INTEGRATED CIRCUITS

DATA SHEET

SAA7705H Car radio Digital Signal Processor (DSP)

Preliminary specification File under Integrated Circuits, IC01 1999 Aug 16

SAA7705H

CONTENT	rs	8.6 8.7	The DSP core External control pins and status register
1	FEATURES	8.8	I ² C-bus interface (pins SCL and SDA)
1.1	Hardware	8.9	I ² S-bus inputs and outputs
1.2	Software	8.10	RDS decoder (pins RDSCLK and RDSDAT)
2	APPLICATIONS	8.10.1	Clock and data recovery
		8.10.2	Timing of clock and data signals
3	GENERAL DESCRIPTION	8.10.3	Buffering of RDS data
4	QUICK REFERENCE DATA	8.10.4	Buffer interface
5	ORDERING INFORMATION	8.11	DSP reset
6	BLOCK DIAGRAM	9	LIMITING VALUES
7	PINNING	10	THERMAL CHARACTERISTICS
8	FUNCTIONAL DESCRIPTION	11	CHARACTERISTICS
8.1	FM and level information processing	12	I ² C-BUS INTERFACE AND PROGRAMMING
8.1.1	Signal path for level information	12.1	I ² C-bus interface
8.1.2	Signal path from FMMPX input to IAC and	12.1.1	Characteristics of the I ² C-bus
	stereo decoder	12.1.2	Bit transfer
8.1.3	Input sensitivity for FM and RDS signals	12.1.3	Start and stop conditions
8.1.4	AD input selection switch	12.1.4	Data transfer
8.1.5	Interference absorption circuit	12.1.5	Acknowledge
8.2	Analog source selection and analog-to-digital	12.2	I ² C-bus protocol
	conversion	12.2.1	Addressing
8.2.1	Input selection switches	12.2.2	Slave address
8.2.2	Signal flow of the AM, analog CD and TAPE	12.2.3	Write cycles
	inputs	12.2.4	Read cycles
8.2.3	The analog CD block	12.3	Memory map specification and register
8.2.4	Pin VREFAD		overview
8.2.5	Pins VDACN1, VDACN2 and VDACP	12.4	Register description
8.2.6	Supply of the analog inputs	12.5	Detailed register description
8.3	Analog outputs	13	APPLICATION INFORMATION
8.3.1	DACs	13.1	Software description
8.3.2	Upsample filter	13.2	Power supply connection and EMC
8.3.3 8.3.4	Volume control Function of pin POM	14	PACKAGE OUTLINE
8.3.5	Power-off plop suppression	15	SOLDERING
8.3.6	The internal pin VREFDA		
8.3.7	Internal DAC current reference	15.1	Introduction to soldering surface mount
8.3.8	Supply of the analog outputs	45.0	packages
8.4	Clock circuit and oscillator	15.2	Reflow soldering
8.4.1	Supply of the crystal oscillator	15.3	Wave soldering
8.4.2	The phase-locked loop circuit to generate the	15.4	Manual soldering
	DSP clock and other derived clocks	15.5	Suitability of surface mount IC packages for wave and reflow soldering methods
8.4.3	The clock block	40	· ·
8.4.4	Synchronization with the core	16	DEFINITIONS
8.5	Equalizer accelerator circuit	17	LIFE SUPPORT APPLICATIONS
8.5.1	Introduction	18	PURCHASE OF PHILIPS I ² C COMPONENTS
8.5.2	EQ circuit overview		
8.5.3	Controller and programming circuit		

SAA7705H

1 FEATURES

1.1 Hardware

- Three 3rd-order Switched Capacitor Analog-to-Digital converters (SCADs)
- Digital-to-Analog Converters (DACs) with four times oversampling and noise shaping
- Digital stereo decoder for the FM multiplex signal
- Improved digital Interference Absorption Circuit (IAC) for FM
- Radio Data System (RDS) processing with an optional 16-bit buffer via a separate channel (two tuners possible)
- Auxiliary high Common-Mode Rejection Ratio (CMRR) analog CD input (CD-walkman, speech, economic CD-changer, etc.)
- I²C-bus controlled
- Four channel 5-band I²C-bus controlled parametric equalizer
- Two separate full I²S-bus and LSB-justified formats high performance input interfaces
- · Audio output short-circuit protected
- Separate AM left and right inputs
- Phase-Locked Loop (PLL) to generate the high frequency DSP clock from a common fundamental oscillator crystal
- · Analog single-ended tape inputs
- I²S-bus subwoofer output (mono or stereo)
- Expandable with additional DSPs for sophisticated features through an I²S-bus gateway
- Operating ambient temperature from –40 to +85 °C.

1.2 Software

- · Improved FM weak signal processing
- Integrated 19 kHz MPX filter and de-emphasis
- Electronic adjustments: FM/AM level, FM channel separation and Dolby level
- Baseband audio processing (treble, bass, balance, fader and volume)
- · Dynamic loudness or bass boost
- Audio level meter
- Tape equalisation (tape analog playback)

- Music Search System (MSS) detection for tape
- · Dolby-B tape noise reduction
- · Adjustable dynamics compressor
- · CD de-emphasis processing
- Improved AM reception
- Soft audio mute
- AM IAC
- · Pause detection for RDS updates
- Signal level, noise and multipath detection for AM/FM signal quality information.

2 APPLICATIONS

· Car radio systems.

3 GENERAL DESCRIPTION

The SAA7705H performs all the signal functions in front of the power amplifiers and behind the AM and FM multiplex demodulation of a car radio or the tape input.

These functions are:

- · Interference absorption
- · Stereo decoding
- RDS decoding
- FM and AM weak signal processing (soft mute, sliding stereo, etc.)
- Dolby-B tape noise reduction
- Audio controls (volume, balance, fader and tone).

Some functions have been implemented in the hardware (stereo decoder, RDS decoding and IAC for FM multiplex) and are not freely programmable. Digital audio signals from external sources with the Philips I²S-bus format or the LSB-justified 16, 18 or 20 bits format are accepted. There are four independent analog output channels. The channels have a hardware implemented 5-band parametric equalizer, controlled via the I²C-bus.

Philips Semiconductors Preliminary specification

Car radio Digital Signal Processor (DSP)

SAA7705H

The DSP contains a basic program that enables a set with:

- AM/FM reception
- Sophisticated FM weak signal functions
- Music Search System (MSS) detection for tape
- Dolby-B tape noise reduction system
- CD play with compressor function
- Separate bass and treble tone control and fader or balance control additional to the equalizers.

4 QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply					•	
V _{DDD3V}	digital supply voltage 3.3 V for DSP core	V _{DDD3Vx} pins with respect to V _{SS}	3	3.3	3.6	V
I _{DDD3V}	supply current of the 3.3 V digital DSP core	high activity of the DSP at 27 MHz DSP frequency	_	80	110	mA
V_{DDD5V}	supply voltage 5 V for periphery	V_{DDDV5x} pins with respect to V_{SS}	4.5	5	5.5	V
I _{DDD5V}	supply current of the 5 V digital periphery		_	3	5	mA
V_{DDA}	analog supply voltage 3.3 V	V_{DDAx} pins with respect to V_{SS}	3	3.3	3.6	V
I _{DDA}	analog supply current	zero input and output signal	_	40	50	mA
Analog level i	nputs (AML and FML); T _{am}	$_{\rm b}$ = 25 °C; $V_{\rm DDA1}$ = 3.3 V; unless	otherwise	specified	d	
S/N _{LAD}	level-ADC signal-to-noise ratio	0 to 29 kHz bandwidth; maximum input level; unweighted	48	54	_	dB
V _{i(LAD)}	input voltage level-ADC for full-scale		0	_	V _{DDA1}	V
Analog inputs	s; T _{amb} = 25 °C; V _{DDA1} = 3.3	V; unless otherwise specified		•	•	•
THD _{FMMPX}	total harmonic distortion	input signal 0.35 V (RMS) at	_	-70	-65	dB
	FMMPX input	1 kHz; bandwidth = 19 kHz; note 1	_	0.03	0.056	%
S/N _{FMMPX(m)}	signal-to-noise ratio FMMPX input mono	input signal at 1 kHz; 0 dB reference = 0.35 V (RMS); bandwidth = 19 kHz; note 1	80	83	_	dB
S/N _{FMMPX(s)}	signal-to-noise ratio FMMPX input stereo	input signal at 1 kHz; 0 dB reference = 0.35 V (RMS); bandwidth = 40 kHz; note 1	74	77	_	dB
THD _{CD}	total harmonic distortion	input signal 0.55 V (RMS) at	_	-83	-78	dB
	CD inputs	1 kHz; input gain = 1; bandwidth = 20 kHz	_	0.007	0.013	%
S/N _{CD}	signal-to-noise ratio CD inputs	input signal at 1 kHz; 0 dB reference = 0.55 V (RMS); bandwidth = 20 kHz	81	84	_	dB
THD _{AM}	total harmonic distortion	input signal 0.55 V (RMS) at	_	-80	-76	dB
	AM inputs	1 kHz; bandwidth = 5 kHz	_	0.01	0.016	%

Philips Semiconductors Preliminary specification

Car radio Digital Signal Processor (DSP)

SAA7705H

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
S/N _{AM}	signal-to-noise ratio AM inputs	input signal at 1 kHz; 0 dB reference = 0.55 V (RMS); bandwidth = 5 kHz	83	88	_	dB
THD _{TAPE}	total harmonic distortion	input signal 0.55 V (RMS) at	_	-80	-76	dB
	TAPE inputs	1 kHz; bandwidth = 20 kHz;	_	0.01	0.016	%
S/N _{TAPE}	signal-to-noise ratio TAPE inputs	input signal at 1 kHz; 0 dB reference = 0.55 V (RMS); bandwidth = 20 kHz	81	83	_	dB
V _{i(con)(max)(rms)}	maximum conversion input level at analog inputs (RMS value)	THD < 1%	0.6	0.66	_	V
Analog output	s; T _{amb} = 25 °C; V _{DDA2} = 3.	3 V; unless otherwise specified				
(THD + N)/S	total harmonic distortion-plus-noise to signal ratio	output signal 0.72 V (RMS) at f = 1 kHz; $R_L > 5 k\Omega$ (AC); A-weighted	_	-75	-65	dBA
DR	dynamic range	output signal –60 dB at 1 kHz; 0 dB reference = 0.77 V (RMS); A-weighted	92	102	_	dBA
DS	digital silence	output signal at 20 Hz to 17 kHz; 0 dB reference = 0.77 V (RMS); A-weighted	_	-108	-102	dBA
Oscillator (fosc	= 11.2896 MHz)					
f _{xtal}	crystal frequency		_	11.2896	_	MHz
f _{clk(DSP)}	clock frequency DSP core		_	27.1656	_	MHz

Note

1. FMRDS and FMMPX input sensitivity setting '000' (see Table 17).

5 ORDERING INFORMATION

TYPE		PACKAGE		
NUMBER	NAME	DESCRIPTION	VERSION	
SAA7705H	QFP80	plastic quad flat package; 80 leads (lead length 1.95 mm); body $14 \times 20 \times 2.8$ mm	SOT318-2	

Philips Semiconductors

6

BLOCK DIAGRAM

DSPOUT2 DSPOUT1 V_{DDD5V2} V_{DDD5V3} V_{DDD5V1} VSSD3V2 VSSD5V1 VSSD5V2 V_{DDD3V1} V_{DDD3V2} Vppp3v3 VDDD3V4 VDACN2 DSPIN2 DSPIN1 V_{DDA1} VSSA1 TP5 74 76 75 22 36 46 49 50 53 54 23 37 48 51 52 55 39 41 \triangle **VDACP** 11 V_{DDA2} VDACN1 SAA7705H **EQUALIZER** VSSA2 AML SIGNAL POM LEVEL-ADC FML LEVEL CDLB 73 16 FLV CDLI 72 CDRB 71 INPUT 15 FLI CDRI STAGE SIGNAL 70 13 FRV QUALITY 77 CDGND DSP CORE QUAD FRI 14 DIGITAL VREFAD 78 TO RLV ANALOG CONVERTER RLI STEREO (QDAC) SCAD1 AMAFL IAC DECODER RRV DIGITAL SOURCE AMAFR 66 RRI SELECTOR TAPEL 69 SCAD2 12 VREFDA ANALOG SOURCE **TAPER** SELECTOR 34 IISOUT1 FMMPX 80 IISOUT2 35 SCAD3 30 IISCLK **FMRDS** 79 33 IISWS 31 IISIN1 **RDS** I²C-BUS INTERFACE OSCILLATOR SELFR 61 DECODER 32 IISIN2 45 | 17 | 18 | 19 | 20 62 29 27 28 25 24 42 43 60 59 65 63 58 56 CD1WS CD2DATA CD2WS Vss(osc) CD1DATA DSPRESET RTCB TSCAN CD1CL CD2CL SHTCB TP1 TP2 TP3 TP4 RDSDAT RDSCLK Vpb(osc) OSCIN OSCOUT SCL SDA MGM119

Fig.1 Block diagram.

