

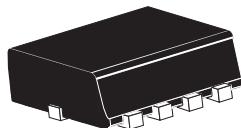
ZX3CD2S1M832

MPPS™ Miniature Package Power Solutions 20V PNP LOW SATURATION TRANSISTOR AND 40V, 1A SCHOTTKY DIODE COMBINATION DUAL

SUMMARY

PNP Transistor — $V_{CEO} = -20V$; $R_{SAT} = 64m\Omega$; $I_C = -3.5A$

Schottky Diode — $V_R = 40V$; $V_F = 500mV$ (@1A); $I_C=1A$


DESCRIPTION

Packaged in the new innovative 3mm x 2mm MLP this combination dual comprises an ultra low saturation PNP transistor and a 1A Schottky barrier diode. This excellent combination provides users with highly efficient performance in applications including DC-DC and charging circuits.

Users will also gain several other **key benefits**:

Performance capability equivalent to much larger packages

3mm x 2mm Dual Die MLP

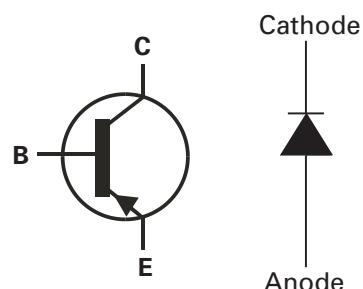
Improved circuit efficiency & power levels

PCB area and device placement savings

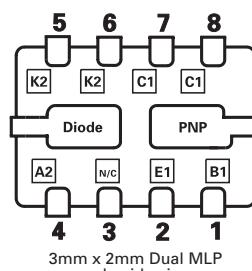
Lower package height (0.9mm nom)

Reduced component count

FEATURES


- Extremely Low Saturation Voltage (-220mV @-1A)
- H_{FE} characterised up to -6A
- $I_C = -3.5A$ Continuous Collector Current
- Extremely Low V_F , fast switching Schottky
- 3mm x 2mm MLP

