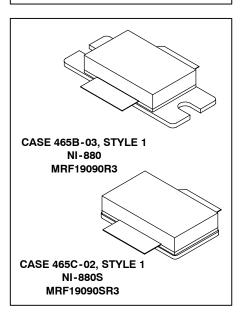
The RF MOSFET Line

RF Power Field Effect Transistors

N-Channel Enhancement-Mode Lateral MOSFETs

Designed for Class AB PCN and PCS base station applications with frequencies from 1.9 to 2.0 GHz. Suitable for CDMA, TDMA, GSM, and multicarrier amplifier applications.


Typical CDMA Performance: 1990 MHz, 26 Volts
 IS-97 CDMA Pilot, Sync, Paging, Traffic Codes 8 Through 13
 Output Power — 9 Watts
 Power Gain — 10 dB
 Adjacent Channel Power —

885 kHz: -47 dBc @ 30 kHz BW 1.25 MHz: -55 dBc @ 12.5 kHz BW 2.25 MHz: -55 dBc @ 1 MHz BW

- Internally Matched, Controlled Q, for Ease of Use
- High Gain, High Efficiency and High Linearity
- Integrated ESD Protection
- · Designed for Maximum Gain and Insertion Phase Flatness
- Capable of Handling 10:1 VSWR, @ 26 Vdc, 1.93 GHz, 90 Watts (CW) Output Power
- Excellent Thermal Stability
- Characterized with Series Equivalent Large-Signal Impedance Parameters
- In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.

MRF19090R3 MRF19090SR3

1990 MHz, 90 W, 26 V LATERAL N-CHANNEL RF POWER MOSFETs

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V_{DSS}	65	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +15	Vdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	270 1.54	Watts W/°C
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Operating Junction Temperature	TJ	200	°C

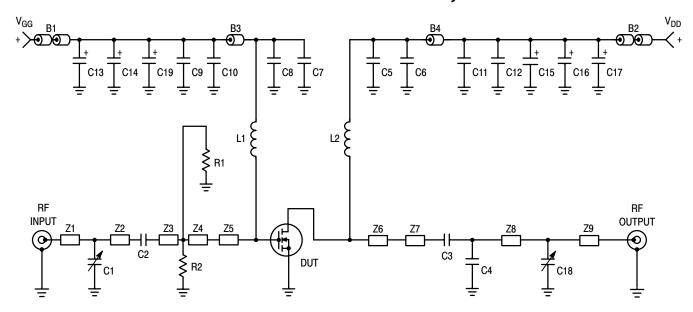
THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case		0.65	°C/W

ESD PROTECTION CHARACTERISTICS

Test Conditions	Class
Human Body Model	1 (Minimum)
Machine Model	M3 (Minimum)

NOTE - **CAUTION** - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.


