
INSULATED GATE BIPOLAR TRANSISTOR

Features

- Standard: Optimized for minimum saturation voltage and low operating frequencies (< 1kHz)
- Generation 4 IGBT design provides tighter parameter distribution and higher efficiency
- Industry standard TO-247AC package
- Lead-Free
- Automotive Qualified *

Benefits

- Generation 4 IGBT's offer highest efficiency available
- IGBT's optimized for specified application conditions

Ordering Information

Base part number	Package Type	Standard Pack		Complete Part Number
		Form	Quantity	
AUIRG4PH50S	TO-247AC	Tube	25	AUIRG4PH50S

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T_A) is 25°C, unless otherwise specified.

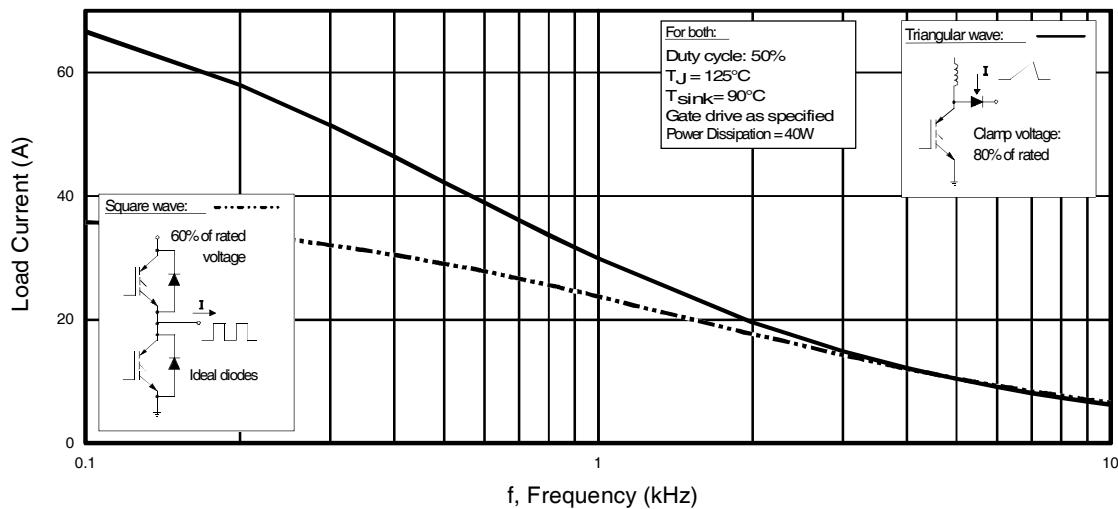
	Parameter	Max.	Units
V_{CES}	Collector-to-Emitter Voltage	1200	V
$I_C @ T_C = 25^\circ C$	Continuous Collector Current	57	A
$I_C @ T_C = 100^\circ C$	Continuous Collector Current	33	
I_{CM}	Pulsed Collector Current①	114	
I_{LM}	Clamped Inductive Load Current ②	114	V
V_{GE}	Gate-to-Emitter Voltage	± 20	
	Transient Gate-to-Emitter Voltage	± 30	
E_{ARV}	Reverse Voltage Avalanche Energy ③	270	mJ
$P_D @ T_C = 25^\circ$	Maximum Power Dissipation	200	W
$P_D @ T_C = 100^\circ$	Maximum Power Dissipation	80	
T_J T_{STG}	Operating Junction and Storage Temperature Range	-55 to + 150	
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	°C
	Mounting Torque, 6-32 or M3 Screw.	10 lbf-in (1.1 N·m)	