APPLICATIONS


- DC - DC Converters
- Mobile Phones
- Charging Circuits
- Motor control

ORDERING INFORMATION

DEVICE	REEL	TAPE WIDTH	QUANTITY PER REEL
ZX3CD2S1M832TA	7"	8mm	3000
ZX3CD2S1M832TC	13"	8mm	10000

PINOUT

DEVICE MARKING

2S1

ISSUE 1 - JUNE 2002

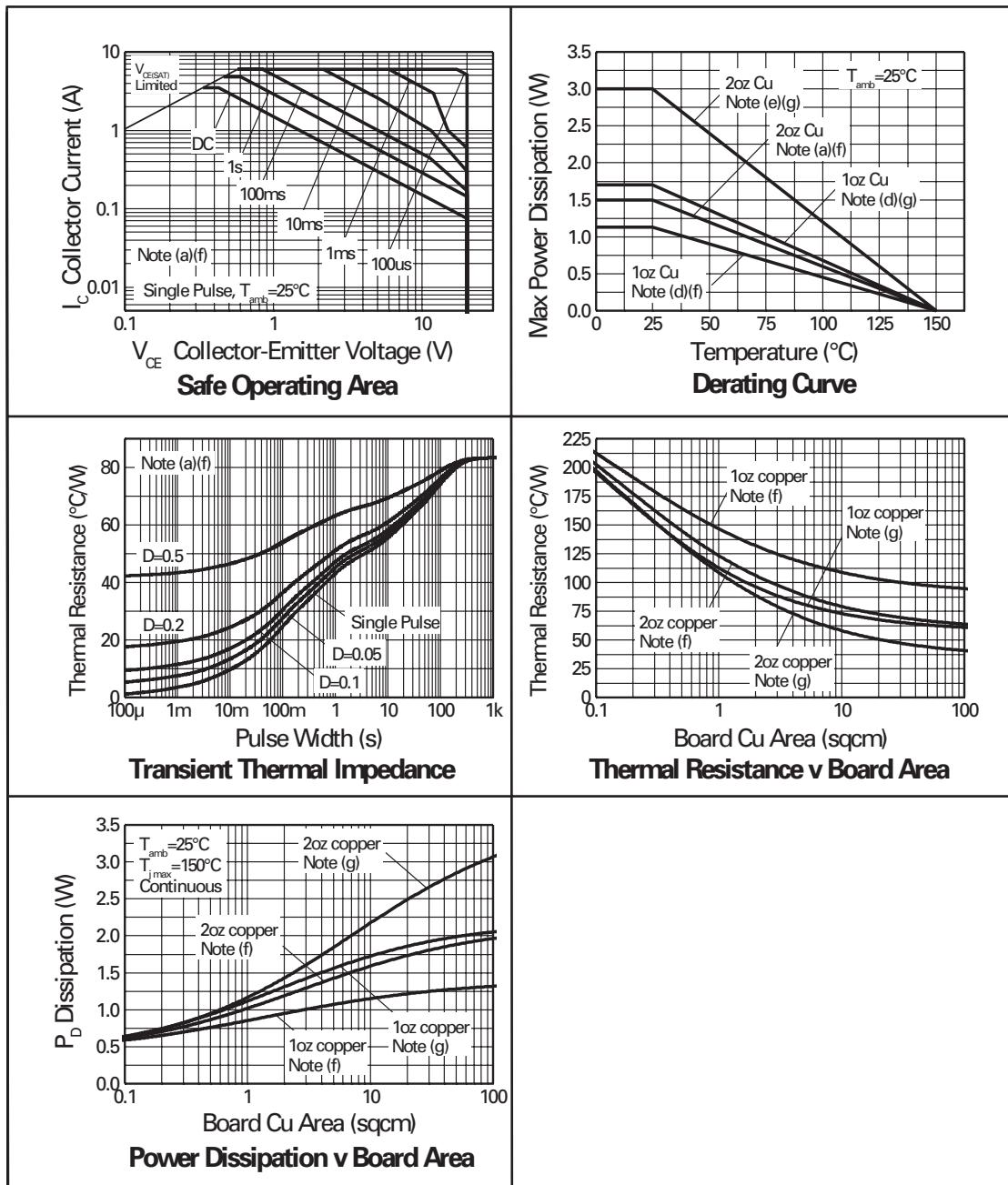
ZETEX

ZX3CD2S1M832

ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	VALUE	UNIT
Transistor			
Collector-Base Voltage	V_{CBO}	-25	V
Collector-Emitter Voltage	V_{CEO}	-20	V
Emitter-Base Voltage	V_{EBO}	-7.5	V
Peak Pulse Current	I_{CM}	-6	A
Continuous Collector Current (a)(f)	I_C	-3.5	A
Base Current	I_B	1000	mA
Power Dissipation at $TA=25^\circ C$ (a)(f) Linear Derating Factor	P_D	1.5 12	W mW/ $^\circ C$
Power Dissipation at $TA=25^\circ C$ (b)(f) Linear Derating Factor	P_D	2.45 19.6	W mW/ $^\circ C$
Power Dissipation at $TA=25^\circ C$ (c)(f) Linear Derating Factor	P_D	1 8	W mW/ $^\circ C$
Power Dissipation at $TA=25^\circ C$ (d)(f) Linear Derating Factor	P_D	1.13 9	W mW/ $^\circ C$
Power Dissipation at $TA=25^\circ C$ (d)(g) Linear Derating Factor	P_D	1.7 13.6	W mW/ $^\circ C$
Power Dissipation at $TA=25^\circ C$ (e)(g) Linear Derating Factor	P_D	3 24	W mW/ $^\circ C$
Storage Temperature Range	T_{stg}	-55 to +150	$^\circ C$
Junction Temperature	T_j	150	$^\circ C$

