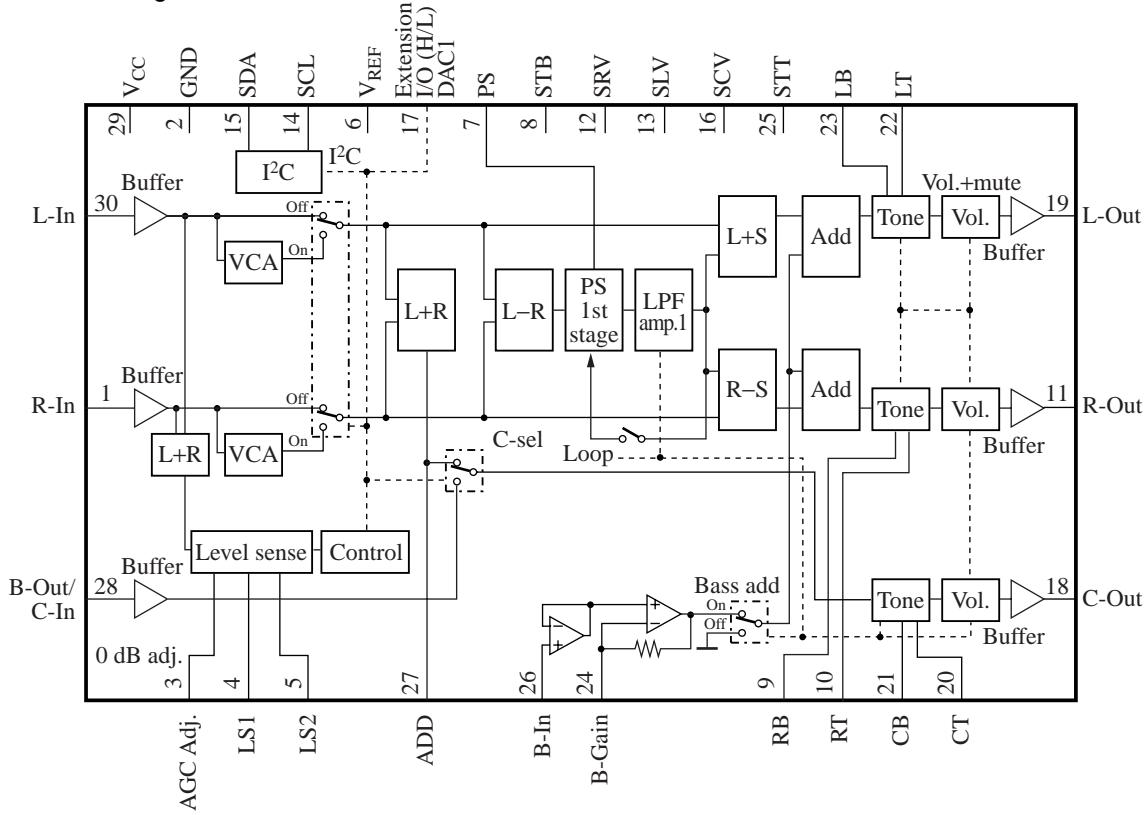


AN5295NK

3-ch. sound signal processing single chip IC for TV (with I²C bus)

■ Overview

The AN5295NK is a television-use 3-ch. sound signal processing IC which incorporates volume, tone control (L/R/C 3-ch.), and surround sound, sound AGC, lower sound enforce (L/R 2-ch.) functions. All of the functions (including changeover switch) including external I/O port can be controlled by I²C bus.


■ Features

- 3-ch. of volumes can be controlled independently (max. attenuation is 75 dB or more)
- Center output can be switched, either center input or inside L+R signal (for HDTV)
- Lower sound enforce effect (frequency and gain) can be adjusted with external parts
- With L+R output

■ Applications

- Television

■ Block Diagram

■ Pin Descriptions

Pin No.	Description	Pin No.	Description
1	R-ch. input pin	16	C-ch. volume DAC output pin
2	Ground pin	17	Extension DAC pin 1
3	AGC 0 dB adjustment pin	18	C-ch. output pin
4	AGC level sensor-1 pin	19	L-ch. output pin
5	AGC level sensor-2 pin	20	C-ch. treble f_C setting pin
6	1/2 V_{CC} pin	21	C-ch. bass f_C setting pin
7	Phase shift pin	22	L-ch. treble f_C setting pin
8	L/R/C-ch. bass DAC output pin	23	L-ch. bass f_C setting pin
9	R-ch. bass f_C setting pin	24	Bass mix. gain adjustment pin
10	R-ch. treble f_C setting pin	25	L/R/C-ch. treble DAC output pin
11	R-ch. output pin	26	Bass detection LPF ope.-amp. input pin
12	R-ch. volume DAC output pin	27	L+R add after AGC output pin
13	L-ch. volume DAC output pin	28	C-ch. input pin
14	I ² C communication clock pin	29	Power supply pin (12 V)
15	I ² C communication data pin	30	L-ch. input pin

■ Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V_{CC}	13.5	V
Supply current	I_{CC}	80	mA
Power dissipation ^{*2}	P_D	1 143	mW
Operating ambient temperature ^{*1}	T_{opr}	-20 to +75	°C
Storage temperature ^{*1}	T_{stg}	-55 to +150	°C

Note) ^{*1}: Except for the operating ambient temperature and storage temperature, all ratings are for $T_a = 25^\circ\text{C}$.

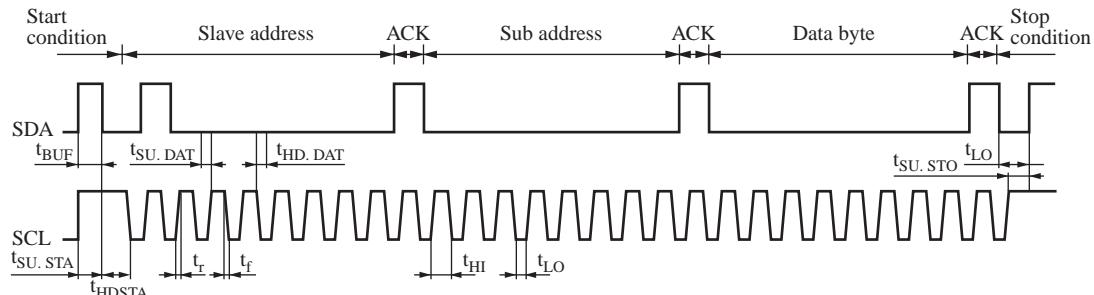
^{*2}: $T_a = 70^\circ\text{C}$.

■ Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	V_{CC}	10.8 to 13.2	V

■ Electrical Characteristics at $T_a = 25^\circ\text{C}$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Tone control						
Volume max. level *	$V_{VO(\text{max})}$	$V_{IN} = 1 \text{ V[rms]}, f = 1 \text{ kHz}$	-2.3	-0.3	1.7	dB
Volume typ. level *	$V_{VO(\text{typ})}$	$V_{IN} = 1 \text{ V[rms]}, f = 1 \text{ kHz}$	-16.2	-13.2	-10.2	dB
Volume min. level *	$V_{VO(\text{min})}$	$V_{IN} = 1 \text{ V[rms]}, f = 1 \text{ kHz}$	—	—	-75	dB
Bass: boost level	V_{BB}	$V_{IN} = 400 \text{ mV[rms]}, f = 50 \text{ Hz}$	9.2	11.2	13.2	dB
Bass: cut level	V_{BC}	$V_{IN} = 400 \text{ mV[rms]}, f = 50 \text{ Hz}$	-11.7	-9.7	-7.7	dB
Treble: boost level	V_{TB}	$V_{IN} = 400 \text{ mV[rms]}, f = 20 \text{ kHz}$	9.7	11.7	13.7	dB
Treble: cut level	V_{TC}	$V_{IN} = 400 \text{ mV[rms]}, f = 20 \text{ kHz}$	-12.1	-10.1	-8.1	dB
AGC						
Input/output level 1 *	V_{AGC1}	$V_{IN} = 1 \text{ mV[rms]}, f = 1 \text{ kHz}$	0.7	1.7	2.7	mV[rms]
Input/output level 2 *	V_{AGC2}	$V_{IN} = 50 \text{ mV[rms]}, f = 1 \text{ kHz}$	70	110	150	mV[rms]
Input/output level 3 *	V_{AGC3}	$V_{IN} = 1 \text{ V[rms]}, f = 1 \text{ kHz}$	275	345	415	mV[rms]
Circuit current *	I_{CC}	$V_{IN} = 0 \text{ mV}$	25	45	65	mA
Total harmonics distortion *	THD	$V_{IN} = 1 \text{ V[rms]}, f = 1 \text{ kHz}$	—	0.1	0.5	%
Max. input voltage *	$V_{IN(\text{max})}$	THD = 1%	2.8	—	—	V[rms]
Mute level *	V_{MUTE}	$V_{IN} = 1 \text{ V[rms]}, f = 1 \text{ kHz}$	—	—	-80	dB
Noise level at volume max. *	$V_{NO(\text{max})}$	$V_{IN} = 0 \text{ mV}, R_g = 0 \Omega$	—	115	200	$\mu\text{V[rms]}$
Noise level at volume min. *	$V_{NO(\text{min})}$	$V_{IN} = 0 \text{ mV}, R_g = 0 \Omega$	—	45	100	$\mu\text{V[rms]}$
Surround level (max.) *	$V_{SU(\text{max})}$	$V_{IN} = 100 \text{ mV[rms]}, f = 1 \text{ kHz}$	12.4	14.4	16.4	dB
Surround level (min.) *	$V_{SU(\text{min})}$	$V_{IN} = 100 \text{ mV[rms]}, f = 1 \text{ kHz}$	2.9	4.9	6.9	dB
Surround level at loop on *	V_{LPSUL}	$V_{IN} = 100 \text{ mV[rms]}, f = 1 \text{ kHz}$	4.9	6.9	8.9	dB
Level at bass add on *	V_{BAONL}	$V_{IN} = 400 \text{ mV[rms]}, f = 50 \text{ Hz}$	3.95	5.95	7.95	dB
Cross talk *	CT	$V_{IN} = 1 \text{ V[rms]}, f = 1 \text{ kHz}$	—	-70	-68.5	dB
Channel balance *	CB	$V_{IN} = 1 \text{ V[rms]}, f = 1 \text{ kHz}$	-1.5	0	1.5	dB
L-R volume tracking (1/4) *	V_{TR}	$V_{IN} = 1 \text{ V[rms]}, f = 1 \text{ kHz}$	-2.0	0	2.0	dB
I²C interface						
Sink current at ACK	I_{ACK}	Maximum value of pin 15 sink current at ACK	2.0	10	—	mA
SCL, SDA signal high-level input	V_{IHI}		3.5	—	5.0	V
SCL, SDA signal low-level input	V_{ILO}		0	—	0.9	V
Max. allowable input frequency	$f_{I_{\text{max}}}$		—	—	100	kbit/s


