

High Efficient Surface Mount Rectifiers

FEATURES

- Glass passivated junction chip
- Ideal for automated placement
- Low profile package
- Low power loss, high efficiency
- Fast switching for high efficiency
- Moisture sensitivity level: level 1, per J-STD-020
- Compliant to RoHS Directive 2011/65/EU and in accordance to WEEE 2002/96/EC
- Halogen-free according to IEC 61249-2-21 definition

Sub SMA

MECHANICAL DATA

Case: Sub SMA

Molding compound, UL flammability classification rating 94V-0

Base P/N with suffix "G" on packing code - green compound (halogen-free)

Base P/N with prefix "H" on packing code - AEC-Q101 qualified Terminal: Matte tin plated leads, solderable per JESD22-B102

Meet JESD 201 class 1A whisker test

with prefix "H" on packing code meet JESD 201 class 2 whisker test

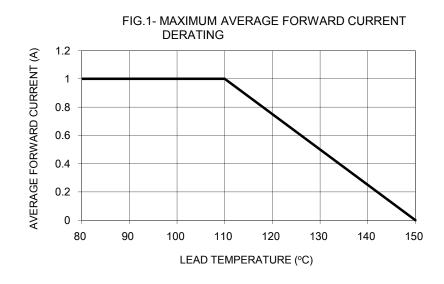
Polarity: Indicated by cathode band Weight: 0.019 g (approximately)

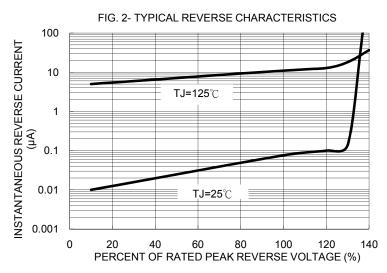
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS (T _A =25°C unless otherwise noted)									
SAMBOI	HS	HS	HS	HS	HS	HS	HS	HS	UNIT
STIVIBUL	1AL	1BL	1DL	1FL	1GL	1JL	1KL	1ML	UNIT
	HAL	HBL	HDL	HFL	HGL	HJL	HKL	HML	
V_{RRM}	50	100	200	300	400	600	800	1000	V
V_{RMS}	35	70	140	210	280	420	560	700	V
V_{DC}	50	100	200	300	400	600	800	1000	V
I _{F(AV)}	1			Α					
I _{FSM}	30			А					
V _F	0.95 1.3 1.7			V					
I _R	5 150		μΑ						
Cj	20 15			pF					
Trr	50 75		ns						
$R_{\theta jA}$	100		°C/W						
T _J	- 55 to +150			οС					
T _{STG}	- 55 to +150			оС					
	$\begin{array}{c c} \text{SYMBOL} \\ \hline \\ V_{RRM} \\ V_{RMS} \\ \hline V_{DC} \\ \hline I_{F(AV)} \\ \hline I_{FSM} \\ \hline V_{F} \\ \hline I_{R} \\ \hline Cj \\ \hline Trr \\ R_{\theta j A} \\ \hline T_{J} \\ \hline \end{array}$	SYMBOL HS 1AL HAL V _{RRM} 50 V _{RMS} 35 V _{DC} 50 I _{F(AV)} I V _F I I _R Cj Trr R R _{θjA} T T _J T	SYMBOL HS 1AL 1BL 1BL 1BL 1AL 1BL 1AL 1BL 1AL 1ABL 1AB	SYMBOL HS 1AL 1BL 1DL 1AL 1BL 1DL HAL HBL HDL V _{RRM} 50 100 200 V _{RMS} 35 70 140 V _{DC} 50 100 200 I _{F(AV)} I _{FSM} V _F 0.95 I _R Cj 20 Trr 50 R _{θjA} T _J	SYMBOL HS 1AL 1BL 1DL 1FL 1AL 1BL 1DL 1FL HAL HBL HDL HFL V _{RMM} 50 100 200 300 V _{RMS} 35 70 140 210 V _{DC} 50 100 200 300 I _{F(AV)} I _{FSM} 3 V _F 0.95 I _R 15 Cj 20 Trr 50 R _{θjA} 10 T _J -55 to	SYMBOL HS 1AL 1BL 1DL 1FL 1GL 1AL 1BL 1DL 1FL 1GL VRRM 50 100 200 300 400 VRMS 35 70 140 210 280 VDC 50 100 200 300 400 IF(AV) 1 1 SM 30 1 Cj 20 2 Cj 20 3 Cj 2 Cj 4 Cj 2 Cj 5 Cj 2 Cj	SYMBOL HS H	SYMBOL HS HS	SYMBOL HS 1ML LL 1ML LL 1ML LL 1ML HML

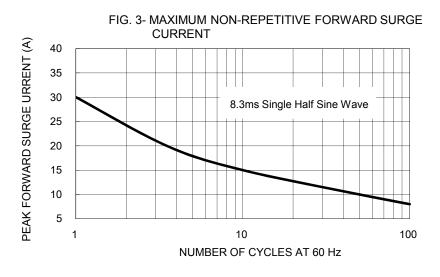
Note 1: Pulse test with PW=300µs, 1% duty cycle

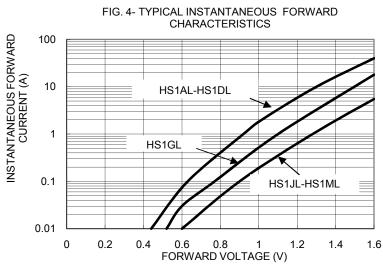
Note 2: Measured at 1 MHz and Applied VR=4.0 Volts.