THERMAL RESISTANCE


PARAMETER	SYMBOL	VALUE	UNIT
Junction to Ambient (a)(f)	$R_{\theta JA}$	83	$^\circ C/W$
Junction to Ambient (b)(f)	$R_{\theta JA}$	51	$^\circ C/W$
Junction to Ambient (c)(f)	$R_{\theta JA}$	125	$^\circ C/W$
Junction to Ambient (d)(f)	$R_{\theta JA}$	111	$^\circ C/W$
Junction to Ambient (d)(g)	$R_{\theta JA}$	73.5	$^\circ C/W$
Junction to Ambient (e)(g)	$R_{\theta JA}$	41.7	$^\circ C/W$

Notes

- (a) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions **with all exposed pads attached**. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
- (b) Measured at $t < 5$ secs for a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions **with all exposed pads attached**. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
- (c) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions **with minimal lead connections only**.
- (d) For a dual device surface mounted on 10 sq cm single sided 1oz copper on FR4 PCB, in still air conditions **with all exposed pads attached**. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
- (e) For a dual device surface mounted on 85 sq cm single sided 2oz copper on FR4 PCB, in still air conditions **with all exposed pads attached**. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
- (f) For a dual device with one active die.
- (g) For dual device with 2 active die running at equal power.
- (h) Repetitive rating - pulse width limited by max junction temperature. Refer to Transient Thermal Impedance graph.
- (i) The minimum copper dimensions required for mounting are no smaller than the exposed metal pads on the base of the device as shown in the package dimensions data. The thermal resistance for a dual device mounted on 1.5mm thick FR4 board using minimum copper 1 oz weight, 1mm wide tracks and one half of the device active is $R_{th} = 250^\circ C/W$ giving a power rating of $P_{tot} = 500mW$.

