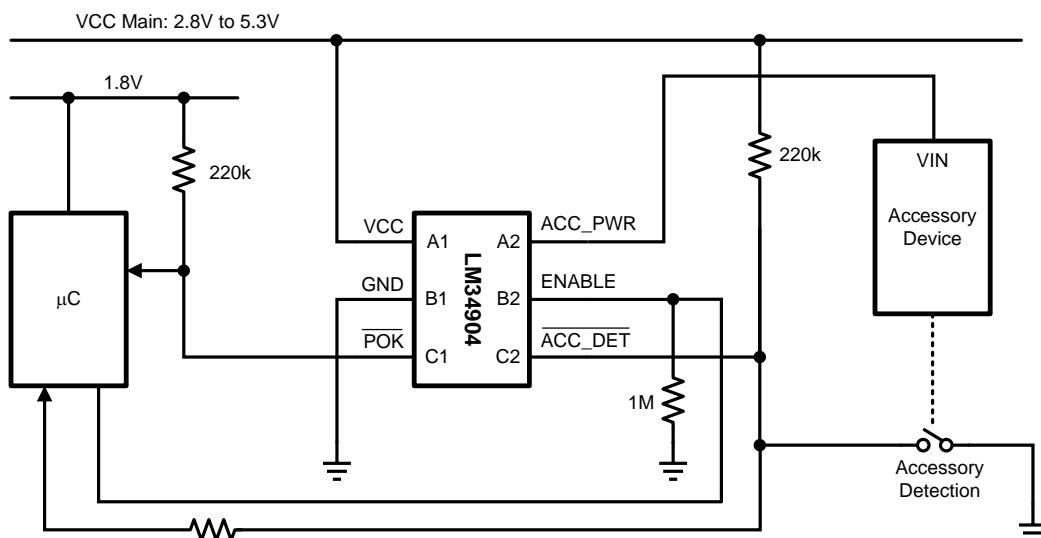


500mA Current Limited Power Switch

Check for Samples: [LM34904](#)


FEATURES

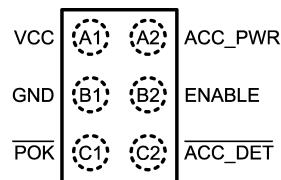
- Input Voltage of 2.8V to 5.3V
- 0.5A Maximum Switch Current
- 0.4Ω Typical Total On-Resistance
- Load Detection
- Enable/Disable
- Switch On Indicator
- Peak Current Limit
- Thermal Shutdown
- 6-bump Thin DSBGA Package

APPLICATIONS

- Handsets, Tablets, Notebooks
- Portable Devices

Typical Application Circuit

DESCRIPTION


The LM34904 is a 0.5A PFET switch used to control the input voltage of electronic devices. It is easily integrated into system designs that have a 2.8V to 5.3V voltage rail. Besides the 0.4Ω PFET switch, the LM34904 can be enabled or disabled by a logic signal. The IC monitors the presence of a downstream electronic device via a dedicated pin to decide whether to turn on the PFET switch. A power good signal generated by the IC can be used by system control to determine the status of the switch. The LM34904 also provides over-current and over-temperature protection. The IC comes in a tiny 6-bump thin DSBGA package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

Connection Diagram

Figure 1. Top View - 6-Bump Thin DSBGA Package
See Package Number YFQ

PIN DESCRIPTIONS

Name	Pin Number	Function
VCC	A1	Power input of the PFET switch. It also provides power to the entire IC. Connect to the voltage rail that the accessory device is expected to work off.
GND	B1	Common Ground (device substrate).
POK	C1	Open-drain PFET status indicator. When the PFET is off, this pin floats. When PFET is on, it is grounded.
ACC_DET	C2	Pull this pin low to tell the IC that the downstream accessory device is plugged in.
ENABLE	B2	When this pin is low, the PFET will be turned off and POK will be open-drained. Current limit circuitry will also be disabled. The IC will be in a low-power state. This pin should be held low until VCC is established to ensure proper initial state of internal logic. When ENABLE is high, the PFET switch will be allowed to turn on.
ACC_PWR	A2	Power output terminal of the PFET switch. Connect to input rail of accessory device.