SAA7705H

7 PINNING

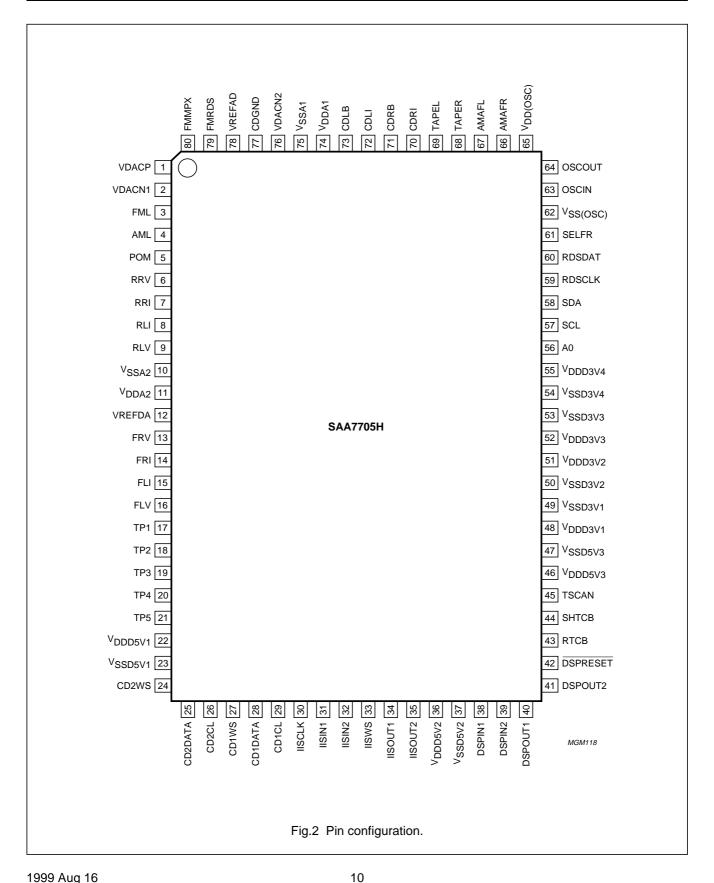
SYMBOL	PIN	PIN TYPE	DESCRIPTION
VDACP	1	AP2D	positive reference voltage for SCAD1, SCAD2, SCAD3 and level-ADC
VDACN1	2	AP2D	ground reference voltage 1 for SCAD1, SCAD2, SCAD3 and level-ADC
FML	3	AP2D	FM level input; via this pin the level of the FM signal is fed to the SAA7705H; the level information is needed for a correct functioning of the weak signal behaviour
AML	4	AP2D	AM level input; via this pin the level of the AM signal is fed to the SAA7705H
POM	5	AP2D	power-on mute of the QDAC; timing is determined by an external capacitor
RRV	6	AP2D	rear right audio voltage output of the QDAC
RRI	7	AP2D	rear right audio current output of the QDAC
RLI	8	AP2D	rear left audio current output of the QDAC
RLV	9	AP2D	rear left audio voltage output of the QDAC
V _{SSA2}	10	APVSS	ground supply for the analog part of the QDAC
V _{DDA2}	11	APVDD	positive supply for the analog part of the QDAC
VREFDA	12	AP2D	decoupling for voltage reference of the analog part of the QDAC
FRV	13	AP2D	front right audio voltage output of the QDAC
FRI	14	AP2D	front right audio current output of the QDAC
FLI	15	AP2D	front left audio current output of the QDAC
FLV	16	AP2D	front left audio voltage output of the QDAC
TP1	17	BT4CR	test pin, used in factory test mode, must not be connected
TP2	18	BT4CR	test pin, used in factory test mode, must not be connected
TP3	19	BT4CR	test pin, used in factory test mode, must not be connected
TP4	20	BT4CR	test pin, used in factory test mode, must not be connected
TP5	21	IBUFD	test pin, used in factory test mode, must be connected to V _{DDD5V}
V _{DDD5V1}	22	VDDE5	positive supply 1 for peripheral cells
V _{SSD5V1}	23	VSSE5	ground supply 1 for peripheral cells
CD2WS	24	IBUFD	word select input 2 from a digital audio source (I ² S-bus or LSB-justified format)
CD2DATA	25	IBUFD	left or right data input 2 from a digital audio source (I ² S-bus or LSB-justified format)
CD2CL	26	IBUFD	clock input 2 from a digital audio source (I ² S-bus or LSB-justified format)
CD1WS	27	IBUFD	word select input 1 from a digital audio source (I ² S-bus or LSB-justified format)
CD1DATA	28	IBUFD	left or right data input 1 from a digital audio source (I ² S-bus or LSB-justified format)
CD1CL	29	IBUFD	clock input 1 from a digital audio source (I ² S-bus or LSB-justified format)
IISCLK	30	BT4CR	clock output to extra DSP chip (I ² S-bus)
IISIN1	31	IBUFD	data input channel 1 (front) from extra DSP chip (I ² S-bus)
IISIN2	32	IBUFD	data input channel 2 (rear) from extra DSP chip (I ² S-bus)
IISWS	33	BD4CR	word select input or output for extra DSP chip (I ² S-bus)
IISOUT1	34	BD4CR	data output to extra DSP chip (I ² S-bus)
IISOUT2	35	BD4CR	subwoofer output (I ² S-bus)
V _{DDD5V2}	36	VDDE5	positive supply 2 for peripheral cells
V _{SSD5V2}	37	VSSE5	ground supply 2 for peripheral cells
DSPIN1	38	IBUFD	digital input 1 of the DSP core (flag F0 of the status register)
DSPIN2	39	IBUFD	digital input 2 of the DSP core (flag F1 of the status register)

SAA7705H

SYMBOL	PIN	PIN TYPE	DESCRIPTION
DSPOUT1	40	B4CR	digital output 1 of the DSP core (flag F2 of the status register)
DSPOUT2	41	B4CR	digital output 2 of the DSP core (flag F3 of the status register)
DSPRESET	42	IBUFU	reset input to the DSP core (active LOW)
RTCB	43	IBUFD	asynchronous reset test control block, connect to ground
SHTCB	44	IBUFD	shift clock test control block, connect to ground
TSCAN	45	IBUFD	scan control (active HIGH), connect to ground
V _{DDD5V3}	46	VDDE5	positive supply 3 for peripheral cells
V _{SSD5V3}	47	VSSE5	ground supply 3 for peripheral cells
V _{DDD3V1}	48	VDDI3	positive supply 1 for DSP core
V _{SSD3V1}	49	VSSI3	ground supply 1 for DSP core
V _{SSD3V2}	50	VSSI3	ground supply 2 for DSP core
V _{DDD3V2}	51	VDDI3	positive supply 2 for DSP core
V _{DDD3V3}	52	VDDI3	positive supply 3 for DSP core
V _{SSD3V3}	53	VSSI3	ground supply 3 for DSP core
V _{SSD3V4}	54	VSSI3	ground supply 4 for DSP core
V _{DDD3V4}	55	VDDI3	positive supply 4 for DSP core
A0	56	IBUFD	I ² C-bus address selection
SCL	57	SCHMITCD	serial clock input (I ² C-bus)
SDA	58	BD4SCI4	serial data input/output (I ² C-bus)
RDSCLK	59	BD4CR	RDS bit clock output or RDS external clock input
RDSDAT	60	BT4CR	RDS data output
SELFR	61	IBUFD	AD input selection switch; to enable high-ohmic FMMPX input at fast tuner search on pin FMRDS; if SELFR is HIGH, the input at pin FMRDS is put through to SCAD1 and FMRDS gets high-ohmic; this pin works together with the AD register bit SELTWOTUN (see Table 9)
V _{SS(OSC)}	62	APVSS	ground supply for crystal oscillator circuit
OSCIN	63	AP2D	crystal oscillator input: crystal oscillator sense for gain control or forced input in slave mode
OSCOUT	64	AP2D	crystal oscillator output: drive output to 11.2896 MHz crystal
V _{DD(OSC)}	65	APVDD	positive supply for crystal oscillator circuit
AMAFR	66	AP2D	AM audio frequency analog input (right channel)
AMAFL	67	AP2D	AM audio frequency analog input (left channel)
TAPER	68	AP2D	tape analog input (right channel)
TAPEL	69	AP2D	tape analog input (left channel)
CDRI	70	AP2D	CD analog input (right channel)
CDRB	71	AP2D	feedback input of the CD analog input (right channel)
CDLI	72	AP2D	CD analog input (left channel)
CDLB	73	AP2D	feedback input of the CD analog input (left channel)
V _{DDA1}	74	APVDD	analog positive supply for SCAD1, SCAD2, SCAD3 and level-ADC
V _{SSA1}	75	APVSS	analog ground supply SCAD1, SCAD2, SCAD3 and level-ADC
VDACN2	76	AP2D	ground reference voltage 2 for SCAD1, SCAD2, SCAD3 and level-ADC

Philips Semiconductors Preliminary specification

Car radio Digital Signal Processor (DSP)


SAA7705H

SYMBOL	PIN	PIN TYPE	DESCRIPTION
CDGND	77	AP2D	positive reference for analog CD block
VREFAD	78	AP2D	common-mode reference voltage SCAD1, SCAD2, SCAD3 and level-ADC
FMRDS	79	AP2D	FM RDS analog input
FMMPX	80	AP2D	FM multiplex analog input

Table 1 Explanation of pin types

PIN TYPE	DESCRIPTION
AP2D	analog input/output
APVDD	analog supply
APVSS	analog ground
VDDE5	5 V peripheral supply
VSSE5	5 V peripheral ground connection, no connection to the substrate
VDDI3	3.3 V supply to digital core and internal I/O pads
VSSI3	3.3 V ground to digital core and internal I/O pads, no connection to the substrate
SCHMITCD	CMOS, Schmitt trigger input with active pull-down
IBUFU	CMOS, active pull-up to all VDDE5 pads
IBUFD	CMOS, active pull-down to all VSSE5 pads
BD4CR	bidirectional CMOS I/O buffer, 4 mA, slew rate control
BT4CR	4 mA CMOS 3-state output buffer, slew rate control
B4CR	4 mA CMOS output buffer, slew rate control
BD4SCI4	CMOS I/O pad with open-drain output

SAA7705H

SAA7705H

8 FUNCTIONAL DESCRIPTION

The SAA7705H consists of a DSP core and periphery. The DSP core is described in Sections 8.6, 8.7 and 8.11. The periphery handles the following tasks:

- FM and level information processing (see Section 8.1)
- Analog source selection and analog-to-digital conversion of the analog audio sources (see Section 8.2)
- Digital-to-analog conversion of the DSP output QDAC (see Section 8.3)
- Clock circuit and oscillator (see Section 8.4)
- Equalizer accelerator circuit (see Section 8.5)
- I²C-bus interface (see Section 8.8 and Chapter 12)
- RDS decoder (see Section 8.10).

8.1 FM and level information processing

8.1.1 SIGNAL PATH FOR LEVEL INFORMATION

For FM weak signal processing and for AM and FM purposes (absolute level and multipath), an FM level and an AM level input is implemented (pins FML and AML). In the case of radio reception clocking of the filters and the level-ADC is based on a 38 kHz sample frequency. The DC input signal is converted by a bitstream first-order Sigma-Delta ADC followed by a decimation filter.

The input signal has to be obtained from the radio part. Two different configurations for AM and FM reception are possible:

- A circuit with two separate level signals: one for FM level and one for AM level
- A combined circuit with AM and FM level information on the FM level input.

The level input is selected with bit LEVAM-FM of the SEL register (see Table 12 and Chapter 12).

8.1.2 SIGNAL PATH FROM FMMPX INPUT TO IAC AND STEREO DECODER

The SAA7705H has four analog audio source channels. One of the analog inputs is the FM multiplex signal. Selection of this signal can be achieved by the SEL register bits AUX-FM and CD-TAPE (see Table 12). The multiplexed FM signal is converted to the digital domain in SCAD1, a bitstream third-order SCAD. The first decimation with a factor of 16 takes place in down sample filter ADF1. This decimation filter can be switched by means of the SEL register bit WIDE-NARROW (see Table 12) in the wide or narrow band position. In case

of FM reception, it must be in the narrow position. The FMMPX path is followed by the sample-and-hold switch of the IAC (see Section 8.1.5) and the 19 kHz pilot signal regeneration circuit. A second decimation filter reduces the output of the IAC to a lower sample rate. One of the two filter outputs contains the multiplexed signal with a frequency range of 0 to 60 kHz.

The outputs of this signal path to the DSP (which are all running on a sample frequency of 38 kHz) are:

- Pilot presence indication: Pilot-I. This one bit signal is LOW for a pilot frequency deviation <4 kHz and HIGH for a pilot frequency deviation >4 kHz and locked on a pilot tone.
- FM reception stereo signal. This is the 18-bit output of the stereo decoder after the matrix decoding in Information System Network (ISN) I²S-bus format. This signal is fed via a multiplexer to a general I²S-bus interface block that communicates with the DSP core.
- A noise level indication. This signal is derived from the first MPX decimation filter via a wide band noise filter.
 Detection is done with an envelope detector. This noise level is filtered in the DSP core and is used to optimize the FM weak signal processing.

8.1.3 INPUT SENSITIVITY FOR FM AND RDS SIGNALS

The FM and RDS input sensitivity is designed for tuner front ends which deliver an output voltage varying from 65 to 225 mV (RMS) at a sweep of 22.5 kHz for a 1 kHz tone. The intermediate standard input sensitivities can be reached in steps of 1.6 dB, to be programmed with the AD register bits VOLFM and VOLRDS (see Tables 9 and 17). The volume control of the FMMPX and the FMRDS input can be controlled separately. VOLFM and VOLRDS = 000 is the most sensitive position, VOLFM and VOLRDS = 111 the least sensitive position. Due to the analog circuit control of the volume gain, the input impedance of pin FMMPX or pin FMRDS changes with the volume setting.

8.1.4 AD INPUT SELECTION SWITCH

Pin SELFR makes it possible to change to another transmitter frequency with the same radio program to assess the quality of that signal. In case of a stronger transmitter signal the decision can be made by the software to switch to the new transmitter. The FMMPX input is normally used to process the FM signal. This FMMPX input is connected via a relative large capacitor to the MPX tuner output. Switching the tuner to another transmitter frequency means another DC voltage level on the MPX output of the tuner and a charging of the

1999 Aug 16

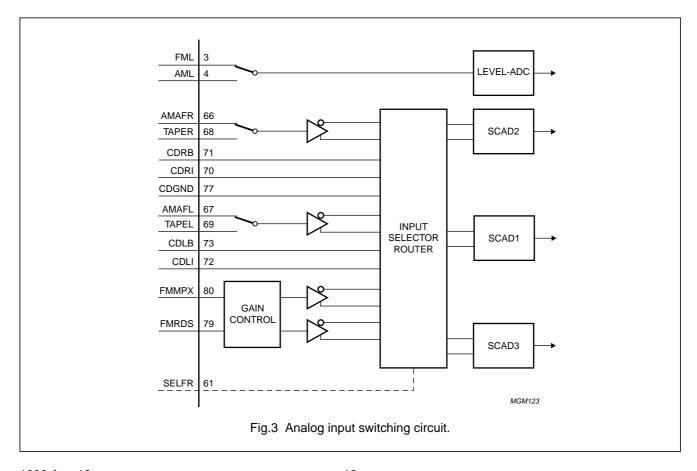
Philips Semiconductors Preliminary specification

Car radio Digital Signal Processor (DSP)

SAA7705H

series capacitor (because the FMMPX input of the SAA7705H is low-ohmic). Pulling SELFR HIGH during such an update, causes the FMMPX input to become high-ohmic, preventing charging of the capacitor. The signal probing of the new transmitter quality is done via the FMRDS input.

8.1.5 INTERFERENCE ABSORPTION CIRCUIT


The Interference Absorption Circuit (IAC) detects and suppresses ignition interference. This hardware IAC is a modified, digitized and extended version of the analog circuit which is in use for many years already.

The IAC consists of an MPX mute function switched by mute pulses from two ignition interference pulse detectors. A third detector inhibits muting.

The three detectors are:

 Interference detector: The input signal of the first detector is the output signal of SCAD1. This interference detector analyses the high frequency contents of the MPX signal. The discrimination between interference pulses and other signals is performed by a special Philips patented fuzzy logic such as algorithm and is based on probability calculations. This detector performs optimally with higher antenna voltages. On detection of ignition interference, this logic will send appropriate pulses to the MPX mute switch.

- Level detector: The input signal of the second detector is the FM level signal (the output of the level-ADC). This detector performs optimally with lower antenna voltages. It is therefore complementary to the first detector. The characteristics of both ignition interference pulse detectors can be adapted to the properties of different FM front ends by means of the coefficients in the IAC register and the level-IAC register (see Section 12.4). Both IAC detectors can be switched on or off independently. Both IAC detectors can mute the MPX signal independently.
- Dynamic detector: The third detector is the dynamic IAC circuit. This detector switches off the IAC completely if the frequency deviation of the FM multiplex signal is too high. The use of narrow band IF filters can result in AM modulation. This AM modulation could be interpreted by the IAC circuitry as interference caused by the car's engine.

SAA7705H

Parameter setting for the IAC detectors is done by means of 5 different coefficients. Upon reset, the nominal setting for a good performing IAC detector is selected.

8.1.5.1 AGC set point (1 bit)

In case the sensitivity and feed-forward factor are out of range in a certain application, the set point of the AGC can be shifted. The set point controls the sensitivity of the other IAC control parameters. See bit 11 of the IAC register (Table 11).

8.1.5.2 Threshold sensitivity offset (3 bits)

With this parameter the threshold sensitivity of the comparator in the interfering pulse detectors can be set. It also influences the amount of unwanted triggering. Settings are according to Table 25.

8.1.5.3 Deviation feed-forward factor (3 bits)

This parameter determines the reduction of the sensitivity of the detector by the absolute value of the MPX signal. This mechanism prevents the detector from unwanted triggering at noise with modulation peaks. In Table 24 the possible values are given.

8.1.5.4 Suppression stretch time (3 bits)

This parameter sets the duration of the pulse suppression after the detector has stopped sending a trigger pulse. It can be switched off by setting the value '000'. The duration can be selected in steps of one period of the 304 kHz (3.3 μ s) sample frequency. In Table 23 the possible values are given.

8.1.5.5 MPX delay (2 bits)

With this parameter the delay time between 2 and 5 samples of the 304 kHz sample frequency can be selected. The needed value depends on the used front end of the car radio. Settings are according to Table 22.