ZX3CD2S1M832

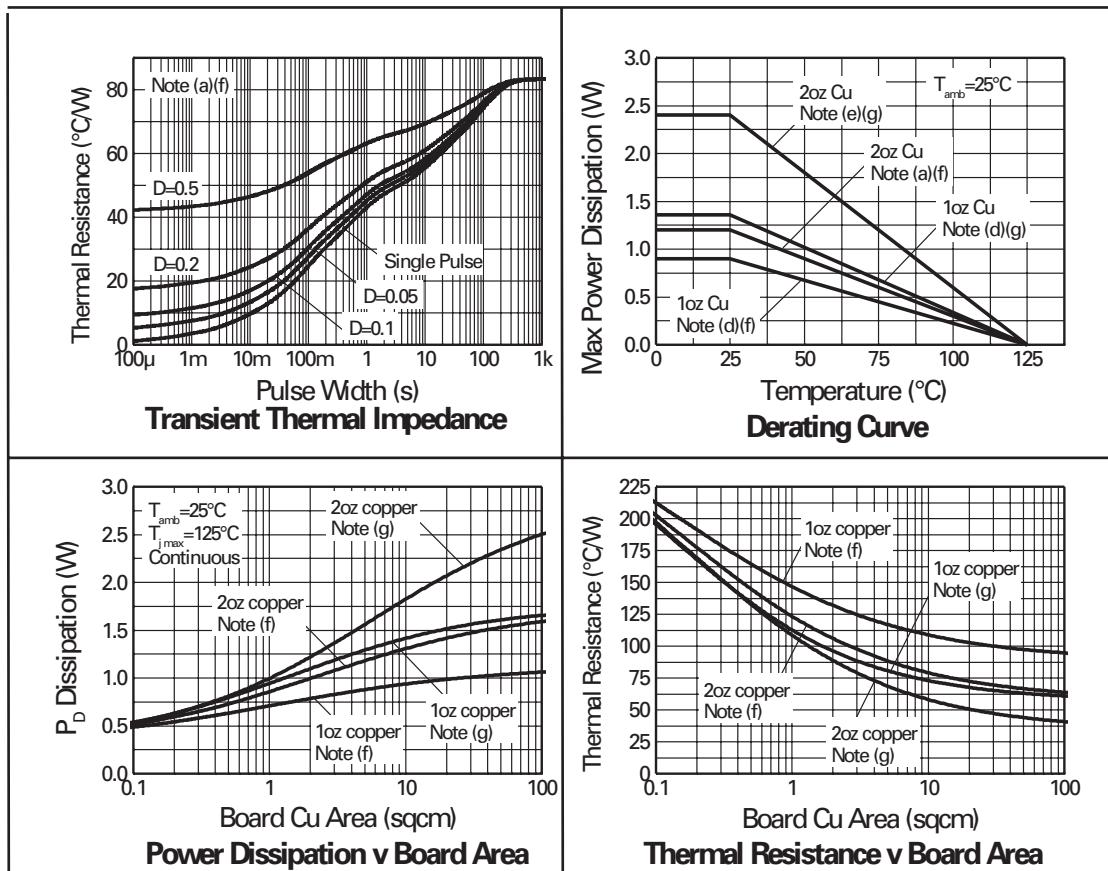
TRANSISTOR TYPICAL CHARACTERISTICS

ZX3CD2S1M832

ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	VALUE	UNIT
Schottky Diode			
Continuous Reverse Voltage	V_R	40	V
Forward Voltage @ $I_F=1000\text{mA}(\text{typ})$	V_F	425	A
Forward Current	I_F	1850	mA
Average Peak Forward Current D=50%	I_{FAV}	3	A
Non Repetitive Forward Current $t \leq 100\mu\text{s}$ $t \leq 10\text{ms}$	I_{FSM}	12 7	A A
Power Dissipation at $TA=25^\circ\text{C}$ (a)(f) Linear Derating Factor	P_D	1.2 12	W $\text{mW}/^\circ\text{C}$
Power Dissipation at $TA=25^\circ\text{C}$ (b)(f) Linear Derating Factor	P_D	2 20	W $\text{mW}/^\circ\text{C}$
Power Dissipation at $TA=25^\circ\text{C}$ (c)(f) Linear Derating Factor	P_D	0.8 8	W $\text{mW}/^\circ\text{C}$
Power Dissipation at $TA=25^\circ\text{C}$ (d)(f) Linear Derating Factor	P_D	0.9 9	W $\text{mW}/^\circ\text{C}$
Power Dissipation at $TA=25^\circ\text{C}$ (d)(g) Linear Derating Factor	P_D	1.36 13.6	W $\text{mW}/^\circ\text{C}$
Power Dissipation at $TA=25^\circ\text{C}$ (e)(g) Linear Derating Factor	P_D	2.4 24	W $\text{mW}/^\circ\text{C}$
Storage Temperature Range	T_{stg}	-55 to +150	°C
Junction Temperature	T_j	125	°C

THERMAL RESISTANCE


PARAMETER	SYMBOL	VALUE	UNIT
Junction to Ambient (a)(f)	$R_{\theta JA}$	83	°C/W
Junction to Ambient (b)(f)	$R_{\theta JA}$	51	°C/W
Junction to Ambient (c)(f)	$R_{\theta JA}$	125	°C/W
Junction to Ambient (d)(f)	$R_{\theta JA}$	111	°C/W
Junction to Ambient (d)(g)	$R_{\theta JA}$	73.5	°C/W
Junction to Ambient (e)(g)	$R_{\theta JA}$	41.7	°C/W

