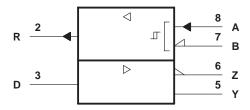
- Meets EIA Standards RS-422A, RS423A, and CCITT Recommendations V.11 and X.27
- Bus Voltage Range . . . −7 V to 12 V
- Positive and Negative Current Limiting
- Driver Output Capability . . . 60 mA Max
- Driver Thermal Shutdown Protection
- Receiver Input Impedance . . . 12 kΩ Min
- Receiver Input Sensitivity . . . ±200 mV
- Receiver Input Hysteresis . . . 50 mV Typ
- Operates From Single 5-V Supply
- Low Power Requirements

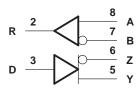
description

The SN75179A driver and bus receiver circuit is a monolithic integrated device designed for balanced transmission line applications, and meets EIA Standards RS-422A, RS-423A, and CCITT Recommendations V.11 and X.27. It is designed to improve the performance of data communications over long bus lines.

The SN75179A features positive- and negative-current limiting for the driver and receiver. The receiver features high input impedance, input hysteresis for increased noise immunity, and input sensitivity of ± 200 mV over a common-mode input voltage range of -12 V to 12 V.


The driver provides thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately 150°C. The device is designed to drive current loads of up to 60 mA maximum.

The SN75179A is characterized for operation from 0°C to 70°C.


V_{CC} 1 8 A R 2 7 B D 3 6 Z GND 4 5 Y

NOT RECOMMENDED FOR NEW DESIGN

logic symbol

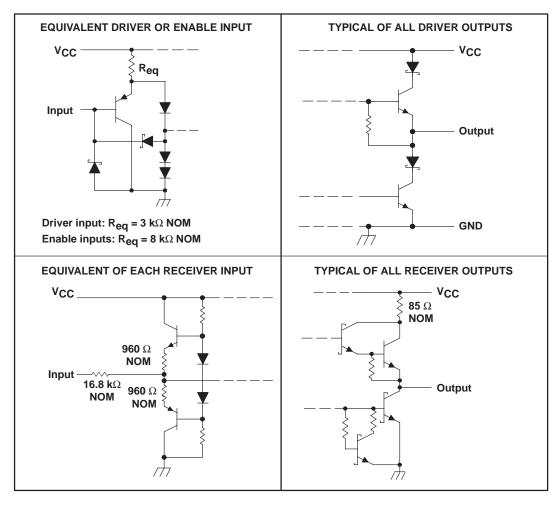
logic diagram

Function Tables

DRIVER

INPUT D	OUTPUTS Y Z				
Н	H L				
L	L H				

RECEIVER


DIFFERENTIAL INPUTS A – B	OUTPUT R
V _{ID} ≥ 0.2 V	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$?
V _{ID} ≤ −0.2 V	L

H = high level, L = low level,

? = indeterminate

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	7 V
Voltage range at any bus terminal	10 V to 15 V
Differential input voltage (see Note 2)	±25 V
Continuous total dissipation	See Dissipation Rating Table
Operating free-air temperature range	0°C to 70°C

NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.

2. Differential-input voltage is measured at the noninverting input with respect to the corresponding inverting input.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW
Р	1000 mW	8.0 mW/°C	640 mW

SLLS123B - D2845, JUNE 1984 - REVISED FEBRUARY 1993

recommended operating conditions

			MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}			4.5	5	5.25	V
High-level input voltage, V _{IH}	Driver		2			V
Low-level input voltage, V _{IL}	Driver				0.8	V
Common-mode input voltage, V _{IC}			_7†		12	V
Differential input voltage, V _{ID}				±12	V	
I Park I seed and seed assessed I	Driver				-60	mA
High-level output current, IOH	Receiver				-400	μΑ
Low lovel output ourrent les	Driver				60	mΛ
Low-level output current, IOL	Receiver	·			8	mA
Operating free-air temperature, T _A		0		70	°C	

[†] The algebraic convention, where the less-positive (more-negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage.