8.1.5.6 Level-IAC threshold (4 bits)

With this parameter the sensitivity of the comparator in the ignition interference pulse detector can be set. It also influences the amount of unwanted triggering. The possible values are given in Table 21. The prefix value '0000' switches off the level-IAC function.

8.1.5.7 Level-IAC feed-forward setting (2 bits)

This parameter allows for adjusting delay differences in the signal paths from the FM antenna to the MPX mute, namely, via the FM level-ADC and level-IAC detection and via the FM demodulator and MPX conversion and filtering. These differences depend on the front end used in the car radio. With a simultaneous appearance of a peak disturbance at the FM level input and the MPX ADC input of the IC, a zero delay setting takes care for the level-IAC mute pulse to coincide with the passage of the disturbance in the MPX mute circuit. The setting for the level-IAC feed-forward allows to advance the mute pulse by 1 sample period or to delay it by 1 or 2 sample periods of the 304 kHz clock, with respect to the default value. The appropriate register bits for each setting are given in Table 20.

8.1.5.8 Level-IAC suppression stretch time (2 bits)

This parameter sets the time that the mute pulse is stretched when the FM level input has stopped exceeding the threshold. The duration can be selected in steps of one period of the 304 kHz (3.3 μ s) sample frequency. In Table 19 the possible values are given.

8.1.5.9 Dynamic IAC threshold levels

If enabled by bit 15 of the LEVELIAC register, this block will disable temporarily all IAC actions if the MPX mono signal exceeds a threshold deviation (threshold 1) for a given time with a given excess amount (threshold 2). This MPX mono signal is separated from the MPX signal with a low-pass filter with the –3 dB corner point at 15 kHz. The possible values of this threshold are given in Table 18.

8.1.5.10 IAC testing mode

The internal IAC trigger signal is visible on pin DSPOUT2 if bit IACTRIGGER of the IAC register is set. In this mode the effect of the parameter settings on the IAC performance can be verified.

8.2 Analog source selection and analog-to-digital conversion

8.2.1 INPUT SELECTION SWITCHES

In Fig.3 the block diagram of the input is shown. The input selection is controlled by bits in the input selector control register and the input selection pin SELFR.

The relationship between these bits and the switches is indicated in Table 26.

8.2.2 SIGNAL FLOW OF THE AM, ANALOG CD AND TAPE INPUTS

The signal of the two single-ended stereo AM inputs can be selected by the correct values of the SEL register bits according to Table 26.

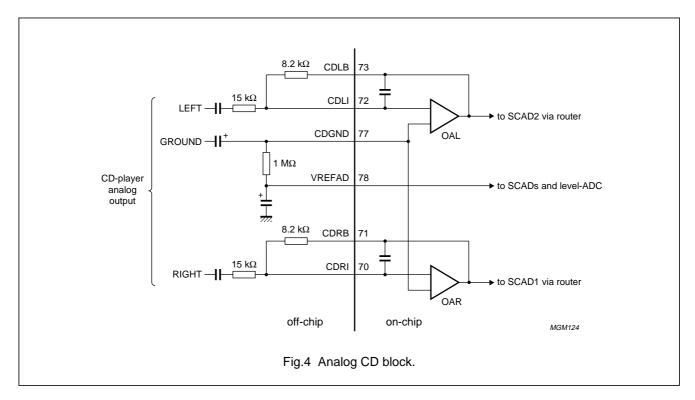
SAA7705H

The AM and the TAPE inputs are buffered with an operational amplifier to ensure a high-impedance input which enables the use of an external resistor divider for signal reduction. For correct biasing of the first operational amplifier a resistor must be connected between the input and pin VREFAD, which acts as a virtual ground (see Fig.21). The analog input switching circuit is shown in Fig.3. The input for an analog CD player is explained in more detail in Section 8.2.3.

8.2.3 THE ANALOG CD BLOCK

Special precautions are taken to realize a high Common-Mode Rejection Ratio (CMRR) in case of the use of a CD player output processed via analog inputs. The block diagram is shown in Fig.4. The operational amplifiers OAR and OAL are used as buffers. The gain of these operational amplifiers can be adjusted via the external resistors and is in this case 0.54 by using a 8.2 k Ω and a 15 k Ω resistor.

The reference inputs of these operational amplifiers are connected to a separate pin CDGND. This pin is on one side AC connected to the ground shielding of the cable coming from the CD player and via a resistor >1 $M\Omega$ to pin VREFAD. In this configuration the common-mode signal propagates all the way to the SCAD block inputs of SCAD1 and SCAD2. The SCADs themselves have a good rejection ratio for in-phase common-mode signals.


Which part of the common-mode signal is processed as the real input signal depends on the ratio of the CDGND resistor and the series resistor in the cable and the difference in input offset of the operational amplifiers. The induced signals on the CDLI and CDRI lines are of the same amplitude and therefore rejected as common-mode signals in the SCADs.

8.2.4 PIN VREFAD

The middle reference voltage of the SCAD1, SCAD2, SCAD3 and level-ADC can be filtered via this pin. This voltage is used as half the supply reference of the SCAD1, SCAD2, SCAD3 and as the positive reference for the level-ADC and buffers. External capacitors (connected to $V_{\rm SSA1}$) prevent crosstalk between the SCADs and buffers and improve the power supply rejection ratio of all blocks. This pin must also be used as a reference for the inputs AMAFL, AMAFR, TAPEL, TAPER and CDGND.

8.2.5 PINS VDACN1, VDACN2 AND VDACP

These pins are used as ground and positive supply reference for the SCAD1, SCAD2, SCAD3 and the level-ADC. For optimal performance, pins VDACN1 and VDACN2 must be directly connected to the V_{SSA1} and pin VDACP to the filtered V_{DDA1} .

SAA7705H

8.2.6 SUPPLY OF THE ANALOG INPUTS

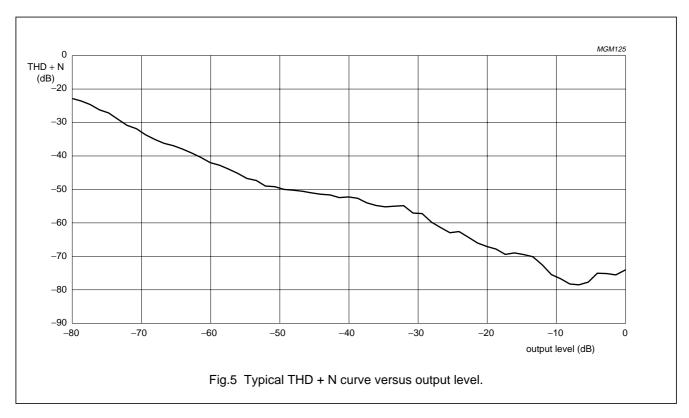
The analog input circuit has separate power supply connections to allow maximum filtering of the analog supply voltages: V_{SSA1} for the analog ground and V_{DDA1} for the analog supply.

8.3 Analog outputs

8.3.1 DACs

Each of the four low noise high dynamic range DACs consists of a 15-bit signed magnitude DAC with current output, followed by a buffer operational amplifier. For each of the four audio output channels a separate convertor is used. Each converter output is connected to the inverting input of one of the four internal CMOS operational amplifiers. The non-inverting input of this operational amplifier is connected to the internal reference voltage. Together with an internal resistor the conversion of current-to-voltage of the audio output is achieved.

8.3.2 Upsample filter


To reduce spectral components above the audio band, a fixed 4 times oversampling and interpolating 18-bit digital IIR filter is used. It is realized as a bit serial design and consists of two consecutive filters. The data path in these filters is 22 bits to prevent overflow and to maintain a

signal-to-noise ratio larger then 105 dB. The word clock for the upsample filter (4 \times f_{s}) is derived from the audio source timing. If the internal audio source is selected, the sample frequency can be either 44.1 or 38 kHz. In case of external digital sources (CD1 and CD2), a sample frequency from 32 to 48 kHz is possible.

8.3.3 VOLUME CONTROL

The total volume control has a dynamic range of more than 100 dB (0 dB being maximal input on the I²S-bus input). With the signed magnitude noise shaped 15-bit DAC and the internal 18-bit registers (these registers provide the digital data communication between the DSP and the QDAC) of the DSP core a useful digital volume control range of 100 dB is possible by calculating the corresponding coefficients.

The step size is freely programmable and an additional analog volume control is not needed in this design. The SNR of the audio output at full-scale is determined by the total 15 bits of the converter. The noise at low outputs is fully determined by the noise performance of the DAC. Since it is a signed magnitude type, the noise at digital silence is also low. The disadvantage is that the total THD is higher than conventional DACs. The typical THD-plus-noise versus output level is shown in Fig.5.

SAA7705H

8.3.4 FUNCTION OF PIN POM

With pin POM it is possible to switch-off the reference current of the DAC. The capacitor on pin POM (see Fig.21) determines the time after which this current has a soft switch-on. At power-on, the current audio signal outputs are always muted. The external capacitor is loaded in two stages via two different current sources. The loading starts at a current level that is 9 times lower than the load current after the voltage on pin POM has risen above 1 V. This results in an almost dB-linear behaviour. However, the DAC has an asymmetrical supply and the DC output voltage will be half the supply voltage under functional conditions. During start-up the output voltage is not defined as long as the supply voltage is below the threshold voltages of the transistors. A small jump in DC is possible at start up. In this DC jump audio components can be present.

8.3.5 POWER-OFF PLOP SUPPRESSION

To avoid plops in a power amplifier, the supply voltage (3.3 V) for the analog part of the DAC can be supplied from the 5 V supply via a transistor. A capacitor is connected to V_{DDA2} to maintain power to the analog part if the 5 V supply is switched off fast. In this case the output voltage will decrease gradually allowing the power amplifier some extra time to switch-off without audible plops.

8.3.6 THE INTERNAL PIN VREFDA

Using two internal resistors, half of the supply voltage V_{DDA2} is obtained and coupled to an internal buffer. This reference voltage is used as a DC voltage for the output operational amplifiers and as a reference for the DAC. In order to obtain the lowest noise and to have the best ripple rejection, a capacitor has to be connected between this pin and ground.

8.3.7 INTERNAL DAC CURRENT REFERENCE

As a reference for the internal DAC current and also for the DAC current source output, a current is drawn from pin VREFDA to $V_{\rm SSA2}$ (ground) via an internal resistor. The value of this resistor determines also the DAC current (absolute value). Consequently, the absolute value of the current varies from device to device due to the spread of the reference resistor value. This, however, has no influence on the absolute output voltages because these voltages are derived from a conversion of the DAC current to the actual output voltage via internal resistors.

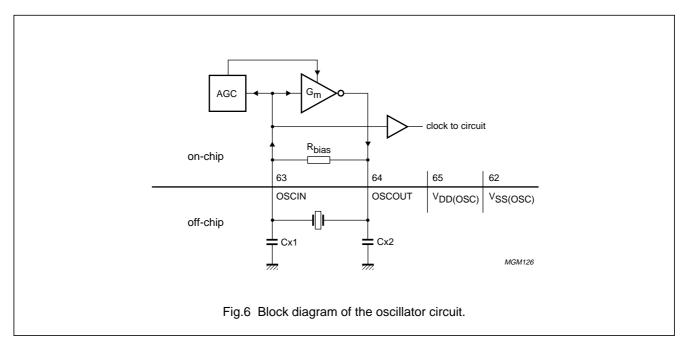
8.3.8 SUPPLY OF THE ANALOG OUTPUTS

All the analog circuitry of the DACs and the operational amplifiers are powered by 2 pins: V_{DDA2} and V_{SSA2} . V_{DDA2} must have sufficient decoupling to prevent high THD and to ensure a good Power Supply Rejection Ratio (PSRR). The digital part of the DAC is fully supplied from the DSP core supply.

8.4 Clock circuit and oscillator

The device has an on-chip oscillator. The block diagram of this Pierce oscillator is shown in Fig.6. The active element needed to compensate for the loss resistance of the crystal is the block G_m . This block is placed between the external pins OSCIN and OSCOUT. The gain of the oscillator is internally controlled by the AGC block. A sine wave with a peak-to-peak voltage close to the oscillator power supply voltage is generated. The AGC block prevents clipping of the sine wave and therefore the generation of harmonics as much as possible. At the same time the voltage of the sine wave is as high as possible which reduces the jitter going from the sine wave to the clock signal.

8.4.1 SUPPLY OF THE CRYSTAL OSCILLATOR


The supply of the oscillator is separated from the other supplies. This minimizes the feedback from the ground bounce of the chip to the oscillator circuit. Pin $V_{SS(OSC)}$ is used as ground and pin $V_{DD(OSC)}$ as positive supply.

8.4.2 THE PHASE-LOCKED LOOP CIRCUIT TO GENERATE THE DSP CLOCK AND OTHER DERIVED CLOCKS

A PLL circuit is used to generate the DSP clock and other derived clocks.

The minimum equalizer clock frequency is $480f_s$. If f_s equals 44.1 kHz, this results in a minimum oscillator frequency of 21.1687 MHz. Crystals for the crystal oscillator in the range of twice the required DSP clock frequency (approximately 40 MHz) are always third-overtone crystals and must be manufactured on customer demand. This makes these crystals expensive. The PLL enables the use of a commonly available crystal operating in fundamental mode. For this circuit a 11.2896 MHz (256 \times 44.1 kHz) crystal is chosen. This type of crystal is widely used.

SAA7705H

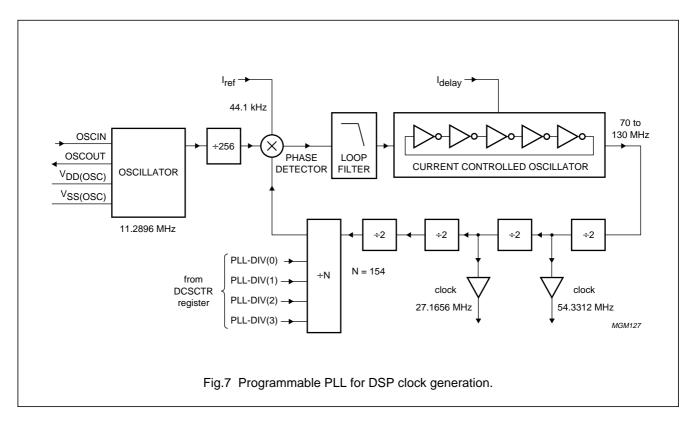
Although multiples of the crystal frequency of 11.2896 MHz fall within the FM reception band, this will not disturb the reception. The relatively low frequency crystal is driven in a controlled way and the resonating crystal produces harmonics of a very low amplitude in the FM reception band.

The block diagram of the programmable PLL is shown in Fig.7. The oscillator is used in a fundamental mode. The 11.2896 MHz oscillator frequency is divided by 256 and the resulting signal is fed to the phase detector as a reference signal. The base for the clock signal is a current controlled oscillator (free running frequency 70 to 130 MHz).

After having been divided by 4, the required clock frequency for the DSP core is available. To close the loop this signal is further divided by 4 and by the PLL clock division factor N. N can be programmed with the DCSCTR register bits PLL-DIV (see Tables 7 and 15) in the range from 93 to 181. This provides some flexibility in the choice of the crystal frequency.

With the recommended crystal, N = 154 and the DSP clock frequency (f_{DSP}) equals 27.1656 MHz. N = 154 is the default position at start-up. By setting the AD register bit DSPTURBO (see Tables 9 and 15), the PLL output frequency, and consequently f_{DSP} , can be doubled. This feature is not used in the proposed application.

The clock frequency of the PLL oscillator divided by two (2f_{DSP}) is also used as the clock for the DCS block.