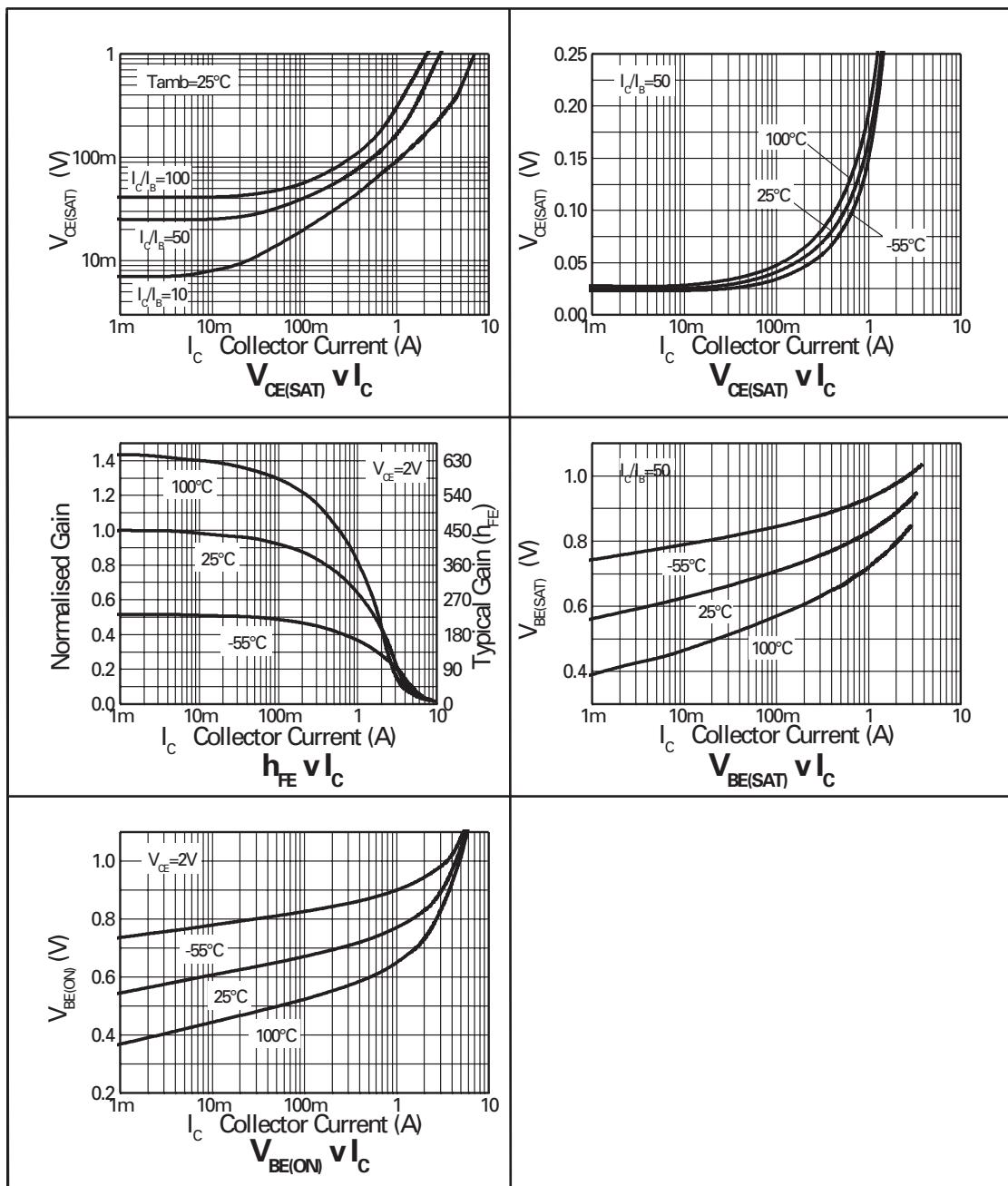
Notes

- (a) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions **with all exposed pads attached**. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
- (b) Measured at $t < 5$ secs for a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions **with all exposed pads attached**. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
- (c) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions **with minimal lead connections only**.
- (d) For a dual device surface mounted on 10 sq cm single sided 1oz copper on FR4 PCB, in still air conditions **with all exposed pads attached**. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
- (e) For a dual device surface mounted on 85 sq cm single sided 2oz copper on FR4 PCB, in still air conditions **with all exposed pads attached**. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
- (f) For a dual device with one active die.
- (g) For dual device with 2 active die running at equal power.
- (h) Repetitive rating - pulse width limited by max junction temperature. Refer to Transient Thermal Impedance graph.
- (i) The minimum copper dimensions required for mounting are no smaller than the exposed metal pads on the base of the device as shown in the package dimensions data. The thermal resistance for a dual device mounted on 1.5mm thick FR4 board using minimum copper 1 oz weight, 1mm wide tracks and one half of the device active is $R_{th} = 250^\circ\text{C}/\text{W}$ giving a power rating of $P_{tot} = 400\text{mW}$.