Thermal Resistance

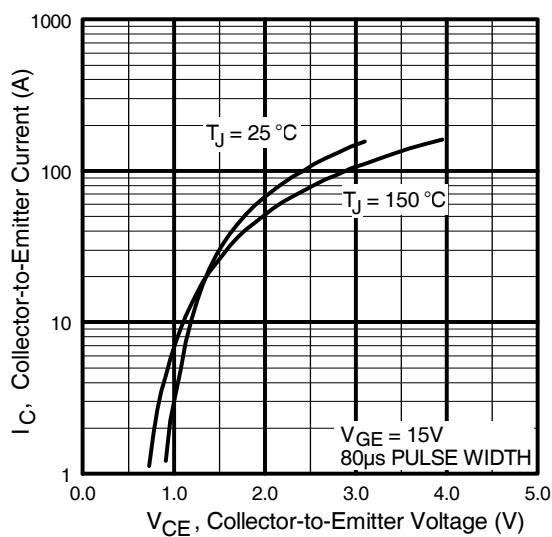
	Parameter	Min.	Typ.	Max.	Units
R_{JC}	Junction-to-Case	—	—	0.64	°C/W
R_{CS}	Case-to-Sink, Flat, Greased Surface	—	0.24	—	
R_{QA}	Junction-to-Ambient, typical socket mount	—	—	40	
Wt	Weight	—	6.0(0.21)	—	g (oz)

*Qualification standards can be found at <http://www.irf.com/>

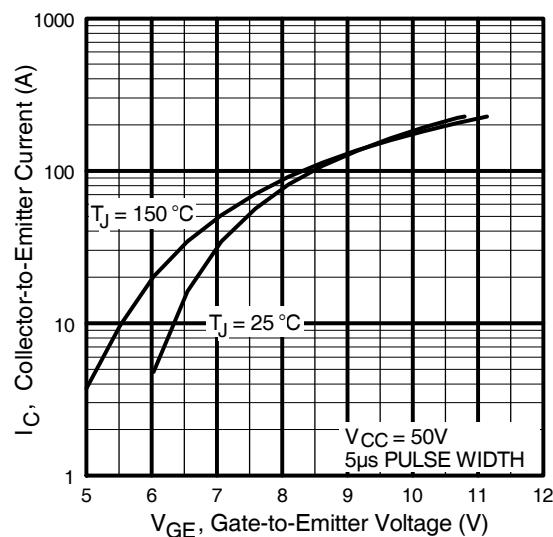
Dynamic Electrical Characteristics @ $T_J = 25^\circ\text{C}$ (unless otherwise specified)

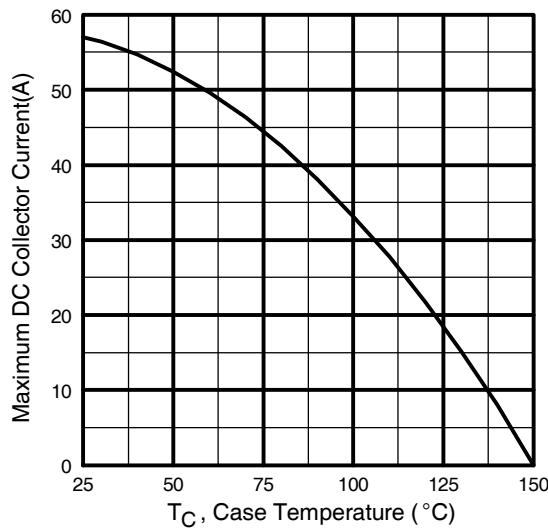

	Parameter	Min.	Typ.	Max.	Units	Conditions
$V_{(BR)CES}$	Collector-to-Emitter Breakdown Voltage	1200	—	—	V	$V_{GE} = 0\text{V}$, $I_C = 250\mu\text{A}$
$V_{(BR)ECS}$	Emitter-to-Collector Breakdown Voltage ④	18	—	—	V	$V_{GE} = 0\text{V}$, $I_C = 1.0\text{ A}$
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	—	1.22	—	V/ $^\circ\text{C}$	$V_{GE} = 0\text{V}$, $I_C = 2.0\text{ mA}$
$V_{CE(\text{ON})}$	Collector-to-Emitter Saturation Voltage	—	1.47	1.7	V	$I_C = 33\text{A}$ $V_{GE} = 15\text{V}$
		—	1.75	—		$I_C = 57\text{A}$ See Fig.2, 5
		—	1.55	—		$I_C = 33\text{A}$, $T_J = 150^\circ\text{C}$
		—	—	—		$V_{CE} = V_{GE}$, $I_C = 250\mu\text{A}$
$DV_{GE(\text{th})}/DT_J$	Temperature Coeff. of Threshold Voltage	—	-11	—	mV/ $^\circ\text{C}$	$V_{CE} = V_{GE}$, $I_C = 250\mu\text{A}$
g_{fe}	Forward Transconductance ⑤	27	40	—	S	$V_{CE} = 100\text{V}$, $I_C = 33\text{A}$
I_{CES}	Zero Gate Voltage Collector Current	—	—	250	μA	$V_{GE} = 0\text{V}$, $V_{CE} = 1200\text{V}$
		—	—	2.0		$V_{GE} = 0\text{V}$, $V_{CE} = 10\text{V}$, $T_J = 25^\circ\text{C}$
		—	—	1000		$V_{GE} = 0\text{V}$, $V_{CE} = 1200\text{V}$, $T_J = 150^\circ\text{C}$
I_{GES}	Gate-to-Emitter Leakage Current	—	—	± 100	nA	$V_{GE} = \pm 20\text{V}$

