1 = Over-current condition. Read: LocalPowerStatus: Not Supported. Always read 0.	14:2	Reserved: Read/Write 0s.	
	1	•	•
Write: ClearGlobalPower: Writing a 1 issues a ClearGlobalPower command to the ports. Writing a 0 has no effect.	0	Read: LocalPowerStatus: Not Supported. Always read 0.	
		Write: ClearGlobalPower: Writing a 1 issues a ClearGlobalPower command to the	e ports. Writing a 0 has no effect.

Bit	Description			
Offset 54h	-57h HcRhPortStatus[1] Register (R/W)	Reset Value = 00000628h		
31:21	Reserved: Read/Write 0s.			
20	PortResetStatusChange: This bit indicates that the port reset signal has completed. 1 = Port reset is complete.	0 = Port reset is not complete;		
19	PortOverCurrentIndicatorChange: This bit is set when OverCurrentIndicator change 0 has no effect.	es. Writing a 1 clears this bit. Writing a		
18	PortSuspendStatusChange: This bit indicates the completion of the selective resume sequence for the port. 0 = Port is not resumed; 1 = Port resume is complete.			
17	PortEnableStatusChange: This bit indicates that the port has been disabled due to a hardware event (cleared PortEnableStatus). 0 = Port has not been disabled; 1 = PortEnableStatus has been cleared.			
16	ConnectStatusChange: This bit indicates a connect or disconnect event has been d Writing a 0 has no effect. 0 = No connect/disconnect event; 1 = Hardware detection o			
	If DeviceRemoveable is set, this bit resets to 1.			
15:10	Reserved: Read/Write 0s.			
9	Read: LowSpeedDeviceAttached: This bit defines the speed (and bud idle) of the a CurrentConnectStatus is set. 0 = Full Speed device; 1 = Low Speed device.	ttached device. It is only valid when		
	Write: ClearPortPower: Writing a 1 clears PortPowerStatus. Writing a 0 has no effect	t.		
8	Read: PortPowerStatus: This bit reflects the power state of the port regardless of the power is off; 1 = Port power is on.	e power switching mode. 0 = Port		
	Note: If NoPowerSwitching is set, this bit is always read as 1.			
	Write: SetPortPower: Writing a 1 sets PortPowerStatus. Writing a 0 has no effect.			
7:5	Reserved: Read/Write 0s.			
4	Read: PortResetStatus: 0 = Port reset signal is not active; 1 = Port reset signal is ac	tive.		
	Write: SetPortReset: Writing a 1 sets PortResetStatus. Writing a 0 has no effect.			
3	Read: PortOverCurrentIndicator: This bit reflects the state of the OVRCUR pin dec valid if NoOverCurrentProtection is cleared and OverCurrentProtectionMode is set. 0 current condition.			
	Write: ClearPortSuspend: Writing a 1 initiates the selective resume sequence for the	e port. Writing a 0 has no effect.		
2	Read: PortSuspendStatus: 0 = Port is not suspended; 1 = Port is selectively suspen	nded.		
	Write: SetPortSuspend: Writing a 1 sets PortSuspendStatus. Writing a 0 has no effective setPortSuspendStatus.	ect.		
1	Read: PortEnableStatus: 0 = Port disabled; 1 = Port enabled.			
	Write: SetPortEnable: Writing a 1 sets PortEnableStatus. Writing a 0 has no effect.			
0	Read: CurrentConnectStatus: 0 = No device connected; 1 = Device connected.			
	Note: If DeviceRemoveable is set (not removable) this bit is always 1.			
	Write: ClearPortEnable: Writing 1 a clears PortEnableStatus. Writing a 0 has no effe			

Bit	Description	
Offset 58h	-5Bh HcRhPortStatus[2] Register (R/W)	Reset Value = 01000002h
31:21	Reserved: Read/Write 0s.	
20	PortResetStatusChange: This bit indicates that the port reset signal has contained a port reset is complete.	mpleted. 0 = Port reset is not complete;
19	PortOverCurrentIndicatorChange: This bit is set when OverCurrentIndicator 0 has no effect.	r changes. Writing a 1 clears this bit. Writing a
18	PortSuspendStatusChange: This bit indicates the completion of the selective resumed; 1 = Port resume is complete.	e resume sequence for the port. 0 = Port is no
17	PortEnableStatusChange: This bit indicates that the port has been disabled bleStatus). 0 = Port has not been disabled; 1 = PortEnableStatus has been cl	
16	ConnectStatusChange: This bit indicates a connect or disconnect event has Writing a 0 has no effect. 0 = No connect/disconnect event; 1 = Hardware det If DeviceRemoveable is set, this bit resets to 1.	
15:10	Reserved: Read/Write 0s.	
9	Read: LowSpeedDeviceAttached: This bit defines the speed (and bud idle) CurrentConnectStatus is set. 0 = Full Speed device; 1 = Low Speed device.	of the attached device. It is only valid when
	Write: ClearPortPower: Writing a 1 clears PortPowerStatus. Writing a 0 has	no effect.
8	Read: PortPowerStatus: This bit reflects the power state of the port regardle power is off; 1 = Port power is on. Note: If NoPowerSwitching is set, this bit is always read as 1.	ess of the power switching mode. 0 = Port
	Write: SetPortPower: Writing a 1 sets PortPowerStatus. Writing a 0 has no	effect.
7:5	Reserved: Read/Write 0s.	
4	Read: PortResetStatus: 0 = Port reset signal is not active; 1 = Port reset sig Write: SetPortReset: Writing a 1 sets PortResetStatus. Writing a 0 has no e	
3	Read: PortOverCurrentIndicator: This bit reflects the state of the OVRCUR valid if NoOverCurrentProtection is cleared and OverCurrentProtectionMode current condition. Write: ClearPortSuspend: Writing a 1 initiates the selective resume sequence.	is set. 0 = No over-current condition; 1 = Over
2	Read: PortSuspendStatus: 0 = Port is not suspended; 1 = Port is selectively Write: SetPortSuspend: Writing a 1 sets PortSuspendStatus. Writing a 0 ha	•
1	Read: PortEnableStatus: 0 = Port disabled; 1 = Port enabled. Write: SetPortEnable: Writing a 1 sets PortEnableStatus. Writing a 0 has no	effect.
0	Read: CurrentConnectStatus: 0 = No device connected; 1 = Device connected. Note: If DeviceRemoveable is set (not removable) this bit is always 1. Write: ClearPortEnable: Writing 1 a clears PortEnableStatus. Writing a 0 ha	cted.
Note: This	register is reset by the UsbReset state.	
Offset 5Ch	-5Fh Reserved	Reset Value = 00000000h
Offset 60h	-9Fh Reserved	Reset Value = xxh

Bit	Description		
Offset 100	h-103h HceCo	ntrol Register (R/W)	Reset Value = 00000000h
31:9	Reserved: Read/Write 0s.		
8	A20State: Indicates current state of Gate A20 GateA20Sequence is active.	on keyboard controller. Compared a	gainst value written to 60h when
7	IRQ12Active: Indicates a positive transition on clear it (set it to 0); a 0 write has no effect.	IRQ12 from keyboard controller occ	curred. Software writes this bit to 1 to
6	IRQ1Active: Indicates a positive transition on I it (set it to 0); a 0 write has no effect.	RQ1 from keyboard controller occur	red. Software writes this bit to 1 to clear
5	GateA20Sequence: Set by HC when a data valor of any value other than D1h.	llue of D1h is written to I/O port 64h	. Cleared by HC on write to I/O port 64h
4	ExternalIRQEn: When set to 1, IRQ1 and IRQ controlled by this bit is independent of the settir		•
3	IRQEn: When set, the HC generates IRQ1 or If Full bit of HceStatus is 0, IRQ1 is generated: if		n HceStatus is set to 1. If the AuxOutput-
2	CharacterPending: When set, an emulation in set to 0.	errupt will be generated when the C	OutputFull bit of the HceStatus register is
1	EmulationInterrupt (Read Only): This bit is a	static decode of the emulation intern	rupt condition.
0	EmulationEnable: When set to 1 the HC is ena 64h and generate IRQ1 and/or IRQ12 when apple to invoke the emulation software.		
Note: This	s register is used to enable and control the emula	ation hardware and report various st	atus information.
Offset 104	h-107h Hceln	put Register (R/W)	Reset Value = 000000xxh
31:8	Reserved: Read/Write 0s.		
7:0	InputData: This register holds data written to I/	O ports 60h and 64h.	
Note: This	register is the emulation side of the legacy Inpu	t Buffer register.	
Offset 108	h-10Bh HceOu	tput Register (R/W)	Reset Value = 000000xxh
31:8	Reserved: Read/Write 0s.		
7:0	OutputData: This register hosts data that is ret	urned when an I/O read of port 60h	is performed by application software.
Note: This	s register is the emulation side of the legacy Outpe.	out Buffer register where keyboard a	and mouse data is to be written by soft-
Offset 100	h-10Fh HceSt	atus Register (R/W)	Reset Value = 00000000h
31:8	Reserved: Read/Write 0s.		
7	Parity: Indicates parity error on keyboard/mous	se data.	
6	Timeout: Used to indicate a time-out		
5	AuxOutputFull: IRQ12 is asserted whenever t	his bit is set to 1 and OutputFull is s	et to 1 and the IRQEn bit is set.
4	Inhibit Switch: This bit reflects the state of the	keyboard inhibit switch and is set if	the keyboard is NOT inhibited.
3	CmdData: The HC will set this bit to 0 on an I/O	write to port 60h and on an I/O wri	ite to port 64h the HC will set this bit to 1.
2	Flag: Nominally used as a system flag by softw		
		rare to indicate a warm or cold boot.	
1	InputFull: Except for the case of a Gate A20 so bit is set to 1 and emulation is enabled, an emu	equence, this bit is set to 1 on an I/C	
	·	equence, this bit is set to 1 on an I/C lation interrupt condition exists. ad of I/O port 60h. If IRQEn is set an QEn is set and AuxOutputFull is set	O write to address 60h or 64h. While this d AuxOutputFull is set to 0 then an IRQ1 to 1 then and IRQ12 will be generated a

Register Descriptions Revision 1.1 AMD

5.5 ISA Legacy I/O Register Space

The bit formats for the ISA Legacy I/O Registers plus two chipset-specific configuration registers used for interrupt mapping in the CS5530A are given in this section. These registers reside in the ISA I/O address space in the address range from 000h to FFFh and are accessed through typical input/output instructions (i.e., CPU direct R/W) with the designated I/O port address and 8-bit data. The registers are separated into the following categories:

- DMA Channel Control Registers, see Table 5-27
- DMA Page Registers, see Table 5-28

- Programmable Interval Timer Registers, see Table 5-29
- Programmable Interrupt Controller Registers, see Table 5-30
- Keyboard Controller Registers, see Table 5-31
- Real Time Clock Registers, see Table 5-32
- Miscellaneous Registers, see Table 5-33 (includes 4D0h and 4D1h Interrupt Edge/Level Select Registers and ACPI Timer Count Register at I/O Port 121Ch)

Table 5-27. DMA Channel Control Registers

Bit	Description		
I/O Port 000h (R/W) DMA Channel 0 Address Register			
Written as two successive bytes, byte 0, 1.			
I/O Port 001h (R/W) DMA Channel 0 Transfer Count Register			
Written as two successive bytes, byte 0, 1.			
I/O Port 002h (R/W) DMA Channel 1 Address Register			
Written as two successive bytes, byte 0, 1.			
I/O Port 003h (R/W) DMA Channel 1 Transfer Count Register			
Written as two successive bytes, byte 0, 1.			
I/O Port 00	I/O Port 004h (R/W) DMA Channel 2 Address Register		
Written as two successive bytes, byte 0, 1.			
I/O Port 005h (R/W) DMA Channel 2 Transfer Count Register			
Written as two successive bytes, byte 0, 1.			
I/O Port 00	06h (R/W) DMA Channel 3 Address Register		
Written as two successive bytes, byte 0, 1.			
I/O Port 007h (R/W) DMA Channel 3 Transfer Count Register			
Written as two successive bytes, byte 0, 1.			
I/O Port 008h (R/W)			
Read	DMA Status Register, Channels 3:0		
7	Channel 3 Request: Request pending? 0 = No; 1 = Yes.		
6	Channel 2 Request: Request pending? 0 = No; 1 = Yes.		
5	Channel 1 Request: Request pending? 0 = No; 1 = Yes.		
4	Channel 0 Request: Request pending? 0 = No; 1 = Yes.		
3	Channel 3 Terminal Count: TC reached? 0 = No; 1 = Yes.		
2	Channel 2 Terminal Count: TC reached? 0 = No; 1 = Yes.		
1	Channel 1 Terminal Count: TC reached? 0 = No; 1 = Yes.		
0	Channel 0 Terminal Count: TC reached? 0 = No; 1 = Yes.		
Write	DMA Command Register, Channels 3:0		
7	DACK Sense: 0 = Active high; 1 = Active low.		
6	DREQ Sense: 0 = Active high; 1 = Active low.		
5	Write Selection: 0 = Late write; 1 = Extended write.		
4	Priority Mode: 0 = Fixed; 1 = Rotating.		
3	Timing Mode: 0 = Normal; 1 = Compressed.		
2	Channels 3 through 0: 0 = Disable; 1 = Enable.		
1:0	1:0 Reserved: Set to 0.		

Table 5-27. DMA Channel Control Registers (Continued)

Bit	Description		
I/O Port 009h (WO) Software DMA Request Register, Channels 3:0			
7:3	Reserved: Set to 0		
2	Reserved: Set to 0	•	
1:0		Request Select: 00 = Channel 0; 01 = Channel 1; 10 = Channel 2; 11 = Channel 3.	
Note: Software DMA is not supported.			
I/O Port 00Ah (R/W) DMA Channel Mask Register, Channels 3:0			
7:3	Reserved: Set to 0.		
2	Channel Mask: 0 = Not masked; 1 = Masked.		
1:0 Channel Number Mask Select: 00 = Channel 0; 01 = Channel 1; 10 = Channel 2; 11 = Channel 3.			
I/O Port 00Bh (WO) DMA Channel Mode Register, Channels 3:0			
7:6	Transfer Mode: 00	= Demand; 01 = Single; 10 = Block; 11 = Cascade.	
5		: 0 = Increment; 1 = Decrement.	
4	Auto-initialize: 0 = Disable; 1 = Enable.		
3:2	Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved.		
1:0	Channel Number I	Mode Select: 00 = Channel 0; 01 = Channel 1; 10 = Channel 2; 11 = Channel 3.	
I/O Port 00Ch (WO) DMA Clear Byte Pointer Command, Channels 3:0			
I/O Port 00Dh (WO) DMA Master Clear Command, Channels 3:0			
I/O Port 00Eh (WO) DMA Clear Mask Register Command, Channels 3:0			
I/O Port 00Fh (WO) DMA Write Mask Register Command, Channels 3:0			
I/O Port 0C0h (R/W) DMA Channel 4 Address Register			
Not used.			
I/O Port 0C2h (R/W) DMA Channel 4 Transfer Count Register			
Not used.			
I/O Port 00	I/O Port 0C4h (R/W) DMA Channel 5 Address Register		
Memory address bytes 1 and 0.			
I/O Port 0C6h (R/W) DMA Channel 5 Transfer Count Register			
Transfer count bytes 1 and 0			
I/O Port 0C8h (R/W) DMA Channel 6 Address Register			
Memory address bytes 1 and 0.			
I/O Port 0CAh (R/W) DMA Channel 6 Transfer Count Register			
Transfer count bytes 1 and 0.			
I/O Port 0CCh (R/W) DMA Channel 7 Address Register			
Memory address bytes 1 and 0.			
I/O Port 00	I/O Port 0CEh (R/W) DMA Channel 7 Transfer Count Register		
Transfer count bytes 1 and 0.			

Table 5-27. DMA Channel Control Registers (Continued)

Bit	Description		
I/O Port 0D0h (R/W)			
Read	DMA Status Register, Channels 7:4		
7	Channel 7 Request: Request pending? 0 = No; 1 = Yes.		
6	Channel 6 Request: Request pending? 0 = No; 1 = Yes.		
5	Channel 5 Request: Request pending? 0 = No; 1 = Yes.		
4	Undefined		
3	Channel 7 Terminal Count: TC reached? 0 = No; 1 = Yes.		
2	Channel 6 Terminal Count: TC reached? 0 = No; 1 = Yes.		
1	Channel 5 Terminal Count: TC reached? 0 = No; 1 = Yes.		
0	Undefined		
Write	DMA Command Register, Channels 7:4		
7	DACK Sense: 0 = Active high; 1 = Active low.		
6	DREQ Sense: 0 = Active high; 1 = Active low.		
5	Write Selection: 0 = Late write; 1 = Extended write.		
4	Priority Mode: 0 = Fixed; 1 = Rotating.		
3	Timing Mode: 0 = Normal; 1 = Compressed.		
2	Channels 7 through 4: 0 = Disable; 1 = Enable.		
1:0	Reserved: Set to 0.		
I/O Port 0	O2h (WO) Software DMA Request Register, Channels 7:4		
7:3	Reserved: Set to 0.		
2	Request Type: 0 = Reset; 1 = Set.		
1:0	Channel Number Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7.		
	Note: Software DMA is not supported		
I/O Port 0	O4h (R/W) DMA Channel Mask Register, Channels 7:0		
7:3	Reserved: Set to 0.		
2	Channel Mask: 0 = Not masked; 1 = Masked.		
1:0	Channel Number Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7.		
I/O Port 0	D6h (WO) DMA Channel Mode Register, Channels 7:4		
7:6	Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade.		
5	Address Direction: 0 = Increment; 1 = Decrement.		
4	Auto-initialize: 0 = Disabled; 1 = Enable.		
3:2	Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved.		
1:0	Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7.		
	Channel 4 must be programmed in cascade mode. This mode is not the default.		
I/O Port 0	D8h (WO) DMA Clear Byte Pointer Command, Channels 7:4		
I/O Port 0	DAh (WO) DMA Master Clear Command, Channels 7:4		
I/O Port 0	I/O Port 0DCh (WO) DMA Clear Mask Register Command, Channels 7:4		
I/O Port 0	DEh (WO) DMA Write Mask Register Command, Channels 7:4		

Table 5-28. DMA Page Registers

Bit	Description	
I/O Port 08	31h (R/W)	DMA Channel 2 Low Page Register
Address bi	ts [23:16] (byte 2).	
I/O Port 08	32h (R/W)	DMA Channel 3 Low Page Register
Address bi	ts [23:16] (byte 2).	
I/O Port 08	` '	DMA Channel 1 Low Page Register
Address bi	ts [23:16] (byte 2).	
I/O Port 08	` ,	DMA Channel 0 Low Page Register
Address bi	ts [23:16] (byte 2).	
I/O Port 08	` '	DMA Channel 6 Low Page Register
	ts [23:16] (byte 2).	
I/O Port 08	` ,	DMA Channel 7 Low Page Register
	ts [23:16] (byte 2).	
I/O Port 08	` '	DMA Channel 5 Low Page Register
	ts [23:16] (byte 2).	IOA Perfected Law Parts Particles
I/O Port 08	` ,	ISA Refresh Low Page Register
I/O Port 48	31h (R/W)	DMA Channel 2 High Page Register
Address bi	ts [31:24] (byte 3). Note	This register is reset to 00h on any access to Port 081h.
I/O Port 48	32h (R/W)	DMA Channel 3 High Page Register
Address bi	ts [31:24] (byte 3). Note	This register is reset to 00h on any access to Port 082h.
I/O Port 48	33h (R/W)	DMA Channel 1 High Page Register
Address bi	ts [31:24] (byte 3). Note	This register is reset to 00h on any access to Port 083h.
I/O Port 48	37h (R/W)	DMA Channel 0 High Page Register
Address bi	ts [31:24] (byte 3). Note	This register is reset to 00h on any access to Port 087h.
I/O Port 48	39h (R/W)	DMA Channel 6 High Page Register
Address bi	ts [31:24] (byte 3). Note	This register is reset to 00h on any access to Port 089h.
I/O Port 48	` ,	DMA Channel 7 High Page Register
Address bi	ts [31:24] (byte 3). Note	This register is reset to 00h on any access to Port 08Ah.
I/O Port 48	` '	DMA Channel 5 High Page Register
Address bi	ts [31:24] (byte 3). Note	This register is reset to 00h on any access to Port 08Bh.