ZX3CD2S1M832

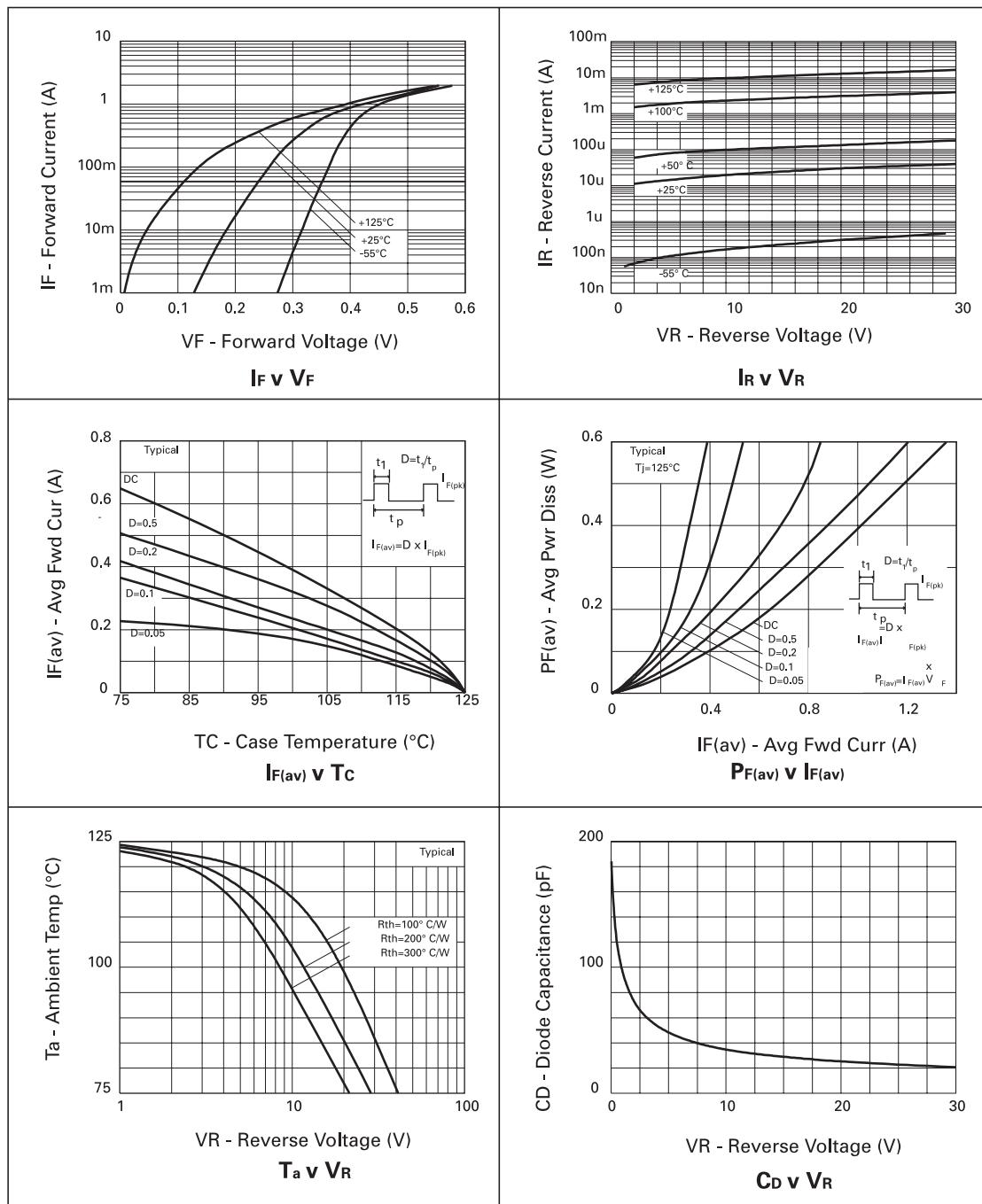
SCHOTTKY TYPICAL CHARACTERISTICS

ZX3CD2S1M832

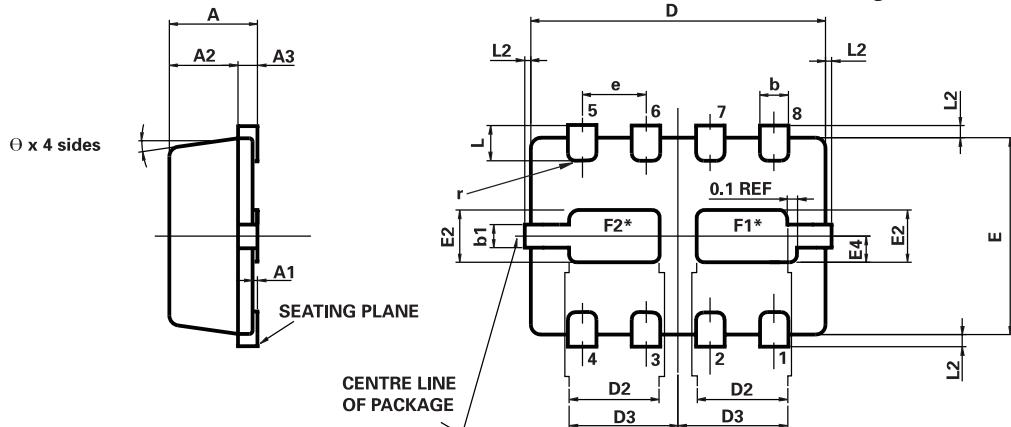

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25^\circ C$ unless otherwise stated).