Truth Table⁽¹⁾

Input					Output	
ENABLE	ACC_DET	Current Limit Detected	T _J Limit Exceeded	2.8V < VCC < 5.3V	PFET Switch Status	POK
0	x	No	No	Yes	Open	Open Drain
x	1	No	No	Yes	Open	Open Drain
0 to 1	0	No	No	Yes	On	Grounded
0 to 1	0	Yes	No	Yes	Current Limited	Grounded
x	x	x	Yes	2.2V < VCC < 5.3V	Open	Open Drain
0	x	x	No	2.2V < VCC < 2.8V	Open	Open Drain

(1) Note: "x" stands for "don't care".

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings⁽¹⁾⁽²⁾

VCC	-0.3V to 6V
ENABLE, $\overline{\text{POK}}$, $\overline{\text{ACC_DET}}$, $\overline{\text{ACC_PWR}}$ ⁽³⁾	-0.3V to 6V
Junction Temperature (T_J)	+150°C
Storage Temperature Range	-65°C to +150°C
ESD Susceptibility, Human Body Model ⁽⁴⁾	2kV

- (1) Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which operation of the device is ensured. Operating Ratings do not imply ensured performance limits. For ensured performance limits and associated test conditions, see the Electrical Characteristics table.
- (2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
- (3) The voltages on these pins should never exceed VCC+0.3V.
- (4) The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. Test method is per JESD-22-A114.

Operating Ratings

VCC Voltage ⁽¹⁾	2.8V to 5.3V
Junction Temperature (T_J), LM34904	-40°C to +85°C

- (1) For VCC between 2.2V and 2.8V, if ENABLE is a logic low, the LM34904 will not turn on the PFET switch.

Electrical Characteristics

Unless otherwise stated, the following conditions apply: VCC = 3V. Limits in standard type are for $T_J = 25^\circ\text{C}$ only; limits in **boldfacetype** apply over the operating junction temperature (T_J) range. Minimum and maximum limits are ensured through test, design, or statistical correlation. Typical values represent the most likely parametric norm at $T_J = 25^\circ\text{C}$ and are provided for reference purposes only.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_{IL}	Input Low Voltage, $\overline{\text{ACC_DET}}$, ENABLE				0.45	V
V_{IH}	Input High Voltage, $\overline{\text{ACC_DET}}$, ENABLE		1.35			V
V_{IHS}	Input Hysteresis, $\overline{\text{ACC_DET}}$, ENABLE			55		mV
I_{LK}	Input Current, $\overline{\text{ACC_DET}}$, ENABLE	$\overline{\text{ACC_DET}}$, ENABLE between 0V and VCC			1	μA
I_{SD}	VCC Current in Shutdown Mode	$V_{\text{ENABLE}} = 0\text{V}$ $V_{\text{VCC}} = 5.3\text{V}$		0.005	1	μA
I_Q	VCC Quiescent Current	$V_{\text{ENABLE}} = 1.8\text{V}$ $V_{\text{VCC}} = 5.3\text{V}$, $I_{\text{ACC_PWR}} = 0\text{A}$		47	100	μA
R_{ON}	Total On Resistance Between VCC and ACC_PWR Pins	$V_{\text{VCC}} = 2.8\text{V to } 5.3\text{V}$ $I_{\text{ACC_PWR}} = 0.5\text{A}$		0.4	0.6	Ω
I_{LK_ACC}	ACC_PWR Leakage Current When PFET is Off	$V_{\text{ACC_PWR}} = 0\text{V to VCC}$ $V_{\text{VCC}} = 5.3\text{V}$ $V_{\text{ENABLE}} = 0\text{V}$			1	μA
I_{LIMIT}	PFET Switch Current Limit	$V_{\text{VCC}} = 2.8\text{V to } 5.3\text{V}$ $V_{\text{ACC_PWR}} = 0\text{V}$	0.50	0.59	0.76	A
V_{POK}	$\overline{\text{POK}}$ Current Sink Capability	$\overline{\text{POK}}$ asserted. 1mA sink current			0.4	V
I_{POK}	$\overline{\text{POK}}$ Leakage Current	$\overline{\text{POK}}$ de-asserted $V_{\text{POK}} = 3.3\text{V}$			1	μA
T_1	$\overline{\text{ACC_DET}}$ Response Time	$\overline{\text{ACC_DET}}$ rising to either PFET or $\overline{\text{POK}}$ FET turn-off		107		ns
T_2	ENABLE Response Time	ENABLE rising to either PFET or $\overline{\text{POK}}$ FET turn-on		10		μs
T_3	Minimum ENABLE Cycle Time ⁽¹⁾	ACC_DET tied to ground. ENABLE logic high = 1.8V. VCC = 2.8V to 5.3V.		300		ns

