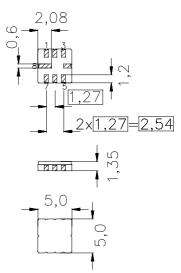


B4841 440,00 MHz

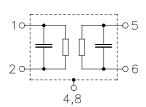
Data Sheet


Features

- IF low-loss filter for mobile telephone
- Channel selection in GSM, PCN, PCS systems
- Package for Surface Mounted Technology (SMT)
- Ceramic package
- Balanced and unbalanced operation possible
- High stopband attenuation

Terminals

Gold-plated Ni


SMD ceramic package QCC8C

Dimensions in mm, approx. weight 0,07 g

Pin configuration

2	Input or balanced input
1	Input-ground or balanced input
6	Output or balanced output
5	Output-ground or balanced output
3, 7	Not connected
4, 8	Case - Ground

Туре	Ordering code	Marking and Package according to	Packing according to		
B4841	B39441-B4841-U310	C61157-A7-A56	F61074-V8070-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	- 20/+ 70	°C
Storage temperature range	T_{stg}	- 30/+ 85	°C
DC voltage	$V_{\rm DC}$	3	V
Source power	P_{s}	10	dBm

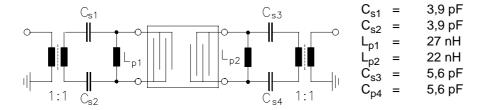
B4841 440,00 MHz

Data Sheet

Characteristics for balanced operation

Operating temperature range: T=-20 to 70 °C Terminating source impedance: $Z_{\rm S}=360~\Omega$ || -1,5 pF Terminating load impedance: $Z_{\rm L}=340~\Omega$ || -1,7 pF

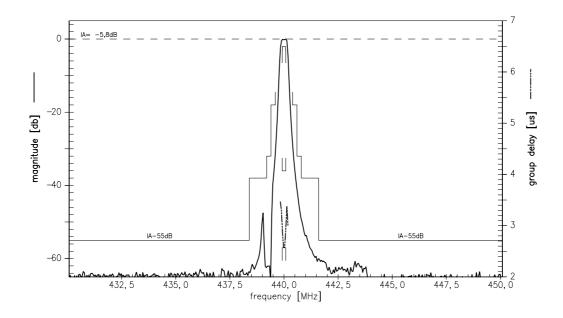
		min.	typ.	max.	
Nominal frequency	f_{N}	_	440,0	_	MHz
Minimum insertion attenuation					
including losses in matching network			4,6	5,5	dB
including losses in matching network and balun		_	5,7	6,5	dB
Amplitude ripple in passband (p-p)	Δα				
f_N - 67,0 kHz f_N + 67,0 kHz		_	0,4	2,0	dB
f_N - 80,0 kHz f_N + 80,0 kHz		_	0,5	3,0	dB
Group delay ripple (p-p)	Δτ				
f_N - 80,0 kHz f_N + 80,0 kHz		_	0,6	1,5	μs
Relative attenuation (relative to α_{min})					
f _N - 75,00 MHz f _N - 1,60 MHz		55	62	_	dB
f _N - 1,60 MHz f _N - 0,80 MHz		38	46		dB
f _N - 0,80 MHz f _N - 0,60 MHz		32	55		dB
f_N - 0,60 MHz f_N - 0,40 MHz		18	33		dB
$f_N + 0,40 \text{ MHz } \dots f_N + 0,60 \text{ MHz}$		18	28		dB
$f_N + 0,60 \text{ MHz } \dots f_N + 0,80 \text{ MHz}$		32	40	_	dB
$f_N + 0,80 \text{ MHz } f_N + 1,60 \text{ MHz}$		38	47		dB
$f_N + 1,60 \text{ MHz } \dots f_N + 75,00 \text{ MHz}$		55	60	_	dB
Impedance within the passband					
Input: $Z_{IN} = R_{IN} C_{IN}$		_	360 1,5	_	Ω pF
Output: $Z_{OUT} = R_{OUT} C_{OUT}$		_	340 1,7	_	Ω pF
Temperature coefficient of frequency 1)		_	-0,036	_	ppm/K ²
Turnover temperature		_	25	_	°C

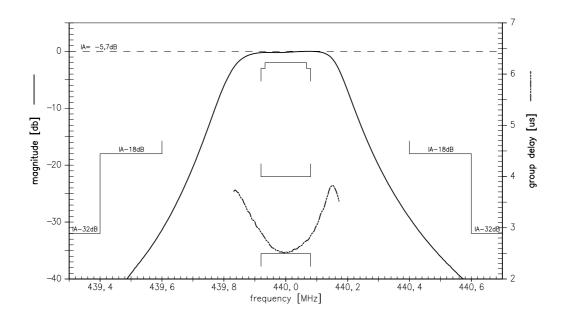

¹⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

B4841 440,00 MHz

Data Sheet

Matching network to 50 Ω : (Element values depend on PCB layout)




B4841 440,00 MHz

Data Sheet

Transfer function:

Transfer function (pass band):