8.4.3 THE CLOCK BLOCK

For the digital stereo decoder a clock signal is needed which is the 512-multiple of the pilot tone frequency of the FM multiplex signal. This is done by the Digitally Controlled Sampling (DCS) block, which generates this $512 \times 19 \text{ kHz} = 9.728 \text{ MHz}$ clock, the DCS clock, by locking to the pilot frequency. This block is also able to generate other frequencies. It is controlled by the DCSCTR and DCSDIV registers (see Tables 7 and 8). Default settings of the DCS and the PLL guarantee correct functioning of the DCS block.

8.4.4 SYNCHRONIZATION WITH THE CORE

In case of I²S-bus input the system can run on audio sample frequencies of $f_s = 32$ kHz, 38 kHz, 44.1 kHz or 48 kHz. After processing of an input sample, the Input flag (I-flag) of the status register (see Section 8.7) of the DSP core is set to logic 1 during 4 clock cycles on the falling edge of the internal or external I²S-bus WS pulses. This flag can be tested with a conditional branch instruction in the DSP. This synchronisation starts in parallel with the input signal due to the short period that the I-flag is set. It is obvious that the higher f_s the lower the number of cycles available in the DSP program.

SAA7705H

8.5 Equalizer accelerator circuit

8.5.1 Introduction

The Equalizer accelerator (EQ) circuit is an equalizer circuit used as a hardware accelerator to the DSP core. Its inputs and outputs are stored in registers of the DSP core (these registers provide the digital data communication between the equalizer and the DSP core). The flag that starts the DSP program, refreshes the EQ input and output registers and starts the EQ controller.

The EQ circuit contains one second-order filter data path that is twenty-fold multiplexed. With this circuit, a two-channel equalizer of 10 second-order sections per channel or a four-channel equalizer of 5 second-order sections per channel can be realized.

The centre frequency, gain and Q-factor of all 20 second-order sections can be set independently from each other. Every section is followed by a variable attenuation of 0 or 6 dB. Per section, 4 bytes are needed to store the settings. During an audio sample period, all settings are read as 16-bit words in 80 read accesses to the coefficient memory.

8.5.2 EQ CIRCUIT OVERVIEW

This EQ circuit contains the following parts:

- A second-order filter data path, with programmable coefficients and with 40 state registers, supporting storage of the two filter states for 20 multiplexed filters; this part is clocked by a gated clock
- Signal routing around this filter data path, consisting of:
 - buses and selectors to configure the 20 filter sections for two or four channels:
 - input and output registers, with proper interfacing with the DSP core and with conversions between parallel and serial formats.
- A coefficient memory, to be loaded via the I²C-bus interface
- A controller, started by the write pulse for input and output registers, that controls the signal routing, controls the clock for the filter data path, addresses the coefficient memory and controls its programming.

Philips Semiconductors Preliminary specification

Car radio Digital Signal Processor (DSP)

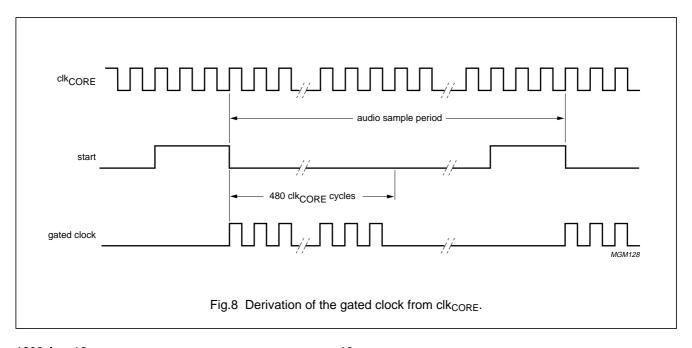
SAA7705H

Table 2 Equalizer port list

NAME	DESCRIPTION
Data to/from D	SP core
IN FL	Front Left input bus, 18 bits
IN FR	Front Right input bus, 18 bits
IN RL	Rear Left input bus, 18 bits
IN RR	Rear Right input bus, 18 bits
OUT FL	Front Left output bus, 18 bits
OUT FR	Front Right output bus, 18 bits
OUT RL	Rear Left output bus, 18 bits
OUT RR	Rear Right output bus, 18 bits
From EQ regis	ter
TWO-FOUR	two or four channel configuration switch, I ² C-bus controlled; see Table 9
Control from D	OSP
clk _{CORE}	DSP core clock, at least 480f _s
start	new sample start pulse, input and output registers written
data-valid	new coefficient word available
acknowledge	new coefficient word loaded in coefficient memory
new-address	address for new coefficient word, 6 bits, range is from 0 to 39
new-coefword	new coefficient word, 16 bits

In Table 2 the port pinning is depicted. This equalizer accelerator circuit (EQ) can make a two-channel equalizer of 10 second-order sections per channel or a four-channel equalizer of 5 second-order sections per channel depending on the value of AD register bit TWO-FOUR (see Table 9). It takes an input sample set of 2 (stereo) samples or 4 (stereo front and rear) samples via 4 input registers. It delivers an output sample set of 2 or 4 samples via 4 output registers. All input and output registers are 18 bits wide.

A pulse of three clock cycles long of the signal start based on the word select of the used signal path refreshes the EQ input and output registers and starts up the EQ controller.


This sequence is shown in Fig.8.

8.5.3 CONTROLLER AND PROGRAMMING CIRCUIT

A controller is used to generate the bit control and word control signals for the filter section data path, the addresses for the coefficient memory and the control signals for the input and output selections and conversions. Depending on the AD register bit TWO-FOUR (see Table 9), control signals for a two- or four-channel equalizer are generated.

The 40 coefficient words should be addressed via 40 registers (addresses 0F80H to 0FA7H).

The new coefficient word rate must be slower than $0.5f_s$, e.g. 22 kHz. The equalizer is programmed by dedicated software.

SAA7705H

8.6 The DSP core

This IC comprises a DSP core (the actual programmable embedded calculating machine) that is adapted to the required calculation power needed and as such is optimized on area.

This DSP core is also known under the name EPICS6, of which EPICS is the generic name of this type of DSP and 6 is the version number. This DSP is mainly a calculator designed for real time processing (at $f_s = 38$ or 44.1 kHz) of the digitized audio data stream. A DSP is especially suited to calculate the sum of products of the data words representing the audio data. See Chapter 13 for document references on EPICS6.

8.7 External control pins and status register

The DSP core contains a 9-bit status register. These 9 flags contain information which is used by the conditional branch logic of the DSP core. For external use, the flags F0, F1, F2 and F3 are available. Pins DSPIN1 and DSPIN2 control the status of the flags F0 and F1. The two status flags F3 and F4 are controlled by the DSP core and can be read via the pins DSPOUT1 and DSPOUT2. The function of each pin depends on the DSP program. Another important flag is the I-flag. This flag is an input flag and is set the moment new I²S-bus data or another type of digital audio data is available to the DSP core.

8.8 I²C-bus interface (pins SCL and SDA)

The I²C-bus format is described in "The I²C-bus and how to use it", order no. 9398 393 40011.

For the external control of the SAA7705H a fast I²C-bus is implemented. This is a 400 kHz bus which is downward compatible with the standard 100 kHz bus.

There are three different types of control instructions:

 Instructions to control the DSP program, programming the coefficient RAM and reading the values of parameters (level, multipath etc.)

- Instructions to control the equalizer and to program the equalizer coefficient RAM to be able to change the centre frequency, gain and Q-factor of the equalizer sections
- Instructions controlling the I²S-bus data flow, such as source selection, IAC control and clock speed.

The detailed description of the I²C-bus and the description of the different bits in the memory map is given in Chapter 12.

8.9 I²S-bus inputs and outputs

For communication with external digital sources, the I²S-bus digital interface bus is used. It is a serial 3-line bus, having one line for data, one line for clock and one line for the word select. For external digital sources the SAA7705H acts as a slave, so the external source is master and supplies the clock.

The I²S-bus input is capable of handling Philips I²S-bus and LSB-justified formats of 16, 18 and 20-bit word sizes. The selection of the digital audio format is described in Tables 13 and 28. See Fig.9 for the general waveform formats of the four possible formats.

The number of bit clock (BCK) pulses may vary in the application. When the applied word length is shorter than 18 bits (internal resolution), the LSBs will get internally a random value. When the applied word length exceeds 18 bits, the LSBs are skipped.

The input circuitry is limited in handling the number of BCK pulses per WS period. The maximum allowed number of bit clocks per WS channel (half of the symmetrical WS period) is 128.

The DSP program is synchronized with the external source via the word select signal. On every negative edge of the IISWS the I-flag of the status register is set.

7

Philips Semiconductors

Car radio Digital Signal Processor (DSP)

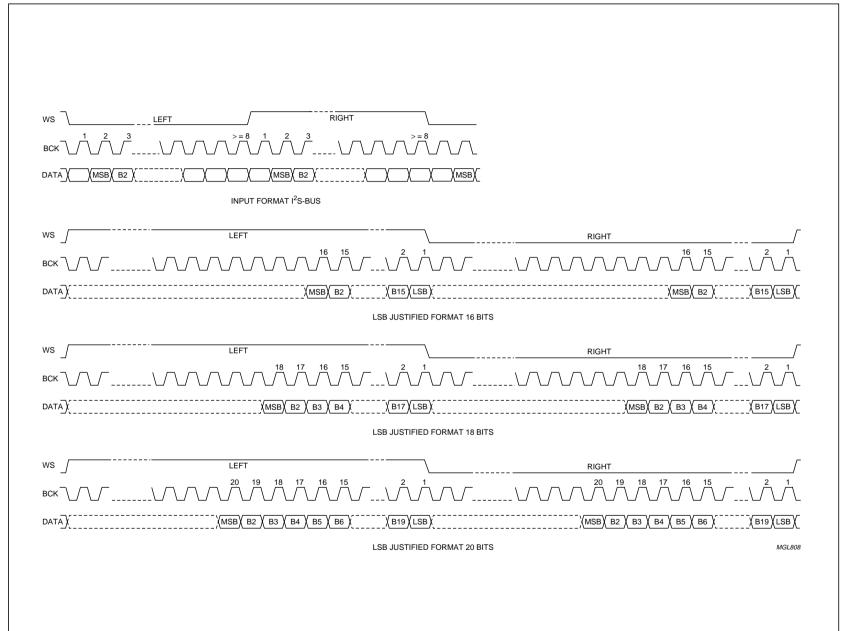


Fig.9 Available serial digital audio data in/output formats.

Philips Semiconductors Preliminary specification

Car radio Digital Signal Processor (DSP)

SAA7705H

8.10 RDS decoder (pins RDSCLK and RDSDAT)

The RDS decoder recovers the additional inaudible RDS information which is transmitted by FM radio broadcasting. The (buffered) data is provided as output for further processing by a suitable decoder. The operational functions of the decoder are in accordance with the "European Broadcasting Union (EBU) specification EN 50067".

The RDS decoder has three different functions:

- · Clock and data recovery from the FM multiplex signal
- · Buffering of 16 bits, if selected
- Interfacing with the microcontroller.

8.10.1 CLOCK AND DATA RECOVERY

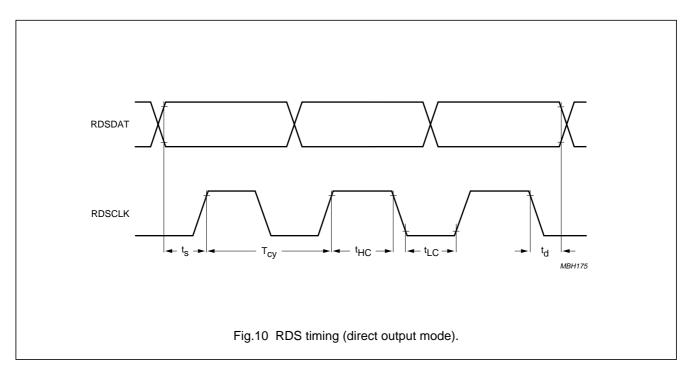
The RDS chain has a separate input. This enables RDS updates during tape play and also the use of a second receiver for monitoring the RDS information of signals from another transmitter (double tuner concept). It can as such be done without interruption of the audio program. The MPX signal from the main tuner of the car radio can be connected to this RDS input via the built-in source selector. The input selection is controlled by bit RDS-CLKIN of the RDSCTR register (see Table 14).

The RDS chain contains a third-order Sigma-Delta ADC, followed by two decimation filters. The first filter passes the multiplex band including the signals around 57 kHz and reduces the Sigma-Delta noise.

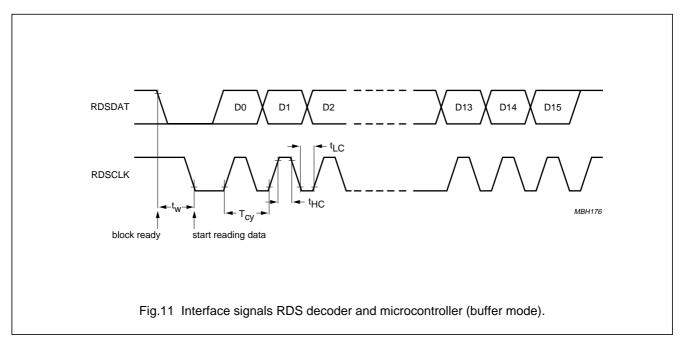
The second filter reduces the RDS bandwidth around 57 kHz.

The quadrature mixer converts the RDS band to the frequency spectrum around 0 Hz and contains the appropriate Q/I signal filters. The final decoder with CORDIC recovers the clock and data signals. These signals are output on pins RDSCLK and RDSDAT.

8.10.2 TIMING OF CLOCK AND DATA SIGNALS


The timing of the clock and data output is derived from the incoming data signal. Under stable conditions the data will remain valid for 400 μs after the clock transition.

The timing of the data change is 100 μ s before a positive clock change. This timing is suited for positive as well as negative triggered interrupts on a microcontroller. The RDS timing is shown in Fig.10.


During poor reception it is possible that faults in phase occur, then the duty cycle of the clock and data signals will vary from minimum 0.5 times to a maximum of 1.5 times the standard clock periods. Normally, faults in phase do not occur on a cyclic basis.

8.10.3 BUFFERING OF RDS DATA

The repetition of the RDS data is around the 1187 Hz. This results in an interrupt on the microcontroller for every 842 μ s. In a second mode, the RDS interface has a double 16-bit buffer.

SAA7705H

8.10.4 BUFFER INTERFACE

The RDS interface buffers 16 data bits. Every time 16 bits are received, the data line is pulled LOW and the buffer is overwritten. The microcontroller has to monitor the data line in at most every 13.5 ms. This mode is selected by setting the RDS-CLKIN bit of the RDSCTR register (see Table 14) to logic 1. In Fig.11 the interface signals from the RDS decoder and the microcontroller in buffer mode are shown. When the buffer is filled with 16 bits the data line is pulled LOW. The data line will remain LOW until reading of the buffer is started by pulling the clock line LOW. The first bit is clocked out. After 16 clock pulses the reading of the buffer is ready and the data line is set HIGH until the buffer is filled again. The microcontroller stops communication by pulling the line HIGH. The data is written out just after the clock HIGH-to-LOW transition. The data is valid when the clock is HIGH.

When a new 16 bits buffer is filled before the other buffer is read, that buffer will be overwritten and the old data is lost.

8.11 DSP reset

Pin $\overline{\text{DSPRESET}}$ is active LOW and has an internal pull-up resistor. Between this pin and pin V_{SSD3V} a capacitor should be connected to allow a proper switch-on of the supply voltage. The capacitor value is such that the chip is in reset state as long as the power supply is not stabilized.