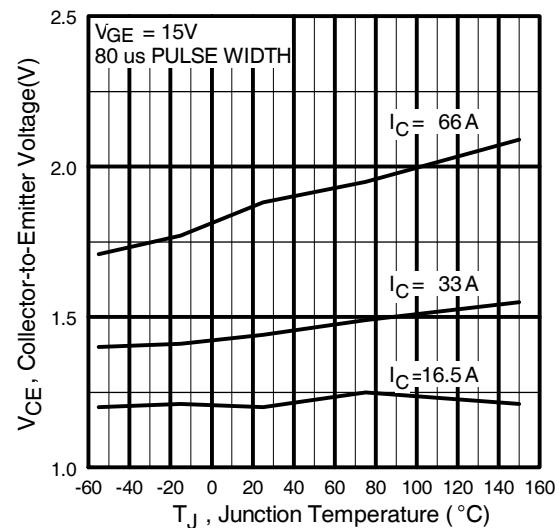
Static or Switching Electrical Characteristics @ $T_J = 25^\circ\text{C}$ (unless otherwise specified)

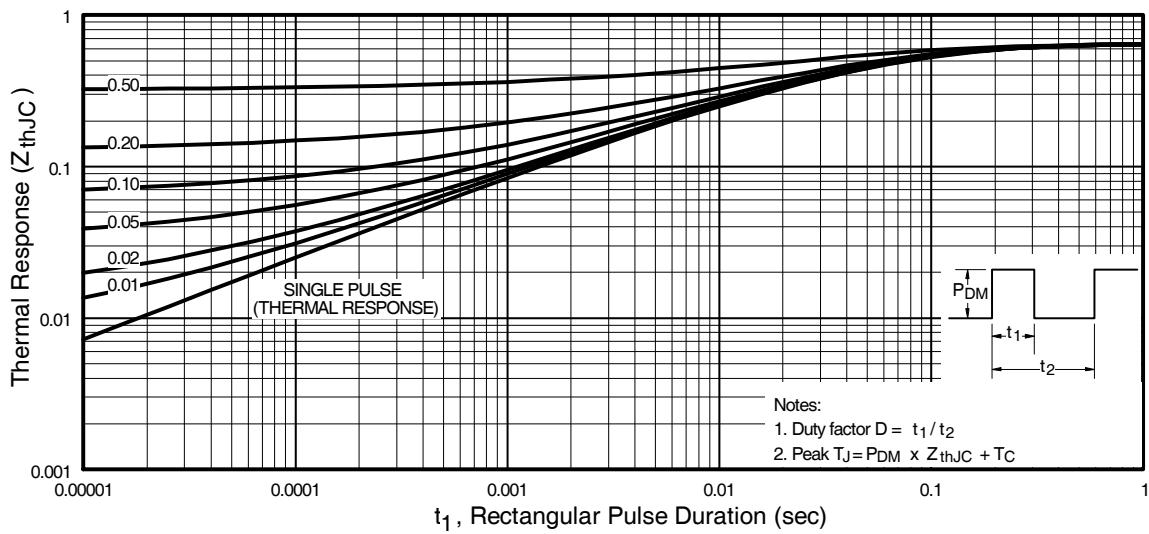

	Parameter	Min.	Typ.	Max.	Units	Conditions
Q_g	Total Gate Charge (turn-on)	—	167	251	nC	$I_C = 33\text{A}$
Q_{ge}	Gate - Emitter Charge (turn-on)	—	25	38		$V_{CC} = 400\text{V}$ See Fig. 8
Q_{gc}	Gate - Collector Charge (turn-on)	—	55	83		$V_{GE} = 15\text{V}$
$t_{d(on)}$	Turn-On Delay Time	—	32	—	ns	$T_J = 25^\circ\text{C}$ $I_C = 33\text{A}$, $V_{CC} = 960\text{V}$ $V_{GE} = 15\text{V}$, $R_G = 5.0\Omega$
t_r	Rise Time	—	29	—		
$t_{d(off)}$	Turn-Off Delay Time	—	845	1268		
t_f	Fall Time	—	425	638		
E_{on}	Turn-On Switching Loss	—	1.80	—	mJ	Energy losses include "tail" See Fig. 9, 10, 14
E_{off}	Turn-Off Switching Loss	—	19.6	—		
E_{ts}	Total Switching Loss	—	21.4	44		
$t_{d(on)}$	Turn-On Delay Time	—	32	—	ns	$T_J = 150^\circ\text{C}$, $I_C = 33\text{A}$, $V_{CC} = 960\text{V}$ $V_{GE} = 15\text{V}$, $R_G = 5.0\Omega$