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS.
TRANSISTOR ELECTRICAL CHARACTERISTICS						
Collector-Base Breakdown Voltage	$V_{(BR)CBO}$	-25	-35		V	$I_C=-100\mu A$
Collector-Emitter Breakdown Voltage	$V_{(BR)CEO}$	-20	-25		V	$I_C=-10mA^*$
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	-7.5	-8.5		V	$I_E=-100\mu A$
Collector Cut-Off Current	I_{CBO}			-25	nA	$V_{CB}=-20V$
Emitter Cut-Off Current	I_{EBO}			-25	nA	$V_{EB}=-6V$
Collector Emitter Cut-Off Current	I_{CES}			-25	nA	$V_{CES}=-16V$
Collector-Emitter Saturation Voltage	$V_{CE(sat)}$			-19 -170 -220 -190 -250 -240 -350 -225 -300	mV	$I_C=-0.1A, I_B=-10mA^*$ $I_C=-1A, I_B=-20mA^*$ $I_C=-1.5A, I_B=-50mA^*$ $I_C=-2.5A, I_B=-150mA^*$ $I_C=-3.5A, I_B=-300mA^*$
Base-Emitter Saturation Voltage	$V_{BE(sat)}$			-1.10	-1.075	V $I_C=-3.5A, I_B=-350mA^*$
Base-Emitter Turn-On Voltage	$V_{BE(on)}$			-0.87	-0.950	V $I_C=-3.5A, V_{CE}=-2V^*$
Static Forward Current Transfer Ratio	h_{FE}	300 300 150 15	475 450 230 30			$I_C=-10mA, V_{CE}=-2V^*$ $I_C=-0.1A, V_{CE}=-2V^*$ $I_C=-2A, V_{CE}=-2V^*$ $I_C=-6A, V_{CE}=-2V^*$
Transition Frequency	f_T	150	180		MHz	$I_C=-50mA, V_{CE}=-10V$ $f=100MHz$
Output Capacitance	C_{obo}		21	30	pF	$V_{CB}=-10V, f=1MHz$
Turn-On Time	$t_{(on)}$		40		ns	$V_{CC}=-10V, I_C=-1A$
Turn-Off Time	$t_{(off)}$		670		ns	$I_{B1}=I_{B2}=-50mA$
SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS						
Reverse Breakdown Voltage	$V_{(BR)R}$	40	60		V	$I_R=300\mu A$
Forward Voltage	V_F			240 265 305 355 390 425 495 420	mV	$I_F=50mA^*$ $I_F=100mA^*$ $I_F=250mA^*$ $I_F=500mA^*$ $I_F=750mA^*$ $I_F=1000mA^*$ $I_F=1500mA^*$ $I_F=1000mA, T_a=100^\circ C^*$
Reverse Current	I_R		50	100	μA	$V_R=30V$
Diode Capacitance	C_D		25		pF	$f=1MHz, V_R=25V$
Reverse Recovery Time	t_{rr}		12		ns	switched from $I_F = 500mA$ to $I_R = 500mA$ Measured at $I_R = 50mA$

*Measured under pulsed conditions.


ZX3CD2S1M832

TRANSISTOR TYPICAL CHARACTERISTICS


ZX3CD2S1M832

SCHOTTKY TYPICAL CHARACTERISTICS

ZX3CD2S1M832

MLP832 PACKAGE OUTLINE (3mm x 2mm Micro Leaded Package)

CONTROLLING DIMENSIONS IN MILLIMETRES
APPROX. CONVERTED DIMENSIONS IN INCHES

MLP832 PACKAGE DIMENSIONS

DIM	MILLIMETRES		INCHES		DIM	MILLIMETRES		INCHES	
	MIN.	MAX.	MIN.	MAX.		MIN.	MAX.	MIN.	MAX.
A	0.80	1.00	0.031	0.039	e	0.65	REF	0.0256	BSC
A1	0.00	0.05	0.00	0.002	E	2.00	BSC	0.0787	BSC
A2	0.65	0.75	0.0255	0.0295	E2	0.43	0.63	0.017	0.0249
A3	0.15	0.25	0.006	0.0098	E4	0.16	0.36	0.006	0.014
b	0.24	0.34	0.009	0.013	L	0.20	0.45	0.0078	0.0157
b1	0.17	0.30	0.0066	0.0118	L2	—	0.125	0.00	0.005
D	3.00 BSC		0.118 BSC		r	0.075 BSC		0.0029 BSC	
D2	0.82	1.02	0.032	0.040	θ	0°	12°	0°	12°
D3	1.01	1.21	0.0397	0.0476					

© Zetex plc 2002

Europe	Americas	Asia Pacific
Zetex plc Fields New Road Chadderton Oldham, OL9 8NP United Kingdom Telephone (44) 161 622 4422 Fax: (44) 161 622 4420 uksales@zetex.com	Zetex GmbH Streitfeldstraße 19 D-81673 München Germany Telefon: (49) 89 45 49 49 0 Fax: (49) 89 45 49 49 49 europe.sales@zetex.com	Zetex Inc 700 Veterans Memorial Hwy Hauppauge, NY11788 USA Telephone: (631) 360 2222 Fax: (631) 360 8222 usa.sales@zetex.com

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to www.zetex.com

ISSUE 1 - JUNE 2002