A more or less fixed relationship between the $\overline{\text{DSPRESET}}$ and the POM time constant is required. The voltage on the pin POM determines the current flowing in the DACs. When pin POM is at 0 V the DAC currents and output voltages are zero; at V_{DDA2} voltage the DAC currents are at their nominal (maximum) value. Some time before the QDAC outputs get to their nominal output voltages, the DSP must be in working mode to reset the output register. Therefore the DSP time constant must be less than the POM time constant. For recommended capacitors, see Figs 21 and 22.

The reset has the following functions:

- The bits of the IAC control register are set to logic 0
- The bits of the SEL register are set to their nominal values
- · The DSP status registers are reset
- The program counter is set to address 0000H
- The two output flags in the status register are reset to logic 0 (pins DSPOUT1 and DSPOUT2 are LOW).

When the level on pin DSPRESET is HIGH, the DSP program starts to run.

Philips Semiconductors Preliminary specification

Car radio Digital Signal Processor (DSP)

SAA7705H

9 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DDD3V}	supply voltage		-0.5	+5	V
V _{DDD5V}	supply voltage	only valid for the voltages in connection with the 5 V I/Os	-0.5	+6.5	V
ΔV_{DDD3Vx}	voltage difference between any two V _{DDD3Vx} pins		_	550	mV
ΔV_{DDD5Vx}	voltage difference between any two V _{DDD5Vx} pins		_	550	mV
I _{IK}	DC input clamping diode current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{DD} + 0.5 \text{ V}$	_	±10	mA
I _{OK}	DC output clamping diode current	output type 4 mA (BD4CR, BT4CR and B4CR); $V_O < -0.5 \text{ V}$ or $V_O > V_{DD} + 0.5 \text{ V}$	_	±20	mA
I _{O(sink/source)}	DC output sink or source current	output type 4 mA (BD4CR, BT4CR and B4CR); -0.5 < V _O < V _{DD} + 0.5 V	_	±20	mA
I _{DD}	DC supply current per pin		_	±750	mA
I _{SS}	DC ground supply current per pin		_	±750	mA
T _{amb}	ambient temperature		-40	+85	°C
T _{stg}	storage temperature		-65	+150	°C
V _{ESD}	ESD voltage				
	human body model	100 pF; 1500 Ω	3000	_	V
	machine model	100 pF; 2.5 μH; 0 Ω	300	_	V
I _{lu(prot)}	latch-up protection current	CIC specification/test method	100	_	mA
P/out	power dissipation per output		_	100	mW
P _{tot}	total power dissipation			1600	mW

10 THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	VALUE	UNIT
R _{th(i-a)}	thermal resistance from junction to ambient	mounted on printed-circuit board	45	K/W

SAA7705H

11 CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies; T _{ar}	_{nb} = -40 to +85 °C; V _{DDD5}	_V = 4.5 to 5.5 V; V _{DDD3V} = 3	to 3.6 V	!	•	•
V _{DDD3V}	digital supply voltage 3.3 V for DSP core	V _{DDD3Vx} pins with respect to V _{SS}	3	3.3	3.6	V
V_{DDA}	analog supply voltage 3.3 V	V _{DDAx} pins with respect to V _{SS}	3	3.3	3.6	V
V_{DDA1}	supply voltage analog part ADC		3	3.3	3.6	V
V_{DDD5V}	supply voltage 5 V for periphery	V _{DDD5Vx} pins with respect to V _{SS}	4.5	5	5.5	V
I _{DDD3V}	supply current of the 3.3 V digital DSP core	high activity of the DSP at 27 MHz DSP frequency	_	80	110	mA
I _{DDD5V}	supply current of the 5 V digital periphery		-	3	5	mA
I _{DDA1}	supply current of the ADCs	zero input and output signal	-	35	43	mA
I _{DDA2}	supply current of the DACs		_	4	5	mA
I _{DD(OSC)}	supply current crystal	at start-up	_	7	15	mA
	oscillator	at oscillation	_	0.6	2	mA
P _{tot}	total power dissipation	high activity of the DSP at 27 MHz DSP frequency	_	0.352	0.535	W
Digital I/O; Ta	$_{\rm amb}$ = -40 to +85 °C; $V_{\rm DDD}$	_{05V} = 4.5 to 5.5 V; V _{DDD3V} = 3	3 to 3.6 V			
V _{IH}	HIGH-level input voltage all digital inputs and I/Os; pin types: IBUFD, IBUFU, BD4CR, SCHMITCD		0.7V _{DDD5V}	_	-	V
V _{IL}	LOW-level input voltage all digital inputs and I/Os; pin types: IBUFD, IBUFU, BD4CR, SCHMITCD		-	_	0.3V _{DDD5V}	V
V _{hys}	hysteresis voltage; pin type: SCHMITCD		1	1.3	_	V
V _{OH}	HIGH-level output voltage digital outputs; pin types: B4CR, BD4CR	$I_O = -4 \text{ mA}$	V _{DDD5V} - 0.4	_	-	V
V _{OL}	LOW-level output voltage digital outputs; pin types: B4CR, BD4CR	$V_{DDD5V} = 4.5 \text{ V}; I_O = 4 \text{ mA}$	_	_	0.4	V

SAA7705H

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{OL(SDA)}	LOW-level output voltage I ² C-bus data output (SDA); pin type: BD8SCI4	I _O = 8 mA	_	-	0.4	V
I _{LO}	output leakage current 3-state outputs; pin types: BD4CR, BD8SCI4	$V_O = 0 \text{ V or } V_{DD5V}$	_	_	±5	μΑ
$R_{pu(VDDD)(int)}$	internal pull-up resistor to V _{DDD5V} ; pin type: IBUFU		23	50	80	kΩ
$R_{\text{pd(VSSD)(int)}}$	internal pull-down resistor to V _{SSD5V} ; pin type: IBUFD		23	50	80	kΩ
t _{i(r)}	input rise time	ut rise time $V_{DDD5V} = 5.5 \text{ V}$		6	200	ns
t _{i(f)}	input fall time	V _{DDD5V} = 5.5 V	_	6	200	ns
t _{o(r)(min)}	minimum output rise time	$V_{DDD5V} = 5.5 \text{ V};$ $V_{DDD3V} = 3.6 \text{ V};$ $T_j = -40 \text{ °C}$				
	digital outputs except I ² C-bus data output; pin types: B(D)(T)4CR	C _L = 30 pF	7.6	_	18.4	ns
	l ² C-bus data output; pin type: BD4SCl4	C _L = 200 pF	tbf	tbf	tbf	ns
t _{o(r)(max)}	maximum output rise time	$V_{DDD5V} = 4.5 \text{ V};$ $V_{DDD3V} = 3 \text{ V};$ $T_j = 125 \text{ °C}$				
	digital outputs except I ² C-bus data output;	C _L = 30 pF	13.7	_	33.4	ns
	pin types: B(D)(T)4CR					
	I ² C-bus data output; pin type: BD4SCI4	C _L = 200 pF	tbf	tbf	tbf	tbf
$t_{o(f)(min)}$	minimum output fall time	$V_{DDD5V} = 5.5 \text{ V};$ $V_{DDD3V} = 3.6 \text{ V};$ $T_j = -40 \text{ °C}$				
	digital outputs except I ² C-bus data output; pin types: B(D)(T)4CR	C _L = 30 pF	7	_	17	ns
	I ² C-bus data output; pin type: BD4SCI4	C _L = 200 pF	tbf	tbf	tbf	ns

SAA7705H

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
t _{o(f)(max)}	maximum output fall time	$V_{DDD5V} = 4.5 \text{ V};$ $V_{DDD3V} = 3 \text{ V};$ $T_j = 125 \text{ °C}$	40.7		20.0	
	digital outputs except I ² C-bus data output; pin types: B(D)(T)4CR	C _L = 30 pF	12.7	_	30.9	ns
	l ² C-bus data output; pin type: BD4SCl4	C _L = 200 pF	tbf	tbf	tbf	ns
DC characteri	stics analog inputs; T _{an}	$_{nb}$ = 25 °C; V_{DDA1} = 3.3 V				
V _{REFAD}	common-mode reference voltage for SCAD1, 2, 3 and level-ADC	with reference to V _{SSA1}	0.47V _{DDA1}	0.5V _{DDA1}	0.53V _{DDA1}	V
$Z_{o(VREFAD)}$	output impedance at pin VREFAD		_	600	_	Ω
V_{VDACP}	positive reference voltage SCAD1, 2, 3 and level-ADC		3	3.3	3.6	V
I _{VDACP}	positive reference current SCAD1, 2, 3 and level-ADC		_	-20	_	μΑ
V _{VDACN1} , V _{VDACN2}	negative reference voltage SCAD1, 2, 3 and level-ADC		-0.3	0	+0.3	V
I _{VDACN1} , I _{VDACN2}	negative reference current SCAD1, 2 3 and level-ADC		_	20	_	μΑ
V _{IO(SCAD)}	input offset voltage SCAD1, 2 and 3		_	140	_	mV
AC characteri	stics analog inputs; T _{am}	$_{nb}$ = 25 °C; V_{DDA1} = 3.3 V				
$V_{i(con)(max)(rms)} \\$	maximum conversion input level at analog input (RMS value)	THD < 1%	0.6	0.66	_	V
R _i	input resistance (AM, CD and TAPE inputs)		1	_	_	ΜΩ
R _{i(FMMPX)}	input resistance at pin FMMPX		44	_	164	kΩ
THD _{FMMPX}	total harmonic distortion FMMPX input	input signal 0.35 V (RMS) at 1 kHz; bandwidth = 19 kHz; note 1	_	-70 0.03	-65 0.056	dB %
S/N _{FMMPX(m)}	signal-to-noise ratio FMMPX input mono	noise ratio input signal at 1 kHz; 8		83	-	dB

SAA7705H

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
S/N _{FMMPX(s)}	signal-to-noise ratio FMMPX input stereo	input signal at 1 kHz; 0 dB reference = 0.35 V (RMS); bandwidth = 40 kHz; note 1	74	77	_	dB
THD _{CD}	total harmonic	input signal 0.55 V (RMS)	_	-83	-78	dB
	distortion CD inputs	at 1 kHz; input gain = 1 (see Fig.4); bandwidth = 20 kHz	_	0.007	0.013	%
S/N _{CD}	signal-to-noise ratio CD inputs	input signal at 1 kHz; 0 dB reference = 0.55 V (RMS); bandwidth = 20 kHz	81	84	_	dB
THD _{AM}	total harmonic	input signal 0.55 V (RMS)	_	-80	-76	dB
	distortion AM inputs	at 1 kHz; bandwidth = 5 kHz	_	0.01	0.016	%
S/N _{AM}	signal-to-noise ratio AM inputs	input signal at 1 kHz; 0 dB reference = 0.55 V (RMS); bandwidth = 5 kHz	83	88	-	dB
THD _{TAPE}	total harmonic	input signal 0.55 V (RMS)	_	-80	-76	dB
	distortion TAPE inputs	at 1 kHz; bandwidth = 20 kHz;	_	0.01	0.016	%
S/N _{TAPE}	signal-to-noise ratio TAPE inputs	input signal at 1 kHz; 0 dB reference = 0.55 V (RMS); bandwidth = 20 kHz	81	83	_	dB
α_{19}	carrier and harmonic suppression at the output	pilot signal frequency = 19 kHz	_	81	_	dB
		unmodulated	_	98	_	dB
00	carrier and harmonic suppression at the	subcarrier frequency = 38 kHz	_	83	_	dB
	output	unmodulated	_	91	_	dB
α ₅₇	carrier and harmonic suppression for	subcarrier frequency = 57 kHz	_	83	_	dB
	19 kHz, including notch	unmodulated	_	96	_	dB
α ₇₆	carrier and harmonic suppression for	subcarrier frequency = 76 kHz	_	84	_	dB
	19 kHz, including notch	unmodulated	_	94	_	dB
$IM_{\alpha 10}$	intermodulation	$f_{\text{mod}} = 10 \text{ kHz}; f_{\text{spur}} = 1 \text{ kHz}$	77	_	_	dB
$IM_{\alpha 13}$	intermodulation	$f_{\text{mod}} = 13 \text{ kHz}; f_{\text{spur}} = 1 \text{ kHz}$	76	_	_	dB
α _{57(VF)}	traffic radio (Verkehrs Warnfunk) suppression	f = 57 kHz	_	110	_	dB
α _{67(SCA)}	Subsidiary Communication Authority (SCA) suppression	f = 67 kHz	-	110	-	dB

SAA7705H

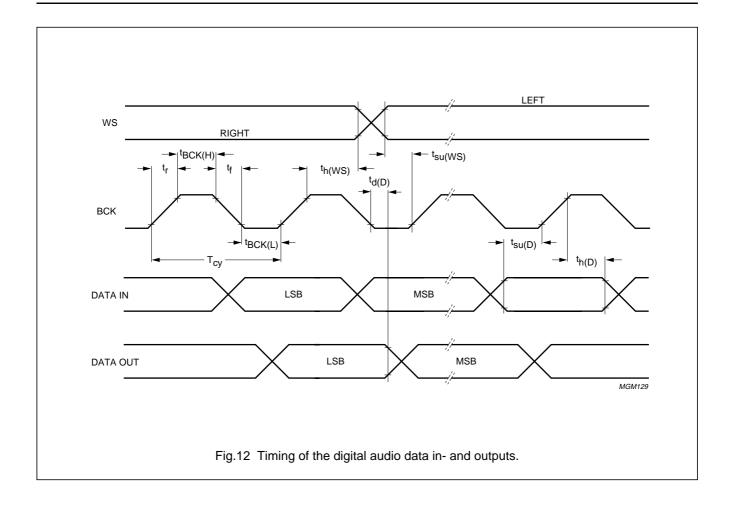
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
α ₁₁₄	adjacent channel suppression	f = 114 kHz	_	110	_	dB
α_{190}	adjacent channel suppression	f = 190 kHz	_	110	_	dB
$V_{th(pilot)(rms)}$	pilot threshold voltage (RMS value) at pin DSPOUT1	stereo 'on', AD input selection switch position '110'	_	35.5	-	mV
		stereo 'off', AD input selection switch position '110'	_	35.4	_	mV
hys	hysteresis of V _{th(pilot)(rms)}		_	0	_	dB
f _{i(FMMPX)}	input frequency of the FMMPX input	equency of the -3 dB; AD via bitstream		_	55	kHz
α_{cs}	FM-stereo channel	f _i = 1 kHz	40	45	_	dB
	separation	f _i = 10 kHz	25	30	_	dB
f _{res(FM)}	audio frequency response FM	at –3 dB via DSP at DAC output	17	_	_	kHz
ΔG_{L-R}	overall left/right gain unbalance (TAPE, CD, FM and AM inputs)		_	_	0.5	dB
$\alpha_{\text{CS}(\text{TAPE},\text{CD})}$	channel separation (TAPE and CD inputs)	f _i = 1 kHz	70	75	_	dB
		f _i = 10 kHz	65	70	_	dB
f _{res(TAPE,CD)}	response frequency (TAPE and CD inputs)	$f_s = 38 \text{ kHz}$; at -3 dB	18	_	_	kHz
α_{ct}	crosstalk between inputs	f _i = 1 kHz	65	_	_	dB
		f _i = 15 kHz	50	_	_	dB
PSRR _{MPX/RDS}	power supply ripple rejection MPX and RDS ADCs	output via I ² S-bus; ADC input short-circuited; $f_{ripple} = 1 \text{ kHz};$ $V_{ripple} = 100 \text{ mV (peak)};$ $C_{VREFAD} = 22 \mu\text{F};$ $C_{VDACP} = 10 \mu\text{F}$	35	45	_	dB
PSRR _{LAD}	power supply ripple rejection level-ADC	output via DAC; ADC input short-circuited; f _{ripple} = 1 kHz; V _{ripple} = 100 mV (peak); C _{VREFAD} = 22 μF	29	39	_	dB
CMRR _{CD}	common-mode rejection ratio for CD input mode	$\begin{aligned} R_{CDGND} &= 1 \text{ M}\Omega; \\ \text{resistance of CD player} \\ \text{ground cable < 1 k}\Omega; \\ f_i &= 1 \text{ kHz} \end{aligned}$	60	_	-	dB
AC characteri	stics RDS input; T _{amb} =	25 °C				
V _{i(con)(max)(rms)}	maximum conversion input level (RMS value)	THD < 1%	0.6	0.66	_	V