Table 5-29. Programmable Interval Timer Registers

	Table 5-29. Programmable interval Timer Registers			
Bit	Description			
I/O Port 0	I/O Port 040h			
Write	PIT Timer 0 Counter			
7:0	Counter Value			
Read	PIT Timer 0 Status			
7	Counter Output: State of counter output signal.			
6	Counter Loaded: Last count written is loaded? 0 = Yes; 1 = No.			
5:4	Current Read/Write Mode: 00 = Counter latch command; 01 = R/W LSB only; 10 = R/W MSB only; 11 = R/W LSB, followed by MSB.			
3:1	Current Counter Mode: 0-5.			
0	BCD Mode: 0 = Binary; 1 = BCD (binary coded decimal).			
I/O Port 0	41h			
Write	PIT Timer 1 Counter (Refresh)			
7:0	Counter Value			
Read	PIT Timer 1 Status (Refresh)			
7	Counter Output: State of counter output signal.			
6	Counter Loaded: Last count written is loaded? 0 = Yes; 1 = No.			
5:4	Current Read/Write Mode: 00 = Counter latch command; 01 = R/W LSB only; 10 = R/W MSB only; 11 = R/W LSB, followed by MSB.			
3:1	Current Counter Mode: 0-5.			
0	BCD Mode: 0 = Binary; 1 = BCD (binary coded decimal).			
I/O Port 0	42h			
Write	PIT Timer 2 Counter (Speaker)			
7:0	Counter Value			
Read	PIT Timer 2 Status (Speaker)			
7	Counter Output: State of counter output signal.			
6	Counter Loaded: Last count written is loaded? 0 = Yes; 1 = No.			
5:4	Current Read/Write Mode: 00 = Counter latch command; 01 = R/W LSB only; 10 = R/W MSB only; 11 = R/W LSB, followed by MSB.			
3:1	Current Counter Mode: 0-5.			
0	BCD Mode: 0 = Binary; 1 = BCD (binary coded decimal).			
I/O Port 0	43h (R/W) PIT Mode Control Word Register			
7:6	Counter Select: 00 = Counter 0; 01 = Counter 1; 10 = Counter 2; 11 = Read-back command (Note 1).			
5:4	Current Read/Write Mode: 00 = Counter latch command (Note 2); 01 = R/W LSB only; 10 = R/W MSB only; 11 = R/W LSB, followed by MSB.			
3:1	Current Counter Mode: 0-5.			
0	BCD Mode: 0 = Binary; 1 = BCD (binary coded decimal).			
2.	If bits [7:6] = 11: Register functions as Read Status Command Bit 5 = Latch Count, Bit 4 = Latch Status, Bit 3 = Select Counter 2, Bit 2 = Select Counter 1, Bit 1 = Select Counter 0, and Bit 0 = Reserved If bits [5:4] = 00: Register functions as Counter Latch Command Bits [7:6] = Selects Counter, and [3:0] = Don't care			

Table 5-30. Programmable Interrupt Controller Registers

Bit	Description		
	· ·		
I/O Port 0	<u> </u>	/ Slave PIC IWC1	
7:5	Reserved: Set to 0.		
4	Reserved: Set to 1.		
3	Trigger Mode: 0 = Edge; 1 = Level.		
2	Vector Address Interval: 0 = 8-byte intervals; 1	= 4-byte intervals.	
1	Reserved: Set to 0 (cascade mode).		
0	Reserved: Set to 1 (ICW4 must be programmed).	
I/O Port 0		/ Slave PIC ICW2	
	(after	ICW1 is written)	
7:3	A[7:3]: Address lines [7:3] for base vector for int	errupt controller.	
2:0	Reserved: Set to 0.		
I/O Port 0		/ Slave PIC ICW3 ICW2 is written)	
Master P	IC ICW3		
7:0	Cascade IRQ: Must be 04h.		
Slave PIC	CICW3		
7:0	Slave ID: Must be 02h.		
I/O Port 0	021h / 0A1h (WO) Master	/ Slave PIC ICW4	
	• •	ICW3 is written)	
7:5	Reserved: Set to 0.		
4	4 Special Fully Nested Mode: 0 = Disable; 1 = Enable.		
	This function is not implemented and should always be disabled (i.e., set this bit to 0).		
3:2	Reserved: Set to 0.		
1	Auto EOI: 0 = Normal EOI; 1 = Auto EOI.		
0	Reserved: Set to 1 (8086/8088 mode).		
I/O Port 0	, ,	/ Slave PIC OCW1 ately after ICW1 is written)	
7	IRQ7 / IRQ15 Mask: 0 = Not Masked; 1 = Mask.		
6	IRQ6 / IRQ14 Mask: 0 = Not Masked; 1 = Mask.		
5	IRQ5 / IRQ13 Mask: 0 = Not Masked; 1 = Mask.		
4	IRQ4 / IRQ12 Mask: 0 = Not Masked; 1 = Mask.		
3	IRQ3 / IRQ11 Mask: 0 = Not Masked; 1 = Mask.		
2	IRQ2 / IRQ10 Mask: 0 = Not Masked; 1 = Mask.		
1	IRQ1 / IRQ9 Mask: 0 = Not Masked; 1 = Mask.		
0			
I/O Port 0	I/O Port 020h / 0A0h (WO) Master / Slave PIC OCW2		
7:5	Rotate/EOI Codes		
	000 = Clear rotate in Auto EOI mode	100 = Set rotate in Auto EOI mode	
	001 = Non-specific EOI	101 = Rotate on non-specific EOI command	
	010 = No operation 011 = Specific EOI (bits [2:0] must be valid)	110 = Set priority command (bits [2:0] must be valid) 111 = Rotate on specific EOI command (bits [2:0] must be valid)	
4.0	Reserved: Set to 0.	TTT = Notate on specific EOI command (bits [2.0] must be valid)	
4:3			
2:0	IRQ Number (000-111)		

Table 5-30. Programmable Interrupt Controller Registers (Continued)

Bit	Description	
I/O Port 02	20h / 0A0h (WO)	Master / Slave PIC OCW3
7	Reserved: Set to 0.	
6:5	Special Mask Mode	
	00 = No operation	10 = Reset Special Mask Mode
	01 = No operation	11 = Set Special Mask Mode
4	Reserved: Set to 0.	
3	Reserved: Set to 1.	
2	Reserved: Set to 0. Poll Command	d at this address is not supported.
1:0	Register Read Mode	
	00 = No operation	10 = Read interrupt request register on next read of Port 20h
	01 = No operation	11 = Read interrupt service register on next read of Port 20h
I/O Port 02	20h / 0A0h (RO) Master / Sla	ve PIC Interrupt Request and Service Registers
		for OCW3 Commands
Interrupt I	Request Register	
7	IRQ7 / IRQ15 Pending: 0 = Yes; 1	= No.
6	IRQ6 / IRQ14 Pending: 0 = Yes; 1 = No.	
5	IRQ5 / IRQ13 Pending: 0 = Yes; 1	= No.
4	IRQ4 / IRQ12 Pending: 0 = Yes; 1	= No.
3	IRQ3 / IRQ11 Pending: 0 = Yes; 1	= No.
2	IRQ2 / IRQ10 Pending: 0 = Yes; 1	= No.
1	IRQ1 / IRQ9 Pending: 0 = Yes; 1 =	= No.
0	IRQ0 / IRQ8 Pending: 0 = Yes; 1 = No.	
Interrupt	Service Register	
7	IRQ7 / IRQ15 In-Service: 0 = No;	1 = Yes.
6	IRQ6 / IRQ14 In-Service: 0 = No;	1 = Yes.
5	IRQ5 / IRQ13 In-Service: 0 = No; 1 = Yes.	
4	IRQ4 / IRQ12 In-Service: 0 = No; 1 = Yes.	
3	IRQ3 / IRQ11 In-Service: 0 = No; 1 = Yes.	
2	IRQ2 / IRQ10 In-Service: 0 = No; 1 = Yes.	
1	IRQ1 / IRQ9 In-Service: 0 = No; 1 = Yes.	
0	IRQ0 / IRQ8 In-Service: 0 = No; 1 = Yes.	
Note: The function of this register is set with bits [1:0] in a write to 020h.		

Table 5-31. Keyboard Controller Registers

Bit	Description	
I/O Port 06	0h (R/W)	External Keyboard Controller Data Register

Keyboard Controller Data Register: All accesses to this port are passed to the ISA bus. If the fast keyboard gate A20 and reset features are enabled through bit 7 of the ROM/AT Logic Control Register (F0 Index 52h[7]), the respective sequences of writes to this port assert the A20M# pin or cause a warm CPU reset.

I/O Port 06	1h (R/W) Port B Control Register	Reset Value = 00x01100b
7	PERR#/SERR# Status (Read Only): Was a PCI bus error (PERR#/SERR#) asserted 0 = No; 1 = Yes.	ed by a PCI device or by the CS5530A?
	This bit can only be set if ERR_EN (bit 2) is set 0. This bit is set 0 after a write to ER	RR_EN with a 1 or after reset.
6	IOCHK# Status (Read Only): Is an I/O device reporting an error to the CS5530A? O) = No; 1 = Yes.
	This bit can only be set if IOCHK_EN (bit 3) is set 0. This bit is set 0 after a write to I	IOCHK_EN with a 1 or after reset.
5	PIT OUT2 State (Read Only): This bit reflects the current status of the PIT Counter	2 (OUT2).
4	Toggle (Read Only): This bit toggles on every falling edge of Counter 1 (OUT1).	
3	3 IOCHK Enable:	
	0 = Generates an NMI if IOCHK# is driven low by an I/O device to report an error. No 1 = Ignores the IOCHK# input signal and does not generate NMI.	ote that NMI is under SMI control.
2	PERR#/SERR# Enable: Generates an NMI if PERR#/SERR# is driven active to report 0 = Enable; 1 = Disable	ort an error.
1	PIT Counter2 (SPKR): 0 = Forces Counter 2 output (OUT2) to zero; 1 = Allows Couspeaker.	unter 2 output (OUT2) to pass to the
0	PIT Counter2 Enable: 0 = Sets GATE2 input low; 1 = Sets GATE2 input high.	

I/O Port 062h (R/W)

External Keyboard Controller Mailbox Register

Keyboard Controller Mailbox Register: Accesses to this port will assert KBROMCS# if the Port 062h/066h decode is enabled through bit 7 of the Decode Control Register 2 (F0 Index 5Bh[7]).

I/O Port 064h (R/W)

External Keyboard Controller Command Register

Keyboard Controller Command Register: All accesses to this port are passed to the ISA bus. If the fast keyboard gate A20 and reset features are enabled through bit 7 of the ROM/AT Logic Control Register (F0 Index 52h[7]), the respective sequences of writes to this port assert the A20M# pin or cause a warm CPU reset.

I/O Port 066h (R/W)

External Keyboard Controller Mailbox Register

Keyboard Controller Mailbox Register: Accesses to this port will assert KBROMCS# if the Port 062h/066h decode is enabled through bit 7 of the Decode Control Register 2 (F0 Index 5Bh[7]).

I/O Port 09	Port A Control Register (R/W)	Reset Value = 02h
7:2	Reserved: Set to 0.	
1	A20M# SMI Assertion: Assert A20M#. 0 = Enable mask; 1 = Disable mask.	
0	Fast CPU Reset: WM_RST SMI is asserted to the BIOS. 0 = Disable; 1 = Enable.	
	This bit must be cleared before the generation of another reset.	

Table 5-32. Real-Time Clock Registers

Bit	Description		
I/O Port 07	70h (WO) RTC Address Register		
7	NMI Mask: 0 = Enable; 1 = Mask.		
6:0	RTC Register Index: A write of this register sends the data out on the ISA bus and also causes RTCALE to be triggered.		
Note: This	Note: This register is shadowed within the CS5530A and is read through the RTC Shadow Register (F0 Index BBh).		
I/O Port 07	I/O Port 071h (R/W) RTC Data Register		
A read of this register returns the value of the register indexed by the RTC Address Register plus initiates a RTCCS#.			
A write of this register sets the value into the register indexed by the RTC Address Register plus initiates a RTCCS#.			

Register Descriptions Revision 1.1

Table 5-33. Miscellaneous Registers

Bit	Description	
I/O Ports 1	70h-177h/376h	Secondary IDE Registers (R/W)

When the local IDE functions are enabled, reads or writes to these registers cause the local IDE interface signals to operate according to their configuration rather than generating standard ISA bus cycles.

I/O Ports 1F0h-1F7h/3F6h

Primary IDE Registers (R/W)

When the local IDE functions are enabled, reads or writes to these registers cause the local IDE interface signals to operate according to their configuration rather than generating standard ISA bus cycles.

I/O Port 4D	0h Interrupt Edge/Level Select Register 1 (R/W)	Reset Value = 00h
7	IRQ7 Edge or Level Select: Selects PIC IRQ7 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1	and 2)
6	IRQ6 Edge or Level Select: Selects PIC IRQ6 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1	and 2)
5	IRQ5 Edge or Level Select: Selects PIC IRQ5 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1	and 2)
4	IRQ4 Edge or Level Select: Selects PIC IRQ4 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1	and 2)
3	IRQ3 Edge or Level Select: Selects PIC IRQ3 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1	and 2)
2	Reserved: Set to 0.	
1	IRQ1 Edge or Level Select: Selects PIC IRQ1 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1	and 2)
0	Reserved: Set to 0.	

Notes: 1. If ICW1 - bit 3 in the PIC is set as level, it overrides this setting.

2. This bit is provided to configure a PCI interrupt mapped to IRQ[x] on the PIC as level-sensitive (shared).

I/O Port	D1h Interrupt Edge/Level Select Register 2 (R/W)	Reset Value = 00h
7	7 IRQ15 Edge or Level Select: Selects PIC IRQ15 sensitivity configuration. 0 = Edge; 1 = Level. (Notes	
6	IRQ14 Edge or Level Select: Selects PIC IRQ14 sensitivity configuration. 0 = Edge; 1 = Level. (Note	es 1 and 2)
5	Reserved: Set to 0.	
4	IRQ12 Edge or Level Select: Selects PIC IRQ12 sensitivity configuration. 0 = Edge; 1 = Level. (Note	es 1 and 2)
3	IRQ11 Edge or Level Select: Selects PIC IRQ11 sensitivity configuration. 0 = Edge; 1 = Level. (Note	es 1 and 2)
2	IRQ10 Edge or Level Select: Selects PIC IRQ10 sensitivity configuration. 0 = Edge; 1 = Level. (Note	es 1 and 2)
1	IRQ9 Edge or Level Select: Selects PIC IRQ9 sensitivity configuration. 0 = Edge; 1 = Level. (Notes	1 and 2)
0	Reserved: Set to 0.	

Notes: 1. If ICW1 - bit 3 in the PIC is set as level, it overrides this setting.

2. This bit is provided to configure a PCI interrupt mapped to IRQ[x] on the PIC as level-sensitive (shared).

I/O Port 121Ch-121Fh (Note)

ACPI Timer Count Register (RO)

Reset Value = 00FFFFFCh

ACPI_COUNT (Read Only): This read-only register provides the current value for the ACPI timer. The timer counts at 14.31818/4 MHz (3.579545 MHz). If SMI generation is enabled via F0 Index 83h[5], an SMI is generated when the MSB toggles. The MSB toggles every 2.343 seconds.

Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].

Second level SMI status is reported is at F0 Index 87h/F7h[0].

23:0	Counter	
31:24 Reserved: Always returns 0.		

Note: The ACPI Timer Count Register is also accessible through F1BAR+Offset 1Ch.

AMD Revision 1.1 Register Descriptions

5.6 V-ACPI I/O Register Space

The register space designated as V-ACPI I/O does not physically exist in the CS5530A. ACPI is supported in the CS5530A by virtualizing this register space, called V-ACPI. In order for ACPI to be supported, the V-ACPI VSA module must be included in the BIOS. The register descriptions that follow, are supplied here for reference only.

