SPICE Device Model SUD45P03-10

P-Channel Enhancement-Mode Transistor

Characteristics

- P-channel Vertical DMOS
- Macro-Model (Subcircuit)
- Level 3 MOS
- Applicable for Both Linear and Switchmode
- Applicable Over a -55 to 125°C Temperature Range
- Models Gate Charge, Transient, and Diode Reverse Recovery Characteristics

Description

The attached SPICE Model describes typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model was extracted and optimized over a 25°C to 125°C temperature range under pulse conditions for 0 to -10 volt gate drives. Saturated output impedance model accuracy has been maximized for gate biases near threshold. A novel gate-to-drain feedback

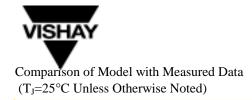
capacitor network is used to model gate charge characteristics while avoiding convergence problems of switched $C_{\rm gd}$ model. Model parameter values are optimized to provide a best fit to measured electrical data and are not intended as an exact physical description of a device.

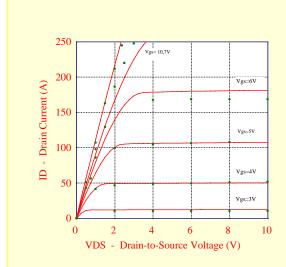
Model Subcircuit

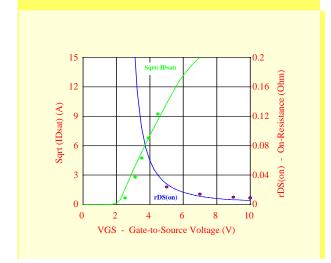
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

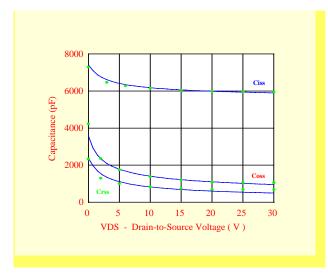
Siliconix 5/224/18/01 Document: 70926

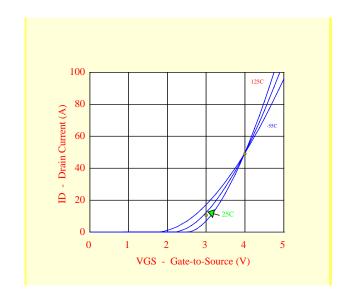
SPICE Device Model SUD45P03-10

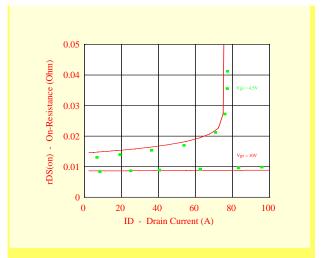

P-Channel Device (T_J=25°C Unless Otherwise Noted)

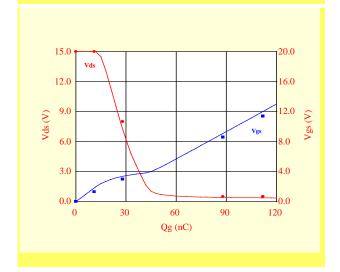

Parameter	Symbol	Test Conditions	Тур	Unit
Static				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	1.62	V
On-State Drain Current ^a	$I_{D(on)}$	$V_{DS} = -5V, V_{GS} = -10V$	474	A
		$V_{DS} = -5V, V_{GS} = -4.5V$	76	
Drain-Source On-State Resistance ^a	$r_{\mathrm{DS(on)}}$	$V_{GS} = -10V, I_D = -15A$	0.009	Ω
		$V_{GS} = -4.5V, I_D = -15A$	0.015	
		$V_{GS} = -10V, I_D = -15A,$	0.013	
		Tj = 125C		
Forward Transconductance ^a	$g_{ m fs}$	$V_{DS} = -15V$, $I_D = -15A$	29	S
Diode Forward Voltage ^a	V_{SD}	$I_F = I_S = -1.6A, V_{GS} = 0V$	0.8	V
Dynamic				
Total Gate Charge ^b	Q_{g}		92	
Gate-Source Charge ^b	Q_{gs}	$V_{DS} = -15V, V_{GS} = -10V,$	22	nC
		$I_D = -45A$		
Gate-Drain Charge ^b	Q_{gd}		18	
Turn-On Delay Time ^{b,c}	$t_{d(on)}$		69	
Rise Time ^{b,c}	$t_{\rm r}$	$V_{\rm DD} = -15 V, R_{\rm L} = 0.33 \Omega$	129	
Turn-Off Delay Time ^{b,c}	$t_{d(off)}$	$I_{\rm D} \cong -45 {\rm A}, V_{\rm GEN} = -10 {\rm V},$	88	ns
		$R_G = 2.4\Omega$		
Fall Time ^{b,c}	$t_{ m f}$	7	46	
Reverse Recovery Time	t _{rr}	$I_{\rm F} = -45 {\rm A},$	54	
		$di/dt = 100A/\mu s$		


Notes


- a) Pulse test: Pulse Width \leq 300 µsec, Duty Cycle \leq 2%.
- b) Independent of operating temperature.
- c) Include only parasitic components presented in the model circuit







Siliconix 5/224/18/01 Document: 70926