Note 3: Reverse Recovery Test Conditions: I_F =0.5A, I_R =1.0A, I_{RR} =0.25A

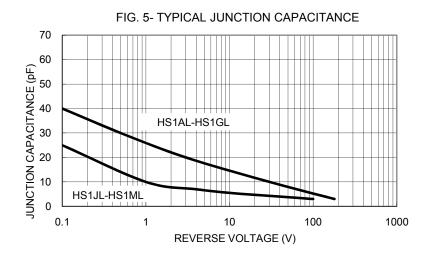

ORDERING INFORMATION					
PART NO.	AEC-Q101	PACKING CODE	GREEN COMPOUND	PACKAGE	PACKING
	QUALIFIED		CODE		
		RU		Sub SMA	1,800 / 7" Plastic reel (8mm tape)
		RV		Sub SMA	3,000 / 7" Plastic reel (8mm tape)
		RT	Suffix "G"	Sub SMA	7,500 / 13" Paper reel (8mm tape)
		MT		Sub SMA	7,500 / 13" Plastic reel (8mm tape)
		RQ		Sub SMA	10,000 / 13" Paper reel (8mm tape)
HS1xL Drofit "LI"	Prefix "H"	MQ		Sub SMA	10,000 / 13" Plastic reel (8mm tape)
(Note 1)	FIEIIX FI	R3		Sub SMA	1,800 / 7" Plastic reel (12mm tape)
		RF		Sub SMA	3,000 / 7" Plastic reel (12mm tape)
		R2		Sub SMA	7,500 / 13" Paper reel (12mm tape)
	M2 RH	M2		Sub SMA	7,500 / 13" Plastic reel (12mm tape)
			Sub SMA	10,000 / 13" Paper reel (12mm tape)	
		MH]	Sub SMA	10,000 / 13" Plastic reel (12mm tape)

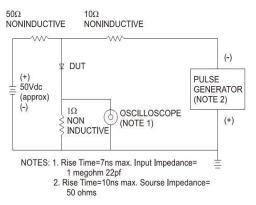

Note 1: "x" defines voltage from 50V (HS1AL) to 1000V (HS1ML)

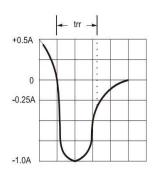

EXAMPLE						
PREFERRED P/N	PART NO.	PART NO. AEC-Q101 PACKING CODE		GREEN COMPOUND	DESCRIPTION	
		QUALIFIED		CODE		
HS1JL RU	HS1JL		RU			
HS1JL RUG	HS1JL		RU	G	Green compound	
HS1JLHRU	HS1JL	Н	RU		AEC-Q101 qualified	


RATINGS AND CHARACTERISTICS CURVES

(TA=25°C unless otherwise noted)







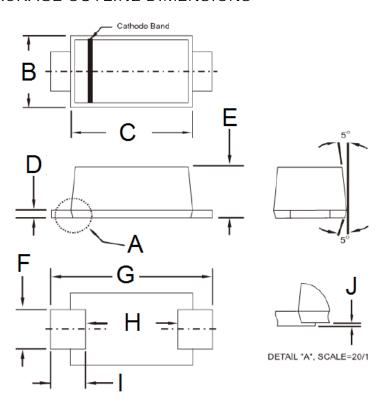
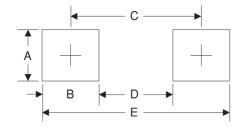


FIG.6- REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

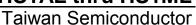


PACKAGE OUTLINE DIMENSIONS

DIM.	Unit	(mm)	Unit (inch)			
DIIVI.	Min	Max	Min	Max		
В	1.70	1.90	0.067	0.075		
С	2.70	2.90	0.106	0.114		
D	0.16	0.30	0.006	0.012		
E	1.23	1.43	0.048	0.056		
F	0.80	1.20	0.031	0.047		
G	3.40	3.80	0.134	0.150		
Н	2.45	2.60	0.096	0.102		
I	0.35	0.85	0.014	0.033		
J	0.00	0.10	0.000	0.004		

SUGGESTED PAD LAYOUT

Symbol	Unit (mm)	Unit (inch)
Α	1.4	0.055
В	1.2	0.047
С	3.1	0.122
D	1.9	0.075
E	4.3	0.169


MARKING DIAGRAM

P/N = Marking Code G = Green Compound

YW = Date Code

F = Factory Code

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied,to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or seling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.

Document Number: DS_D1405079 Version: B14

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Taiwan Semiconductor:

HS1AL R2G HS1AL R3G HS1AL RQG HS1DL R2G HS1DL R3G HS1DL RQG HS1FL R2G HS1FL R3G HS1FL R3G HS1FL RQG HS1GL R2G HS1GL R3G HS1GL RQG HS1JL R2G HS1JL R3G HS1JL RQG HS1KL R2G HS1KL R3G HS1KL RQG HS1ML R2G HS1ML R3G HS1ML RQG HS1DLHR3G HS1JLHR2 HS1JLHRQG HS1BLHR3G HS1FLHR2G HS1ALHRQ HS1MLHR3G HS1MLHR3 HS1FLHRQ HS1KLHR3G HS1FLHR3 HS1DLHRQG HS1FLHR3G HS1GLHR3 HS1ALHR3G HS1DLHR3 HS1KLHRQG HS1FLHR2 HS1ALHR2G HS1GLHRQ HS1KLHR3 HS1GLHRQG HS1JLHR3G HS1JLHRQG HS1KLHR3 HS1GLHRQG HS1JLHR3G HS1JLHRQG HS1KLHR2G HS1GLHRQG HS1KLHR2G HS1ALHR2G HS1MLHRQG HS1KLHR2 HS1ALHRQG HS1MLHRQG HS1KLHRQG HS1MLHRQG HS1MLHQG HS1MLHQG HS1MLHQG HS1MLHQG HS1MLHQG HS1MLHQG HS1M