Fixed Feature Space registers are required to be implemented by all ACPI-compatible hardware. The Fixed Feature registers in the VSA/ACPI solution are mapped to normal I/O space starting at offset AC00h; however, the designer can relocate this register space at compile time, hence are hereafter referred to as ACPI_BASE. Registers within V-ACPI (Virtualized ACPI) I/O space must only be accessed on their defined boundaries. For example, byte aligned registers must not be accessed via WORD I/O instructions, WORD aligned registers must not be accessed as DWORD I/O instructions, etc.

The V-ACPI I/O Register Space can be broken up into major blocks:

- PM Event Block 1A (PM1A_EVT_BLK)
- PM Event Block 1A Control (PM1A_CNT_BLK)
- Processor Register Block (P_BLK)
- Command Block (CMD_BLK)
- Test/Setup Block (TST/SETUP_BLK)

0x02 - ACPI_DISABLE 0x03 - S4BIOS_REQ (optional)

General Purpose Enable 0 Block (GPE0 BLK)

PM1A_EVT_BLK is 32-bit aligned and contains two 16-bit registers, PM1A_STS and PM1A_EN.

PM1A_CNT_BLK is 32-bit aligned and contains one 16-bit register, PM1A_CNT. PM1A_CNT contains the Fixed Feature control bits used for various power management

enables and as communication flags between BIOS and the ACPLOS.

P_BLK is 32-bit aligned (one register block per processor) and contains two registers P_CNT and P_LVL2. P_LVL3 is currently not supported.

- P_CNT (Processor Control) 16-bit register, Controls process duty cycle via CPU clock throttling.
 DUTY_WIDTH = 3 (can be widened)
 DUTY_OFFSET = 0
- P_LVL2 (Enter C2 Power State) 8-bit, read only register. When read, causes the processor to enter C2 power state.

CMD_BLK contains one 8-bit register SMI_CMD which interprets and processes the ACPI commands (defined in Fixed ACPI Description Table, refer to ACPI Specification, Section 5.2.5).

TST/SETUP_BLK is provided by the VSA technology code and contains two registers, SETUP_IDX and SETUP_DATA for the purpose of configuring the CS5530A. Specifically, this pair of registers enables system software to map GPIO pins on the CS5530A to PM1A_STS and GPE0_STS register bits.

GPE0_BLK has registers used to enable system software to configure GPIO (General Purpose I/O) pins to generate SCI interrupts. GPE0_BLK is a 32-bit block aligned on a 4-byte boundary. It contains two 16-bit registers, GPE0_STS and GPE0_EN, each of which must be configured by the BIOS POST. In order for a GPE0_STS bit to generate an SCI, the corresponding enable bit in GPE0_EN must be set.

Table 5-34 gives the bit formats of the V-ACPI I/O registers.

Table 5-34. V-ACPI Registers

		Table 5-34.	V-ACPI Registers	
Bit	Description			
ACPI_BA	SE 00h-03h	P_CNT — Processo	r Control Register (R/W)	Reset Value = 00000000h
31:5	Reserved: Always 0.			
4	THT_EN: Enables thro	ttling of the clock based on th	e CLK_VAL field.	
3	Reserved: Always 0.			
2:0	CLK_VAL: Clock thrott	ling value. CPU duty cycle =		
	000 = Reserved 001 = 12.5%	010 = 25% 011 = 37.5%	100 = 50% 101 = 62.5%	110 = 75% 111 = 87.5%
ACPI_BA	SE 04h	P_LVL2 — Enter C2 P	ower State Register (RO)	Reset Value = 00h
Reading t	this 8-bit read only registe	r causes the processor to ente	er the C2 power state. Reads of	P_LVL2 return 0. Writes have no effect
ACPI_BA	SE 05h	Re	served	Reset Value = 00h
ACPI_BA	SE 06h	SMI_CMD — OS/BIOS	Requests Register (R/W)	Reset Value = 00h
Interpret and process the ACPI commands (defined in Fixed ACPI Description Table, refer to ACPI Specification, Section 5.2.5). 0x01 - ACPI_ENABLE				

Table 5-34. V-ACPI Registers (Continued)