- (1) If ENABLE toggles low from a high state, it needs to stay low for at least T_3 long before toggling back to high. Otherwise the internal flip-flop may not be set and the PFET switch may not turn on.

Thermal Characteristics

Symbol	Description	Conditions	Typical Value	Unit
θ_{JA1}	Junction-to-Ambient Thermal Resistance	Mount device on a standard 4-layer 4" x 3" JEDEC board. Apply known amount of power to the package. Measure junction temperature and surrounding air temperature. No air flow. Refer to JESD51-7 for more information.	104	°C/W
θ_{JA2}	Junction-to-Ambient Thermal Resistance	Mount device on a 2-layer 2.19" x 2.9" board. Copper thickness is 1 oz per layer. No air flow. Power dissipation is 0.5W.	136	°C/W
T_{SD}	Thermal Shutdown Threshold	Raise T_J from below 120°C until POK is de-asserted. No load is connected at ACC_PWR.	135	°C

Typical Performance Characteristics

Unless indicated otherwise, VCC = 3.0V and $T_J = 25^\circ\text{C}$.

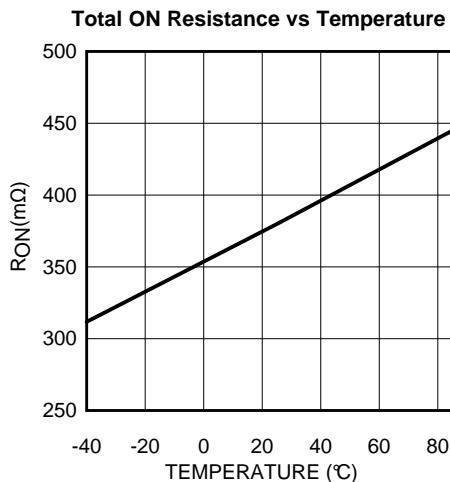


Figure 2.

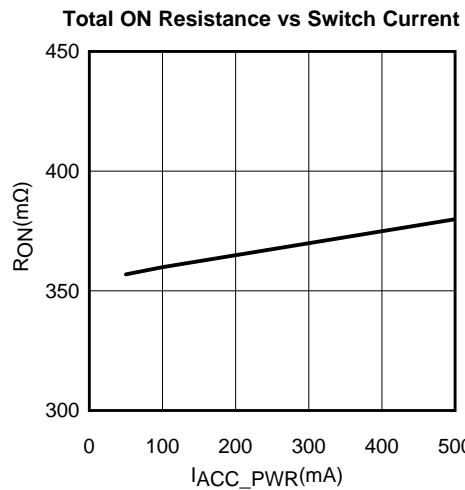


Figure 3.

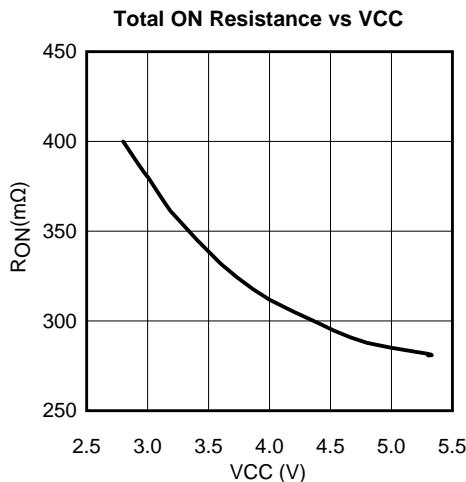


Figure 4.