SAA7705H

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT	
R _{i(FMRDS)}	input resistance FMRDS input		44	_	164	kΩ	
THD _{FMRDS}	total harmonic distortion RDS ADC	$f_c = 57 \text{ kHz}$	-60	-67	-	dB	
S/N _{FMRDS}	signal-to-noise ratio RDS ADC	6 kHz bandwidth; f _c = 57 kHz; 0 dB reference = 0.55 V (RMS); note 1	54	-	_	dB	
α_{pilot}	pilot attenuation RDS		50	_	_	dB	
α	nearby selectivity RDS	neighbouring channel at 200 kHz distance	61	_	_	dB	
$\alpha_{n(ADC)}$	RDS ADC noise attenuation		70	_	_	dB	
V _{ripple(RDS)}	ripple voltage RDS pass band	2.4 kHz bandwidth	_	_	0.5	dB	
$\alpha_{mux(RDS)}$	multiplex attenuation	mono	70	_	_	dB	
	RDS	stereo	40	_	_	dB	
$\Delta f_{\rm osc}$	allowable frequency deviation of the 57 kHz RDS	maximum crystal resonance frequency deviation of 100 ppm	_	_	6	Hz	
Analog level	inputs (AML and FML);	Γ _{amb} = 25 °C; V _{DDA1} = 3.3 V				•	
S/N _{LAD}	signal-to-noise ratio of level-ADC	0 to 29 kHz bandwidth; maximum input level; unweighted	48	54	_	dB	
R _i	input resistance		1.5	_	2.2	МΩ	
V _{i(fs)(LAD)}	full-scale level-ADC input voltage		0	_	V _{DDA1}	V	
V _{IO}	DC offset voltage		_	_	60	mV	
α	decimation filter attenuation		20	_	_	dB decade	
f _{co(PB)}	pass band cut-off frequency	at –3 dB and DCS clock = 9.728 MHz	_	29	_	kHz	
f _{sr}	sample rate frequency after decimation	DCS clock = 9.728 MHz	-	38	_	kHz	
Analog outp	uts; T _{amb} = 25 °C; V _{DDA2} =	= 3.3 V					
V _{VREFDA}	voltage at pin VREFDA		0.47V _{DDA2}	0.5V _{DDA2}	0.53V _{DDA2}	V	
Z _{VREFDA}	impedance at	with respect to pin V _{DDA2}	_	40	_	kΩ	
	pin VREFDA	with respect to pin V _{SSA2}	_	40	_	kΩ	
Vo	output voltage of operational amplifiers	maximum I ² S-bus signal (RMS); $R_L > 5 k\Omega$ (AC)	0.65	0.75	0.85	V	
V _{O(av)}	average DC output voltage	$R_L > 5 \text{ k}\Omega \text{ (AC)}$	1.5	1.65	1.8	V	

SAA7705H

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{pu(POM)}	pull-up current to V _{DDA2}	voltage at pin POM <0.6 V	3.3	_	5	μΑ
	from pin POM	voltage at pin POM >0.8 V	50	_	90	μΑ
PSRR _{QDAC}	power supply ripple rejection of QDAC	input via I ² S-bus; f_{ripple} = 1 kHz; V_{ripple} = 100 mV (p-p); C_{VREFDA} = 22 μ F	45	60	-	dB
$\Delta I_{O(QDAC)(max)}$	maximum deviation in	full-scale output; with	_	_	±4.47	%
	output level of the QDAC current outputs	respect to the average of the 4 current outputs	_	_	±0.38	dB
$lpha_{ct}$	crosstalk between all outputs in the audio band	one output digital silence, three maximum volume	-	-	-69	dB
I _{o(sc)}	output short-circuit current	output short-circuited to ground	_	_	20	mA
RES _{DAC}	DAC resolution		_		_	bits
(THD + N)/S	total harmonic distortion-plus-noise to signal ratio	$ f = 1 \text{ kHz}; $ $V_o = 0.72 \text{ V (RMS)}; $ $R_L > 5 \text{ k}\Omega \text{ (AC)}; $ $A\text{-weighted} $	-	-75	-65	dBA
DR	dynamic range	output signal –60 dB at 1 kHz; 0 dB reference = 0.77 V (RMS); A-weighted	92	102	_	dBA
DS	digital silence	f = 20 Hz to 17 kHz; reference $V_0 = 0.77$ V (RMS); A-weighted	_	102	108	dBA
$V_{no(DS)(rms)}$	digital silence noise output voltage (RMS value)		_	3	8	μV
IM	intermodulation distortion/comparator	f = 60 Hz and 7 kHz; ratio 4	_	-70	-55	dB
f _{s(max)}	maximum sample frequency		48	-	_	kHz
В	bandwidth DAC	at -3 dB	_	0.5f _s	_	Hz
C _L	load capacitance on DAC voltage outputs		_	-	2.5	nF
R_L	load resistance on DAC voltage outputs		2	_	_	kΩ
I ² S-bus inputs	s and outputs; see Fig.12	2		-		
T _{cy}	bit clock cycle time		50	_	_	ns
t _r	rise time		_	_	0.15T _{cy}	ns
t _f	fall time		_	_	0.15T _{cy}	ns
t _{BCK(H)}	bit clock HIGH time		0.35T _{cy}		_	ns
t _{BCK(L)}	bit clock LOW time		0.35T _{cy}	_	_	ns


SAA7705H

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
t _{su(D)}	data set-up time		0.2T _{cy}	_	_	ns
t _{h(D)}	data hold time		0.2T _{cy}	_	_	ns
$t_{d(D)}$	data delay time		_	_	0.15T _{cy}	ns
t _{su(WS)}	word select set-up time		0.2T _{cy}	_	_	ns
t _{h(WS)}	word select hold time		0.2T _{cy}	_	_	ns
RDS interfac	e timing; see Figs 10 and	11	,	,	•	,
f _{RDSCLK}	nominal RDS clock frequency		-	1187.5	_	Hz
t _{su}	clock set-up time	direct output mode	100	_	_	μs
T _{cy}	cycle time	direct output mode	_	842	_	μs
		buffer mode	2	_	_	μs
t _{HC}	clock HIGH time	direct output mode	220	_	640	μs
		buffer mode	1	_	_	μs
t _{LC}	clock LOW time	direct output mode	220	_	640	μs
		buffer mode	1	_	_	μs
t _h	data output hold time	direct output mode	100	_	_	μs
t _w	wait time	buffer mode	1	_	_	μs
f _{i(clk)(ext)}	input frequency external RDS clock	buffer mode	-	_	22	MHz
Oscillator			1		•	-1
f _{xtal}	crystal frequency		_	11.2896	_	MHz
f _{clk(DSP)}	clock frequency DSP core		27.1656	_	_	MHz
α_{f}	spurious frequency attenuation		20	_	-	dB
V _{xtal}	voltage across the crystal		-	3	-	V
9 _m	transconductance	at start-up	10.5	19	32	mS
		in operating range	3.6	_	38	mS
C _L	load capacitance		_	15	-	pF
N _{cy(su)}	number of cycles in start-up time	depends on quality of the external crystal	-	1000	-	cycles
P _{xtal}	crystal drive power level	at oscillation	-	0.4	0.5	mW
V _{i(clk)(ext)}	external clock input voltage	in slave mode	3	3.3	5	V

Note

1. FMRDS and FMMPX input sensitivity setting '000' (see Table 17).

SAA7705H

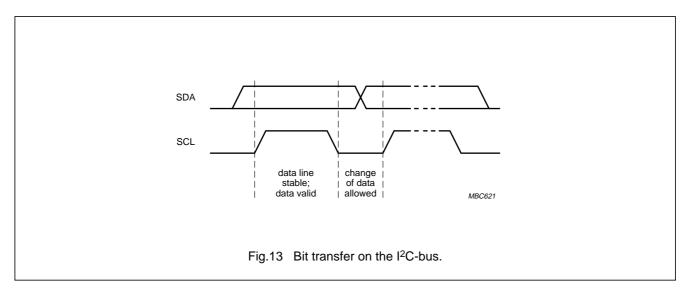
33

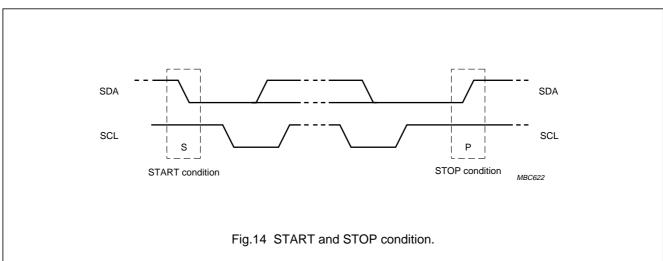
SAA7705H

12 I²C-BUS INTERFACE AND PROGRAMMING

12.1 I²C-bus interface

12.1.1 CHARACTERISTICS OF THE I²C-BUS


The I²C-bus is used for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to V_{DD} via a pull-up resistor when connected to the output stages of a microcontroller. For a 400 kHz clock frequency the recommendations of Philips Semiconductors for this type of bus must be followed e.g. up to loads of 200 pF at the bus a pull-up resistor can be used; loads between 200 to 400 pF need a current source or switched resistor. Data transfer can only be initiated when the bus is not busy.

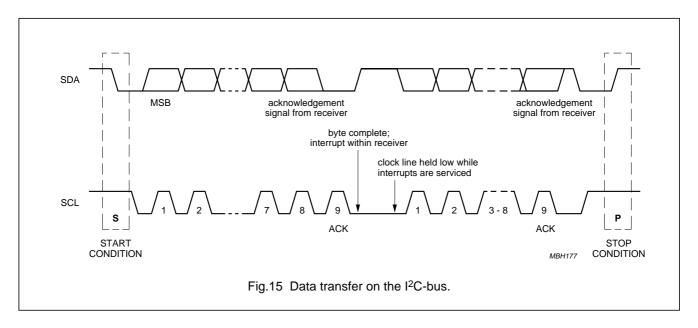

12.1.2 BIT TRANSFER

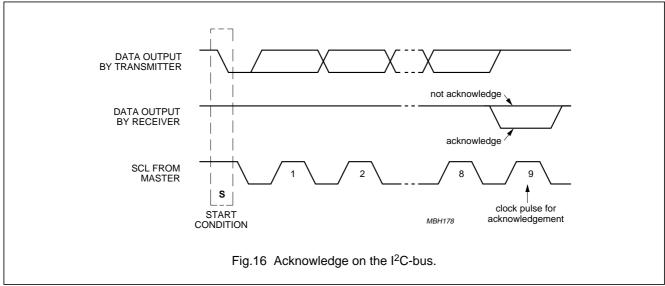
One data bit is transferred during each clock pulse; see Fig.13. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals. The maximum clock frequency is 400 kHz. To be able to run on this high frequency all the I/Os connected to this bus must be designed for this high speed according to the Philips specification.

12.1.3 START AND STOP CONDITIONS

Both data and clock line will remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line while the clock is HIGH is defined as a START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as a STOP condition (P); see Fig.14.

SAA7705H


12.1.4 DATA TRANSFER


A device generating a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves'; see Fig.15.

12.1.5 ACKNOWLEDGE

The number of data bits transferred between the START and STOP conditions from the transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. At the acknowledge bit the data line is released by the master and the master generates an extra acknowledge related clock pulse. A slave receiver, which

is addressed, must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. Set-up and hold times must be taken into account. A master receiver must signal an 'end of data' to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP condition; see Fig.16.

SAA7705H

12.2 I²C-bus protocol

12.2.1 ADDRESSING

Before any data is transmitted on the I²C-bus, the device that should respond is addressed first. The addressing is always done with the first byte transmitted after the START procedure.

12.2.2 SLAVE ADDRESS

The SAA7705H acts as a slave receiver or a slave transmitter. Therefore, the clock signal SCL is only an input signal. The data signal SDA is a bidirectional line. The slave address is shown in Table 3.

Table 3 Slave address

MSB							LSB
0	0	1	1	1	0	A0	R/W

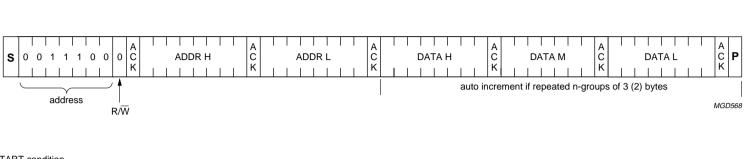
The sub-address bit A0 corresponds to the hardware address pin A0 which allows the device to have 2 different addresses. The A0 input is also used in the test mode as a serial input of the test control block.

12.2.3 WRITE CYCLES

The I²C-bus configuration for a write cycle is shown in Fig.17. The write cycle is used to write the bytes to control the DCS block, the PLL for the DSP clock generation, the IAC settings, the AD volume control settings, the analog input selection, the format of the I²S-bus and some other settings. More details can be found in the I²C-bus memory map (see Table 5).

The data length is 2 or 3 bytes depending on the accessed memory. If the Y-memory is addressed the data length is 2 bytes, in case of the X-memory the length is 3 bytes. The slave receiver detects the address and adjusts the number of bytes accordingly.

12.2.4 READ CYCLES


The I²C-bus configuration for a read cycle is shown in Fig.18. The read cycle is used to read the data values from XRAM or YRAM. The master starts with a START condition (S), the DSP address '0011100' and a logic 0 (write) for the read/write bit. This is followed by an acknowledge of the SAA7705H. Then the master writes the high memory address (ADDR H) and low memory address (ADDR L) where the reading of the memory content of the SAA7705H must start. The SAA7705H acknowledges these addresses both.

The master generates a repeated START and again the SAA7705H address '0011100' but this time followed by a logic 1 (read) of the read/write bit. From this moment on the SAA7705H will send the memory content in groups of 2 (Y-memory) or 3 (X-memory) bytes to the I²C-bus, each time acknowledged by the master. The master stops this cycle by generating a negative acknowledge, then the SAA7705H frees the I²C-bus and the master can generate a STOP condition.

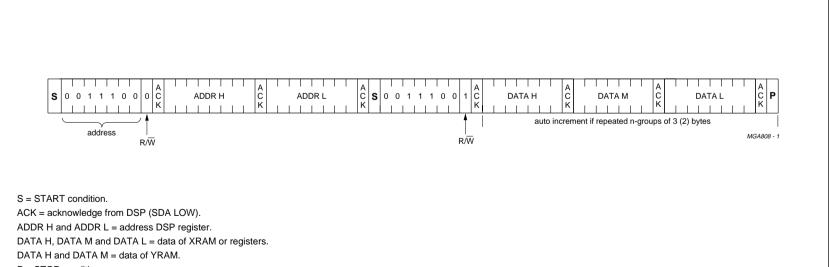
The data is transferred from the DSP register to the I²C-bus register at execution of the MPI instruction in the DSP program. Therefore at least once every DSP cycle an MPI instruction should be added.

37

SAA7705H

S = START condition.