ACPL BASE 07h Reserved Reserv Value = 000 ACPL BASE 08h-09h PM1A_STS — PM1A_STS = PM1A Status Register (R/W) Reset Value = 0000 15 WAKE_STS: Wake Status - Set when system was in sleep state and an enabled wakeup occurs. 14:11 Reserved 10 RTC_STS: Real Time Clock Status - This bit changes to 1 if an RTC alarm causes a wake up event. This bit is only set up wakeup from a sleep state and (R08 is asserted by the RTC. Refer to Table 5-37. 9 SLPSTN_STS: Sleep Button Status (Optional) - This bit changes to 1 when the sleep button is pressed. If SLPBTN_EN set. an SCI interrupt is generated. This bit must be configured to be set by a GPIO pin using SETUP_IDX values 0x10-0x17 in order to be set. Refer to Table 3.6. 8 PWRBTN_STS: Power Button Status - This bit is set when power button is pressed. If PWRBTN_EN is set, an SCI interrupt is asserted. This bit must be configured to be set by a GPIO pin using SETUP_IDX values 0x10-0x17 in order to be set. Refer to Table 3.6. 7.6 Reserved 5 GBL_STS: Global Status - The BIOS sets GBL_STS to 1 to release its global lock and return control to the ACPI OS. At it same time GBL_STS is set, the BIOS generates an SCI. 4 BM_STS: Bus Master Status - This bit is not supported by V-ACPI. 3-1 Reserved 0 TMR_STS: ACPI Timer Status - This bit is not supported by V-ACPI. 3-1 Reserved 1 MR_EN (ACPI_BASE 0Ah)0 s also set, then a SCI interrupt is asserted. Note: Status bits are "staticy". A write of a one (1) a signer bit lockino will reset the bit. ACPI_BASE 0Ah-0Bh PM1A_EN — PM1A_EN — PM1A Enable Register (R/W) Reset Value = 0000 1 SLPBIN_EN: Sleep Button Enable - If set, an SCI is asserted when RTC_STS changes to 1. 9 SLPBIN_EN: Sleep Button Enable - If set, an SCI is asserted when SLPBIN_STS changes to 1. 9 SLPBIN_EN: Sleep Button Enable - If set, an SCI is asserted when SLPBIN_STS changes to 1. 7-6 Reserved 1-7-7 Reserved 3-7-7 Reserved 3-7-7 Reserved 3-7-7 Reser	Bit	Description		
15 WAKE_STS: Wake Status - Set when system was in sleep state and an enabled wakeup occurs. 14:11 Reserved 10 RTC_STS: Real Time Clock Status - This bit changes to 1 if an RTC alarm causes a wake up event. This bit is only set up wakeup from a sleep state and IRQ8 is asserted by the RTC. Refer to Table 5-37. 9 SLPBTN_STS: Sleep button Status (Optional) - This bit changes to 1 when the sleep button is pressed. If SLPBTN_EN set, an SCI interrupt is generated. This bit must be configured to be set by a GPIO pin using SETUP_IDX values 0x10-0x17 in order to be set. Refer to Table 36. 8 PWRBTN_STS: Power Button Status - This bit is set when power button is pressed. If PWRBTN_EN is set, an SCI interrupt is asserted. This bit must be configured to be set by a GPIO pin using SETUP_IDX values 0x10-0x17 in order to be set. Refer to Table 36. 7:6 Reserved 5 GBL_STS: Global Status - The BIOS sets GBL_STS to 1 to release its global lock and return control to the ACPI OS. At it same time GBL_STS is set, the BIOS generates an SCI. 4 BM_STS: Bus Master Status - This bit is not supported by V-ACPI. 3:1 Reserved 0 TMR_STS: ACPI Timer Status - This bit is hanges to 1 whenever bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or I. Port 121Ch) changes state. The ACPI OS is responsible for clearing TMR_STS. If TIME_EN_(ACPI_BASE OAh[0] is also set, then a SCI interrupt is asserted. Note: Status bits are "sticky". A write of a one (1) to a given bit location will reset the bit. ACPI_BASE OAh-OBh PM1A_EN — PM1A Enable Register (R/W) Reset Value = 0000 15:11 Reserved 10 REServed 10 GBL_EN: Global Lock Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. 8 PWRBTN_EN: Power Button Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. 9 SLPBTN_EN: Sleep Button Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. 10 REServed 10 GBL_EN: Global Lock Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. 12:10 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit cause	ACPI_BASE 07h Reserved Reset Va			
14:11 Reserved 10 RTC_STS: Real Time Clock Status - This bit changes to 1 if an RTC alarm causes a wake up event. This bit is only set up wakeup from a sleep state and IROS is asserted by the RTC. Refer to Table 5-37. 9 SLPBTN_STS: Sleep Button Status (Optional) - This bit changes to 1 when the sleep button is pressed. If SLPBTN_EN set. an SCI interrupt is generated. This bit must be configured to be set by a GPIO pin using SETUP_IDX values 0x10-0x17 in order to be set. Refer to Table 36. 8 PWRBTN_STS: Power Button Status - This bit is set when power button is pressed. If PWRBTN_EN is set, an SCI interrupt is asserted. This bit must be configured to be set by a GPIO pin using SETUP_IDX values 0x10-0x17 in order to be set. Refer to Table 36. 7.6 Reserved 5 GBL_STS: Global Status - The BIOS sets GBL_STS to 1 to release its global lock and return control to the ACPLOS. At it same time 0BL_STS is set, the BIOS generates an SCI. 4 BM_STS: Bus Master Status - This bit is not supported by V-ACPI. 3:1 Reserved 5 TMR_STS: ACPL Timer Status - This bit changes to 1 whenever bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or I. Port 121Ch) changes state. The ACPI OS is responsible for clearing TMR_STS. If TMR_EN_(ACPI_BASE 0Ah)(0) is also set, then a SCI interrupt is asserted. Note: Status bits are "sticky". A write of a one (1) to a given bit location will reset the bit. ACPI_BASE 0Ah-0Bh PM1A_EN — PM1A_EN — PM1A Enable Register (RW) Reset Value = 0000 15:11 Reserved 10 RTC_EN: Real Time Clock Enable - If set, an SCI is asserted when RTC_STS changes to 1. 8 PWRBTN_EN: Power Button Enable (Optional) - If set, an SCI is asserted when SLPBTN_STS changes to 1. 9 SLPBTN_EN: Sleep Button Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. 12:10 SLP_EN: Real Time Clock Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. 13 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPs. Reads of this bit always return zero.	ACPI_BAS	E 08h-09h PM1A_STS — PM1A Status Register (R/W)	Reset Value = 0000h	
RTC_STS: Real Time Clock Status - This bit changes to 1 if an RTC alarm causes a wake up event. This bit is only set up wakeup from a sleep state and IRQ8 is asserted by the RTC. Refer to Table 5-37. SEPETN. STS: Steep Button Status (Optional) - This bit changes to 1 when the sleep button is pressed. If SLPBTN_EN set, an SCI interrupt is generated. This bit must be configured to be set by a GPIO pin using SETUP_IDX values 0x10-0x17 in order to be set. Refer to Table 38. PWRBTN_STS: Power Button Status - This bit is set when power button is pressed. If PWRBTN_EN is set, an SCI interrupt is asserted. This bit must be configured to be set by a GPIO pin using SETUP_IDX values 0x10-0x17 in order to be set. Refer to Table 38. 7:6 Reserved 5 GBL_STS: Global Status - The BIOS sets GBL_STS to 1 to release its global lock and return control to the ACPI OS. At it same time GBL_STS is set, the BIOS generates an SCI. 4 BM_STS: Bus Master Status - This bit changes to 1 whenever bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or I Port 12/Ch) changes state. The ACPI OS is responsible for clearing TMR_STS. If TMR_EN (ACPI_BASE 0AN) is also set, then a SCI interrupt is asserted. Note: Status bits are "sticky". A write of a one (1) to a given bit location will reset the bit. ACPI_BASE 0Ah-08h PM1A_EN — PM1A Enable Register (R/W) Reset Value = 0000 TRC_EN: Real Time Clock Enable - If set, an SCI is asserted when RTC_STS changes to 1. PWRBTN_EN: Sleep Button Enable (Optional) - If set, an SCI is asserted when SLPBTN_STS changes to 1. Reserved 5 GBL_EN: Global Lock Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. PWRBTN_EN: Power Button Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. Reserved 5 GBL_EN: Global Lock Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. Reserved 6 GBL_EN: Global Lock Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. Reserved 9 SLPETN_EN: Power Button Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1.	15	WAKE_STS: Wake Status - Set when system was in sleep state and an enabled wakeup occurs	S.	
wakeup from a sleep state and IRQ8 is asserted by the RTC. Refer to Table 5-37. SLPBTN_STS: Sleep Button Status (Optional) - This bit changes to 1 when the sleep button is pressed. If SLPBTN_EN set, an SCI interrupt is generated. This bit must be configured to be set by a GPIO pin using SETUP_IDX values 0x10-0x17 in order to be set. Refer to Table 36. PWRBTN_STS: Power Button Status - This bit is set when power button is pressed. If PWRBTN_EN is set, an SCI interrupt is asserted. This bit must be configured to be set by a GPIO pin using SETUP_IDX values 0x10-0x17 in order to be set. Refer to Table 36. 7.6 Reserved Reserved GBL_STS: Global Status - The BIOS sets GBL_STS to 1 to release its global lock and return control to the ACPI OS. At it same time GBL_STS is set, the BIOS generates an SCI. 4 BM_STS: Bus Master Status - This bit is not supported by V-ACPI. 3:1 Reserved 7 TMR_STS: ACPI Timer Status - This bit changes to 1 whenever bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or I. Port 121Ch) changes state. The ACPI OS is responsible for clearing TMR_STS. If TMR_GR_ACPL_BASE OAh[o] is also set, then a SCI interrupt is asserted. Note: Status bits are "sticky". A write of a one (1) to a given bit location will reset the bit. ACPL_BASE OAh-OBh PM14_EN — PM14 Enable Register (R/W) Reset Value = 0000 15:11 Reserved 10 RTC_EN: Real Time Clock Enable - If set, an SCI is asserted when RTC_STS changes to 1. 7:6 Reserved 5 GBL_EN: Global Lock Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. 7:6 Reserved 5 GBL_EN: Global Lock Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. 7:7 MR_EN: ACPI Timer Enable - If set, writing a 1 to GBL_STS causes an SCI to be asserted. 4 CPL_BASE Gobb of this bit always return zero. 10 SLP_TYPR. Sleep of this bit always return zero. 11 SLP_TYPR. Sleep of this bit always return zero. 12:10 SLP_TYPR: Sleep of this bit always return zero. 13:11 Reserved 9:3 Reserved GBL_RLS (WO): Sleep Enable (Write Only) - Setting this bit causes t	14:11	Reserved		
set, an SCI interrupt is generated. This bit must be configured to be set by a GPIO pin using SETUP_IDX values 0x10-0x17 in order to be set. Refer to Table 36. 8 PWRBTN_STS: Power Button Status - This bit is set when power button is pressed. If PWRBTN_EN is set, an SCI interrupt is asserted. This bit must be configured to be set by a GPIO pin using SETUP_IDX values 0x10-0x17 in order to be set. Refer to Table 36. 7:6 Reserved 5 GBL_STS: Global Status - The BIOS sets GBL_STS to 1 to release its global lock and return control to the ACPI OS. At it same time GBL_STS is set, the BIOS generates an SCI. 4 BM_STS: Bus Master Status - This bit is not supported by V-ACPI. 3:1 Reserved 5 TMR_STS: ACPI Timer Status - This bit changes to 1 whenever bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or I. Port 121Ch) changes state. The ACPI OS is responsible for clearing TMR_STS. If TMR_EN (ACPI_BASE OAh[0] is also set, then a SCI interrupt is asserted. Note: Status bits are "sticky". A write of a one (1) to a given bit location will reset the bit. ACPLBASE OAh-OBh PM1A_EN — PM1A_EN — PM1A Enable Register (R/W) Reset Value = 0000 15:11 Reserved 10 RTC_EN: Real Time Clock Enable - If set, an SCI is asserted when RTC_STS changes to 1. 9 SLPBTN_EN: Sleep Button Enable (Optional) - If set, an SCI is asserted when PWRBTN_STS changes to 1. 9 SLPBTN_EN: Power Button Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. 7:6 Reserved 0 TMR_EN: ACPI Timer Enable - If set, writing a 1 to GBL_STS causes an SCI to be asserted. ACPI_BASE OCh-ODh PM1A_CNT — PM1A Control Register (R/W) Reset Value = 0000 15:14 Reserved 13 SLP_EN (WO): Sleep Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. ACPI_BASE OCh-ODh PM1A_CNT — PM1A Control Register (R/W) Reset Value = 0000 15:14 Reserved 10 SLP_TYPX: Real State Sci 110 - Reserved 11 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_EN (WO): Sleep Enable (Wite Only) - Sleep State	10		ent. This bit is only set upon	
36. PWRBTN_STS: Power Button Status - This bit is set when power button is pressed. If PWRBTN_EN is set, an SCI interrulis asserted.	9		pressed. If SLPBTN_EN is	
is asserted. This bit must be configured to be set by a GPIO pin using SETUP_IDX values 0x10-0x17 in order to be set. Refer to Table 36. 7:6 Reserved 5 GBL_STS: Global Status - The BIOS sets GBL_STS to 1 to release its global lock and return control to the ACPI OS. At it same time GBL_STS is set, the BIOS generates an SCI. 4 BM_STS: Bus Master Status - This bit is not supported by V-ACPI. 3:1 Reserved 0 TMR_STS: ACPI Timer Status - This bit changes to 1 whenever bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or I. Port 121Ch) changes state. The ACPI OS is responsible for clearing TMR_STS. If TMR_EN (ACPI_BASE 0Ah[0] is also set, then a SCI interrupt is asserted. Note: Status bits are "sticky". A write of a one (1) to a given bit location will reset the bit. ACPI_BASE 0Ah-0Bh PM1A_EN — PM1A Enable Register (R/W) Reset Value = 0000 15:11 Reserved 10 RTC_EN: Real Time Clock Enable - If set, an SCI is asserted when RTC_STS changes to 1. 9 SLPBTN_EN: Sleep Button Enable - If set, an SCI is asserted when SLPBTN_STS changes to 1. 7:6 Reserved 5 GBL_EN: Global Lock Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. 7:6 Reserved 0 TMR_EN: ACPI Timer Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. ACPI_BASE 0Ch-0Dh PM1A_ENT — PM1A Control Register (R/W) Reset Value = 0000 15:14 Reserved 13 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPx. Reads of this bit always return zero. 12:10 SLP_TYPx: Sleep Type - Defines the type of sleep state the system enters when SLP_EN (bit 13) is set. 00 Sleep State S1 101 = Sleep State S4 101 = Sleep State S4 101 = Sleep State S5 (Goft off) 011 = Sleep State S2 110 = Reserved 111 = Re			r to be set. Refer to Table 5-	
36. 7:6 Reserved 5 GBL_STS: Global Status - The BIOS sets GBL_STS to 1 to release its global lock and return control to the ACPLOS. At it same time GBL_STS is set, the BIOS generates an SCI. 4 BM_STS: Bus Master Status - This bit is not supported by V-ACPI. 3:1 Reserved 0 TMR_STS: ACPI Timer Status - This bit changes to 1 whenever bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or I. Port 121Ch) changes state. The ACPI OS is responsible for clearing TMR_STS. If TMR_EN (ACPI_BASE OAh[0] is also set, then a SCI interrupt is asserted. Note: Status bits are "sticky". A write of a one (1) to a given bit location will reset the bit. ACPI_BASE OAh-OBh PM1A_EN — PM1A Enable Register (R/W) Reset Value = 0000 15:11 Reserved 10 RTC_EN: Real Time Clock Enable - If set, an SCI is asserted when RTC_STS changes to 1. 9 SLPBTN_EN: Sleep Button Enable (Optional) - If set, an SCI is asserted when SLPBTN_STS changes to 1. 9 WRBTN_EN: Power Button Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. 7:6 Reserved 5 GBL_EN: Global Lock Enable - If set, writing a 1 to GBL_STS causes an SCI to be asserted. 4:1 Reserved 0 TMR_EN: ACPI Timer Enable - If set, an SCI is asserted when bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or I. Port 121Ch) changes state. ACPI_BASE OCh-ODh PM1A_CNT — PM1A Control Register (R/W) Reset Value = 0000 15:14 Reserved 13 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPx. Sleep Type - Defines the type of sleep state the system enters when SLP_EN (bit 13) is set. 10 SLP_EN (WO): Sleep State S0 (Full on) 10 Sleep State S2 (Full on) 10 Sleep State S2 (Full on) 11 BRESERVED 2 GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Use by ACPI offiver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 52.8). BM_RLD: This bit is not supported by V-ACPI.	8		_EN is set, an SCI interrupt	
GBL_STS: Global Status - The BIOS sets GBL_STS to 1 to release its global lock and return control to the ACPI OS. At it same time GBL_STS is set, the BIOS generates an SCI. 4 BM_STS: Bus Master Status - This bit is not supported by V-ACPI. 3:1 Reserved 0 TMR_STS: ACPI Timer Status - This bit is not supported by V-ACPI. 1: If TMR_EN (ACPI_BASE OAh[0] is also set, then a SCI interrupt is asserted. Note: Status bits are "sticky", A write of a one (1) to a given bit location will reset the bit. ACPI_BASE OAh-OBh PM1A_EN — PM1A Enable Register (R/W) Reset Value = 0000 15:11 Reserved 10 RTC_EN: Real Time Clock Enable - If set, an SCI is asserted when RTC_STS changes to 1. 9 SLPBTN_EN: Sleep Button Enable (Optional) - If set, an SCI is asserted when SLPBTN_STS changes to 1. 7:6 Reserved 5 GBL_EN: Global Lock Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. 4:1 Reserved 0 TMR_EN: ACPI Timer Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. ACPI_BASE OCH-ODh PM1A_CNT — PM1A Control Register (R/W) Reset Value = 0000 15:14 Reserved 13 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPx. Reads of this bit always return zero. 12:10 SLP_TYPx. Sleep Type - Defines the type of sleep state the system enters when SLP_EN (bit 13) is set. 000 = Sleep State S0 (Full on) 100 = Sleep State S4 (001 = Sleep State S5 (Soft off) 011 = Sleep State S1 (001 = Sleep State S2 (Full on) 101 = Sleep State S5 (Soft off) 011 = Sleep State S1 (001 = Sleep State S2 (Full on) 11 = Reserved 2 GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Use by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). 5 CL_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardware.			r to be set. Refer to Table 5-	
same time GBL_STS is set, the BIOS generates an SCI. 4 BM_STS: Bus Master Status - This bit is not supported by V-ACPI. 3:1 Reserved 7 TMR_STS: ACPI Timer Status - This bit changes to 1 whenever bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or I. Port 121Ch) changes state. The ACPI OS is responsible for clearing TMR_STS. If TMR_EN (ACPI_BASE 0Ah(0) is also set, then a SCI interrupt is asserted. 8 Note: Status bits are "sticky". A write of a one (1) to a given bit location will reset the bit. 8 ACPI_BASE 0Ah-0Bh PM1A_EN — PM1A Enable Register (R/W) Reset Value = 0000 15:11 Reserved 10 RTC_EN: Real Time Clock Enable - If set, an SCI is asserted when RTC_STS changes to 1. 9 SLPBTN_EN: Sleep Button Enable (Optional) - If set, an SCI is asserted when SLPBTN_STS changes to 1. 8 PWRBTN_EN: Power Button Enable (Optional) - If set, an SCI is asserted when PWRBTN_STS changes to 1. 7 6 Reserved 5 GBL_EN: Global Lock Enable - If set, writing a 1 to GBL_STS causes an SCI to be asserted. 4:1 Reserved 0 TMR_EN: ACPI Timer Enable - If set, an SCI is asserted when bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or I. Pot 121Ch) changes state. ACPI_BASE 0Ch-0Dh PM1A_CNT — PM1A Control Register (R/W) Reset Value = 0000 15:14 Reserved 13 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPx. Sleep Type - Defines the type of sleep state the system enters when SLP_EN (bit 13) is set. 100 = Sleep State S0 (Full on) 101 = Sleep State S1 101 = Sleep State S4 101 = Sleep State S5 (Soft off) 011 = Reserved 2 GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Use by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8).	7:6	Reserved		
3:1 Reserved O TMR_STS: ACPI Timer Status - This bit changes to 1 whenever bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or I. Port 121Ch) changes state. The ACPI OS is responsible for clearing TMR_STS. If TMR_EN_(ACPI_BASE OAh[0] is also set, then a SCI interrupt is asserted. Note: Status bits are "sticky". A write of a one (1) to a given bit location will reset the bit. ACPI_BASE 0Ah-0Bh PM1A_EN — PM1A Enable Register (R/W) Reset Value = 0000 15:11 Reserved 10 RTC_EN: Real Time Clock Enable - If set, an SCI is asserted when RTC_STS changes to 1. 9 SLPBTN_EN: Sleep Button Enable (Optional) - If set, an SCI is asserted when SLPBTN_STS changes to 1. 8 PWRBTN_EN: Power Button Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. 7:6 Reserved 5 GBL_EN: Global Lock Enable - If set, writing a 1 to GBL_STS causes an SCI to be asserted. 4:1 Reserved 0 TMR_EN: ACPI Timer Enable - If set, an SCI is asserted when bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or I. Port 121Ch) changes state. ACPI_BASE 0Ch-0Dh PM1A_CNT — PM1A Control Register (R/W) Reset Value = 0000 15:14 Reserved 13 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPx. Reads of this bit always return zero. 12:10 SLP_TYPx: Sleep Type - Defines the type of sleep state the system enters when SLP_EN (bit 13) is set. 000 = Sleep State S0 (Full on) 101 = Sleep State S4 101 = Sleep State S5 (Soft off) 101 = Sleep State S2 110 = Reserved 2 GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Use by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). 1 BM_RLD: This bit is not supported by V-ACPI. 5 SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardware.	5		ntrol to the ACPI OS. At the	
TMR_STS: ACPI Timer Status - This bit changes to 1 whenever bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or I. Port 121Ch) changes state. The ACPI OS is responsible for clearing TMR_STS. If TMR_EN (ACPI_BASE 0Ah[0] is also set, then a SCI interrupt is asserted. Note: Status bits are "sticky". A write of a one (1) to a given bit location will reset the bit. ACPI_BASE 0Ah-0Bh PM1A_EN — PM1A Enable Register (R/W) Reset Value = 0000 15:11 Reserved 10 RTC_EN: Real Time Clock Enable - If set, an SCI is asserted when RTC_STS changes to 1. 9 SLPBTN_EN: Sleep Button Enable (Optional) - If set, an SCI is asserted when SLPBTN_STS changes to 1. 8 PWRBTN_EN: Power Button Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. 7:6 Reserved 5 GBL_EN: Global Lock Enable - If set, writing a 1 to GBL_STS causes an SCI to be asserted. 4:1 Reserved 0 TMR_EN: ACPI Timer Enable - If set, an SCI is asserted when bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or I. Port 121Ch) changes state. ACPI_BASE 0Ch-0Dh PM1A_CNT — PM1A Control Register (R/W) Reset Value = 0000 15:14 Reserved 13 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPx. Reads of this bit always return zero. 12:10 SLP_TYPx: Sleep Type - Defines the type of sleep state the system enters when SLP_EN (bit 13) is set. 000 = Sleep State S0 (Full on) 010 = Sleep State S2 011 = Reserved 110 = Reserved 111 = Reserved 12 GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Use by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). 1 BM_RLD: This bit is not supported by V-ACPI. 1 BM_RLD: This bit is not supported by V-ACPI.	4	BM_STS: Bus Master Status - This bit is not supported by V-ACPI.		
Port 121Ch) changes state. The ACPI OS is responsible for clearing TMR_STS. If TMR_EN (ACPI_BASE 0Ah[0] is also set, then a SCI interrupt is asserted. Note: Status bits are "sticky". A write of a one (1) to a given bit location will reset the bit. ACPI_BASE 0Ah-0Bh PM1A_EN — PM1A Enable Register (R/W) Reset Value = 0000 15:11 Reserved 10 RTC_EN: Real Time Clock Enable - If set, an SCI is asserted when RTC_STS changes to 1. 9 SLPBTN_EN: Sleep Button Enable (Optional) - If set, an SCI is asserted when SLPBTN_STS changes to 1. 8 PWRBTN_EN: Power Button Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. 7:6 Reserved 5 GBL_EN: Global Lock Enable - If set, writing a 1 to GBL_STS causes an SCI to be asserted. 4:1 Reserved 0 TMR_EN: ACPI Timer Enable - If set, an SCI is asserted when bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or In Port 121Ch) changes state. ACPI_BASE 0Ch-0Dh PM1A_CNT — PM1A Control Register (R/W) Reset Value = 0000 15:14 Reserved 13 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPx. Reads of this bit always return zero. 12:10 SLP_TYPx: Reads of this bit always return zero. 12:10 SLP_TYPx: Reads of this bit always return zero. 13 SLP_EN (WO): Sleep State S0 (Full on) 100 = Sleep State S4 (001 = Sleep State S2 (110 = Reserved 111 = Reserved Section 5.2.8). 1 BM_RLD: This bit is not supported by V-ACPI. 5 SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardward.	3:1	Reserved		
Note: Status bits are "sticky". A write of a one (1) to a given bit location will reset the bit. ACPI_BASE 0Ah-0Bh	0	Port 121Ch) changes state. The ACPI OS is responsible for clearing TMR_STS.	+Memory Offset 1Ch or I/O	
ACPI_BASE 0Ah-0Bh PM1A_EN — PM1A Enable Register (R/W) Reset Value = 0000 15:11 Reserved 10 RTC_EN: Real Time Clock Enable - If set, an SCI is asserted when RTC_STS changes to 1. 9 SLPBTN_EN: Sleep Button Enable (Optional) - If set, an SCI is asserted when SLPBTN_STS changes to 1. 8 PWRBTN_EN: Power Button Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. 7:6 Reserved 5 GBL_EN: Global Lock Enable - If set, writing a 1 to GBL_STS causes an SCI to be asserted. 4:1 Reserved 0 TMR_EN: ACPI Timer Enable - If set, an SCI is asserted when bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or Inport 121Ch) changes state. ACPI_BASE 0Ch-0Dh PM1A_CNT — PM1A Control Register (R/W) Reset Value = 0000 15:14 Reserved 13 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPx. Reads of this bit always return zero. 12:10 SLP_TYPx: Sleep Type - Defines the type of sleep state the system enters when SLP_EN (bit 13) is set. 000 = Sleep State S0 (Full on) 100 = Sleep State S4 001 = Sleep State S0 (Full on) 101 = Sleep State S5 (Soft off) 010 = Sleep State S2 111 = Reserved 9:3 Reserved 9:3 Reserved 2 GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Use by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). 1 BM_RLD: This bit is not supported by V-ACPI. SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardway.	Note: Cto			
15:11 Reserved RTC_EN: Real Time Clock Enable - If set, an SCI is asserted when RTC_STS changes to 1. SLPBTN_EN: Sleep Button Enable (Optional) - If set, an SCI is asserted when SLPBTN_STS changes to 1. PWRBTN_EN: Power Button Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. Reserved GBL_EN: Global Lock Enable - If set, writing a 1 to GBL_STS causes an SCI to be asserted. 4:1 Reserved TMR_EN: ACPI Timer Enable - If set, an SCI is asserted when bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or Inport 121Ch) changes state. ACPI_BASE 0Ch-0Dh PM1A_CNT — PM1A Control Register (R/W) Reset Value = 0000 15:14 Reserved SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPx. Reads of this bit always return zero. 12:10 SLP_TYPx: Sleep Type - Defines the type of sleep state the system enters when SLP_EN (bit 13) is set. 000 = Sleep State S0 (Full on) 100 = Sleep State S4 001 = Sleep State S1 101 = Sleep State S2 011 = Reserved 9:3 Reserved 2 GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI), Use by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). 1 BM_RLD: This bit is not supported by V-ACPI. SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardware.				
RTC_EN: Real Time Clock Enable - If set, an SCI is asserted when RTC_STS changes to 1. 9 SLPBTN_EN: Sleep Button Enable (Optional) - If set, an SCI is asserted when SLPBTN_STS changes to 1. 8 PWRBTN_EN: Power Button Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. 7:6 Reserved 5 GBL_EN: Global Lock Enable - If set, writing a 1 to GBL_STS causes an SCI to be asserted. 4:1 Reserved 0 TMR_EN: ACPI Timer Enable - If set, an SCI is asserted when bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or In Port 121Ch) changes state. ACPI_BASE 0Ch-0Dh PM1A_CNT — PM1A Control Register (R/W) Reset Value = 0000 15:14 Reserved 13 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPx. Reads of this bit always return zero. 12:10 SLP_TYPx: Sleep Type - Defines the type of sleep state the system enters when SLP_EN (bit 13) is set. 000 = Sleep State S0 (Full on) 001 = Sleep State S1 101 = Sleep State S5 (Soft off) 010 = Sleep State S2 110 = Reserved 9:3 Reserved 9:3 Reserved GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Use by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). 1 BM_RLD: This bit is not supported by V-ACPI. SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardways asserted when PWRBTN_STS changes to 1. 2 SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardways asserted when PWRBTN_STS changes to 1. 10 SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardways asserted when PWRBTN_STS changes to 1. 10 SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardways asserted when PWRBTN_STS changes to 1. 10 SCI_EN: System Contro			Reset Value = 0000h	
9 SLPBTN_EN: Sleep Button Enable (Optional) - If set, an SCI is asserted when SLPBTN_STS changes to 1. 8 PWRBTN_EN: Power Button Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. 7:6 Reserved 5 GBL_EN: Global Lock Enable - If set, writing a 1 to GBL_STS causes an SCI to be asserted. 4:1 Reserved 0 TMR_EN: ACPI Timer Enable - If set, an SCI is asserted when bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or In Port 121Ch) changes state. ACPI_BASE OCh-ODh PM1A_CNT — PM1A Control Register (R/W) Reset Value = 0000 15:14 Reserved 13 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPx. Reads of this bit always return zero. 12:10 SLP_TYPx: Sleep Type - Defines the type of sleep state the system enters when SLP_EN (bit 13) is set. 000 = Sleep State S0 (Full on) 100 = Sleep State S4 001 = Sleep State S0 (Full on) 101 = Sleep State S5 (Soft off) 010 = Sleep State S2 110 = Reserved 9:3 Reserved 9:3 Reserved 6BL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Use by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). 1 BM_RLD: This bit is not supported by V-ACPI. SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardways.				
PWRBTN_EN: Power Button Enable - If set, an SCI is asserted when PWRBTN_STS changes to 1. 7:6 Reserved 5 GBL_EN: Global Lock Enable - If set, writing a 1 to GBL_STS causes an SCI to be asserted. 4:1 Reserved 0 TMR_EN: ACPI Timer Enable - If set, an SCI is asserted when bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or In Port 121Ch) changes state. ACPI_BASE 0Ch-0Dh PM1A_CNT — PM1A Control Register (R/W) Reset Value = 0000 15:14 Reserved 13 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPx. Reads of this bit always return zero. 12:10 SLP_TYPx: Sleep Type - Defines the type of sleep state the system enters when SLP_EN (bit 13) is set. 000 = Sleep State S0 (Full on) 100 = Sleep State S4 001 = Sleep State S0 (Full on) 101 = Sleep State S5 (Soft off) 010 = Sleep State S1 101 = Reserved 9:3 Reserved 9:3 Reserved 2 GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Use by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). 1 BM_RLD: This bit is not supported by V-ACPI. SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardway.	_			
7:6 Reserved 5 GBL_EN: Global Lock Enable - If set, writing a 1 to GBL_STS causes an SCI to be asserted. 4:1 Reserved 0 TMR_EN: ACPI Timer Enable - If set, an SCI is asserted when bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or In Port 121Ch) changes state. ACPI_BASE 0Ch-0Dh PM1A_CNT — PM1A Control Register (R/W) Reset Value = 0000 15:14 Reserved 13 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPx. Reads of this bit always return zero. 12:10 SLP_TYPx: Sleep Type - Defines the type of sleep state the system enters when SLP_EN (bit 13) is set. 000 = Sleep State S0 (Full on) 100 = Sleep State S4 001 = Sleep State S1 101 = Sleep State S5 (Soft off) 010 = Sleep State S2 110 = Reserved 9:3 Reserved 9:3 Reserved 9:3 Reserved 9:4 GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Use by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). 1 BM_RLD: This bit is not supported by V-ACPI. 5 CI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardways and the setting of the power management events are SCI or SMI. Set by hardways the server in the second setting of the power management events are SCI or SMI. Set by hardways the second setting of the second second second second setting setting and second			_	
GBL_EN: Global Lock Enable - If set, writing a 1 to GBL_STS causes an SCI to be asserted. 4:1 Reserved TMR_EN: ACPI Timer Enable - If set, an SCI is asserted when bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or In Port 121Ch) changes state. ACPI_BASE 0Ch-0Dh PM1A_CNT — PM1A Control Register (R/W) Reset Value = 0000 15:14 Reserved 3 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPX. Reads of this bit always return zero. 12:10 SLP_TYPX: Sleep Type - Defines the type of sleep state the system enters when SLP_EN (bit 13) is set. 000 = Sleep State S0 (Full on) 100 = Sleep State S4 001 = Sleep State S1 101 = Sleep State S5 (Soft off) 110 = Reserved 111 = Reserved 9:3 Reserved 2 GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Use by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). 1 BM_RLD: This bit is not supported by V-ACPI. 5 CI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardways asserted the ACPI specification.	_		to 1.	
4:1 Reserved TMR_EN: ACPI Timer Enable - If set, an SCI is asserted when bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or In Port 121Ch) changes state. ACPI_BASE 0Ch-0Dh PM1A_CNT — PM1A Control Register (R/W) Reset Value = 0000 15:14 Reserved 13 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPx. Reads of this bit always return zero. 12:10 SLP_TYPx: Sleep Type - Defines the type of sleep state the system enters when SLP_EN (bit 13) is set. 000 = Sleep State S0 (Full on) 001 = Sleep State S1 001 = Sleep State S1 101 = Sleep State S5 (Soft off) 010 = Sleep State S2 110 = Reserved 9:3 Reserved 2 GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Use by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). 1 BM_RLD: This bit is not supported by V-ACPI. 5 SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardways and the setting of the pending bit in the setting SMI. Set by hardways are scilled to the setting of the pending bit in the setting SMI. Set by hardways the setting SMI. Set by hardways are scilled to the setting SMI. Set by hardways the setting SMI. Set by hardways scilled the setting SMI. Set SMI. Set SMI. S	_			
TMR_EN: ACPI Timer Enable - If set, an SCI is asserted when bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or In Port 121Ch) changes state. ACPI_BASE 0Ch-0Dh PM1A_CNT — PM1A Control Register (R/W) Reset Value = 0000 15:14 Reserved 13 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPx. Reads of this bit always return zero. 12:10 SLP_TYPx: Sleep Type - Defines the type of sleep state the system enters when SLP_EN (bit 13) is set. 000 = Sleep State S0 (Full on) 100 = Sleep State S4 001 = Sleep State S1 101 = Sleep State S5 (Soft off) 010 = Sleep State S2 110 = Reserved 011 = Reserved 9:3 Reserved 2 GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Use by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). 1 BM_RLD: This bit is not supported by V-ACPI. 9 SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardways are transported by V-ACPI.				
Port 121Ch) changes state. ACPI_BASE 0Ch-0Dh PM1A_CNT — PM1A Control Register (R/W) Reset Value = 0000 15:14 Reserved 13 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPx. Reads of this bit always return zero. 12:10 SLP_TYPx: Sleep Type - Defines the type of sleep state the system enters when SLP_EN (bit 13) is set. 000 = Sleep State S0 (Full on) 100 = Sleep State S4 (001 = Sleep State S1 101 = Sleep State S5 (Soft off) (010 = Sleep State S2 110 = Reserved (011			M 0" 1401 1/0	
ACPI_BASE 0Ch-0Dh PM1A_CNT — PM1A Control Register (R/W) Reset Value = 0000 15:14 Reserved 13 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPx. Reads of this bit always return zero. 12:10 SLP_TYPx: Sleep Type - Defines the type of sleep state the system enters when SLP_EN (bit 13) is set. 000 = Sleep State S0 (Full on) 100 = Sleep State S4 001 = Sleep State S1 101 = Sleep State S5 (Soft off) 101 = Sleep State S2 110 = Reserved 111 = Reserved 9:3 Reserved 9:3 Reserved 2 GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Use by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). 1 BM_RLD: This bit is not supported by V-ACPI. 5 SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardways and the setting of the pending bit in the section SMI. Set by hardways are turn zero.	0		+Memory Offset 1Ch or I/O	
15:14 Reserved 13 SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPx. Reads of this bit always return zero. 12:10 SLP_TYPx: Sleep Type - Defines the type of sleep state the system enters when SLP_EN (bit 13) is set. 000 = Sleep State S0 (Full on) 100 = Sleep State S4 001 = Sleep State S1 101 = Sleep State S5 (Soft off) 010 = Sleep State S2 110 = Reserved 011 = Reserved 111 = Reserved 9:3 Reserved 9:3 Reserved 9:4 GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Use by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). 1 BM_RLD: This bit is not supported by V-ACPI. 0 SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardways and the setting of the pending by the setting of the pending by the setting of the pending by t	ACPL BAS		Reset Value = 0000h	
SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPx. Reads of this bit always return zero. 12:10 SLP_TYPx: Sleep Type - Defines the type of sleep state the system enters when SLP_EN (bit 13) is set. 000 = Sleep State S0 (Full on) 100 = Sleep State S4 001 = Sleep State S1 101 = Sleep State S5 (Soft off) 100 = Sleep State S2 110 = Reserved 111 = Reserved 9:3 Reserved 2 GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Use by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). 1 BM_RLD: This bit is not supported by V-ACPI. 5 CI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardways and the setting of the power management events are SCI or SMI. Set by hardways and the setting of the power management events are SCI or SMI. Set by hardways are scienced and the setting of the power management events are SCI or SMI. Set by hardways are scienced and the setting of the power management events are SCI or SMI. Set by hardways are scienced and the setting of the setting of the pending bit in the FACS table (refer to ACPI SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardways are scienced and the setting of the setti			110001 14140 - 000011	
000 = Sleep State S0 (Full on) 100 = Sleep State S4 001 = Sleep State S1 101 = Sleep State S5 (Soft off) 110 = Reserved 011 = Reserved 111 = Reserved 9:3 Reserved 2 GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Use by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). 1 BM_RLD: This bit is not supported by V-ACPI. SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardway		SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep	state defined by	
001 = Sleep State S1 101 = Sleep State S5 (Soft off) 010 = Sleep State S2 110 = Reserved 011 = Reserved 111 = Reserved 9:3 Reserved 2 GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Use by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). 1 BM_RLD: This bit is not supported by V-ACPI. 5 CI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardward.	12:10	SLP_TYPx: Sleep Type - Defines the type of sleep state the system enters when SLP_EN (bit 1	3) is set.	
9:3 Reserved 9:3 Reserved 2 GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Use by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). 1 BM_RLD: This bit is not supported by V-ACPI. 3 SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardways are selected by the section of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8).		001 = Sleep State S1 101 = Sleep State S5 (Soft off)	•	
9:3 Reserved 2 GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Used by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). 1 BM_RLD: This bit is not supported by V-ACPI. 3 SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardways are supported by V-ACPI.				
 GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Use by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). BM_RLD: This bit is not supported by V-ACPI. SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardway. 	0.3			
by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8). 1 BM_RLD: This bit is not supported by V-ACPI. 3 SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardway.			PIOS software (SMI) Lleed	
0 SCI_EN: System Controller Interrupt Enable - Selects whether power management events are SCI or SMI. Set by hardwa	2	by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FA	, ,	
	1	BM_RLD: This bit is not supported by V-ACPI.		
	0		CI or SMI. Set by hardware	

Table 5-34. V-ACPI Registers (Continued)

Table 5-34. V-ACPI Registers (Continued)		
Bit	Description	
ACPI_BASE 0Eh-0Fh SETUP_IDX — Setup Index Register (R/W) Reset Value = 0000h		
SETUP_ID	X is a 16-bit register that references an internal setting in the VSA (refer to Table 5-35). A read of	SETUP_IDX returns the last
	en to SETUP_IDX. A write of SETUP_IDX selects the index for a corresponding write to SETUP values to SETUP_IDX are ignored. If the current value of SETUP_IDX is invalid, a read of SET	
ACPI_BA	SE 10h-11h GPE0_STS — General Purpose Event 0 Status Register (R/W)	Reset Value = 0000h
	set by an external event and cleared by a write of a one to that bit. The GPE0_STS bits are mappe als using the SETUP_IDX and SETUP_DATA registers. Refer to Tables 5-35 through 5-37.	d to specific, chipset-resident
15	OEM_GPE_S15: Original Equipment Manufacturer General Purpose Event Status Bit 15 - OE	M defined.
14	OEM_GPE_S14: Original Equipment Manufacturer General Purpose Event Status Bit 14 - OE	M defined.
13	OEM_GPE_S13: Original Equipment Manufacturer General Purpose Event Status Bit 13 - OE	M defined.
12	OEM_GPE_S12: Original Equipment Manufacturer General Purpose Event Status Bit 12 - OE	M defined.
11	OEM_GPE_S11: Original Equipment Manufacturer General Purpose Event Status Bit 11 - OE	M defined.
10	OEM_GPE_S10: Original Equipment Manufacturer General Purpose Event Status Bit 10 - OE	
9	OEM_GPE_S09: Original Equipment Manufacturer General Purpose Event Status Bit 9 - OEM	1 defined.
8	OEM_GPE_S08: Original Equipment Manufacturer General Purpose Event Status Bit 8 - OEM	1 defined.
7	OEM_GPE_S07: Original Equipment Manufacturer General Purpose Event Status Bit 7 - OEM	1 defined.
6	OEM_GPE_S06: Original Equipment Manufacturer General Purpose Event Status Bit 6 - OEM	
	The recommended mapping for the lid switch input is to use GPIO6. If the recommended map needs to be mapped to GPIO6 at boot time via SETUP_IDX and SETUP_DATA. Similarly, the routed to GPIO6 in hardware. If this method is selected, this bit is defined as:	
	LID_STS: Lid Status - Set when lid state changes. If LID_EN (ACPI_BASE 12h[6] is set, a SC by writing a 1 to this bit.	I interrupt is asserted. Reset
5	OEM_GPE_S05 : Original Equipment Manufacturer General Purpose Event Status Bit 5 - OEM	1 defined.
4	OEM_GPE_S04: Original Equipment Manufacturer General Purpose Event Status Bit 4 - OEM	1 defined.
3	OEM_GPE_S03: Original Equipment Manufacturer General Purpose Event Status Bit 3 - OEM	1 defined.
2	OEM_GPE_S02: Original Equipment Manufacturer General Purpose Event Status Bit 2 - OEM	1 defined.
1	OEM_GPE_S01: Original Equipment Manufacturer General Purpose Event Status Bit 1 - OEM	1 defined.
0	OEM_GPE_S00: Original Equipment Manufacturer General Purpose Event Status Bit 0 - OEM	1 defined.
ACPI_BA	SE 12h-13h GPE0_EN — General Purpose Event 0 Enable Register (R/W)	Reset Value = 0000h
15	OEM_GPE_E15: Original Equipment Manufacturer General Purpose Event Enable Bit 15 - WI generated when the corresponding GPE0_STS bit is set.	nen set, enables a SCI to be
14	OEM_GPE_E14: Original Equipment Manufacturer General Purpose Event Enable Bit 14 - WI generated when the corresponding GPE0_STS bit is set.	nen set, enables a SCI to be
13	OEM_GPE_E13: Original Equipment Manufacturer General Purpose Event Enable Bit 13 - WI generated when the corresponding GPE0_STS bit is set.	nen set, enables a SCI to be
12	OEM_GPE_E12: Original Equipment Manufacturer General Purpose Event Enable Bit 12 - WI generated when the corresponding GPE0_STS bit is set.	
11	OEM_GPE_E11: Original Equipment Manufacturer General Purpose Event Enable Bit 11 - WI generated when the corresponding GPE0_STS bit is set.	nen set, enables a SCI to be
10	OEM_GPE_E10: Original Equipment Manufacturer General Purpose Event Enable Bit 10 - WI generated when the corresponding GPE0_STS bit is set.	nen set, enables a SCI to be
9	OEM_GPE_E09: Original Equipment Manufacturer General Purpose Event Enable Bit 9 - Who generated when the corresponding GPE0_STS bit is set.	en set, enables a SCI to be
8	OEM_GPE_E08: Original Equipment Manufacturer General Purpose Event Enable Bit 8 - Who generated when the corresponding GPE0_STS bit is set.	en set, enables a SCI to be
7	OEM_GPE_E07: Original Equipment Manufacturer General Purpose Event Enable Bit 7 - Who generated when the corresponding GPE0_STS bit is set.	en set, enables a SCI to be
6	LID_EN: Lid Enable - Enables LID_STS to generate a SCI when set.	
5	OEM_GPE_E05: Original Equipment Manufacturer General Purpose Event Enable Bit 5 - Who generated when the corresponding GPE0_STS bit is set.	en set, enables a SCI to be
4	OEM_GPE_E04: Original Equipment Manufacturer General Purpose Event Enable Bit 4 - Who generated when the corresponding GPE0_STS bit is set.	en set, enables a SCI to be

Table 5-34. V-ACPI Registers (Continued)

Bit	Description		
3		Equipment Manufacturer General Purpose Event Enable Biponding GPE0_STS bit is set.	it 3 - When set, enables a SCI to be
2		Equipment Manufacturer General Purpose Event Enable Bi ponding GPE0_STS bit is set.	it 2 - When set, enables a SCI to be
1		Equipment Manufacturer General Purpose Event Enable Bi ponding GPE0_STS bit is set.	it 1 - When set, enables a SCI to be
0		Equipment Manufacturer General Purpose Event Enable Biponding GPE0_STS bit is set.	it 0 - When set, enables a SCI to be
ACPI_BA	SE 14h-17h	SETUP_DATA — Setup Data Register (R/W)	Reset Value = 00000000h
During a read operation, SETUP_DATA returns the value of the internal setting specified by the current value in SETUP_IDX (ACPI_ABASE 0Eh-0Fh)			
ACPI_BASE 18h-1Fh Reserved Reset Va		Reset Value = 00h	

Table 5-35. SETUP_IDX Values

	Table 5-35. SETUP_IDA ValueS
Index	Operation
0x00	No operation
0x10	Configure GPIO0 to PM1A_STS or GPE0_STS bits
0x11	Configure GPIO1 to PM1A_STS or GPE0_STS bits
0x12	Configure GPIO2 to PM1A_STS or GPE0_STS bits
0x13	Configure GPIO3 to PM1A_STS or GPE0_STS bits
0x14	Configure GPIO4 to PM1A_STS or GPE0_STS bits
0x15	Configure GPIO5 to PM1A_STS or GPE0_STS bits
0x16	Configure GPIO6 to PM1A_STS or GPE0_STS bits
0x17	Configure GPIO7 to PM1A_STS or GPE0_STS bits
0x30	Configure IRQ0 to wakeup system
0x31	Configure IRQ1 to wakeup system
0x32	Do not use – Reserved for cascade interrupt
0x33	Configure IRQ3 to wakeup system
0x34	Configure IRQ4 to wakeup system
0x35	Configure IRQ5 to wakeup system
0x36	Configure IRQ6 to wakeup system
0x37	Configure IRQ7 to wakeup system
0x38	Configure IRQ8 to wakeup system (Defaults to RTC_STS in PM1A_STS)
0x39	Configure IRQ9 to wakeup system.
0x3A	Configure IRQ10 to wakeup system.
0x3B	Configure IRQ11 to wakeup system
0x3C	Configure IRQ12 to wakeup system
0x3D	Do not use – Reserved for math coprocessor
0x3E	Configure IRQ14 to wakeup system
0x3F	Configure IRQ15 to wakeup system
0x40	Generate GBL_STS – Sets the GLB_STS bit and generates a SCI to the OS
0x41	Configure IRQ to be used for SCI
0x42	Enable reads of ACPI registers
0x43	Do atomic I/O sequence
0x50	Video power
0x60	Soft SMI AX = 6000 emulation

Reserved for future V-ACPI Implementations.

Table 5-35. SETUP_IDX Values (Continued)

Index	Operation
0x61	Soft SMI AX = 6001 emulation
0x62	Soft SMI AX = 6002 emulation
0x63	Soft SMI AX = 6003 emulation
0x64	Audio power control

Table 5-36. GPIO Mapping (0x10-0x17)

No mapping – Do not use this GPIO pin	
Assign GPIOx to PWRBTN_STS bit in PM1A_STS	
Assign GPIOx to SLPBTN_STS in PM1A_STS	
Assign GPIOx to bit 0 in GPE0_STS register	
Assign GPIOx to bit 1 in GPE0_STS register	
Assign GPIOx to bit 2 in GPE0_STS register	
Assign GPIOx to bit 3 in GPE0_STS register	
Assign GPIOx to bit 4 in GPE0_STS register	
Assign GPIOx to bit 5 in GPE0_STS register	
Assign GPIOx to bit 6 in GPE0_STS register	
Assign GPIOx to bit 7 in GPE0_STS register	
Assign GPIOx to bit 8 in GPE0_STS register	
Assign GPIOx to bit 9 in GPE0_STS register	
Assign GPIOx to bit 10 in GPE0_STS register	
Assign GPIOx to bit 11 in GPE0_STS register	
Assign GPIOx to bit 12 in GPE0_STS register	
Assign GPIOx to bit 13 in GPE0_STS register	
Assign GPIOx to bit 14 in GPE0_STS register	
Assign GPIOx to bit 15 in GPE0_STS register	
y Value (y values may be ORed together to get the desired combination of features)	
Falling edge	
Rising edge	
Power button	
Reserved	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	

Note: For GPIO mapping, a value of 0000zyxx is used where:

z = a runtime/wake indicator

y = the edge to be used

xx = a bit in either PM1A_STS or GPE0_STS

When using V-ACPI both edges of GPIO6 can be sensed. When using the CS5530A, GPIO6 provides additional hardware that enables the chipset to generate an SMI on both the rising and falling edges of the input signal.

Register Descriptions

Table 5-37. IRQ Wakeup Status Mapping (0x30-0x3F)

SETUP_ DATA	Function
0	Do not wakeup on IRQ activity.
0x0a	Assign IRQ Wake to bit 10 in PM1A_STS register
0x10	Assign IRQ Wake to bit 0 in GPE0_STS register
0x11	Assign IRQ Wake to bit 1 in GPE0_STS register
0x12	Assign IRQ Wake to bit 2 in GPE0_STS register
0x13	Assign IRQ Wake to bit 3 in GPE0_STS register
0x14	Assign IRQ Wake to bit 4 in GPE0_STS register
0x15	Assign IRQ Wake to bit 5 in GPE0_STS register
0x16	Assign IRQ Wake to bit 6 in GPE0_STS register
0x17	Assign IRQ Wake to bit 7 in GPE0_STS register
0x18	Assign IRQ Wake to bit 8 in GPE0_STS register
0x19	Assign IRQ Wake to bit 9 in GPE0_STS register
0x1A	Assign IRQ Wake to bit 10 in GPE0_STS register
0x1B	Assign IRQ Wake to bit 11 in GPE0_STS register
0x1C	Assign IRQ Wake to bit 12 in GPE0_STS register
0x1D	Assign IRQ Wake to bit 13 in GPE0_STS register
0x1E	Assign IRQ Wake to bit 14 in GPE0_STS register
0x1F	Assign IRQ Wake to bit 15 in GPE0_STS register

Note: When the ability to wakeup on an IRQ is desired use Index 0x31 through 0x3F. This will allow sensing of interrupts while sleeping and waking of the system when activity occurs. The desired GPE0 Status bit will only be set if the system is sleeping and a wake event occurs. The system will only wake if the status bit is enabled in the corresponding enable register.

IRQ8 (RTC) is assigned to the RTC_STS bit in the PM1A_STS register by default and should NOT be changed.

For enabling and selection of the GPE0 Status bit to be set when Wake on IRQ Activity is desired, use the SETUP_DATA values listed above.

Table 5-38. Commands (0x41-0x43, and 0x50)

Index	Function
0x41	Configure IRQ to be used for SCI: When mapping the SCI interrupt SETUP_IDX contains the number of the IRQ to be used for the SCI. Valid values are 3-7, 9-12, and 14-15. Invalid values will not change the assignment of the SCI IRQ. The default value for the SCI IRQ is 9.
0x42	Enable Reads of ACPI Registers: Prior to the issuance of this command only WRITES can be performed to the V-ACPI Fixed feature registers. This command MUST be issued to enable reading of the registers. This is to prevent the User Def 1 hook on NON-ACPI systems from interfering with system functions.
0x43	Do Atomic I/O Sequence: This command allows a sequence of I/O operations to be done with no interruption. Certain SuperI/O chips must receive unlock codes with NO intervening I/O. In addition other SuperI/O chips do not allow I/O to devices while in configuration mode. This command will insure that I/O operations are completed without interruption. The address of a sequence of I/O commands is placed in the SETUP_DATA register. The command sequence will then be processed immediately.
	The I/O command sequence consists of two parts: the signature/length block and the I/O block. There is only one signature/length block. There may be one or more I/O blocks.
	The signature block consists of four DWORDs (see Table 5-39).
	The I/O block consists of four bytes followed by three DWORDs (see Table 5-40).
0x50	Video Power: This command will control the power to the SoftVGA. If SETUP_DATA is written with a 0, power will be turned off. If a 1 is written, power will be turned on.

Table 5-39. Signature/Length Block for 0x43

Byte Offset	Value
0	Signature: Always 0x00000070
4	Length: The length of the entire buffer including the signature block in bytes.
8	Reserved: Set to 0
12	Reserved: Set to 0

Table 5-40. I/O Block for 0x43

Byte Offset	Description
0	BYTE: Operation Type. 1 = Read 2 = Write 3 = Read/And/Or/Write 4 = Define index and data ports In addition, values may be OR'ed in to the upper two bits of this byte to indicate that special functions are desired. 0x80 = Do not perform this operation (convert to NO-OP). 0x40 = This is an index operation.
1	BYTE: Reserved set to 0
2	BYTE: I/O Length - Determines whether a BYTE, WORD or DWORD operation is performed. 1 = BYTE operation 2 = WORD operation 3 = DWORD operation If BYTE 0 is a 4, then this field is used to indicate the size of the index write.
3	BYTE: Reserved set to 0
4	DWORD: I/O Address - This is the address in the I/O space to be used. It is always a WORD value. If this is a define index/data port operation, this DWORD contains the I/O address of the index port. If this is an index operation, other than define, this DWORD contains the value to be written to the index port.
8	DWORD: I/O Data - The meaning depends on the operation type. Read = This is where the data read from the I/O port will be placed. Write = This is the data to write to the I/O port. Read/AND/OR/Write = This is the data that will be ANDed with the data read from the I/O port. Define index/data port - This DWORD contains the I/O address of the data port.
12	DWORD: OR Data - This field is only used in a Read/AND/OR/Write operation. It contains the data that will be OR'ed after the data read was AND'ed with the previous field. After the OR is done, the data will be re-written to the I/O port.
Note: In all cases if the data called for is shorter than the field, the data will be stored or retrieved from the least significant portion of the DWORD.	

Revision 1.1

Table 5-41. Audio Soft SMI Emulation (0x60-0x63)

Soft SMI AX	SETUP_IDX	SETUP_DATA
0x6000	0x60	BP register value
0x6001	0x61	BP register value
0x6002	0x62	BX register value
0x6003	0x63	BX register value

Note: Arbitrary registers cannot be set in ASL code before issuing a soft SMI. These commands provide an I/O interface to allow AUDIO Soft SMIs to be emulated.

Table 5-42. Audio Power Control (0x64)

Data Value	Action					
0	Power codec off and mute output					
1	Power codec off, do not mute (allows CD to play)					
2	Power codec on and un-mute output					
3	Power codec on only					
Note: This	Note: This command allows control of power to the audio codec as well as control of amplifier muting.					

Electrical Specifications Revision 1.1 AMD

Electrical Specifications

This section provides information on electrical connections, absolute maximum ratings, recommended operating conditions, and DC/AC characteristics for the Geode CS5530A. All voltage values in the electrical specifications are with respect to V_{SS} unless otherwise noted.

For detailed information on the PCI bus electrical specification refer to Chapter 4 of the PCI Bus Specification, Revision 2.1.

6.1 Electrical Connections

6.1.1 Pull-Up Resistors

Table 6-1 lists the pins that are internally connected to a 20-kohm pull-up resistor. When unused, these inputs do not require connection to an external pull-up resistor.

Table 6-1. Pins with Weak Internal Pull-Up

Signal Name	Туре	Pin No.
IOR#	I/O	AE12
IOW#	I/O	AC11
MEMR#	I/O	AE19
MEMW#	I/O	AF20
SBHE#	I/O	AE17
SA[19:0]/ SD[19:0]	I/O	AD10, AE11, AF12, AD11, AE25, AD24, AD22, AE21, AF21, AC20, AD19, AF19, AF4, AF5, AD5, AF6, AC6, AD9, AE6, AD9

6.1.2 Unused Input Pins

All inputs not used by the system designer and not listed in Table 6-1 should be kept at either V_{SS} or $V_{DD.}$ To prevent possible spurious operation, connect active-high inputs to ground through a 20-kohm (±10%) pull-down resistor and active-low inputs to V_{DD} through a 20-kohm (±10%) pull-up resistor.

6.1.3 NC-Designated Pins

Pins designated NC should be left disconnected. Connecting an NC pin to a pull-up resistor, pull-down resistor, or an active signal could cause unexpected results and possible circuit malfunctions.

6.1.4 PWR/GND Connections and Decoupling

Testing and operating the CS5530A requires the use of standard high frequency techniques to reduce parasitic effects. These effects can be minimized by filtering the DC power leads with low-inductance decoupling capacitors, using low-impedance wiring, and by using all of the $\rm V_{\rm DD}$ and $\rm V_{\rm SS}$ pins.

AMD Revision 1.1 Electrical Specifications

6.2 Absolute Maximum Ratings

Table 6-2 lists absolute maximum ratings for the CS5530A. Stresses beyond the listed ratings may cause permanent damage to the device. Exposure to conditions beyond these limits may (1) reduce device reliability and (2) result in premature failure even when there is no immediately apparent sign of failure. Prolonged exposure to conditions at or near the absolute maximum ratings may also result in reduced useful life and reliability These are stress ratings only and do not imply that operation under any conditions other than those listed under Table 6-3 is possible.

6.3 Operating Conditions

Table 6-3 lists the recommended operating conditions for the CS5530A.

Table 6-2. Absolute Maximum Ratings

				1
Parameter	Min	Max	Units	Comments
Operating Case Temperature	0	110	°C	Power Applied
Storage Temperature	-65	150	°C	No Bias
Supply Voltage		4.0	V	
Voltage On Any Pin	-0.5	5.5	V	
Input Clamp Current, I _{IK}	-0.5	10	mA	Power Applied
Output Clamp Current, I _{OK}		25	mA	Power Applied

Table 6-3. Operating Conditions

Symbol	Parameter (Note 1)	Min	Max	Units	Comments
T _C	Operating Case Temperature	0	85	°C	
V _{DD}	Supply Voltage	3.14	3.46	V	

^{1.} For video interface specific parameters, refer to Table 6-17 "CRT, TFT/TV and MPEG Display Timing" on page 247.

Electrical Specifications Revision 1.1

6.4 DC Characteristics

All DC parameters and current measurements in this section were measured under the operating conditions listed in Table 6-3 on page 234, unless otherwise noted.

Table 6-4. DC Characteristics

Symbol	Parameter	Min	Тур	Max	Units	Comments
V _{IL}	Low Level Input VoltageNo	te 1	I	II.	I	
	8 mA			0.8	V	V _{DD} = 3.14V
	CLK			8.0		
	IDE			0.8		
	PCI	-0.5		0.3V _{DD}		
V _{IH}	High Level Input Voltage (N	Note 1)				
	8 mA	2.0			V	V _{DD} = 3.14V
	CLK	2.0				
	IDE	2.0				
	PCI	0.5V _{DD}		V _{DD} +0.5		
V _{OL}	Low Level Output Voltage ((Note 1)				
	8 mA			0.4	V	$V_{DD} = 3.14V, I_{OL} = 8 \text{ mA}$
	DOTCLK			0.4		V _{DD} = 3.14V, I _{OL} = 20 mA
	FP_CLK			0.4		V _{DD} = 3.14V, I _{OL} = 12 mA
	IDE			0.5		V _{DD} = 3.14V, I _{OL} = 12 mA
	PCI			0.1V _{DD}		V _{DD} = 3.14V, I _{OL} = 1.5 mA
	USB			0.3		$R_L = 1.5 \text{ K}\Omega \text{ to } V_{DD,} V_{DD} = 3.46 \text{V}$
V _{OH}	High Level Output Voltage	(Note 1)				
	8 mA	2.4			V	V _{DD} = 3.14V, I _{OH} = -8 mA
	DOTCLK	2.4				V _{DD} = 3.14V, I _{OH} = -20 mA
	FP_CLK	2.4				V _{DD} = 3.14V, I _{OH} = -12 mA
	IDE	2.4				V _{DD} = 3.14V, I _{OH} = -400 μA
	PCI	0.9V _{DD}				V _{DD} = 3.14V, I _{OH} = -0.5 mA
	USB	2.8		V _{DD}		V_{DD} = 3.14V, R_L = 15 K Ω to V_{SS}
I _{LEAK}	Input Leakage Current Incl	uding Hi-Z Out	tput Leak	age (Note 1)		
	8 mA, CLK, DOTCLK, FP_CLK, IDE, PCI			+/-10	μΑ	$V_{DD} = V_{DDIO} = 3.46V,$ $V_{PAD} = 0 \text{ to } 3.46V, \text{ Note } 2$
				+/-200		$V_{DD} = V_{DDIO} = 3.46V,$ $V_{PAD} = 3.46 \text{ to } 5.5V, \text{ Note } 2$
I _{PU}	Weak Pull-Up Current (Not	te 1)				
	8 mA			-50	μA	V _{DDIO} = 3.46V, Note 2
	•	•				

Table 6-4. DC Characteristics (Continued)

Symbol	Parameter	Min	Тур	Max	Units	Comments				
I _{OH}	Output High Current (Note 1)	Output High Current (Note 1)								
	8 mA			-8	mA	$V_{DD} = V_{DDIO} = V_{DDmin} = 3.14V$				
	FP_CLK			-12						
	IDE			-0.5						
	PCI	-0.5				$V_{DD} = V_{DDIO} = V_{DDmin} = 3.14V$				
I _{OL}	Output Low Current (Note 1)			l	1					
	8 mA			8	mA	$V_{DD} = V_{DDIO} = V_{DDmin} = 3.14V$				
	FP_CLK			12						
	IDE			12		$V_{DD} = V_{DDIO} = V_{DDmin} = 3.14V$				
	PCI	1.5				$V_{DD} = V_{DDIO} = V_{DDmin} = 3.14V$				
V _H	Hysteresis Voltage 8 mA, CLK (Note 1)	350			mV	$V_{T+} - V_{T-}$				
V_{DI}	USB - Differential Input Sensitivity	0.2			V	(D+)-(D-) , within V _{CM} , Note 3				
V_{CM}	USB - Differential Common Mode Range	0.8		2.5	V	Includes V _{DI} range				
V _{SE}	USB - Single Ended Receiver Threshold	0.8		2.0	V					
V _{CRS}	USB - Output Signal Crossov	er Voltage	•		1					
	Low Speed	1.3		2.0	V	$V_{DD} = 3.14V \text{ to } 3.46V,$				
	Full Speed	1.3		2.0	V	See Figure 6-9 and Figure 6-10 on page 245				
C _{IN}	Input Capacitance (Note 1)		•	•	1					
	8 mA			5	pF	Note 3				
	CLK	5		12						
	IDE			25						
	PCI			10						
C _{OUT}	Output Capacitance - All Digital Drivers			7	pF	Note 3				

^{1.} Pins with this buffer type are listed in Table 3-3 "352 PBGA Pin Assignments - Sorted Alphabetically by Signal Name" on page 25.

^{2.} Pins with a pull-up always enabled are denoted in Table 6-1 "Pins with Weak Internal Pull-Up" on page 233. Note that the leakage specification does not apply to hard-wired pull-ups.

^{3.} Not 100% tested.

Electrical Specifications Revision 1.1 AMD

6.4.1 Definition of System Conditions for Measuring "On" Parameters

The current of the CS5530A is highly dependent on the DCLK (DOT clock). Table 6-5 shows how these factors are controlled when measuring the typical average and absolute maximum CS5530A current parameters. Table 6-6 provides the CS5530A's core, DAC, and PLL DC characteristics during various power states.

Table 6-5. System Conditions Used to Determine CS5530A's Current Used During the "On" State

	System Conditions				
CPU Current Measurement	V _{DD} (Note 1)	DCLK Frequency (Note 2)			
Typical Average	Nominal	50 MHz (Note 3)			
Absolute Maximum	Max	135 MHz (Note 4)			

- 1. See Table 6-3 on page 234 for nominal and maximum voltages.
- 2. Not all system designs support display modes that require a DCLK of 157 MHz. Therefore, absolute maximum current will not be realized in all system designs.
- 3. A DCLK frequency of 50 MHz is derived by setting the display mode to 800x600x8 bpp at 75 Hz, using a display image of vertical stripes (4-pixel wide) alternating between black and white with power management disabled.
- 4. A DCLK frequency of 157 MHz is derived by setting the display mode to 1280x1024x8 bpp at 85 Hz, using a display image of vertical stripes (1-pixel wide) alternating between black and white with power management disabled.

Table 6-6. DC Characteristics During Power States

Symbol	Parameter	Min	Тур	Max	Units	Comments
Core (Note 1)		'	I.	ı	JI	
I _{DD_CORE}	Active I _{DD}		145	255	mA	Note 2 and Note 3
I _{DDAI_CORE}	Active Idle I _{DD}		85		mA	Note 4
I _{DDSM_CORE}	Suspend Mode I _{DD}		29		mA	Note 5
I _{DDSS_CORE}	Standby I _{DD}		5.7		mA	Note 6
DAC (Note 1)	•	•		•	•	
I _{DD_DAC}	Active I _{DD}		60	85	mA	Note 2 and Note 3
I _{DDAI_DAC}	Active Idle I _{DD}		60		mA	Note 4
I _{DDSM_DAC}	Suspend Mode I _{DD}		0.2		mA	Note 5
I _{DDSS_DAC}	Standby I _{DD}		0.2		mA	Note 6
PLL (Note 1)	•	•	•		•	
I _{DD_PLL}	Active I _{DD}		6	6	mA	
I _{DDAI_PLL}	Active Idle I _{DD}		6		mA	Note 4
I _{DDSM_PLL}	Suspend Mode I _{DD}		0.3		mA	Note 5
I _{DDSS_PLL}	Standby I _{DD}		0.2		mA	Note 6
EXTVREFIN	•		•		•	
I _{DD_EXTVREFIN}	Active I _{DD}			75	μA	

- 1. Outputs unloaded.
- 2. Maximum current is measured under the following assumptions: PCICLK = 33 MHz, USBCLK = 48 MHz, DCLK = 157 MHz, and VID_CLK = 133 MHz.
- 3. Typical current is measured under the following assumptions: PCICLK = 33 MHz, USBCLK = 48 MHz, DCLK = 50 MHz, and VID_CLK = 0 MHz.
- 4. Active Idle current is measured under the following assumptions with SUSPA# asserted: PCICLK = 33 MHz, USBCLK = 48 MHz, DCLK = 50 MHz, and VID_CLK = 0 MHz.
- 5. Suspend current is measured under the following assumptions with SUSPA# asserted: PCICLK = 33 MHz, USBCLK = 48 MHz, DCLK = 0 MHz, and VID_CLK = 0 MHz.
- 6. Standby current is measured under the following assumptions with SUSPA# and SUSP_3V (stop clock signal) asserted: PCICLK = 0 MHz, USBCLK = 0 MHz, DCLK = 0 MHz, and VID_CLK = 0 MHz.

Electrical Specifications Revision 1.1 AMD

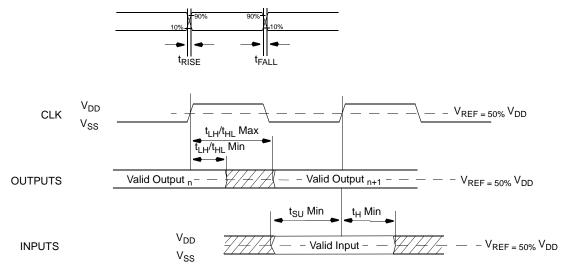
6.5 AC Characteristics

The following tables list the AC characteristics including output delays, input setup requirements, input hold requirements and output float delays. The rising-clock-edge reference level, V_{REF} and other reference levels are shown in Table 6-7. Input or output signals must cross these levels during testing.

Input setup and hold times are specified minimums that define the smallest acceptable sampling window for which a synchronous input signal must be stable for correct operation.

Table 6-7. Drive Level and Measurement Points for AC Characteristics

Symbol	Voltage (V)
V_{REF}	1.5
V_{DD}	3.14
V_{SS}	0


Table 6-8. AC Characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Comments (Note 1)
t _{SU}	Input Setup Time to PCICLK	7			ns	See Figures 6-1 and 6-2 on
t _H	Input Hold Time to PCICLK	0			ns	page 240
t _{LH}	Low to High Propagation Delay	(Referen	ced to PCI	CLK, Note	e 2)	
	PCI	2		11	ns	See Figure 6-2 on page 240 and Figure 6-3 on page 241 (also known as t _{VAL})
t _{HL}	High to Low Propagation Delay	(Referen	ced to PCI	CLK, Note	⊋ 2)	
	PCI	2		11	ns	See Figure 6-2 on page 240 and Figure 6-4 on page 241 (also known as t _{VAL})
t _{RISE/FALL}	L Rising/Falling Edge Rate					
	IDE			1.25	V/ns	See Figures 6-1 and 6-2 on page 240, Note 3

^{1.} All tests, unless otherwise specified, are at $V_{DD} = 3.14V$ to 3.46V, $T_{C} = 0$ °C to 85°C, and $C_{L} = 50$ pF.

^{2.} Pins with this buffer type are listed in Table 3-3 "352 PBGA Pin Assignments - Sorted Alphabetically by Signal Name" on page 25.

^{3.} Not 100% tested.

Legend:

t_{LH}/t_{HL} Max = Maximum Output Delay Specification

 t_{LH}/t_{HL} Min = Minimum Output Delay Specification

 t_{SU} Min = Minimum Input Setup Specification

t_H Min = Minimum Input Hold Specification

Note: See Table 6-7 "Drive Level and Measurement Points for AC Characteristics" on page 239 for V_{DD} , V_{SS} , and V_{REF} values.

Figure 6-1. Test Measurements for AC Characteristics

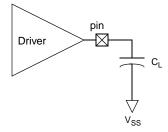


Figure 6-2. Test Circuit for AC Characteristics

Electrical Specifications Revision 1.1 AMD

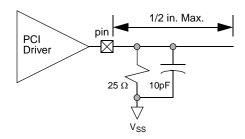


Figure 6-3. PCI Rising Edge (t_{LH}) Test Circuit

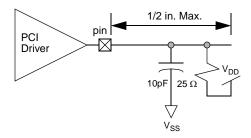


Figure 6-4. PCI Falling Edge (t_{HL}) Test Circuit

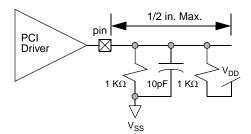


Figure 6-5. PCI Slew Rate Test Circuit

Table 6-0	Clock and	Pacat	Specifications

Symbol	Parameter	Min	Max	Duty Cycle	Unit	Comments (Note 1)
Output Sig	gnals					
	DCLK Frequency	25	157.5	40/60	MHz	Note 2
	CLK_32K Frequency	32.	768	50/50	kHz	Note 3
	ISACLK Frequency		8.33333		MHz	
Input Sigr	nals				•	
	CLK_14MHZ Frequency	14.3	1818	45/55	MHz	
	USBCLK Frequency	4	48		MHz	
	TVCLK Frequency		27		MHz	
	VID_CLK Frequency		135		MHz	
t _{CYC}	PCICLK Cycle Time	30			ns	Note 4
t _{HIGH}	PCICLK High Time	11			ns	
t _{LOW}	PCICLK Low Time	11			ns	
	PCICLK Slew Rate	1	4		V/ns	See Figure 6-1 on page 240 and Figure 6-5 on page 241 (known as slew _r /slew _f), Note 5, and Note 6
	PCI_RST# Slew Rate	50			mV/ns	Rising edge only (deassertion), Note 6

- 1. All tests, unless otherwise specified, are at $V_{DD} = 3.14V$ to 3.46V, $T_{C} = 0$ °C to 85°C, and $C_{L} = 50$ pF.
- 2. Worst case duty cycle. Duty cycle is a function of PLL post divider. DCLK is programmable to standard video frequencies. Typical jitter < 650 ps peak-to-peak. CLK_14MHZ input jitter < 500 ps peak-to-peak.
- 3. CLK_32K jitter = period of CLK_14MHZ. CLK_32K output frequency = CLK_14MHZ/436.95621.
- 4. Frequency of operation is from DC to 33 MHz but at a single fixed frequency. Operation below 20 MHz is guaranteed by design.
- 5. Rise and fall times are specified in terms of the edge rate measured in V/ns. This slew rate must be met across the minimum peak-to-peak portion of the clock waveform as shown in Figure 6-6.
- 6. Not 100% tested.

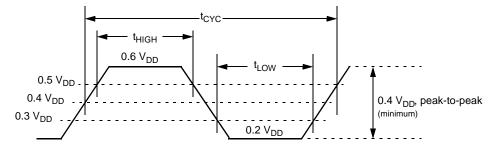


Figure 6-6. 3.3V PCICLK Waveform

Electrical Specifications Revision 1.1

Symbol	Parameter	Min	Тур	Max	Units	Comments (Note 1)
f _{DCLK}	DCLK Clock Operating Frequency	25		157.5	MHz	Also known as CRT clock
f _{REF}	Input Reference Frequency		14.318		MHz	
t _{RISE/FALL}	Output Clock Rise/Fall Time			2	ns	@ 25 MHz
	Jitter, Peak-to-Peak	-300		300	ps	
DC	Duty Cycle	40/60		60/40	%	

^{1.} All tests, unless otherwise specified, are at V_{DD} = 3.14V to 3.46V, T_{C} = 0°C to 85°C, and C_{L} = 50 pF.

Table 6-11. CPU Interface Timing

Symbol	Parameter	Min	Max	Units	Comments (Note 1)		
t _{SMI}	Rising PCICLK to SMI#	3	16	ns			
t _{SUSP#}	Rising PCICLK to SUSP#	6	9	ns			
t _{SUSPASetup}	SUSPA# Setup to Rising PCICLK	0		ns			
t _{SUSPAHold}	SUSPA# Hold from Rising PCICLK	3		ns			
	IRQ13 Input	Asynchronous input for IRQ decode.					
	INTR Output	Asynchronous output from IRQ decode.					
	SMI# Output	Asynchrono	ous output froi	m SMI decode	e.		

^{1.} All tests, unless otherwise specified, are at V_{DD} = 3.14V to 3.46V, T_{C} = 0°C to 85°C, and C_{L} = 50 pF.

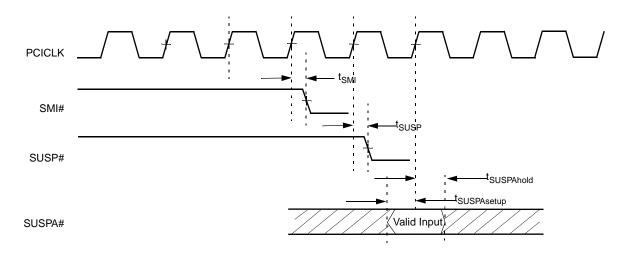


Figure 6-7. CPU Interface Timing

Table 6-12.	Audio	Interface	Timing
-------------	-------	-----------	---------------

Symbol	Parameter	Min	Max	Units	Comments (Note 1)
t _{BITCLK}	Rising BIT_CLK to SYNC		15	ns	
t _{SDAT}	Rising BIT_CLK to SDATA_OUT		15	ns	
t _{SDATsetup}	SDATA_IN setup to falling BIT_CLK	10		ns	
t _{SDAThold}	SDATA_IN hold from falling BIT_CLK	10		ns	

^{1.} All tests, unless otherwise specified, are at V_{DD} = 3.14V to 3.46V, T_{C} = 0°C to 85°C, and C_{L} = 50 pF.

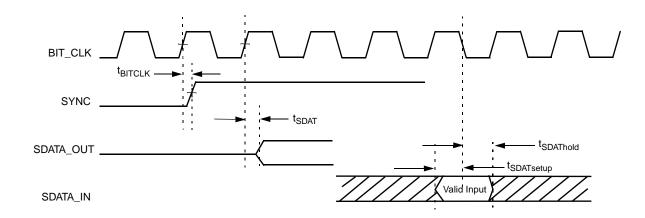


Figure 6-8. Audio Interface Timing

Electrical Specifications Revision 1.1 AMD

Table	6-13.	USB	Timing

Symbol	Parameter	Min	Max	Unit	Comments (Note 1)			
Full Speed Mode								
t _R	Rise Time	4	20	ns				
t _F	Fall Time	4	20	ns				
Low Speed Mode								
t _R	Rise Time	75		ns				
			300		C _L = 350 pF			
t _F	Fall Time	75		ns				
			300		C _L = 350 pF			

1. All tests, unless otherwise specified, are at V_{DD} = 3.14V to 3.46V, T_{C} = 0°C to 85°C, and C_{L} = 50 pF.

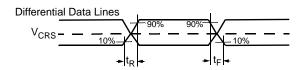


Figure 6-9. USB Timing

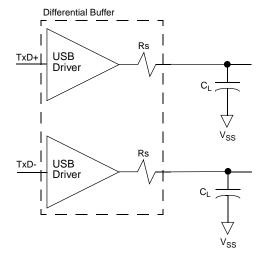


Figure 6-10. USB Test Circuit

Revision 1.1 Electrical Specifications

6.6 Display Characteristics

The following tables and figures describe the characteristics of the CRT, TFT/TV and MPEG Display interfaces. It is divided into the following categories:

- CRT Display Recommended Operating Conditions
- CRT Display Analog (DAC) Characteristics

- Display Miscellaneous Characteristics
- · CRT, TFT/TV and MPEG Display Timing

Additionally, Figure 6-13 on page 249 is provided showing a typical video connection diagram.

Table 6-14. (CRT Display	Recommended (Operating	Conditions
---------------	-------------	---------------	-----------	------------

Symbol	Parameter	Min	Тур	Max	Units	Comments
AV _{DD}	Power Supply connected to AV _{DD1} , AV _{DD2} and AV _{DD3}	3.14	3.3	3.46	V	
R _L	Output Load on each of the pins IOUTR, IOUTG and IOUTB		37.5		Ohms	R1, R2, and R3 as shown in Figure 6-13 on page 249
I _{OUT}	Output Current on each of the pins IOUTR, IOUTG and IOUTB			21	mA	
R _{SET}	Value of the full-scale adjust resistor connected to IREF		680		Ohms	This resistor should have a 1% tolerance.
VEXT _{REF}	External voltage reference con- nected to the EXTVREFIN pin		1.235		V	

Table 6-15. CRT Display Analog (DAC) Characteristics

Symbol	Parameter	Min	Тур	Max	Units	Comments (Note 1)
V _{OM}	Output Voltage			0.735	V	
V _{OC}	Output Current			20	mA	
INL	Integral Linearity Error			+/-1	LSB	
DNL	Differential Linearity Error			+/-1	LSB	
t _{FS}	Full Scale Settling Time			2.5	ns	
	DAC-to-DAC matching			5	%	
	Power Supply Rejection			0.7	%	@ 1 KHz
t _{RISE}	Output Rise Time			3.8	ns	Note 2 and Note 3
t _{FALL}	Output Fall Time			3.8	ns	Note 2 and Note 4

^{1.} All tests, unless otherwise specified, are at V_{DD} = 3.14V to 3.46V, T_{C} = 0°C to 85°C, and C_{L} = 50 pF.

^{2.} Timing measurements are made with a 75 ohm doubly-terminated load, with VEXT_{REF} = 1.235V and R_{SET} = 680 ohms.

^{3. 10%} to 90% of full-scale transition.

^{4.} Full-scale transition: time from output minimum to maximum, not including clock and data feedthrough.

Electrical Specifications Revision 1.1

Table 6-16. Display Miscellaneous Characteristics

Symbol	Parameter	Min	Тур	Max	Units	Comments
	White Level Relative to Black	16.74	17.62	18.50	mA	
IAV _{DD}	AV _{DD} Supply Current		60		mA	(Static)

Table 6-17. CRT, TFT/TV and MPEG Display Timing

Symbol	Parameter	Min	Тур	Max	Units	Comments (Note 1)	
Setup/Hold Time							
t _{Display} Setup	Display Setup to Rising PCLK: VSYNC, HSYNC, ENA_DISP, FP_VSYNC, FP_HSYNC, PIXEL[23:0]	2.2			ns	See Figure 6-1 on page 240.	
t _{DisplayHold}	Display Hold from Rising PCLK: VSYNC, HSYNC, ENA_DISP, FP_VSYNC, FP_HSYNC, PIXEL[23:0]	1.0			ns		
t _{VID_VALSetup}	VID_VAL Setup to Rising VID_CLK	3.0			ns	See Figure 6-1 on	
t _{VID_VALHold}	VID_VAL Hold from Rising VID_CLK	8.0			ns	page 240.	
t _{VID_DATASetup}	VID_DATA Setup to Rising VID_CLK	3.0			ns	See Figure 6-1 on	
t _{VID_DATAHold}	VID_DATA Hold from Rising VID_CLK	0.8			ns	page 240, Note 2	
Clock Specification							
t _{VID_CLKMin}	VID_CLK Minimum Clock Period	7.4			ns		
Delay Time							
FPOUT _{MinDelay} , FPOUT _{MaxDelay}	TFT/TV Output Delays from FP_CLK: FP_DATA[17:0], FP_HSYNC_OUT, FP_VSYNC_OUT, FP_DISP_ENA_OUT, FP_ENA_VDD, FP_ENA_BKL, FP_CLK_EVEN	0.5		4.5	ns	Note 3	
VID_RDY _{MinDelayE} , VID_RDY _{MaxDelayE}	VID_RDY Delay from Falling VID_CLK (early mode)	3.0		10.5	ns	Note 4	
VID_RDY _{MinDelayN} , VID_RDY _{MaxDelayN}	VID_RDY delay from rising VID_CLK (normal mode)	3.0		9.5	ns		

- 1. All tests, unless otherwise specified, are at V_{DD} = 3.14V to 3.46V, T_{C} = 0°C to 85°C, and C_{L} = 50 pF.
- 2. Also applies to PIXEL[23:16] when in 16-bit video mode.
- 3. All flat panel applications use the falling edge of FP_CLK to latch their data.
- 4. The mode for VID_RDY (early or normal) is set with bit 25 of the Video Configuration Register (F4BAR+Memory Offset 00h[25]).

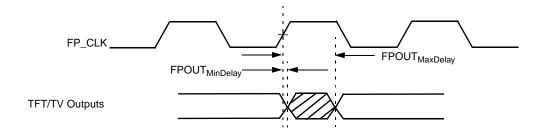


Figure 6-11. Display TFT/TV Outputs Delays

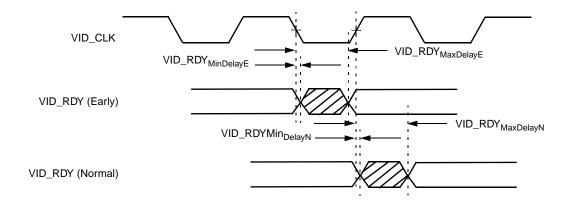
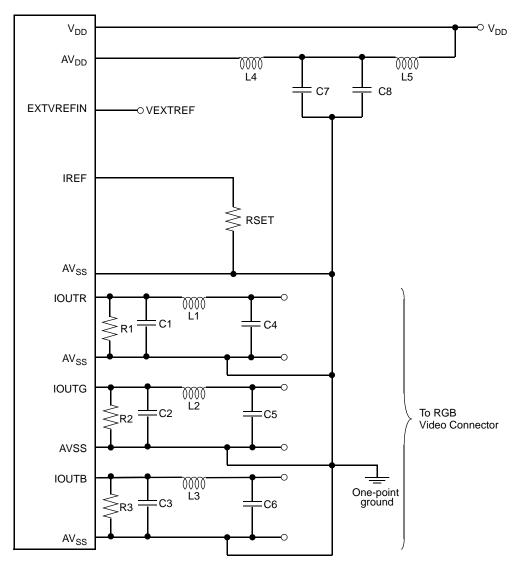



Figure 6-12. MPEG Timing

Electrical Specifications Revision 1.1 AMD

Legend

Part Designator Value
R1-R3 75 Ohms, 1%
RSET 732 Ohms, 1%
C1-C6 33 pF

 $\begin{array}{lll} \text{C7} & \text{0.1 } \mu\text{F, Ceramic} \\ \text{C8} & \text{2.2 } \mu\text{F, Electrolytic} \\ \text{L1-L3 (Optional)} & \text{120 Ohm Ferrite Bead} \\ \text{L4-L5 (Optional)} & \text{600 Ohm Ferrite Bead} \\ \end{array}$

Figure 6-13. Typical Video Connection Diagram

Test Mode Information Revision 1.1

Test Mode Information

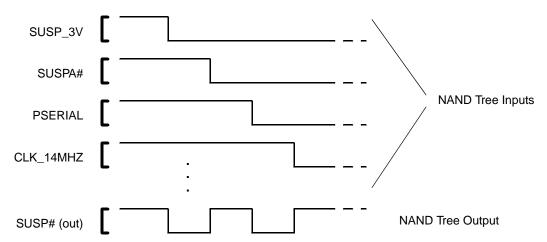
The CS5530A provides two test modes:

- The NAND tree test mode for board-level automatic test equipment (ATE).
- The I/O test mode for system design testing.

7.1 NAND Tree Test Mode

The NAND tree mode is used to test input and bidirectional pins which will be part of the NAND tree chain. Table 7-1 shows how to set the device for the NAND tree test.

The output of the NAND tree is multiplexed on the SUSP# output (pin K26). After a POR# (pin K24) pulse, all inputs in Table 7-2 on page 252 are initialized to a "1" and then are successively pulled and held to a "0" starting with SUSP 3V (the first input pin in the tree). The output wave-


form on SUSP# will toggle on each input change as shown in Figure 7-1.

POR# is included as an input during the NAND Tree test, after being used to trigger the test first. IRQ7 (pin AD14) and TEST (pin D3) must be held high throughout the test.

Table 7-1. NAND Tree Test Selection

Signal Name	Pin No.	Setting
POR#	K24	0 -> 1
TEST	D3	1
IRQ7	AD14	1

Initial Conditions: TEST = 1, IRQ7 = 1, POR# = (first 0, then 1), all inputs '1'

The following pins are not in the NAND tree: AEN, BALE, CPU_RST, DACK[3:0]#, DACK[7:5]#, DCLK, DDC_SCL, D+_PORT1, D-_PORT1, D+_PORT2, D-_PORT2, EXTVREFIN, FP_CLK, FP_CLK_EVEN, FP_DISP_ENA_OUT, FP_ENA_BKL, FP_ENA_VDD, FP_HSYNC_OUT, FP_VSYNC_OUT, GPCS#, GPORT_CS#, HSYNC_OUT, IDE_ADDR[2:0], IDE_CS[1:0]#, IDE_DACK[1:0]#, IDE_IOW[1:0]#, IDE_RST#, IOUTB, IOUTG, IOUTR, IREF, IRQ7, ISACLK, KBROMCS#, PC_BEEP, PCI_RST#, PLLTEST, SA_LATCH, SDATA_OUT, SMEMR#/RTCALE, SMEMW#/RTCCS#, SUSP#, SYNC, TEST, VID_RDY, VSYNC_OUT, all NCs, and all analog/digital supplies.

Figure 7-1. Example: NAND Tree Output Waveform

Revision 1.1 Test Mode Information

Table 7-2. NAND Tree Test Mode Pins

Signal Name	Pin No.
SUSP_3V	L24
SUSPA#	L25
PSERIAL	L26
CLK_14MHZ	P24
SMI#	P25
INTR	P26
IRQ13	R23
IDE_DATA7	U23
	U24
IDE_DATA6	V24
IDE_DATA10	V24 V25
IDE_DATA10	-
IDE_DATA5	W26
IDE_DATA9	Y25
IDE_DATA11	Y24
IDE_DATA4	AA26
IDE_DATA12	AA25
IDE_DATA3	AB26
IDE_DATA1	AA24
IDE_DATA13	AB25
IDE_DATA2	AB24
IDE_DATA0	AC26
IDE_DATA14	AC25
IDE_DATA15	AB23
IDE_DREQ1	AC24
IDE_DREQ0	AD26
IDE_IORDY0	AD25
IDE_IORDY1	AE26
SA14/SD14	AD24
SA15/SD15	AE25
GPIO0	AC22
GPIO1	AE24
GPIO2	AF25
GPIO3	AF24
GPIO4	AD22
GPIO5	AC21
GPIO6	AE23
GPIO7	AF23
SA13/SD13	AE22
SA10/SD10	AC20
DRQ7	AF22
SA12/SD12	AE21
SA11/SD11	AF21
SA9/SD9	AD19
DRQ6	AE20
MEMW#	AF20
MEMR#	AE19
DRQ5	AD18
SA8/SD8	AF19
DRQ0	AE18
IRQ11	AF18
IRQ14	AC17
IRQ15	AD17
SBHE#	AE17

Table 7-2	2. NAND
Signal Name	Pin No.
IRQ12	AF17
IRQ10	AE16
IOCS16#	AF16
MEMCS16#	AC15
IRQ4	AE15
TC	AF15
IRQ3	AC14
IRQ8#	AE14
IRQ6	AF14
DRQ3	AD13
IRQ5	AE13
IRQ1	AF13
DRQ1	AD12
IOR#	AE12
SA17	AF12
IOW#	AC11
SA16	AD11
SA18	AE11
IOCHRDY	AF11
SA19	AD10
DRQ2	AE10
ZEROWS#	AF10
SA2/SD2	AD9
SA0/SD0	AE9
SA4/SD4	AF6
SA1/SD1	AE6
SA6/SD6	AF5
SA3/SD3	AC6
IRQ9	AE5
SA5/SD5	AD5
SA7/SD7	AF4
CLK 32K	AE3
OVER CUR#	W3
POWER EN	V4
USBCLK	W1
BIT_CLK	V2
SDATA IN	U4
DDC_SDA	M4
FP DATA12	L1
FP DATA0	K3
FP_DATA13	K2
FP DATA14	K1
FP_DATA2	J3
FP DATA1	J2
FP_DATA3	J1
FP DATA15	H2
FP_DATA16	H3
FP_DATA4	H1
FP DATA8	G1
FP DATA5	G2
FP DATA7	G3
FP DATA6	G4
FP DATA9	F1
II _DAIA	

Signal Name	Pin No.
FP_DATA17	F3
FP_DATA10	E2
FP_DATA11	D1
FP_VSYNC	C1
FP_HSYNC	C2
ENA_DISP	B1
TVCLK	B2
PIXEL0	A1
PIXEL3	C4
PIXEL6	D5
PIXEL4	В3
PIXEL1	A2
PIXEL2	A3
PIXEL11	C5
PIXEL9	D6
PIXEL5	B4
PIXEL7	A4
HSYNC	C6
VSYNC	B5
PIXEL13	D7
PIXEL14	C7
PIXEL10	A5
PIXEL8	B6
VID_CLK	A6
PIXEL17	C8
VID_VAL	B7
PIXEL12	A7
PIXEL15	B8
PIXEL20	D9
PIXEL21	C9
PIXEL16	A8
PIXEL18	B9
PIXEL19	A9
PIXEL23	C10
VID_DATA4	D11
VID DATA3	C11
PIXEL22	B11
VID_DATA0	A11
VID_DATA7	C12
VID_DATA6	B12
VID_DATA5	A12
VID_DATA1	C13
VID_DATA2	B13
PCLK	A13
AD1	D14
INTD#	B14
INTA#	A14
INTB#	D15
INTC#	C15
AD3	B15
AD0	A15
AD2	C16
AD5	B16

Signal Name	Pin No.
AD7	A16
AD4	C17
AD6	B17
AD9	A17
AD8	D18
C/BE0#	B18
AD12	A18
AD11	B19
AD10	A19
AD15	A20
AD14	B20
AD13	C20
PAR	A21
C/BE1#	B21
SERR#	A22
PERR#	B22
LOCK#	C22
DEVSEL#	A23
TRDY#	B23
FRAME#	C23
C/BE2#	A24
IRDY#	B24
AD17	A25
AD18	B25
AD16	A26
GNT#	D24
AD21	C25
AD19	B26
AD22	C26
AD20	E24
AD26	D25
C/BE3#	D26
AD23	E25
AD25	G24
STOP#	E26
AD24	F25
AD27	F26
AD28	G25
AD29	G26
AD31	H25
AD30	J24
HOLD_REQ#	H26
REQ#	J25
PCICLK	J26
POR#	K24

Test Mode Information Revision 1.1

7.2 I/O Test

This test affects all output and bidirectional pins. To trigger the I/O test, set the TEST and IRQ[3:7] pins according to Table 7-3, while holding POR# low. The test begins when POR# is brought high. Starting with the next rising edge of PCICLK, the states listed in Table 7-4 are entered by all digital output and I/O pins on successive PCICLK pulses:

Table 7-3. I/O Test Selection

Signal Name	Pin No.	Setting
POR#	K24	Х
TEST	D3	1
IRQ3	AC14	0
IRQ4	AE15	1
IRQ5	AE13	1
IRQ6	AF14	0
IRQ7	AD14	1

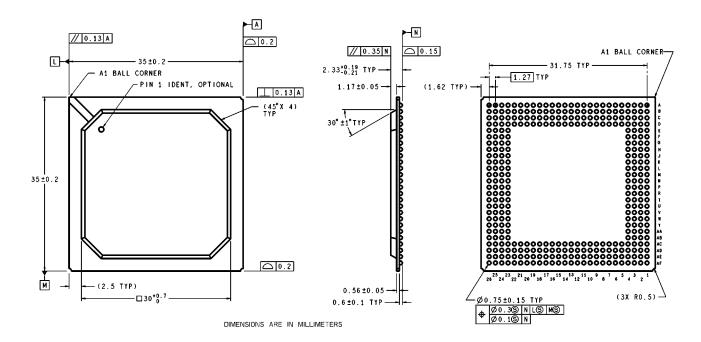
Table 7-4. I/O Test Sequence

Clock #	Output Pin States
Before 1	Undefined
1	Floating
2	High
3	Low
4	Floating
5	Low
6	High
7	Floating
8 and beyond	Undefined

The following pins are INCLUDED in this test:

AD[31:0], AEN, BALE, C/BE[3:0]#, CLK_32K,
 CPU_RST, DACK[7:5,3:0], DDC_SCL, DDC_SDA,
 DEVSEL#, FP_CLK, FP_CLK_EVEN, FP_DATA[17:0],
 FP_DISP_ENA_OUT, FP_ENA_BKL, FP_ENA_VDD,
 FP_HSYNC_OUT, FP_VSYNC_OUT, FRAME#,
 GPCS#, GPIO[7:0], GPORT_CS#, HOLD_REQ#,
 HSYNC_OUT, IDE_ADDR[2:0], IDE_CS[1:0]#,
 IDE_DACK[1:0]#, IDE_DATA[15:0], IDE_IOR[1:0]#,
 IDE_IOW[1:0]#, IDE_RST#, INTR, IOCHRDY, IOR#,
 IOW#, IRDY#, ISACLK, KBROMCS#, LOCK#,
 MEMCS16#, MEMR#, MEMW#, PAR, PCI_RST#,
 PC_BEEP, PERR#, POWER_EN, REQ#, SA/SD[15:0],
 SA[19:16], SA_LATCH, SBHE#, SDATA_OUT, SERR#,
 SMEMR#, SMEMW#, SMI#, STOP#, SUSP#,
 SUSP_3V, SYNC, TC, TRDY#, VID_RDY, VSYNC_OUT

Note: The SA/SD and SA bus, IOR#, IOW#, MEMR#, MEMW# and SBHE# pins never actually float, because they have internal weak pull-up devices that remain active.


The following pins are EXCLUDED from this test:

- Input-only pins: BIT_CLK, CLK_14MHZ, DRQ[7:5,3:0], ENA_DISP, FP_HSYNC, FP_VSYNC, GNT#, HSYNC, IDE_DREQ[1:0], IDE_IORDY[1:0], INTA#, INTB#, INTC#, INTD#, IOCS16#, IRQ1, IRQ[7:3], IRQ8#, IRQ[15:9], OVER_CUR#, PCICLK, PCLK, PIXEL[23:0], POR#, PSERIAL, SDATA_IN, SUSPA#, TEST, TVCLK, USBCLK, VID_CLK, VID_DATA[7:0], VID_VAL, VSYNC, ZEROWS#.
- USB pins: D+_PORT1, D-_PORT1, D+_PORT2, D-_PORT2, AV_{DD}_USB, AV_{SS}_USB.
- · Time-critical output: DCLK.
- Analog pins (including supplies): EXTVREFIN, IOUTB, IOUTG, IOUTR, IREF, PLLAGD, PLLDGN, PLLDVD, PLLTEST, AV_{DDx}, AV_{SSx}.
- Digital supply pins (V_{DD}, V_{SS}) and No Connects (NC).

Physical Dimensions Revision 1.1 AMD

Physical Dimensions

The physical dimensions for the 352 PBGA (Plastic Ball Grid Array) package are provided in Figure 8-1.

UCE352A (Rev B)

Figure 8-1. 352 PBGA Mechanical Package Outline

Support Documentation

A.1 Revision History

This document is a report of the revision/creation process of the architectural specification for the CS5530A companion device. Any revisions (i.e., additions, deletions, parameter corrections, etc.) are recorded in the table(s) below.

Table A-1. Revision History

Revision # (PDF Date)	Revisions / Comments
0.1 (4/2/00)	Completed formatting first-pass of spec. Current spec is updated version of CS5530 data book with additional inputs from engineering. Differences between this spec's revision and the CS5530 data book are denoted with a change bar in the margin. Still need to proof-read for "ripple effects" made by engineering changes for next rev.
0.2 (6/16/00)	Corrections from Issues 1.3.
0.3 (6/27/00)	Further corrections from Issues 1.3. Partly indexed.
0.4 (7/5/00)	Corrections from Issues 1.3 and 1.5. Some issues remain to be resolved. Index markers inserted through AT chapter.
0.5 (7/19/00)	TME/Tech Pubs edits. See document revision 0.5 for revision history.
0.6 (8/7/00)	TME/Tech Pubs edits. See document revision 0.6 for revision history details.
0.7(9/18/00)	TME/Tech Pubs/Engr edits. See document revision 0.7 for revision history details.
	Note: Next revision to include section on "recommended soldering parameters" in Section 8.0 "Physical Dimensions".
1.0 (11/10/00)	TME/Tech Pubs/Engr edits. See document revision 1.0 for revision history details.
	Note: Will create separate applications note on "recommended soldering parameters" as opposed to adding as subsection in data book.
1.1 (5/1/01)	TME/Engr edits. See Table A-2 for details.
	Note: Will not create separate applications note on "recommended soldering parameters". Applications is fulfilling any customer inquiries with a document supplied by the Quality Group.

Table A-2. Edits to Create Revision 1.1

Section	Description	
Section 3.0 "Signal Definitions"		
Section 3.2.2 "Clock Interface"	Changed last sentence of DCLK signal description on page 29. Did say: "However, system constraints limit DCLK to 150 MHz when DCLK is used as the graphics subsystem clock." Now says: "However, when DCLK is used as the graphics subsystem clock, the Geode processor determines the maximum DCLK frequency."	
Section 3.2.11 "Display Interface"	Changed resistor value in IREF signal description (from 732 ohm to 680 ohm) on page 41.	

Table A-2. Edits to Create Revision 1.1 (Continued)

Section	Description	
Section 4.8 "Display Subsystem Extensions"		
Section 4.8.3 "Video Overlay"	Added sentence to last paragraph on page 137: — "However, system maximum resolution is not determined by the CS5530A since it is not the source of the graphics data and timings."	
	Section 4.8.5.3 "Flat Panel Support" on page 139 Added subsection titled "Flat Panel Power-Up/Down Sequence".	
Section 6.0 "Electrical	Specifications"	
Section 6.5 "AC Characteristics"	Table 6-8 "AC Characteristics" on page 239: Removed 8 mA, DOTCLK, and FP_CLK t _{LH} and t _{HL} parameters.	
	Table 6-10 "DCLK PLL Specifications" on page 243: Removed Jitter, Sigma One parameter from table (completely).	
	Table 6-11 "CPU Interface Timing" on page 243: — Changed t _{SMI} max value from 9 ns to 16 ns. — Changed t _{SUSPAHold} min value from 1 ns to 3 ns.	
	Table 6-15 "CRT Display Analog (DAC) Characteristics" on page 246: — Added V _{OM} max value of 0.735V. — Added V _{OC} max value of 20 mA. — Added t _{FS} max value of 2.5 ns. — Removed C _{OUT} parameter from table (completely). — Changed t _{RISE} max value from 3 to 3.8 ns. — Added t _{FALL} max value of 3.8 ns. — Changed R _{SET} value in Note 2 from 732 ohms to 680 ohms.	
	Table 6-17 "CRT, TFT/TV and MPEG Display Timing" on page 247: — Changed t _{DisplaySetup} min value from 2.5 ns to 2.2 ns. — Changed t _{VID_VALSetup} min value from 3.75 ns to 3.0 ns. — Changed t _{VID_DATASetup} min value from 0 ns to 0.8 ns. — Changed t _{VID_DATAHold} min value from 0 ns to 3.0 ns. — Changed t _{VID_DATAHold} min value from 0 ns to 0.8 ns. — Changed t _{VID_CLKMin} parameter description from "VID_CLK Minimum Pulse Width" to "VID_CLK Minimum Clock Period". — Changed FPOUT _{MinDelay} FPOUT _{MaxDelay} min value from 0.1 ns to 0.5 and max value from 5.2 ns to 4.5 ns.	

www.amd.com

One AMD Place P.O. Box 3453, Sunnyvale, CA 94088-3453 USA Tel: 408-732-2400 or 800-538-8450 TWX: 910-339-9280 TELEX: 34-6306 TECHNICAL SUPPORT
USA & Canada: 800-222-9323 or 408-749-5703
USA & Canada: PC Microprocessor: 408-749-3060
USA & Canada Email: pcs.support@amd.com

Latin America Email: spanish.support@amd.com Argentina: 001-800-200-1111, after tone 800-859-4478 Chile: 800-532-853

Mexico: 95-800-222-9323

Europe & UK: +44-0-1276-803299 Fax: +44-0-1276-803298 France: 0800-908-621 Germany: +49-89-450-53199 Italy: 800-877224 Europe Email: euro.tech@amd.com

Far East Fax: 852-2956-0588 Japan Fax: 81-3-3346-7848