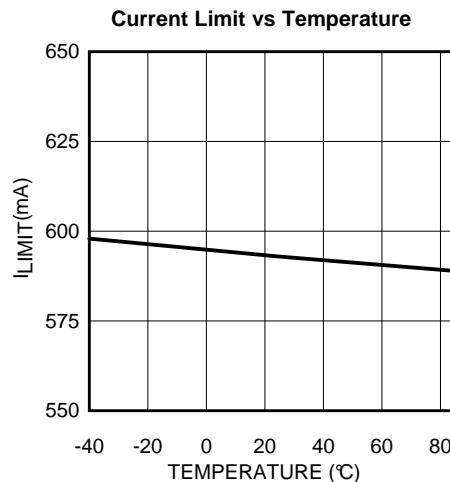


Figure 5.

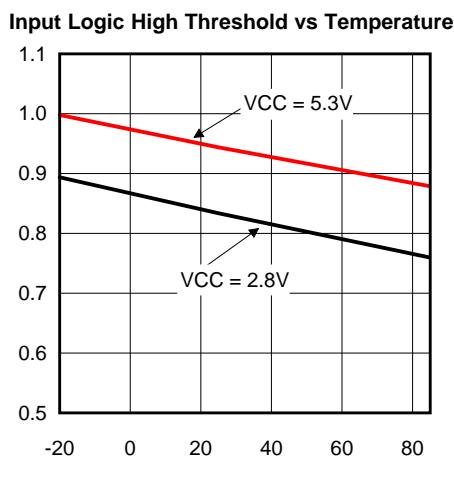


Figure 6.