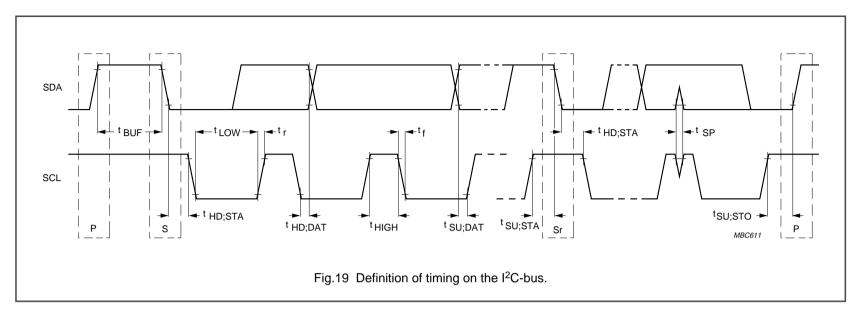
ACK = acknowledge from DSP (SDA LOW).


ADDR H and ADDR L = address DSP register.

DATA H, DATA M and DATA L = data of XRAM or registers.

DATA H and DATA M = data of YRAM.

P = STOP condition.


Fig.17 Master transmitter writes to the DSP registers.

P = STOP condition.

Fig.18 Master transmitter reads from the DSP registers.

SAA7705H

Table 4 Timing fast I²C-bus (see Fig.19)

CVMDOL	DADAMETED	CONDITIONS	STANDARD I ² C-BUS		FAST MODE I ² C-BUS		
SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	MIN.	MAX.	UNIT
f _{SCL}	SCL clock frequency		0	100	0	400	kHz
t _{BUF}	bus free time between a STOP and START condition		4.7	_	1.3	_	μs
t _{HD;STA}	hold time (repeated) START condition; after this period, the first clock pulse is generated		4.0	_	0.6	_	μs
t _{LOW}	SCL LOW period		4.7	_	1.3	_	μs
t _{HIGH}	SCL HIGH period		4.0	_	0.6	_	μs
t _{SU;STA}	set-up time for a repeated START condition		4.7	_	0.6	_	μs
t _{HD;DAT}	DATA hold time		0	_	0	0.9	μs
t _{SU;DAT}	DATA set-up time		250	_	100	_	μs
t _r	rise time of both SDA and SCL signals	C _b in pF	_	1000	20 + 0.1C _b	300	μs
t _f	fall time of both SDA and SCL signals	C _b in pF	_	300	20 + 0.1C _b	300	μs
t _{SU;STO}	set-up time for STOP condition		4.0	_	0.6	_	μs
C _b	capacitive load for each bus line		_	400	_	400	pF
t _{SP}	pulse width of spikes to be suppressed by input filter		not applica	able	0	50	ns

SAA7705H

12.3 Memory map specification and register overview

The SAA7705H memory map contains all defined bits. The map is split up in two different sections: the hardware memory registers and the RAM definitions. In Table 5 the memory map is depicted. Table 6 shows the detailed memory map locations.

Table 5 Memory map

ADDRESS	FUNCTION	SIZE
9C00H to 9FFFH	reserved	1024 × 32 bits
9000H to 9BFFH	not used	
8000H to 8FFFH	reserved	4096 × 28 bits
1000H to 7FFFH	not used	
0FF9H to 0FFFH	DSP core	7 × 16 bits
0FF4H to 0FF8H	reserved	5 × 16 bits
0FF3H	RDS	1 × 16 bits
0FEEH to 0FF2H	reserved	5 × 16 bits
0FA8H to 0FEDH	not used	
0F80H to 0FA7H	equalizer	40 × 16 bits
0B30H to 0F7FH	not used	
0AFFH to 0B2FH	reserved	49 × 16 bits
0AC0H to 0AFEH	not used	
0A80H to 0ABFH	reserved	65 × 16 bits
0A40H to 0A7FH	not used	
0A00H to 0A3FH	reserved	65 × 16 bits
0980H to 09FFH	reserved YRAM space	
0800H to 097FH	YRAM	384 × 12 bits
0200H to 07FFH	not used	
0180H to 01FFH	reserved XRAM space	
0000H to 017FH	XRAM	384 × 18 bits

Table 6 Register overview

ADDRESS	NAME	DESCRIPTION
EPICS6		
0FFFH	DCSCTR	DCS control register (see Table 7)
OFFEH	DCSDIV	DCS divide register (see Table 8)
0FFDH	AD	AD register (see Table 9)
0FFCH	LEVELIAC	IAC level register (see Table 10)
0FFBH	IAC	IAC register (see Table 11)
0FFAH	SEL	Input selection register (see Table 12)
0FF9H	HOST	Host register (see Table 13)
RDS		
0FF3H	RDSCTR	RDS control register (see Table 14)

Car radio Digital Signal Processor (DSP)

SAA7705H

12.4 Register description

Table 7 DCSCTR register (address 0FFFH)

NAME	SIZE (BITS)	DESCRIPTION	DEFAULT	BIT POSITION
CLK-ISN-ONOFF	1	ISN clock	1 (off)	15
		1: off		
		0: on		
PLL-DIV	4	PLL clock division factor (see Table 15)	1010 (154)	14 to 11
LOOPO-ONOFF	1	Loopo	0 (off)	10
		1: on		
		0: off		
GAIN-HL	1	variable loop-gain stereo decoder	1 (high)	9
		1: high		
		0: low		
LOCKED-PRESET	1	DCS clock	1 (locked)	8
		1: locked		
		0: preset		
F1-COEF	4	coarse division factor F1 (see Table 16)	0010 (F1 = 11)	7 to 4
F0-COEF	4	coarse division factor F0 (see Table 16)	0011	3 to 0
			(F0 = 11.5)	

Table 8 DCSDIV register (address 0FFEH)

NAME	SIZE (BITS)	DESCRIPTION	DEFAULT	BIT POSITION
DCS-COEF	16	Sigma-Delta modulator V (note 1)	28EDH	15 to 0

Note

1. DCS-COEF can be calculated by the multiplication $V \times 2^{15}$ and then convert this decimal value to hexadecimal.

Car radio Digital Signal Processor (DSP)

SAA7705H

Table 9 AD register (address 0FFDH)

NAME	SIZE (BITS)	DESCRIPTION	DEFAULT	BIT POSITION
LDEF	3	always in position 000	000	15 to 13
TWO-FOUR	1	equalizer configuration	0 (four	12
		1: two channels	channels)	
		0: four channels		
DSPTURBO 1 PLL output frequency		0 (no doubling)	11	
		1: double		
	0: no doubling			
_	4	reserved	_	10 to 7
VOLFM	3	input sensitivity FMMPX input (see Table 17)	110 (200 mV)	6, 5 and 4
VOLRDS	3	input sensitivity FMRDS input (see Table 17)	110 (200 mV)	3, 2 and 1
SELTWOTUN	1	select one- or two-tuner operation	0 (one tuner)	0
		1: two tuners		
		0: one tuner		

Table 10 LEVELIAC register (address 0FFCH)

NAME	SIZE (BITS)	DESCRIPTION	DEFAULT	BIT POSITION
LEV-EN-DYN-IAC	1	FM frequency sweep dependent IAC	0 (disable)	15
		1: enable		
		0: disable		
LEV-DYN-IAC-DEV	2	deviation threshold frequency setting of the dynamic IAC (see Table 18)	00 (50 kHz)	14 and 13
_	5	not used	_	12 to 8
LEV-IAC-STRETCH	2	level-IAC stretch time (see Table 19)	10 (13 periods)	7 and 6
LEV-IAC-FEEDFORWARD	2	level-IAC deviation feed-forward factor (see Table 20)	00 (-2 periods)	5 and 4
LEV-IAC-THRESHOLD	4	level-IAC threshold settings (see Table 21)	0000 (off)	3 to 0

Car radio Digital Signal Processor (DSP)

SAA7705H

Table 11 IAC register (address 0FFBH)

NAME	SIZE (BITS)	DESCRIPTION	DEFAULT	BIT POSITION
IACTRIGGER	1	input selection for IAC triggering	0 (DSPOUT2)	15
		1: IAC output		
		0: DSPOUT2 output		
_	3	not used		14 to 12
AGC	1	AGC set point	$1\left(\frac{1}{256}\right)$	11
		1: $\frac{1}{256}$ 0: $\frac{1}{128}$	(256)	
MPXDELAY	2	IAC delay settings MPX (see Table 22)	01 (5 periods)	10 and 9
SUPPRESSION	3	IAC stretch time suppression (see Table 23)	011 (2 samples)	8, 7 and 6
FEEDFORWARD	3	IAC deviation feed-forward factor (see Table 24)	101 (0.00781)	5, 4 and 3
THRESHOLD	3	IAC threshold sensitivity (see Table 25)	101 (0.031)	2, 1 and 0

SAA7705H

Table 12 SEL register (address 0FFAH)

NAME SIZE (BITS)		DESCRIPTION	DEFAULT	BIT POSITION
ADC-BWSWITCH	1	processing base SCAD1, SCAD2 and LAD	0 (38 kHz)	15
		1: 44.1 kHz		
		0: 38 kHz		
_	1	not used		14
INVHOSTWS	1	word select	0 (non-inverting)	13
		1: inverting		
		0: non-inverting		
NSDEC	1	select noise detector	1 (1 : 8)	12
		1: ratio 1 : 8		
		0: ratio 1 : 4		
ADCSRC	1	compensation switch for Audio-AD	0 (Audio-AD, required)	11
_	1	reserved	_	10
DCOFFSET	1	DC offset filter	0 (on)	9
		1: off		
		0: on		
BYPASSPLL	1	clock oscillator signal handling by PLL	0 (PLL active)	8
		1: PLL by-passed		
		0: PLL active		
DEF	1	selection	0 (29 kHz)	7
		1: 19 kHz (microphone input and		
		compensation filter)		
		0: 29 kHz (level filter position)		
WIDE-NARROW	1	selection	1 (audio data, required)	6
		1: audio data		
		0: audio + RDS info		
LEVAM-FM	1	select input for level detector	0 (FM level)	5
		1: AM level (pin AML)		
		0: FM level (pin FML)		
_	1	reserved	_	4
CD-TAPE	1	select audio input	1 (CD)	3
		1: CD		
		0: TAPE		
AM-TAPE	1	select audio input	0 (TAPE)	2
		1: AM		
		0: TAPE		
AUX-FM	1	select audio input	0 (FM)	1
		1: CD left		
		0: FM		
_	1	reserved		0

Car radio Digital Signal Processor (DSP)

SAA7705H

Table 13 HOST register (address 0FF9H)

NAME	SIZE (BITS)	DESCRIPTION	DEFAULT	BIT POSITION
CLOOP-MODE	3	cloop mode (see Table 27)	110 (WS 50% duty cycle + BCLK/4)	15 to 13
ENHOSTIO	1	external I ² S-bus	0 (disable)	12
		1: enable		
		0: disable		
HOST-IO-FORMAT	2	host input/output data format (see Table 28)	00 (standard I ² S-bus, required)	11 and 10
AUDIO-FORMAT	3	audio register data format (see Table 29)	000 (ISN)	9, 8 and 7
AUDIO-SOURCE	2	audio selection register (see Table 30)	01 (ISN)	6 and 5
_	5	reserved	_	4 to 0

Table 14 RDSCTR register (address 0FF3H)

NAME	SIZE (BITS)	DESCRIPTION	DEFAULT	BIT POSITION
_	7	reserved	_	15 to 9
RDS-CLKIN	1	select output for RDS	0 (RDS output)	8
		1: buffered RDS with RDS clock input		
		0: RDS output		
_	8	reserved	_	7 to 0

SAA7705H

12.5 Detailed register description

Table 15 PLL clock division factor (PLL-DIV bits)

	PLL	-DIV		PLL CLOCK DI	VISION FACTOR
BIT 14	BIT 13	BIT 12	BIT 11	dsp-turbo = 0	dsp-turbo = 1 (not used)
0	0	0	0	93	186
0	0	0	1	99	198
0	0	1	0	106	106
0	0	1	1	113	212
0	1	0	0	121	242
0	1	0	1	126	252
0	1	1	0	132	264
0	1	1	1	137	274
1	0	0	0	143	286
1	0	0	1	148	296
1	0	1	0	154 (default)	308
1	0	1	1	159	318
1	1	0	0	165	330
1	1	0	1	170	340
1	1	1	0	176	352
1	1	1	1	181	362

Table 16 Representation of division factors F0 and F1

		DIVISION FACTOR			
BIT 3/7	BIT 2/6	BIT 1/5	BIT 0/4	HEX-VALUE	F0/F1
1	0	0	0	8H	6
1	0	0	1	9H	6.5
1	0	1	0	АН	7
1	0	1	1	BH	7.5
1	1	0	0	СН	8
1	1	0	1	DH	8.5
1	1	1	0	EH	9
1	1	1	1	FH	9.5
0	0	0	0	0H	10
0	0	0	1	1H	10.5
0	0	1	0	2H	11 (default F1)
0	0	1	1	3H	11.5 (default F0)
0	1	0	0	4H	12
0	1	0	1	5H	12.5
0	1	1	0	6H	13
0	1	1	1	7H	13.5

Car radio Digital Signal Processor (DSP)

SAA7705H

Table 17 Volume control of the FMMPX and FMRDS input by the AD register.

\/	VOLFM/VOLRDS		FMMPX/FMRDS INPUTS			
VC)LFM/VOLKI	JS	INPUT V	INDUT IMPEDANCE		
BIT 3/6	BIT 2/5	BIT 1/4	AT 22.5 kHz SWEEP (mV)	FOR 0 dB AT DSP (mV)	- INPUT IMPEDANCE (kΩ)	
0	0	0	65	410	137	
0	0	1	78	493	103	
0	1	0	93	587	84.8	
0	1	1	111	700	74	
1	0	0	132	833	67	
1	0	1	158	1000	62	
1	1	0	188 (default)	1188 (default)	58.4 (default)	
1	1	1	225	1387	56	

Table 18 Dynamic IAC deviation threshold

LEV-DY	N-IAC-DEV	DEVIATION
BIT 14	BIT 13	(kHz)
0	0	43 (default)
0	1	48.5
1	0	58
1	1	65

Table 19 IAC-level stretch time

LEV-IAC-	STRETCH	PULSE LENGTH ON SINGLE TRIGGER IN PERIODS OF 304 kHz
BIT 7	BIT 6	FULSE LENGTH ON SINGLE TRIGGER IN PERIODS OF 304 KHZ
0	0	9
0	1	11 (default)
1	0	13
1	1	15

Table 20 IAC-level deviation feed-forward factor

LEV-IAC-FE	EDFORWARD	DELAY (DECIMAL VALUE) IN PERIODS OF 304 kHz	
BIT 5	BIT 4	DELAT (DECIMAL VALUE) IN PERIODS OF 304 KHZ	
0	0	-2 (default)	
0	1	-1	
1	0	0	
1	1	1	

Car radio Digital Signal Processor (DSP)

SAA7705H

Table 21 Level IAC threshold settings

	LEVEL-IAC-THRESHOLD			THRESHOLD	
BIT 3	BIT 2	BIT 1	BIT 0	DECIMAL VALUE	BINARY VALUE
0	0	0	0	level-IAC (off (default)
0	0	0	1	0.02	0.0000010
0	0	1	0	0.025	0.0000011
0	0	1	1	0.0316	0.0000100
0	1	0	0	0.04	0.0000101
0	1	0	1	0.05	0.0000110
0	1	1	0	0.063	0.0001000
0	1	1	1	0.08	0.0001010
1	0	0	0	0.1	0.0001101
1	0	0	1	0.126	0.0010000
1	0	1	0	0.16	0.0010100
1	0	1	1	0.2	0.0011010
1	1	0	0	0.25	0.0100000
1	1	0	1	0.316	0.0101000
1	1	1	0	0.4	0.0110100
1	1	1	1	0.5	0.1000000

Table 22 IAC delay settings MPX

MPX-I	DELAY	DELAY (DECIMAL VALUE) IN PERIODS OF 304 kHz
BIT 10	BIT 9	DELAT (DECIMAL VALUE) IN PERIODS OF 304 KHZ
1	0	2
1	1	3
0	0	4
0	1	5 (default)