MOTOROLA intelligence everywhere

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•	•	•
Drain-Source Breakdown Voltage $(V_{GS} = 0 \text{ Vdc}, I_D = 100 \mu\text{A})$	V _{(BR)DSS}	65	_	_	Vdc
Zero Gate Voltage Drain Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
N CHARACTERISTICS					
Forward Transconductance (V _{DS} = 10 Vdc, I _D = 3 Adc)	9fs	_	7.2	_	S
Gate Threshold Voltage ($V_{DS} = 10 \text{ Vdc}, I_D = 300 \mu \text{Adc}$)	VGS _(th)	2.0	_	4.0	Vdc
Gate Quiescent Voltage (V _{DS} = 26 Vdc, I _D = 750 mAdc)	V _{GS(Q)}	2.5	3.8	4.5	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 1 Adc)	V _{DS(on)}	_	0.10	_	Vdc
YNAMIC CHARACTERISTICS			•	•	
Reverse Transfer Capacitance (1) (V _{DS} = 26 Vdc, V _{GS} = 0, f = 1 MHz)	C _{rss}	_	4.2	_	pF
UNCTIONAL TESTS (In Motorola Test Fixture)			•	•	•
Two-Tone Common-Source Amplifier Power Gain $(V_{DD}=26\ Vdc,\ P_{out}=90\ W\ PEP,\ I_{DQ}=750\ mA, f=1930\ MHz$ and 1990 MHz, Tone Spacing = 100 kHz)	G _{ps}	10	11.5	_	dB
Two-Tone Drain Efficiency $(V_{DD}=26\ \text{Vdc},\ P_{out}=90\ \text{W PEP},\ I_{DQ}=750\ \text{mA},$ f = 1930 MHz and 1990 MHz, Tone Spacing = 100 kHz)	η	33	35	_	%
3rd Order Intermodulation Distortion (V _{DD} = 26 Vdc, P _{out} = 90 W PEP, I _{DQ} = 750 mA, f = 1930 MHz and 1990 MHz, Tone Spacing = 100 kHz)	IMD	_	-30	-28	dBc
Input Return Loss $(V_{DD}=26\ Vdc,\ P_{out}=90\ W\ PEP,\ I_{DQ}=750\ mA, f=1930\ MHz\ and\ 1990\ MHz,\ Tone\ Spacing=100\ kHz)$	IRL	_	-12	_	dB
P _{out} , 1 dB Compression Point (V _{DD} = 26 Vdc, P _{out} = 90 W CW, f = 1990 MHz)	P1dB	_	90	_	W
Output Mismatch Stress $(V_{DD}=26~Vdc,~P_{out}=90~W~CW,~I_{DQ}=750~mA,\\f=1930~MHz,~VSWR=10:1,~All~Phase~Angles~at~Frequency~of~Tests)$	Ψ	No Degradation In Output Power Before and After Test			

⁽¹⁾ Part is internally matched both on input and output.

B1, B2 B3, B34	2 Ferrite Beads, Round, Ferroxcube #56-590-65-3B Ferrite Beads, Surface Mount, Ferroxcube	L1, L2	8 Turns, #26 AWG, 0.085" OD, 0.330" Long, Copper Wire
C1, C18	0.4 - 2.5 pF Variable Capacitors, Johanson Gigatrim #27285	R1, R2	270 Ω , 1/4 W Chip Resistors, Garrett
C2, C5, C8	10 pF Chip Capacitors, B Case, ATC #100B100CCA500X	111,112	Instruments #RM73B2B271JT
C3	12 pF Chip Capacitor, B Case, ATC #100B120CCA500X	Z1	ZO = 50 Ohms
C4	0.3 pF Chip Capacitor, B Case, ATC #100B0R3CCA500X	Z2	ZO = 50 Ohms, Lambda = 0.123
C6, C7	120 pF Chip Capacitors, B Case, ATC #100B12R1CCA500X	Z3	ZO = 15.24 Ohms, Lambda = 0.0762
C9, C12	0.1 μF Chip Capacitors, Kemet #CDR33BX104AKWS	Z4	ZO = 10.11 Ohms, Lambda = 0.0392
C10, C11	1000 pF Chip Capacitors, B Case, ATC #100B102JCA50X	Z 5	ZO = 6.34 Ohms, Lambda = 0.0711
C13, C17	22 μF, 35 V Tantalum Chip Capacitors,	Z6	ZO = 5.02 Ohms, Lambda = 0.0476
	Kemet #T491X226K035AS4394	Z 7	ZO = 5.54 Ohms, Lambda = 0.0972
C14, C16	10 μF, 35 V Tantalum Chip Capacitors,	Z8	ZO = 50.0 Ohms, Lambda = 0.194
	Kemet #T495X106K035AS4394	Z 9	ZO = 50.0 Ohms
C15, C19	1 μF, 35 V Tantalum Chip Capacitors,	Raw PCB Material	0.030" Glass Teflon [®] , ε_r = 2.55,
	Kemet #T495X105K035AS4394		2 oz Copper, 3" x 5" Dimensions