Note) * : Uses DIN audio filter.

■ Electrical Characteristics at $T_a = 25^\circ\text{C}$ (continued)

• Design reference data

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
I²C interface						
Bus free before start	t_{BUS}		4.0	—	—	μs
Start condition setup time	$t_{\text{SU. STA}}$		4.0	—	—	μs
Start condition hold time	$t_{\text{HD. STA}}$		4.0	—	—	μs
Low period SCL, SDA	t_{LO}		4.0	—	—	μs
High period SCL	t_{HI}		4.0	—	—	μs
Rise time SCL, SDA	t_r		—	—	1.0	μs
Fall time SCL, SDA	t_f		—	—	0.35	μs
Data setup time (write)	$t_{\text{SU. DAT}}$		0.25	—	—	μs
Data hold time (write)	$t_{\text{HD. DAT}}$		0	—	—	μs
Acknowledge setup time	$t_{\text{SU. ACK}}$		—	—	3.5	μs
Acknowledge hold time	$t_{\text{HD. ACK}}$		0	—	—	μs
Stop condition setup time	$t_{\text{SU. STO}}$		4.0	—	—	μs
DAC						
6-bit DAC DNLE	L_6	1 LSB = (data (max.) – data (00))/63	0.1	1.0	1.9	LSB/step

■ Terminal Equivalent Circuits

Pin No.	Equivalent circuit	Description	Voltage (V)
1		R-In: R-ch. Input pin	6
2	—	GND: GND pin	0

■ Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	Voltage (V)
3		AGC Adj.: AGC on/off changeover AGC off at 1.2 V or less.	—
4		LS1: AGC level sensor 1	7
5		LS2: AGC level sensor 1, 2	0.5 to 1.5
6		V_{REF} : Reference voltage to be stabilized	6
7		PS: Phase shift pin	6
8		STB: L/R/C-ch. bass DAC output pin	3±1

■ Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	Voltage (V)
9		RB: R-ch. bass f_C setting pin	6
10		RT: R-ch. treble f_C setting pin	6
11		R-Out: R-ch. output pin	6
12		SRV: R-ch. volume DAC output pin	3±1
13		SLV: L-ch. volume DAC output pin	3±1
14		SCL: I ² C bus clock input pin	V _{CC}

■ Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	Voltage (V)
15		SDA: I ² C bus data input pin	V _{CC}
16		SCV: C-ch. volume DAC output pin	3±1
17		DAC1: Extension DAC output pin	0 or 5
18		C-Out: C-ch. output pin	6
19		L-Out: L-ch. output pin	6
20		CT: C-ch. treble f _C setting pin	6

■ Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	Voltage (V)
21		CB: C-ch. bass f_C setting pin	6
22		LT: L-ch. treble f_C setting pin	6
23		LB: L-ch. bass f_C setting pin	6
24		B-Gain: Bass mix. gain adjustment pin	6
25		STT: L/R/C-ch. treble DAC output pin	3±1
26		B-In: Bass detection LPF ope.-amp. input pin	6

■ Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	Voltage (V)
27		ADD: L+R (after AGC) output pin	6
28		C-In: C-ch. input pin	6
29	—	V _{CC} : Power supply pin	12
30		L-In: L-ch. input pin	6

■ Technical Information

- I²C bus

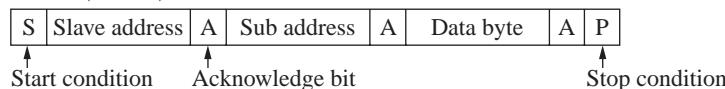
1. DAC

- 1) Built-in 5 DAC controls and 8 switches

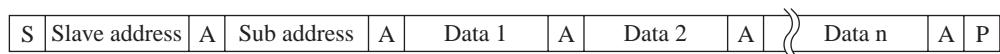
- 2) Incorporating auto-increment functions

- 3) Sub address 0* : Auto-increment mode

(Data are inputted by the change of sub-address according to the transfer when data are sequentially transferred.)


- 4) Sub address 8* : Data renewal mode

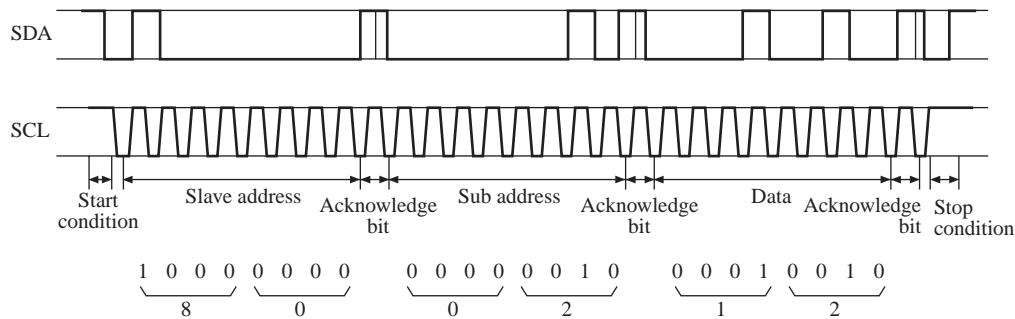
(Data are inputted with the same sub-address when data are sequentially transferred.)


- 5) I²C bus protocol

- 1) Slave address: 10000000 (80H)

- 2) Format (normal)

- 3) Auto-increment mode/data renewal mode



- 6) Typical data should be inputted at power on because initial state of DAC is not guaranteed.

■ Technical Information (continued)

• I²C bus (continued)

2. I²C bus transfer sequence

Transfer message example

Two type of transfer messages of SCL and SDA are sent by synchronous serial transfer. SCL is a clock of constant frequency and SDA indicates address data to control receiving side and is sent in parallel by synchronizing with SCL. Data are transferred in principle with 8-bit 3 octet (byte) and acknowledge bit exists every one octet. Frame organization are described as follows:

- 1) Start condition When SDA becomes low from high at SCA = high, receiver is on a data receiving mode.
- 2) Stop condition When SDA becomes high from low at SCA = high, receiver stops receiving data.
- 3) Slave address Address determined by device. Receiving is stopped when address of another device is sent.
- 4) Sub address Address determined by function
- 5) Data Data to control
- 6) Acknowledge bit To let the master acknowledge that data has been received for each octet in such manner that the master sends a high signal and the receiver sends back a low signal as shown by above transfer sequence.

SDA is not changed when SCL is high except start and stop conditions.

3. Sub address byte and data byte format

Sub address	Data byte							
	D7	D6	D5	D4	D3	D2	D1	D0
00	L-ch. vol.							Mute on/off
01	R-ch. vol.							C-ch. mute on/off
02	C-ch. vol.							Bass mix. on/off
03	L/R/C treble				L/R/C bass			
04	0	0	0	0	0	0	0	0
05	Surround effect				Surround loop on/off	0	0	DAC1 L/H

■ Technical Information (continued)

• I²C bus (continued)

3. Sub address byte and data byte format (continued)

1) L-ch. Vol., R-ch. Vol., C-ch. Vol.