Table 23 IAC stretch time suppression

	SUPPRESSION		STRETCH TIME SUPPRESSION		
BIT 8	BIT 7	BIT 6	PULSE LENGTH ON SINGLE TRIGGER	STRETCH (NUMBER OF SAMPLES)	
1	0	1	0	not applicable	
1	0	0	1	0	
1	1	1	2	1	
1	1	0	3	2	
0	0	1	4	3	
0	0	0	5	4	
0	1	1	6	5 (default)	
0	1	0	7	6	

Car radio Digital Signal Processor (DSP)

SAA7705H

Table 24 IAC deviation feed-forward factor

	FEEDFORWARD)	FACTOR		
BIT 5	BIT 4	BIT 3	DECIMAL VALUE	BINARY VALUE	
0	1	1	0.00146	0.00000000110	
0	1	0	0.00195	0.00000001000	
0	0	1	0.00293	0.00000001100	
0	0	0	0.00391	0.00000010000	
1	1	1	0.00586	0.00000011000	
1	1	0	0.00781	0.00000100000	
1	0	1	0.01172 (default)	0.00000110000	
1	0	0	0.00000	0.00000000000	

Table 25 IAC threshold sensitivity

	DYN-IAC-DEV		THRESHOLD		
BIT 2	BIT 1	BIT 0	DECIMAL VALUE	BINARY VALUE	
1	0	0	0.027	0.000001110000	
1	0	1	0.031 (default)	0.000010000000	
1	1	0	0.038	0.000010011100	
1	1	1	0.047	0.000011000000	
0	0	0	0.055	0.000011100000	
0	0	1	0.063	0.00010000000	
0	1	0	0.074	0.000100110000	
0	1	1	0.085	0.000101100000	

Car radio Digital Signal Processor (DSP)

SAA7705H

Table 26 Analog input selection; notes 1 and 2

MODE	AM-TAPE	AUX-FM	CD-TAPE	SELTWOTUN	LEVAM-FM
FMMPX one tuner mode	X(3)	0	1	0	0
FMMPX two tuner mode	X(3)	0	1	1	0
AM	1	X ⁽³⁾	0	X ⁽³⁾	1
CD-ANALOG	X ⁽³⁾	1	1	X ⁽³⁾	X ⁽³⁾
MICROPHONE ⁽⁴⁾	X(3)	X(3)	X(3)	X(3)	1
TAPE	0	X ⁽³⁾	0	X ⁽³⁾	X(3)

Notes

- 1. It is assumed that the AM level input is used for AM reception and the FM level input for FM reception. It is, however, also possible to have a combined AM and FM level output from the tuner. In that case the FM level input should be used and the LEVAM-FM should remain logic 0.
- 2. In all the positions it is assumed that pin SELFR is LOW.
- 3. X = don't care.
- 4. In the MICROPHONE position it is assumed that the microphone is connected to the AML input. When using a microphone the bandwidth of the level decimation path is limited to 19 kHz. In all other cases the bandwidth is 29 kHz. At the same time the I²C-bus bit DEF of the SEL register must be put in the 'voice' = logic 1 position.

Table 27 Cloop mode settings

CLOOP-MODE			OUTPUT	
BIT 15	BIT 15 BIT 14 BIT 13		OUTFOI	
Word select (WS)				
0	_	_	bypass WS	
1			WS 50% duty-cycle (default)	
Bit clock (BCLK)				
_	0	0	bypass BCLK	
_	0	1	divide BCLK by 2	
_	1	0	divide BCLK by 4 (default)	
_	1	1	divide BCLK by 8	

Table 28 Host input/output data format

HOST-IO-FORMAT		OUTPUT	
BIT 11	BIT 10	J	
0	0	standard I ² S-bus (default)	
0	1	LSB-justified, 16 bits	
1	0	LSB-justified, 18 bits	
1	1	LSB-justified, 20 bits	

Car radio Digital Signal Processor (DSP)

SAA7705H

Table 29 Audio register data format

AUDIO-FORMAT			OUTDUT	
BIT 9	BIT 8	BIT 7	ОИТРИТ	
0	0	0	ISN, LSB first (default)	
_	0	1	LSB-justified, 16 bits	
_	1	0	LSB-justified, 18 bits	
_	1	1	LSB-justified, 20 bits	
1	0	0	standard I ² S-bus	

Table 30 Audio selection register

AUDIO-SOURCE		QUITRUIT	
BIT 6	BIT 5	OUTPUT	
0	0	Audio-AD	
0	1	ISN L + R and R – L (default)	
1	0	external CD1	
1	1	external CD2	

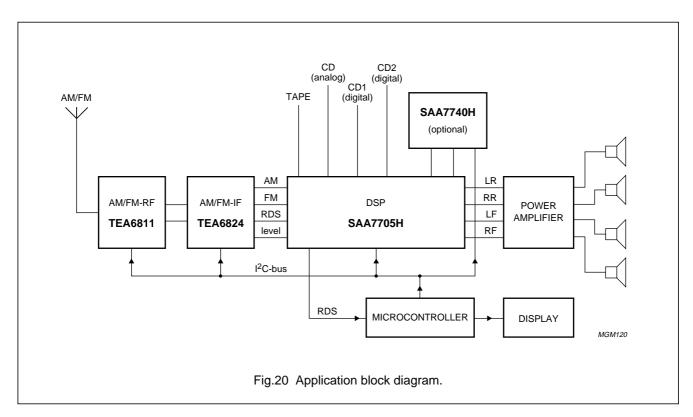
Car radio Digital Signal Processor (DSP)

SAA7705H

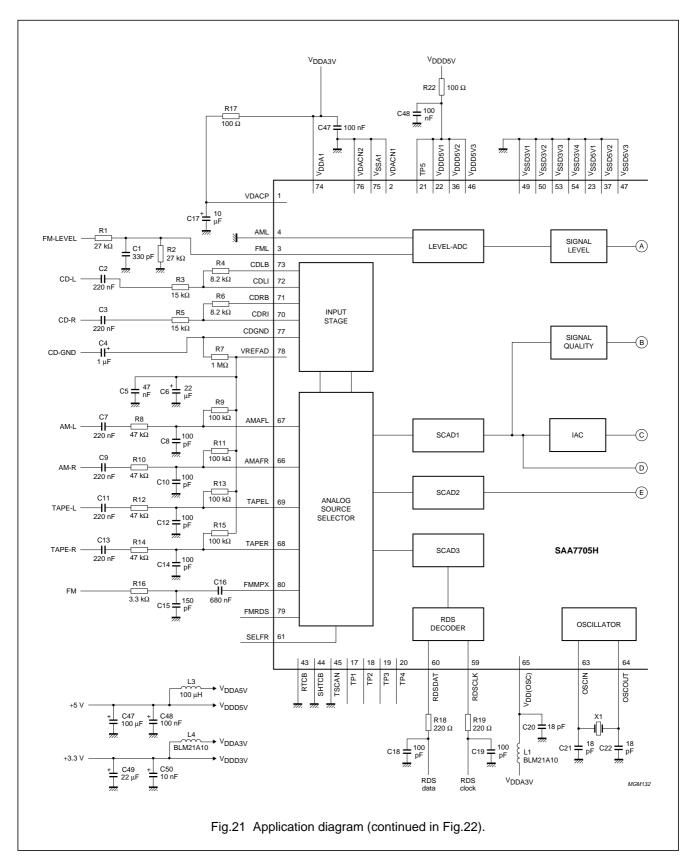
13 APPLICATION INFORMATION

The application diagram shown in Figs 21 and 22 must be considered as one of the examples of a (limited) application of the chip e.g. in this case the I²S-bus inputs of the CD1 and CD2 are not used. For the real application set-up the information of the application report and application support by Philips is necessary on issues such as EMC, kappa reduction of the package, DSP program, etc.

13.1 Software description

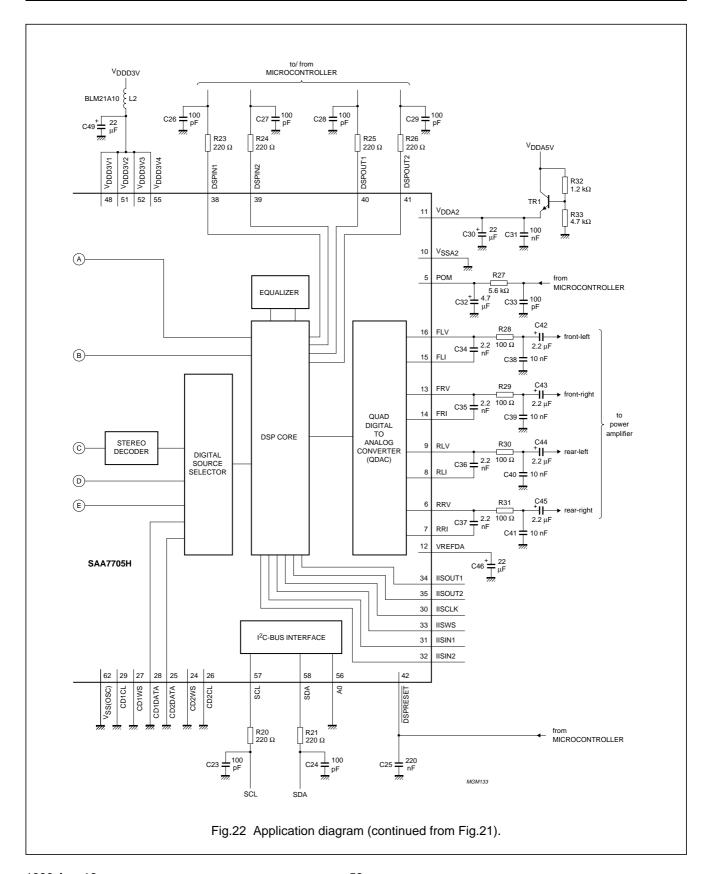

The use and description of the software features of the SAA7705H is described in the separate manual: "USER MANUAL SAA7705H, report no. NBA/AN9704, Version 2.1, Author G. Willighagen"

Further information about the programming of the EPICS6 DSP core is available in "EPICS6 Programmer's Guide, version 1.3, July 3 1997, Author Ron Schiffelers, CIC development Nijmegen"


The availability of a programmer's guide does not mean that the normal procedure enables the customer to develop their own DSP software.

13.2 Power supply connection and EMC

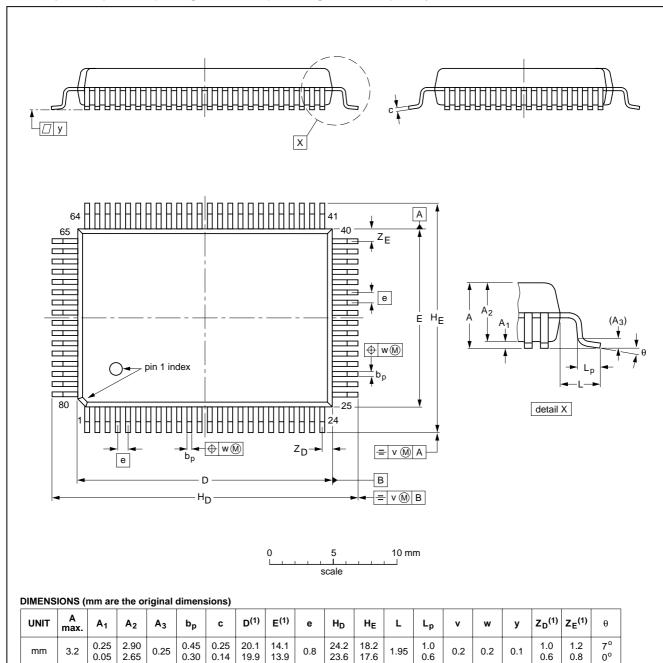
The digital part of the chip has in total 7 positive supply line connections and 7 ground connections. To minimise radiation the chip should be put on a double layer Printed-Circuit Board (PCB) with on one side a large ground plane. The ground supply lines should have a short connection to this ground plane. A coil and capacitor network in the positive supply line can be used as high frequency filter.


SAA7705H

52

1999 Aug 16

SAA7705H



SAA7705H

14 PACKAGE OUTLINE

QFP80: plastic quad flat package; 80 leads (lead length 1.95 mm); body 14 x 20 x 2.8 mm

SOT318-2

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFERENCES			EUROPEAN	ICCUE DATE	
	VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
	SOT318-2						-95-02-04- 97-08-01

SAA7705H

15 SOLDERING

15.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.

15.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 230 °C.

15.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

 For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

15.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^{\circ}$ C.

Car radio Digital Signal Processor (DSP)

SAA7705H

15.5 Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERING METHOD			
PACKAGE	WAVE	REFLOW ⁽¹⁾		
BGA, SQFP	not suitable	suitable		
HLQFP, HSQFP, HSOP, HTSSOP, SMS	not suitable ⁽²⁾	suitable		
PLCC ⁽³⁾ , SO, SOJ	suitable	suitable		
LQFP, QFP, TQFP	not recommended ⁽³⁾⁽⁴⁾	suitable		
SSOP, TSSOP, VSO	not recommended ⁽⁵⁾	suitable		

Notes

- 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- 2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
- 3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

SAA7705H

16 DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

17 LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

18 PURCHASE OF PHILIPS I2C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.

SAA7705H

NOTES

SAA7705H

NOTES

Philips Semiconductors – a worldwide company

Argentina: see South America

Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101 1248. Fax. +43 1 60 101 1210

Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,

220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773

Belgium: see The Netherlands Brazil: see South America

Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,

51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102

Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,

Tel. +1 800 234 7381, Fax. +1 800 943 0087

China/Hong Kong: 501 Hong Kong Industrial Technology Centre,

72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700

Colombia: see South America Czech Republic: see Austria

Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,

Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920

France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,

Tel. +33 1 4099 6161, Fax. +33 1 4099 6427

Germany: Hammerbrookstraße 69, D-20097 HAMBURG,

Tel. +49 40 2353 60, Fax. +49 40 2353 6300

Hungary: see Austria

India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,

Tel. +91 22 493 8541, Fax. +91 22 493 0966

Indonesia: PT Philips Development Corporation, Semiconductors Division,

Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080

Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200

Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007

Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),

Tel. +39 039 203 6838. Fax +39 039 203 6800

Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057

Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415

Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,

Tel. +60 3 750 5214, Fax. +60 3 757 4880

Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,

Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087

Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,

Tel. +31 40 27 82785, Fax. +31 40 27 88399

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,

Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341

Pakistan: see Singapore

Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474

Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327

Portugal: see Spain

Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,

Tel. +7 095 755 6918, Fax. +7 095 755 6919

Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,

Tel. +65 350 2538, Fax. +65 251 6500

Slovakia: see Austria Slovenia: see Italy

South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,

2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,

Tel. +27 11 471 5401, Fax. +27 11 471 5398 South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil,

Tel. +55 11 821 2333. Fax. +55 11 821 2382 Spain: Balmes 22, 08007 BARCELONA Tel. +34 93 301 6312, Fax. +34 93 301 4107

Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,

Tel. +46 8 5985 2000, Fax. +46 8 5985 2745

Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,

Tel. +41 1 488 2741 Fax. +41 1 488 3263

Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd. 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,

Tel. +66 2 745 4090, Fax. +66 2 398 0793

Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,

ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813

Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,

252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461

United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,

Tel. +1 800 234 7381, Fax. +1 800 943 0087

Uruguay: see South America Vietnam: see Singapore

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,

Tel. +381 11 62 5344, Fax.+381 11 63 5777

For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

Internet: http://www.semiconductors.philips.com

SCA67

© Philips Electronics N.V. 1999 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands 545002/01/pp60 Date of release: 1999 Aug 16 Document order number: 9397 750 02256

Let's make things better.

