
P-CHANNEL MOSFET

Qualified per **MIL-PRF-19500/564**

Qualified Levels:
JAN, JANTX, JANTXV
and JANS

DESCRIPTION

This 2N6849U switching transistor is military qualified up to the JANS level for high-reliability applications. This device is also available in a thru hole TO-205AF package. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

Important: For the latest information, visit our website <http://www.microsemi.com>.

FEATURES

- Surface mount equivalent of JEDEC registered 2N6849 number.
- JAN, JANTX, JANTXV and JANS qualifications are available per MIL-PRF-19500/564.
(See [part nomenclature](#) for all available options.)
- RoHS compliant by design.

APPLICATIONS / BENEFITS

- Low profile surface mount for crowded areas.
- Military and other high-reliability applications.

Also available in:

**TO-205AF (TO-39)
package**

(Leaded Top Hat)

[2N6849](#)

MAXIMUM RATINGS @ $T_A = +25^\circ\text{C}$ unless otherwise stated

Parameters / Test Conditions	Symbol	Value	Unit
Operating & Storage Junction Temperature Range	T_J & T_{stg}	-55 to +150	°C
Thermal Resistance Junction-to-Case	R_{eJC}	5.0	°C/W
Total Power Dissipation @ $T_A = +25^\circ\text{C}$ @ $T_C = +25^\circ\text{C}$ ⁽¹⁾	P_T	0.8 25	W
Drain-Source Voltage, dc	V_{DS}	-100	V
Gate-Source Voltage, dc	V_{GS}	± 20	V
Drain Current, dc @ $T_C = +25^\circ\text{C}$ ⁽²⁾	I_{D1}	-6.5	A
Drain Current, dc @ $T_C = +100^\circ\text{C}$ ⁽²⁾	I_{D2}	-4.1	A
Off-State Current (Peak Total Value) ⁽³⁾	I_{DM}	-25	A (pk)
Source Current	I_S	-6.5	A

Notes: 1. Derate linearly 0.2 W/°C for $T_C > +25^\circ\text{C}$.

2. The following formula derives the maximum theoretical I_D limit. I_D is also limited by package and internal wires and may be limited due to pin diameter.

$$I_D = \sqrt{\frac{T_J(\text{max}) - T_C}{R_{eJC} \times R_{DS(\text{on})} @ T_J(\text{max})}}$$

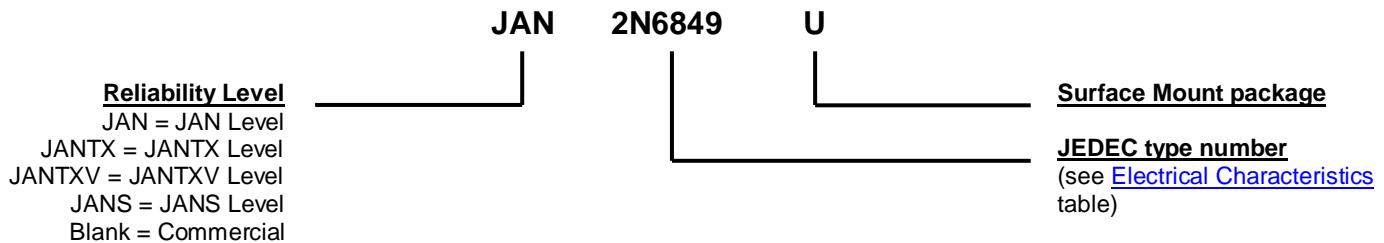
3. $I_{DM} = 4 \times I_{D1}$ as calculated in note 2.

MSC – Lawrence

6 Lake Street,
Lawrence, MA 01841
Tel: 1-800-446-1158 or
(978) 620-2600
Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park,
Ennis, Co. Clare, Ireland
Tel: +353 (0) 65 6840044
Fax: +353 (0) 65 6822298


Website:

www.microsemi.com

MECHANICAL and PACKAGING

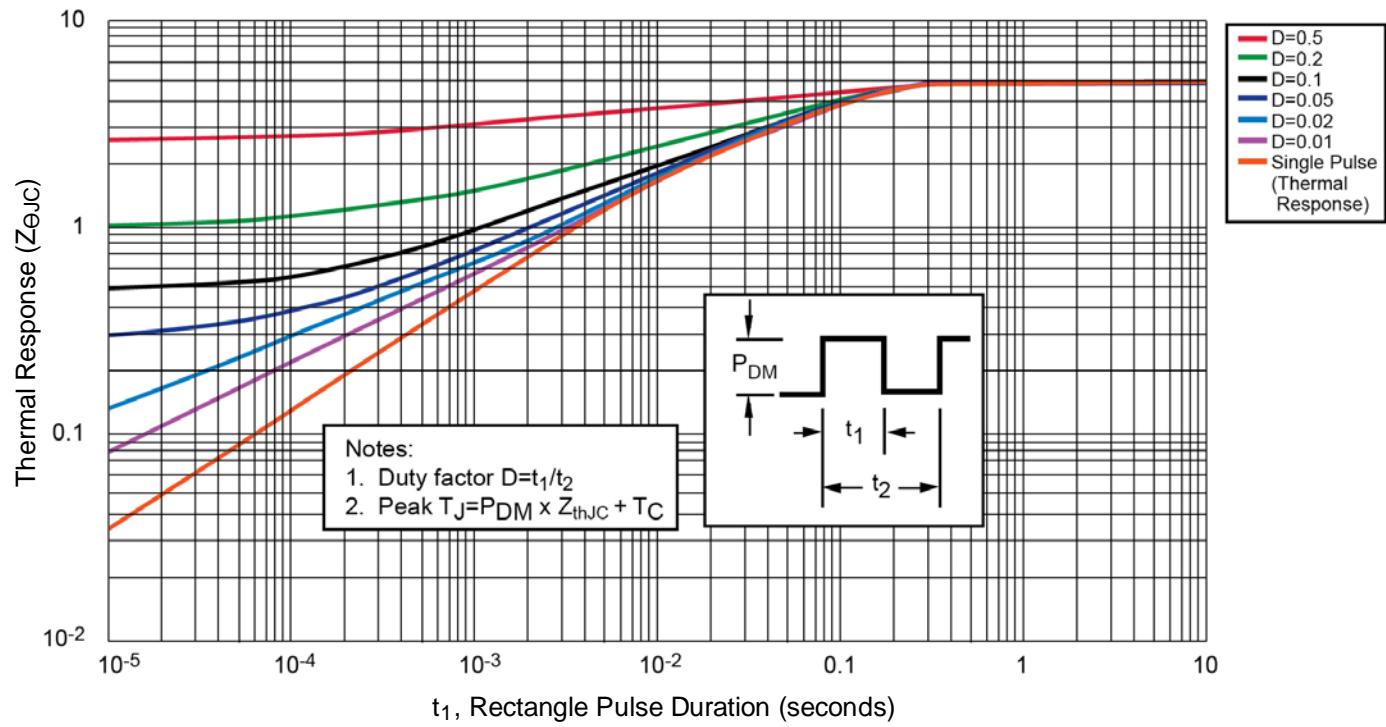
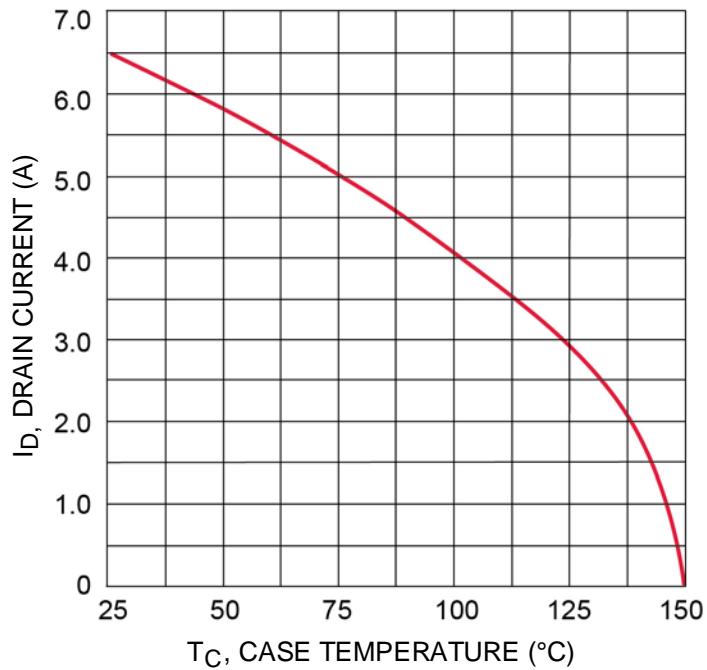
- CASE: Ceramic LCC-18 with kovar gold plated lid.
- TERMINALS: Gold plating over nickel.
- MARKING: Manufacturer's ID, part number, date code, ESD symbol at pin 1 location.
- TAPE & REEL option: Standard per EIA-481-D. Consult factory for quantities.
- See [Package Dimensions](#) on last page.