t_r	Rise Time	—	30	—		
$t_{d(off)}$	Turn-Off Delay Time	—	1170	—		
t_f	Fall Time	—	1000	—		
E_{ts}	Total Switching Loss	—	37	—	mJ	Energy losses include "tail" See Fig. 10, 11, 14
L_E	Internal Emitter Inductance	—	13	—	nH	Measured 5mm from package
C_{ies}	Input Capacitance	—	3600	—	pF	$V_{GE} = 0\text{V}$
C_{oes}	Output Capacitance	—	160	—		$V_{CC} = 30\text{V}$ See Fig. 7
C_{res}	Reverse Transfer Capacitance	—	30	—		$f = 1.0\text{MHz}$

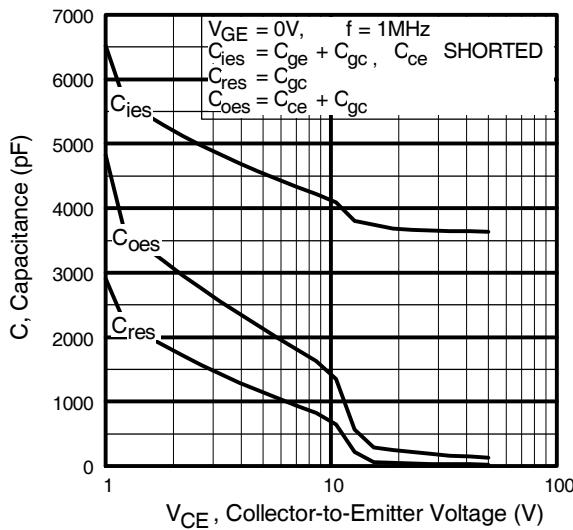
Notes:

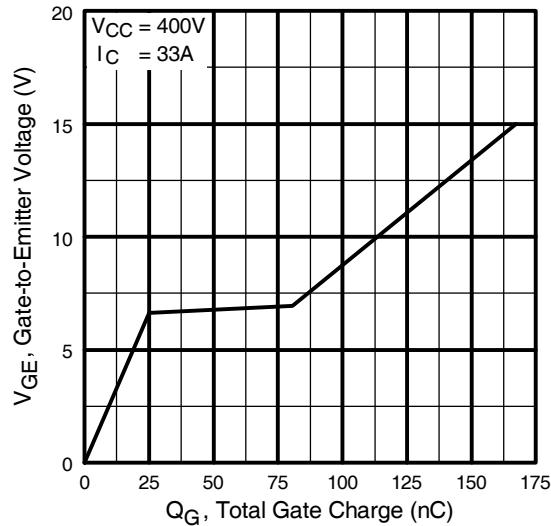

- ① Repetitive rating; $V_{GE} = 20\text{V}$, pulse width limited by max. junction temperature. (See fig. 13b)
- ② $V_{CC} = 80\%(V_{CES})$, $V_{GE} = 20\text{V}$, $L = 10\mu\text{H}$, $R_G = 5.0\Omega$, (See fig. 13a)
- ③ Repetitive rating; pulse width limited by maximum junction temperature.
- ④ Pulse width $\leq 80\mu\text{s}$; duty factor $\leq 0.1\%$.
- ⑤ Pulse width $5.0\mu\text{s}$, single shot.