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CO	TEST CONDITIONS		TYP‡	MAX	UNIT	
VIK	Input clamp voltage	I _I = -18 mA				-1.5	V	
Vон	High-level output voltage	V _{IH} = 2 V, I _{OH} = -33 mA	V _{IL} = 0.8 V,		3.7		V	
VOL	Low-level output voltage	V _{IH} = 2 V, I _{OH} = 33 mA	$V_{IL} = 0.8 V$		1.1		V	
VOD1	Differential output voltage	IO = 0				2 V _{OD2}	V	
1\/0551	Differential output voltage	R _L = 100 Ω,	See Figure 13	2	2.7		V	
IVOD2l	Dillerential output voltage	R _L = 54 Ω,	See Figure 13	1.5	2.4		V	
$\Delta V_{OD} $	Change in magnitude of differential output voltage§					± 0.2	V	
Voc	Common-mode output voltage¶	R_L = 54 Ω or 100 Ω ,	See Figure 13			3	V	
Δ VOC	Change in magnitude of common-mode output voltage§					± 0.2	V	
IO	Output current with power off	$V_{CC} = 0$,	$V_0 = -7 \text{ V to } 12 \text{ V}$			±100	μΑ	
lіН	High-level input current	V _I = 2.4 V				20	μΑ	
I _{IL}	Low-level input current	V _I = 0.4 V				-400	μΑ	
		V _O = -7 V				-250		
los	Short-circuit output current	VO = VCC	AO = ACC		250		mA	
		V _O = 12 V				500		
ICC	Supply current (total package)	No load	·			50	mA	

[‡] All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{dD}	Differential-output delay time	P. – 60 O. Soo Figuro 2		40	60	ns
t _{tD}	Differential-output transition time	$R_L = 60 \Omega$, See Figure 3		65	95	ns

^{§ ∆|}V_{OD}| and ∆|V_{OC}| are the changes in magnitude of V_{OD} and V_{OC}, respectively, that occur when the input is changed from a high level to a low level.

[¶] In EIA Standard RS-422A, VOC, which is the average of the two output voltages with respect to ground, is called output offset voltage, VOS.

RECEIVER SECTION

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT
V _{T+}	Positive-going threshold voltage	$V_0 = 2.7 V$,	$I_0 = -0.4 \text{ mA}$			0.2	V
V _T _	Negative-going threshold voltage	$V_0 = 0.5 V$,	IO = 8 mA	-0.2‡			V
V _{hys}	Hysteresis (V _{T+} – V _T –)	See Figure 9			50		mV
Vон	High-level output voltage	V _{ID} = 200 mV, See Figure 2	$I_{OH} = -400 \ \mu\text{A},$	2.7			٧
VOL	Low-level output voltage	$V_{ID} = -200 \text{ mV},$	I _{OL} = 8 mA, See Figure 2			0.45	V
1.	Line input ourrent	Other input at 0 V,	V _I = 12 V			1	mA
11	Line input current	See Note 3	V _I = -7 V			-0.8	IIIA
rį	Input resistance			12			kΩ
los	Short-circuit output current			-15		-85	mA
Icc	Supply current (total package)	No load				50	mA

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

NOTE 3: Refer to EIA Standard RS-422A for exact conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	$V_{ID} = -1.5 \text{ V to } 1.5 \text{ V}, C_L = 15 \text{ pF},$		26	35	ns
tPHL	Propagation delay time, high-to-low-level output	See Figure 5		27	35	ns

[‡] The algebraic convention, where the less-positive (more-negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

PARAMETER MEASUREMENT INFORMATION

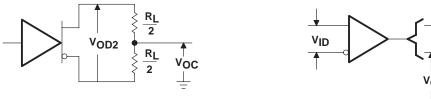


Figure 1. Driver VOD and VOC

۷он

Figure 2. Receiver VOH and VOL

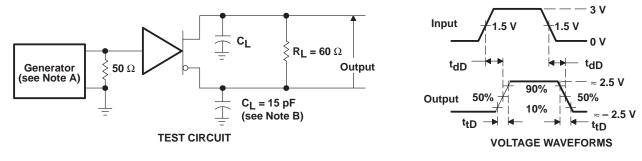


Figure 3. Driver Differential-Output Delay and Transition Times

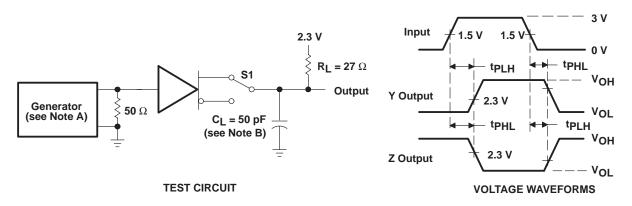


Figure 4. Driver Test Circuit and Voltage Waveforms

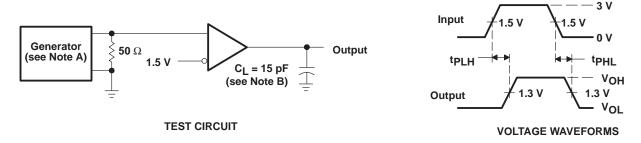


Figure 5. Receiver Test Circuit and Voltage Waveforms

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, 50% duty cycle, $t_f \le 6$ ns, $t_f \le 6$ ns, $Z_{\Omega} = 50 \ \Omega$.

B. C_I includes probe and jig capacitance.

TYPICAL CHARACTERISTICS

DRIVER HIGH-LEVEL OUTPUT VOLTAGE **DRIVER HIGH-LEVEL OUTPUT CURRENT** 5 V_CC = 5 V TA = 25°C 4.5 VOH - High-Level Output Voltage - V 4 3.5 3 2.5 2 1.5 0.5 0 -20 -40 -60 -80 -100-120

Figure 6

IOH - High-Level Output Current - mA

DRIVER DIFFERENTIAL OUTPUT VOLTAGE

DRIVER OUTPUT CURRENT 4 $V_{CC} = 5 V$ 3.5 V_{DD} - Differential Output Voltage - V T_A = 25°C 3 2.5 2 1.5 1 0.5 0 10 50 60 70 20 30 40 80 90 100 IO - Output Current - mA

Figure 8

DRIVER LOW-LEVEL OUTPUT VOLTAGE
vs
DRIVER LOW-LEVEL OUTPUT CURRENT

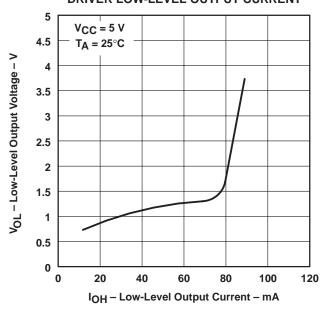


Figure 7

RECEIVER OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE

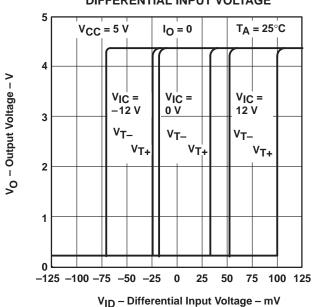


Figure 9

TYPICAL CHARACTERISTICS

RECEIVER HIGH-LEVEL OUTPUT VOLTAGE

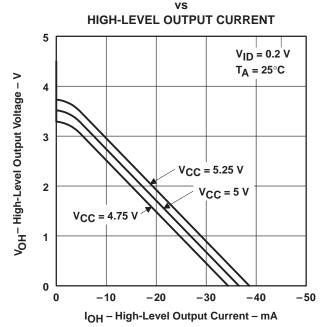


Figure 10

RECEIVER LOW-LEVEL OUTPUT VOLTAGE vs

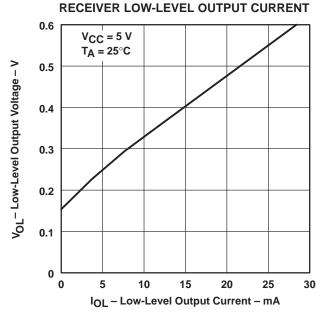


Figure 12

RECEIVER HIGH-LEVEL OUTPUT VOLTAGE vs

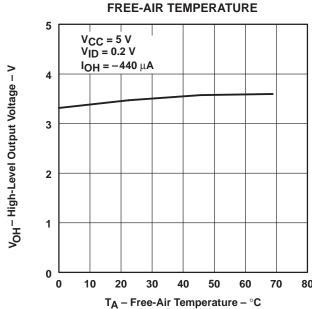


Figure 11

RECEIVER LOW-LEVEL OUTPUT VOLTAGE

FREE-AIR TEMPERATURE 0.6 $V_{CC} = 5 V$ $V_{ID} = -200 \text{ mV}$ V_{OL} - Low-Level Output Voltage - V 0.5 $I_{OL} = 8 \text{ mA}$ 0.4 0.3 0.2 0.1 0 0 10 20 30 40 50 60 70 80 T_A - Free-Air Temperature - °C

Figure 13

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current and complete.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1998, Texas Instruments Incorporated