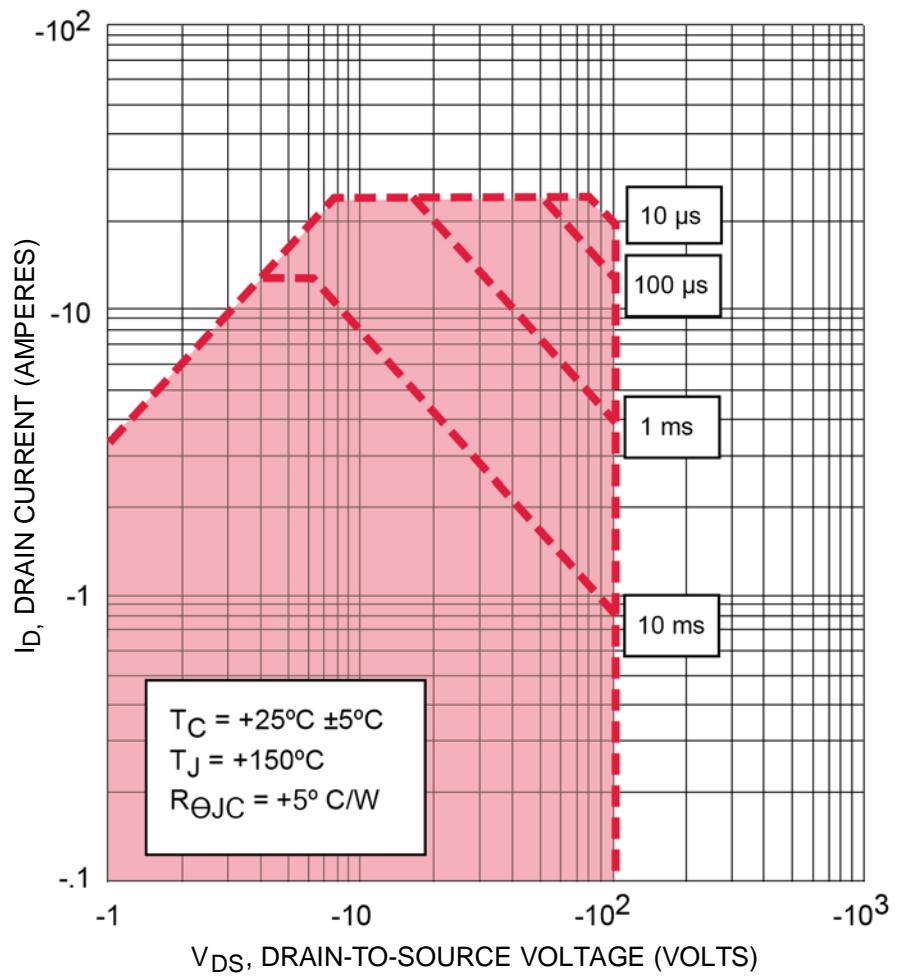
PART NOMENCLATURE

SYMBOLS & DEFINITIONS

Symbol	Definition
di/dt	Rate of change of diode current while in reverse-recovery mode, recorded as maximum value.
I_F	Forward current
R_G	Gate drive impedance
V_{DD}	Drain supply voltage
V_{DS}	Drain source voltage, dc
V_{GS}	Gate source voltage, dc

ELECTRICAL CHARACTERISTICS @ $T_A = +25^\circ\text{C}$, unless otherwise noted



Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Drain-Source Breakdown Voltage $V_{GS} = 0\text{ V}$, $I_D = -1.0\text{ mA}$	$V_{(BR)DSS}$	-100		V
Gate-Source Voltage (Threshold) $V_{DS} \geq V_{GS}$, $I_D = -0.25\text{ mA}$ $V_{DS} \geq V_{GS}$, $I_D = -0.25\text{ mA}$, $T_J = +125^\circ\text{C}$ $V_{DS} \geq V_{GS}$, $I_D = -0.25\text{ mA}$, $T_J = -55^\circ\text{C}$	$V_{GS(\text{th})1}$ $V_{GS(\text{th})2}$ $V_{GS(\text{th})3}$	-2.0 -1.0 -5.0	-4.0	V
Gate Current $V_{GS} = \pm 20\text{ V}$, $V_{DS} = 0\text{ V}$ $V_{GS} = \pm 20\text{ V}$, $V_{DS} = 0\text{ V}$, $T_J = +125^\circ\text{C}$	I_{GSS1} I_{GSS2}		± 100 ± 200	nA
Drain Current $V_{GS} = 0\text{ V}$, $V_{DS} = -80\text{ V}$	I_{DSS1}		-25	μA
Drain Current $V_{GS} = 0\text{ V}$, $V_{DS} = -80\text{ V}$, $T_J = +125^\circ\text{C}$	I_{DSS2}		-0.25	mA
Static Drain-Source On-State Resistance $V_{GS} = -10\text{ V}$, $I_D = -4.1\text{ A}$ pulsed	$r_{DS(\text{on})1}$		0.30	Ω
Static Drain-Source On-State Resistance $V_{GS} = -10\text{ V}$, $I_D = -6.5\text{ A}$ pulsed	$r_{DS(\text{on})2}$		0.32	Ω
Static Drain-Source On-State Resistance $T_J = +125^\circ\text{C}$ $V_{GS} = -10\text{ V}$, $I_D = -4.1\text{ A}$ pulsed	$r_{DS(\text{on})3}$		0.54	Ω
Diode Forward Voltage $V_{GS} = 0\text{ V}$, $I_D = -6.5\text{ A}$ pulsed	V_{SD}		-4.3	V


DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Gate Charge:	$Q_{g(\text{on})}$		34.8	nC
On-State Gate Charge $V_{GS} = -10\text{ V}$, $I_D = -6.5\text{ A}$, $V_{DS} = -50\text{ V}$				
Gate to Source Charge $V_{GS} = -10\text{ V}$, $I_D = -6.5\text{ A}$, $V_{DS} = -50\text{ V}$	Q_{gs}		6.8	nC
Gate to Drain Charge $V_{GS} = -10\text{ V}$, $I_D = -6.5\text{ A}$, $V_{DS} = -50\text{ V}$	Q_{gd}		23.1	nC

ELECTRICAL CHARACTERISTICS @ $T_A = +25^\circ\text{C}$, unless otherwise noted (continued)
SWITCHING CHARACTERISTICS

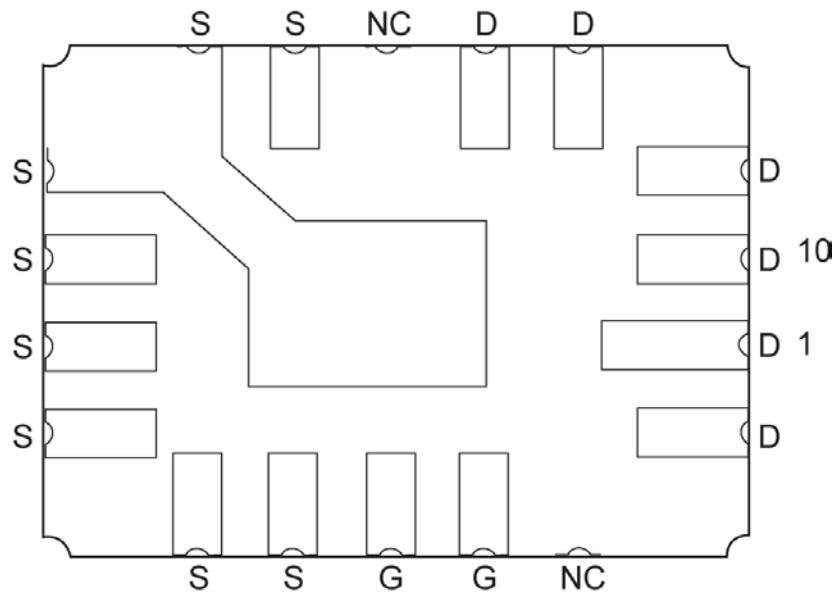
Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-on delay time $I_D = -6.5 \text{ A}, V_{GS} = -10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = -40 \text{ V}$	$t_{d(on)}$		60	ns
Rinse time $I_D = -6.5 \text{ A}, V_{GS} = -10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = -40 \text{ V}$	t_r		140	ns
Turn-off delay time $I_D = -6.5 \text{ A}, V_{GS} = -10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = -40 \text{ V}$	$t_{d(off)}$		140	ns
Fall time $I_D = -6.5 \text{ A}, V_{GS} = -10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = -40 \text{ V}$	t_f		140	ns
Diode Reverse Recovery Time $di/dt \leq -100 \text{ A}/\mu\text{s}, V_{DD} \leq -50 \text{ V}, I_F = -6.5 \text{ A}$	t_{rr}		250	ns

GRAPHS

FIGURE 1 – Normalized Transient Thermal Impedance

FIGURE 2 – Maximum Drain Current vs Case Temperature

GRAPHS (continued)


FIGURE 3 – Maximum Safe Operating Area

PACKAGE DIMENSIONS

Ltr	Dimensions			
	Inches		Millimeters	
	Min	Max	Min	Max
BL	.345	.360	8.77	9.14
BW	.280	.295	7.12	7.49
CH	.095	.115	2.42	2.92
LL1	.040	.055	1.02	1.39
LL2	.055	.065	1.40	1.65
LS	.050 BSC		1.27 BSC	
LS1	.025 BSC		0.635 BSC	
LS2	.008 BSC		0.203 BSC	
LW	.020	.030	0.51	0.76
Q1	.105 REF		2.67 REF	
Q2	.120 REF		3.05 REF	
Q3	.045	.055	1.14	1.40
TL	.070	.080	1.78	2.03
TW	.120	.130	3.05	3.30

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for general information only.
3. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
4. Ceramic package only.

PAD LAYOUT**PAD ASSIGNMENTS**