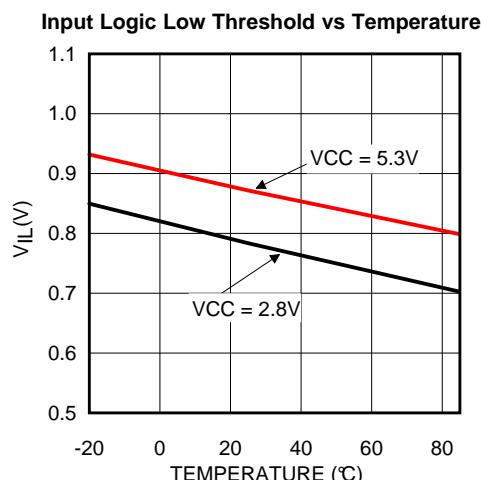
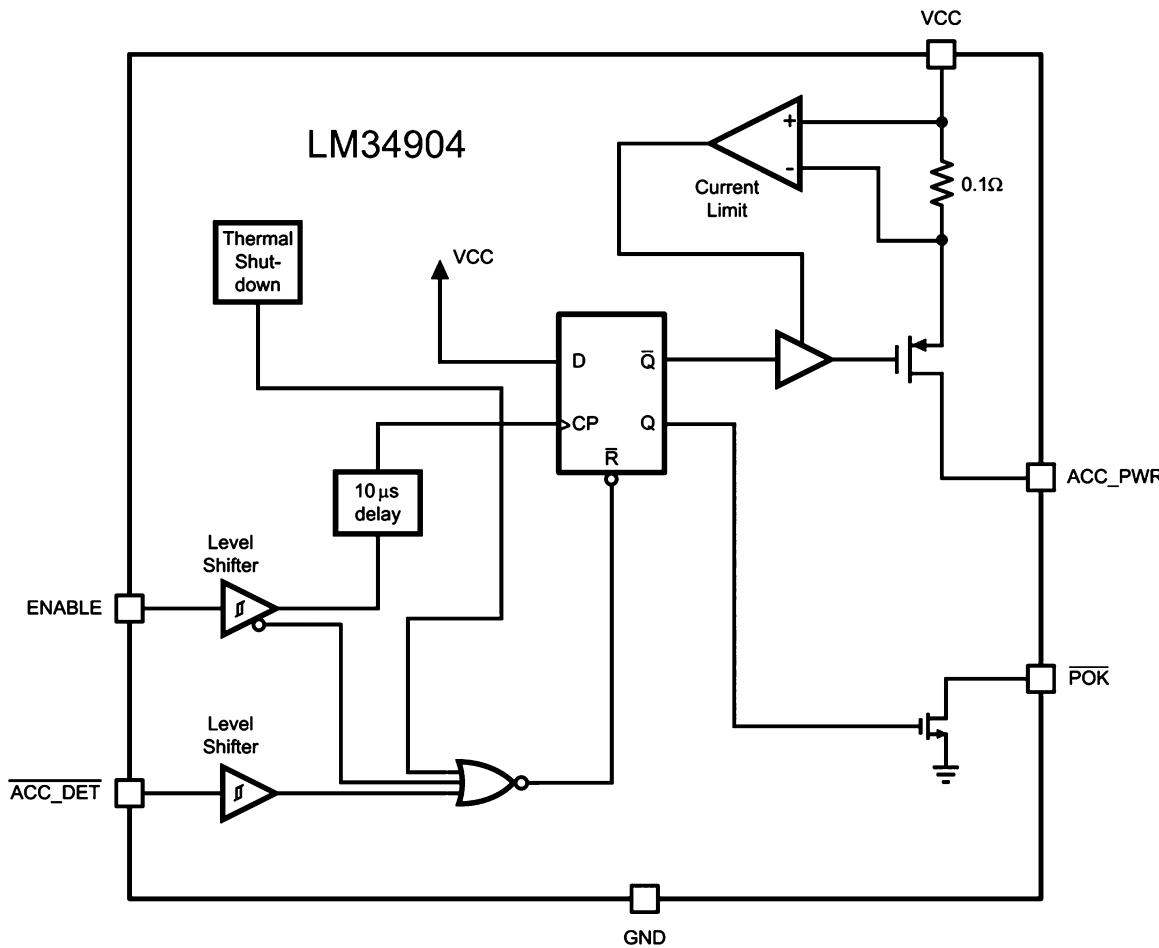



Figure 7.

BLOCK DIAGRAM

APPLICATION HINTS

To turn on the PFET switch, both the ENABLE and the ACC_DET pins need to be asserted. In addition, ACC_DET needs to be asserted no later than the rising edge of the ENABLE signal. De-assertion of either the ENABLE or the ACC_DET will result in turned-off PFET switch and de-asserted POK signal.

To prevent a glitch in the otherwise asserted ACC_DET from keeping the FETs turned off, it is a good practice to cycle the ENABLE following every falling edge in the ACC_DET signal. When cycling the ENABLE, make sure it stays low for at least T_3 long before toggling back high. If ENABLE logic high level is not 1.8V, make sure ENABLE stays low for at least 1μs.

When laying out the PCB, try to keep the ENABLE and ACC_DET traces as short as possible and away from noisy traces.

REVISION HISTORY

Changes from Revision D (April 2013) to Revision E	Page
• Changed layout of National Data Sheet to TI format	6