Min. at data = 00

Max. at data = 3F

2) L/R/C treble, L/R/C bass

Min. at data = 0

Max. at data = F

3) Surround effect

Min. at data = 0

Max. at data = F

4) Switches (except C-ch. mute SW)

Off at data = 0

On at data = 1

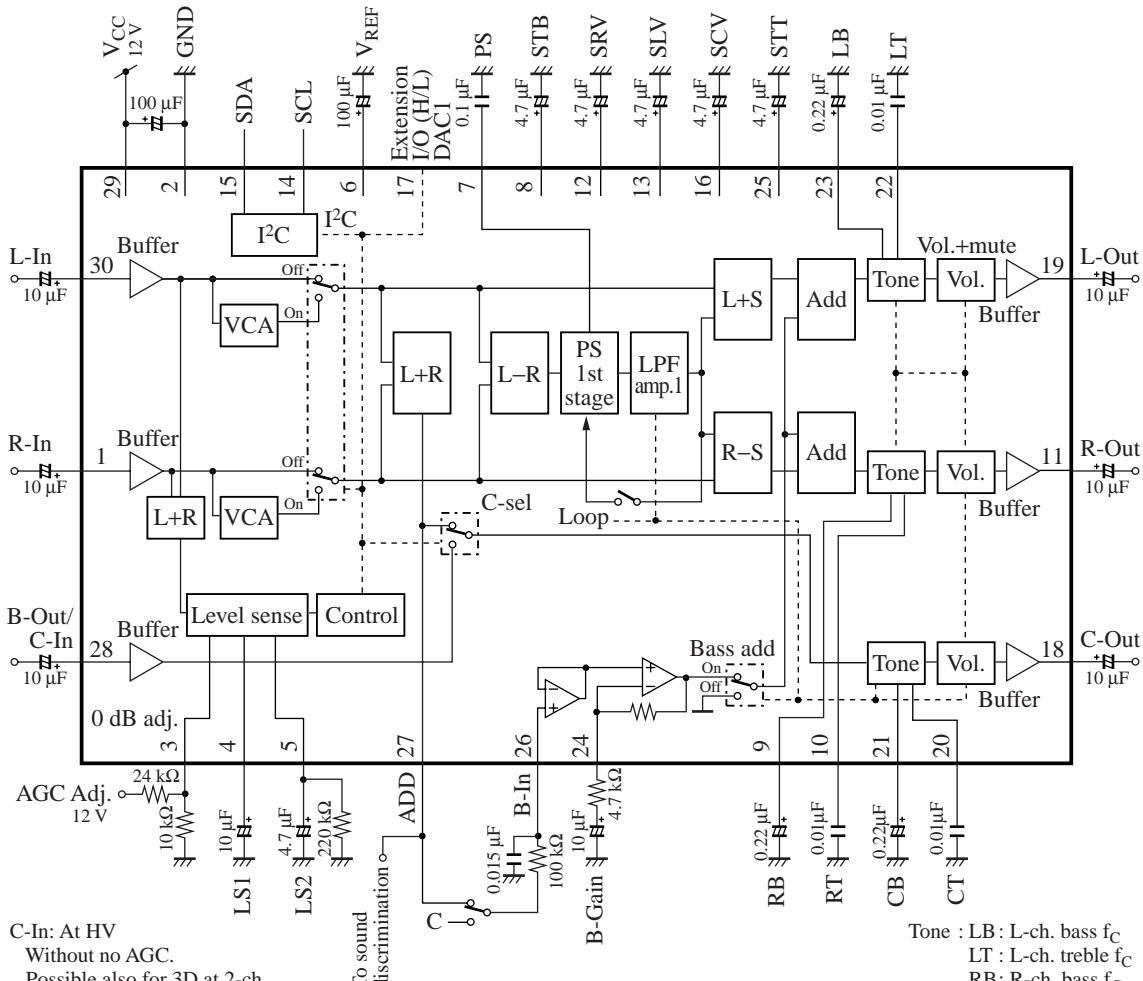
5) DAC1

Low (0 V) at data = 0

High (5 V) at data = 1

6) C-In select

L+R in at data = 0


C-In at data = 1

7) C-ch. mute

Off at data = 0

On at data = 1

■ Application Circuit Example

Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment.
Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
- (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
- (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

- A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
- B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
- C. These materials are solely intended for a customer's individual use.
Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.