Figure 1. MRF19090 Test Circuit Schematic

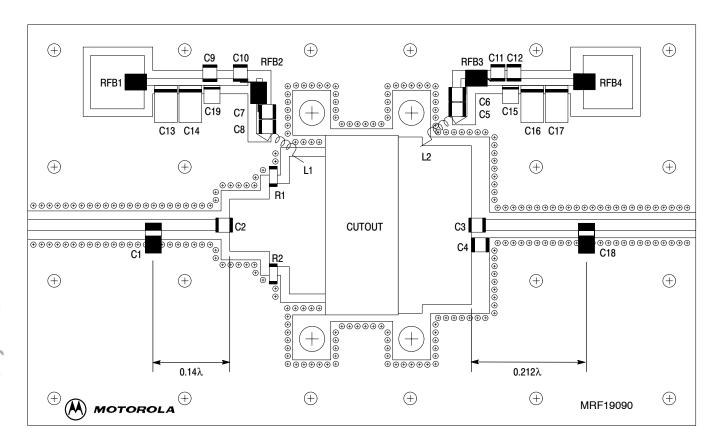


Figure 2. MRF19090 Test Circuit Component Layout

TYPICAL CHARACTERISTICS

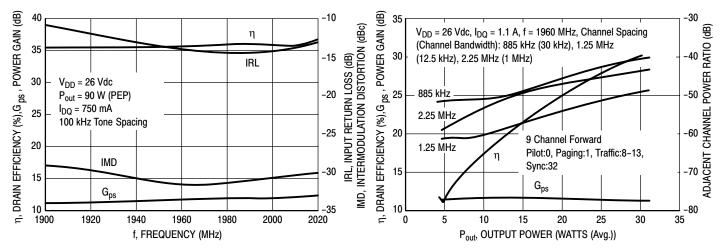


Figure 3. Class AB Performance versus Frequency

Figure 4. CDMA Performance ACPR, Gain and Drain Efficiency versus Output Power

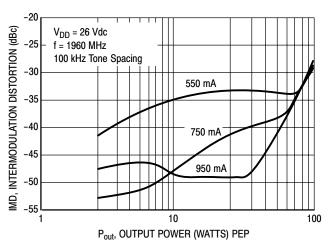


Figure 5. Third Order Intermodulation Distortion versus Output Power

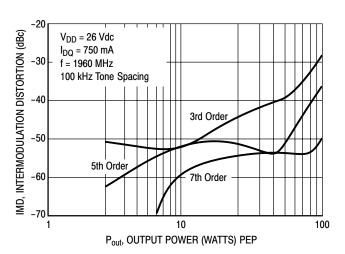


Figure 6. Intermodulation Products versus Output Power

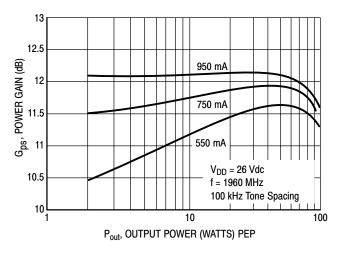


Figure 7. Power Gain versus Output Power

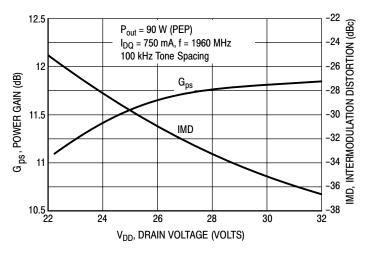
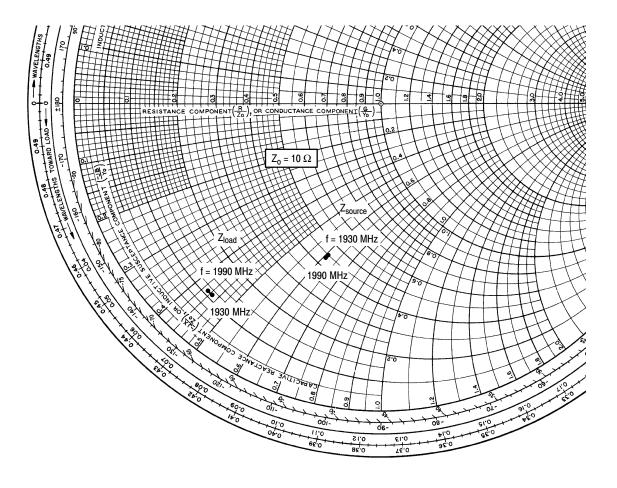