PACKAGING INFORMATION

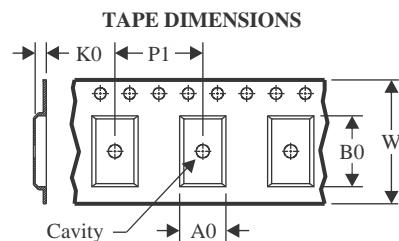
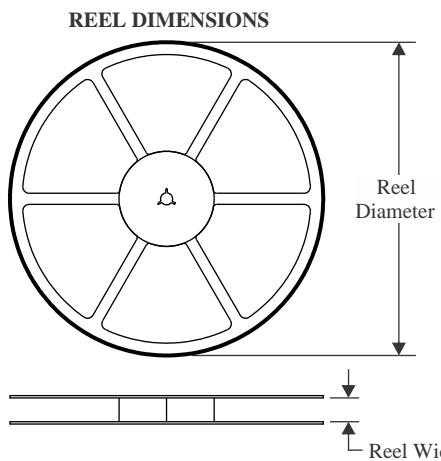
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
LM34904ITM/NOPB	Active	Production	DSBGA (YFQ) 6	250 SMALL T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	L
LM34904ITM/NOPB.A	Active	Production	DSBGA (YFQ) 6	250 SMALL T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	L
LM34904ITMX/NOPB	Active	Production	DSBGA (YFQ) 6	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	L
LM34904ITMX/NOPB.A	Active	Production	DSBGA (YFQ) 6	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	L

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

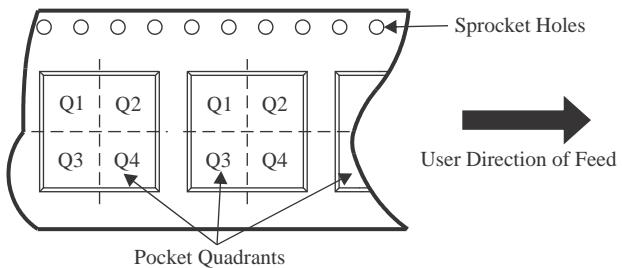
⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