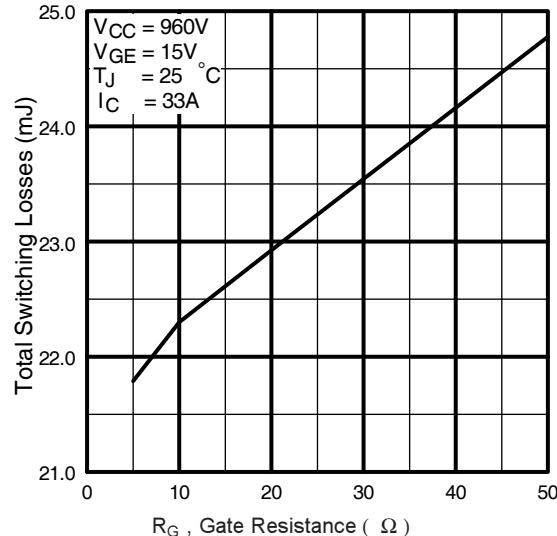

Fig. 1 - Typical Load Current vs. Frequency
(Load Current = I_{RMS} of fundamental)

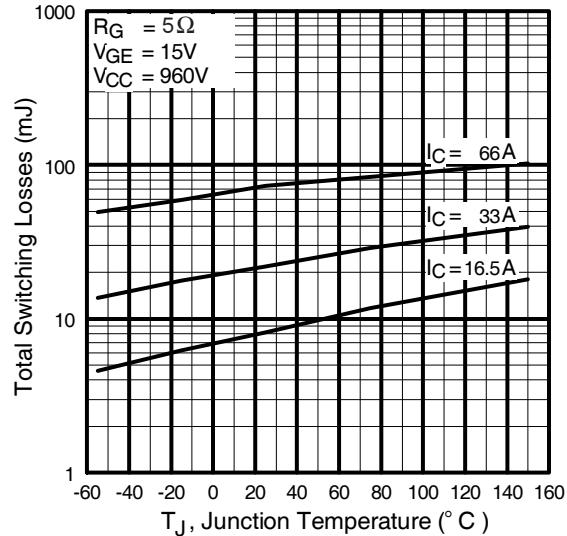

Fig. 2 - Typical Output Characteristics

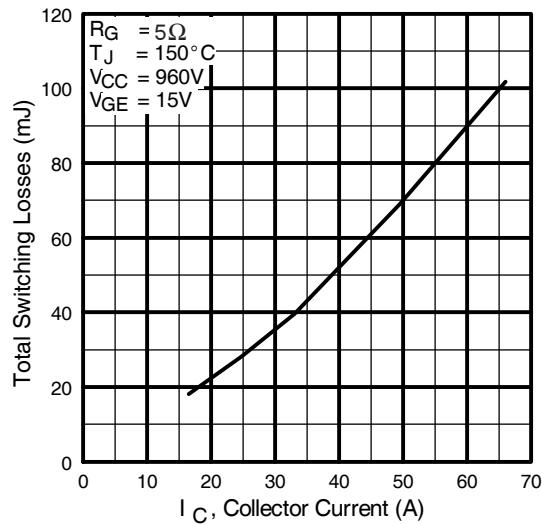

Fig. 3 - Typical Transfer Characteristics

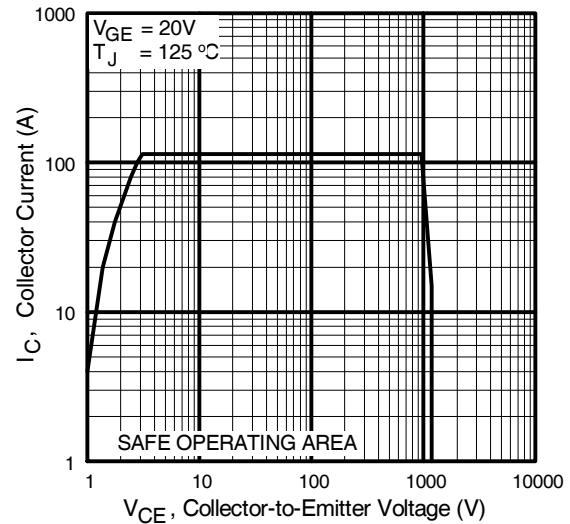

Fig. 4 - Maximum Collector Current vs. Case Temperature


Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature


Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case


Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage


Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage


Fig. 9 - Typical Switching Losses vs. Gate
Resistance

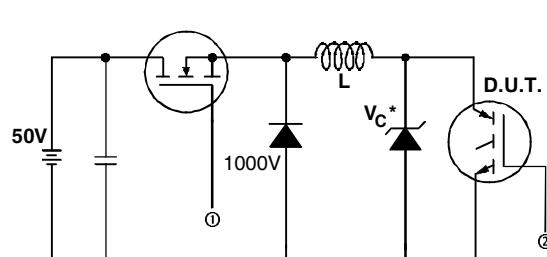

Fig. 10 - Typical Switching Losses vs.
Junction Temperature

Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current

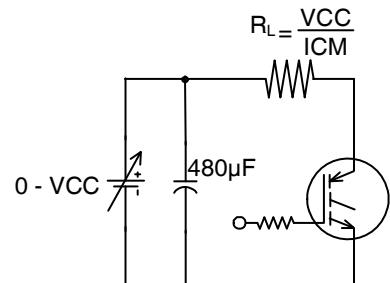


Fig. 12 - Reverse Bias SOA

* Driver same type as D.U.T.; $V_c = 80\%$ of $V_{ce(\max)}$
 * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated I_d .