Figure 8. Third Order Intermodulation Distortion and Gain versus Supply Voltage

 V_{DD} = 26 V, I_{DQ} = 750 mA, P_{out} = 90 Watts (PEP)

f MHz	$\mathbf{Z_{source}}_{\Omega}$	Z_{load} Ω
1930	4.5 - j6.1	1.1 - j4.5
1960	4.4 - j6.0	1.1 - j4.4
1990	4.3 - j6.1	1.1 - j4.3

Test circuit impedance as measured from gate to ground.

Test circuit impedance as measured Z_{load} from drain to ground.

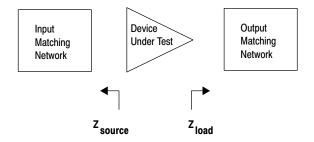
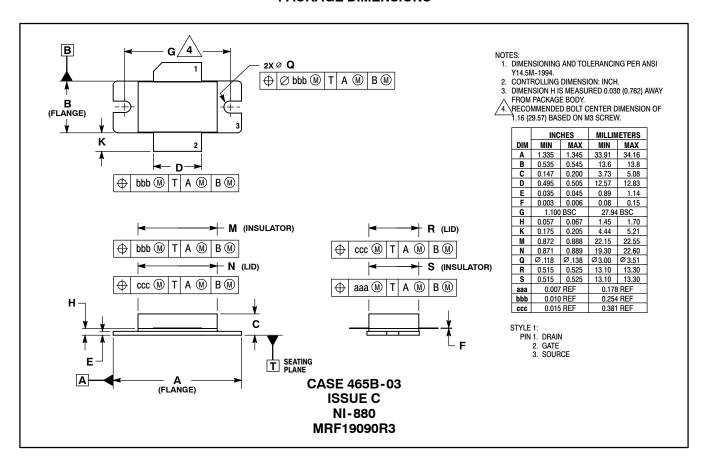
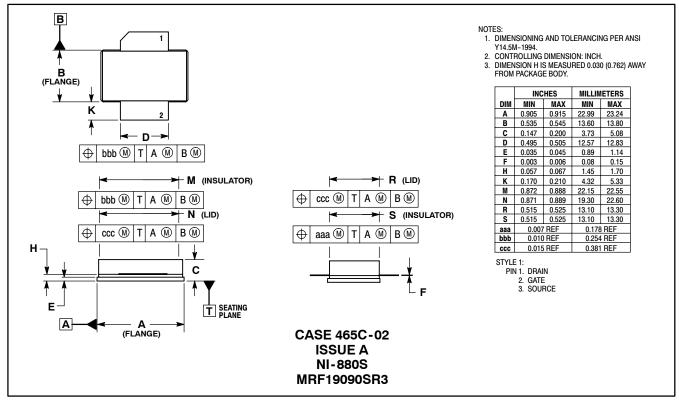




Figure 9. Series Equivalent Source and Load Impedance

PACKAGE DIMENSIONS

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola Inc. 2004

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED: Motorola Literature Distribution P.O. Box 5405, Denver, Colorado 80217 1-800-521-6274 or 480-768-2130 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573, Japan 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26688334

HOME PAGE: http://motorola.com/semiconductors