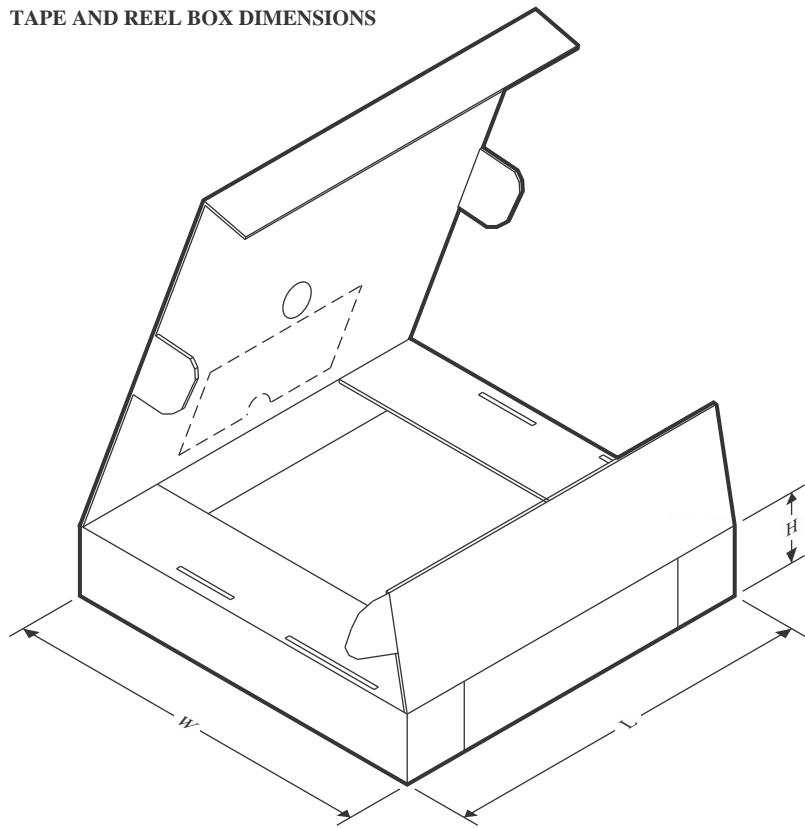


⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

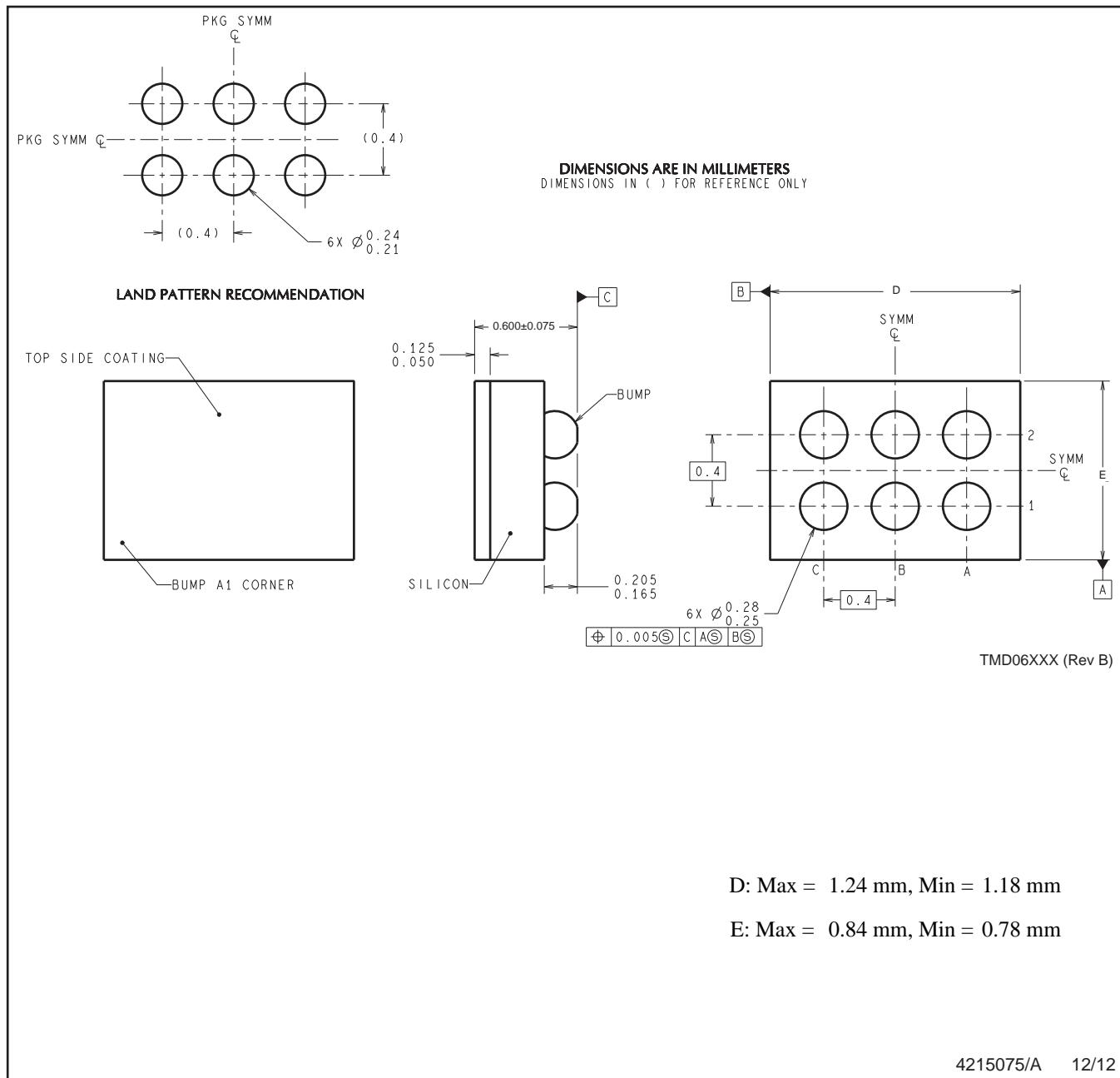
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM34904ITM/NOPB	DSBGA	YFQ	6	250	178.0	8.4	0.89	1.3	0.7	4.0	8.0	Q1
LM34904ITMX/NOPB	DSBGA	YFQ	6	3000	178.0	8.4	0.89	1.3	0.7	4.0	8.0	Q1

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM34904ITM/NOPB	DSBGA	YFQ	6	250	208.0	191.0	35.0
LM34904ITMX/NOPB	DSBGA	YFQ	6	3000	208.0	191.0	35.0

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#) or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated