
# Pulse Withstanding Chip Resistors



**PWC Series** 

- Higher power ratings
- Improved working voltage ratings
- Excellent pulse withstanding performance
- Sn/Pb or Pb-free wrap-around terminations
- Standard chip sizes available from 0805 to 2512



# **Electrical Data**

| Size                   |        | 0805                                                    | 1206    |     | 2010 |     | 2512 |     |
|------------------------|--------|---------------------------------------------------------|---------|-----|------|-----|------|-----|
| Power @70°C            | W      | 0.125                                                   | 0.33    | 0.5 | 0.75 | 1   | 1.5  | 2   |
| Resistance range       | Ohms   | 1R0 to 10M                                              |         |     |      |     |      |     |
| Tolerance              | %      | 10R to 1M: 0.5, All values: 1, 5                        |         |     |      |     |      |     |
| LEV                    | V      | 150                                                     | 200     |     | 400  |     | 500  |     |
| TCR                    | ppm/°C | <10R:200 ≥10R:100                                       |         |     |      |     |      |     |
| Operating temperature  | °C     | -55 to +155                                             |         |     |      |     |      |     |
| Thermal Impedance      | °C/W   | 220                                                     | 160 145 |     | 80   | 70  | 55   | 40  |
| Pad / trace area * mm² |        | 40                                                      | 50      | 125 | 60   | 250 | 100  | 500 |
| Values                 |        | E96 preferred - other values to special order           |         |     |      |     |      |     |
| Pulse Capability       |        | See graphs – full application note available on request |         |     |      |     |      |     |

 $<sup>{\</sup>rm *Recommended\ minimum\ pad\ \&\ adjacent\ trace\ area\ for\ each\ termination\ for\ rated\ power\ dissipation\ on\ FR4\ PCB}$ 

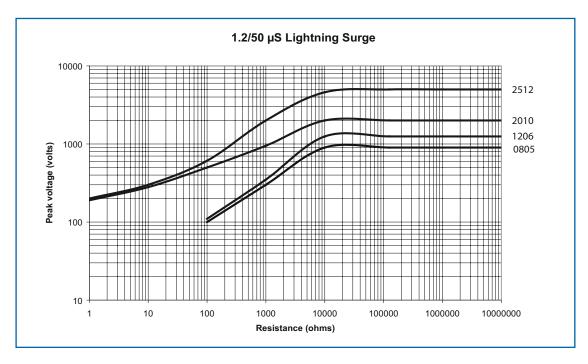
# **Environmental Data**

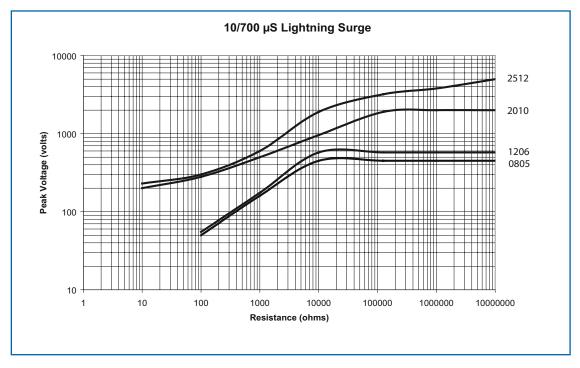
| Test                                                                              | Maximum¹ ∆R | Typical ∆R |
|-----------------------------------------------------------------------------------|-------------|------------|
| Load life at rated power (1000 hours @ 70°C)                                      | 1.00%       | 0.25%      |
| Overload (5.0 X rated power for 2512, 6.25 X rated power for other sizes, 5 secs) | 1.00%       | 0.10%      |
| High temperature storage (1000 hours @ 155°C)                                     | 1.00%       | 0.20%      |
| Moisture resistance                                                               | 1.00%       | 0.25%      |
| Thermal shock                                                                     | 0.25%       | 0.05%      |
| Resistance to soldering heat                                                      | 0.25%       | 0.05%      |

Note  $^1$ : 0.01 $\Omega$  added for all resistance values <10 $\Omega$ .






**PWC Series** 




# Pulse Performance Data

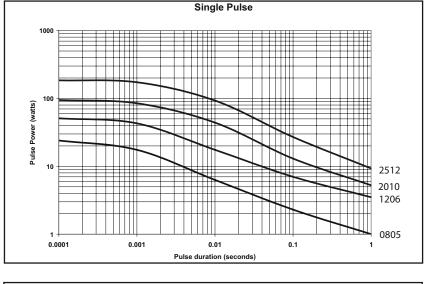
# **Lighting Surge**

Resistors are tested in accordance with IEC 60 115-1 using both  $1.2/50\mu s$  and  $10/700\mu s$  pulse shapes. The limit of acceptance is a shift in resistance of less than 1% from the initial value.





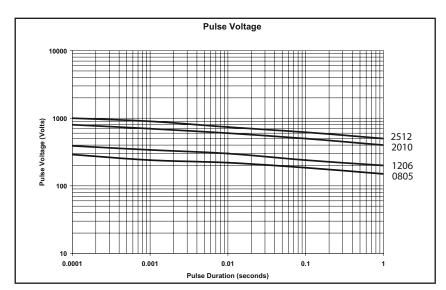



**PWC Series** 



# Pulse Performance Data

# Single impulse:


The single impulse graph is the result of 50 impulses of rectangular shape applied at one minute intervals. The limit of acceptance was a shift in resistance of less than 1% from the initial value. The power applied was subject to the restrictions of the maximum permissible impulse voltage graph shown.



# Continuous Pulses 100 2512 2010 1206 0805 0.1 Pulse Duration (seconds)

# Continuous load due to repetitive pulses:

The continuous load graph was obtained by applying repetitive rectangular pulses where the pulse period was adjusted so that the average power dissipated in the resistor was equal to its rated power at 70°C. Again the limit of acceptance was a shift in resistance of less than 1% from the initial value.



# **General Note**

TT electronics reserves the right to make changes in product specification without notice or liability.

All information is subject to TT electronics' own data and is considered accurate at time of going to print.



www.bitechnologies.com www.irctt.com www.welwyn-tt.com

**PWC Series** 

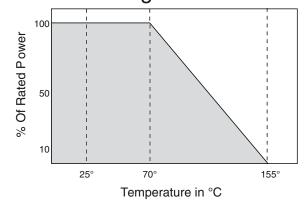


# Physical Data

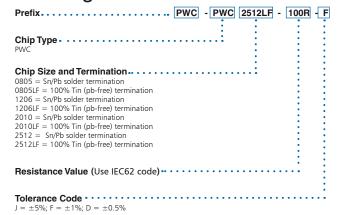
|      | L<br>(mm) | W<br>(mm) | T max<br>(mm) | A<br>(mm) | B min<br>(mm) | C<br>(mm) | Weight<br>(grams) |     |
|------|-----------|-----------|---------------|-----------|---------------|-----------|-------------------|-----|
| 0805 | 2.0±0.3   | 1.25±0.2  | 0.6           | 0.3±0.15  | 0.9           | 0.3±0.1   | 0.009             | , w |
| 1206 | 3.2±0.4   | 1.6±0.2   | 0.7           | 0.4±0.2   | 1.7           | 0.4±0.15  | 0.020             |     |
| 2010 | 5.1±0.3   | 2.5±0.2   | 0.8           | 0.6±0.3   | 3.0           | 0.6±0.25  | 0.036             |     |
| 2512 | 6.5±0.3   | 3.2±0.2   | 0.8           | 0.6±0.3   | 4.4           | 0.6±0.25  | 0.055             | A   |

### Construction:

Thick film resistor material, overglaze and organic protection are screen printed on a 96% alumina substrate. Wrap-around terminations have an electroplated nickel barrier and tin-lead solder or matte-tin finish, ensuring excellent `leach´ resistance properties and solderability.


# Marking:

Components are not marked. Reels are marked with type, value, tolerance, date code and quantity.


## Solvent resistance:

The body protection is resistance to all normal industrial cleaning solvents suitable for printed circuits.

# **Power Derating Data**



# **Ordering Data**



For additional information or to discuss your specific requirements, please contact our Applications Team using the contact details below