Fig. 13a - Clamped Inductive Load Test Circuit

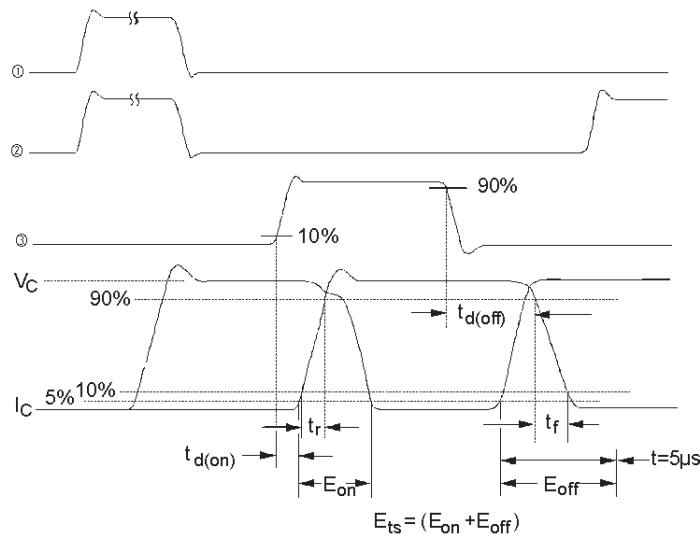

Pulsed Collector Current Test Circuit

Fig. 13b - Pulsed Collector Current Test Circuit

Fig. 14a - Switching Loss Test Circuit

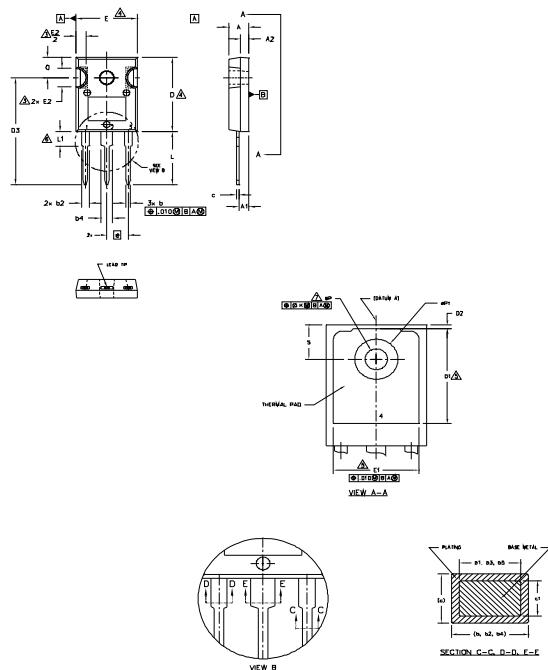
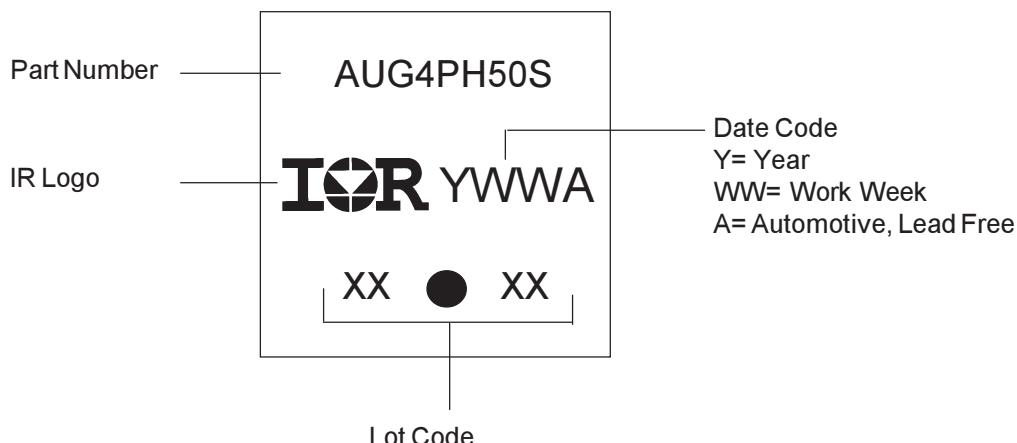

* Driver same type as D.U.T., $V_C = \text{---V}$

Fig. 14b - Switching Loss Waveforms

TO-247AC Package Outline


Dimensions are shown in millimeters (inches)

SYMBOL	DIMENSIONS				NOTES	
	INCHES		MILLIMETERS			
	MIN.	MAX.	MIN.	MAX.		
A	.183	.209	4.65	5.31		
A1	.087	.109	2.22	2.59		
A2	.059	.079	1.50	2.49		
b	.039	.055	0.99	1.40		
b1	.039	.053	0.99	1.35		
b2	.066	.094	1.65	2.39		
b3	.066	.094	1.65	2.34		
b4	.102	.135	2.59	3.43		
b5	.102	.133	2.59	3.38		
c	.015	.035	0.38	0.89		
c1	.015	.033	0.38	0.84		
D	.776	.815	19.71	20.70	4	
D1	.515	—	13.08	—	5	
D2	.020	.053	0.51	1.35		
D3	1.122	1.161	28.50	29.50		
E	.602	.625	15.29	15.87		
E1	.530	—	13.46	—		
E2	.178	.216	4.52	5.49		
e	.215 BSC		5.46 BSC			
ek	.010		0.25			
L	.559	.634	14.20	16.10		
L1	.146	.169	3.71	4.29		
#P	.140	.144	3.56	3.66		
#P1	—	.291	—	7.39		
Q	.209	.224	5.31	5.69		
S	.217 BSC		5.51 BSC			

SPECIAL NOTE:

TO-247AC Part Marking Information

Note: For the most current drawing please refer to IR website at <http://www.irf.com/package/>

Qualification Information[†]

Qualification Level	Automotive (per AEC-Q101) ^{††}	
	Comments: This part number(s) passed Automotive qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.	
Moisture Sensitivity Level	TO-247AC	N/A
ESD	Machine Model	Class M3 AEC-Q101-002
	Human Body Model	Class H2 AEC-Q101-001
	Charged Device Model	Class C4 AEC-Q101-005
RoHS Compliant	Yes	

[†] Qualification standards can be found at International Rectifier's web site: <http://www.irf.com/>

^{††} Exceptions to AEC-Q101 requirements are noted in the qualification report.

IMPORTANT NOTICE

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.

IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are specifically designated by IR as military-grade or "enhanced plastic." Only products designated by IR as military-grade meet military specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.

For technical support, please contact IR's Technical Assistance Center

<http://www.irf.com/technical-info/>

WORLD HEADQUARTERS:

101N.Sepulveda blvd, El Segundo, California 90245

Tel: (310) 252-7105