# INTEGRATED CIRCUITS

# DATA SHEET

# 74ALVCH162827

20-bit buffer/line driver, non-inverting, with  $30\Omega$  termination resistors (3-State)

Product specification

1998 Sep 29

IC24 Data Handbook





# 20-bit buffer/line driver, non-inverting, with 30 $\Omega$ termination resistors (3-State)

# 74ALVCH162827

#### **FEATURES**

- Complies with JEDEC standard no. 8-1A.
- CMOS low power consumption
- Direct interface with TTL levels
- Current drive ± 12 mA at 3.0 V
- MULTIBYTE<sup>TM</sup> flow-through standard pin-out architecture
- Low inductance multiple V<sub>CC</sub> and GND pins for minimum noise and ground bounce
- Integrated 30 Ω termination resistors

#### DESCRIPTION

The 74ALVCH162827 high-performance CMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ALVCH162827 20-bit buffers provide high performance bus interface buffering for wide data/address paths or buses carrying parity. They have NAND Output Enables (nOE1, nOE2) for maximum control flexibility.

The 74ALVCH162827 is designed with  $30\Omega$  series resistance in both the pull-up and pull-down output structures. This design reduces line noise in applications such as memory address drivers, clock drivers and bus receivers/transmitters.

To ensure the high impedance state during power up or power down,  $\overline{OE}$  should be tied to  $V_{CC}$  through a pullup resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

#### QUICK REFERENCE DATA

GND = 0V;  $T_{amb} = 25^{\circ}C$ ;  $t_r = t_f = 2.5$ ns

| SYMBOL                             | PARAMETER                                | CONDITION                                                  | TYPICAL         | UNIT       |     |  |
|------------------------------------|------------------------------------------|------------------------------------------------------------|-----------------|------------|-----|--|
| t <sub>PHL</sub> /t <sub>PLH</sub> | Propagation delay nAn to nYn             | $V_{CC} = 2.5V, C_L = 30pF$<br>$V_{CC} = 3.3V, C_L = 50pF$ |                 | 2.9<br>2.9 | ns  |  |
| C <sub>I</sub>                     | Input capacitance                        |                                                            |                 | 5          | pF  |  |
| Con                                | Power dissipation capacitance per latch  | $V_1 = GND \text{ to } V_{CC}^1$                           | Output enabled  | 14         | pF  |  |
| C <sub>PD</sub>                    | l ower dissipation capacitance per laten | VI = GIAD to AGG                                           | Output disabled | 3          | ] " |  |

# NOTES:

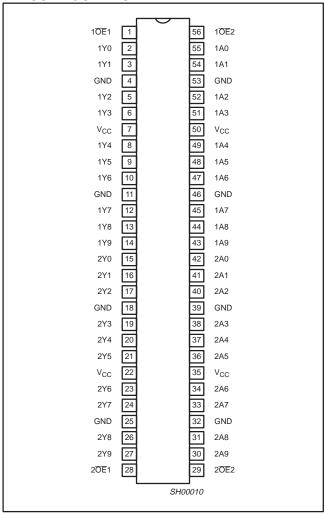
 $C_{PD}$  is used to determine the dynamic power dissipation (PD in  $\mu W)$ :

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$  where:  $P_D = C_{PD} \times V_{CC}^2 \times f_o$  in MHz;  $P_D = C_{PD} \times V_{CC}^2 \times f_o$  where:  $P_D = C_D \times V_{CC}^2 \times f_o$ 

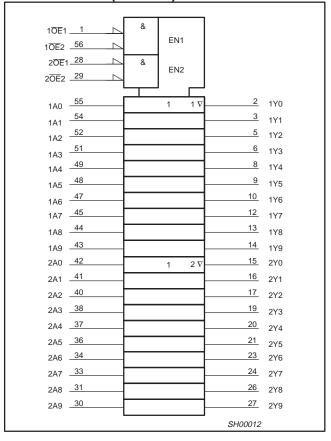
 $\Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$ 

## ORDERING INFORMATION

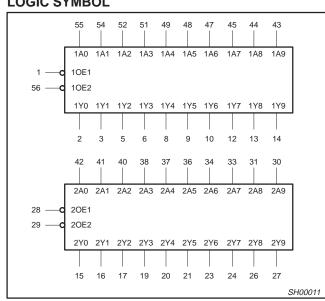
| PACKAGES                     | TEMPERATURE RANGE | OUTSIDE NORTH AMERICA | NORTH AMERICA | DWG NUMBER |
|------------------------------|-------------------|-----------------------|---------------|------------|
| 56-Pin Plastic TSSOP Type II | –40°C to +85°C    | 74ALVCH162827DGG      | ACH162827DGG  | SOT364-1   |


### PIN DESCRIPTION

| PIN NUMBER                                                                     | SYMBOL                                                       | FUNCTION                          |
|--------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------|
| 55, 54, 52, 51, 49, 48, 47, 45, 44, 43, 42, 41, 40, 38, 37, 36, 34, 33, 31, 30 | 1A0 - 1A9<br>2A0 - 2A9                                       | Data inputs                       |
| 2, 3, 5, 6, 8, 9, 10, 12, 13, 14,<br>15, 16, 17, 19, 20, 21, 23, 24, 26, 27    | 1Y0 - 1Y9<br>2Y0 - 2Y9                                       | Data outputs                      |
| 1, 56,<br>28, 29                                                               | 1 <u>0E</u> 1 1 <u>0E</u> 2,<br>2 <u>0E</u> 1, 2 <u>0E</u> 2 | Output enable inputs (active-LOW) |
| 4, 11, 18, 25, 32, 39, 46, 53                                                  | GND                                                          | Ground (0V)                       |
| 7, 22, 35, 50                                                                  | V <sub>CC</sub>                                              | Positive supply voltage           |


# 20-bit buffer/line driver, non-inverting, with $30\Omega$ termination resistors (3-State)

# 74ALVCH162827


## PIN CONFIGURATION



## LOGIC SYMBOL (IEEE/IEC)



# LOGIC SYMBOL

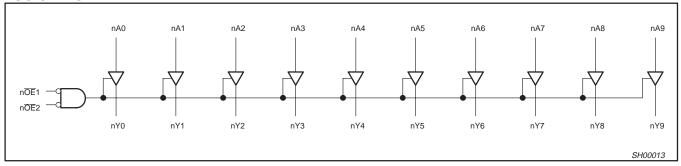


### **FUNCTION TABLE**

|      | INPUTS |     | OUTPUT | OPERATING MODE   |
|------|--------|-----|--------|------------------|
| nOE1 | nOE2   | nAn | nYn    | OF ERATING WIDDE |
| L    | L      | L   | L      | Transparent      |
| L    | L      | Н   | Н      | Transparent      |
| Н    | Х      | Х   | Z      | High impedance   |
| Х    | Н      | Х   | Z      | High impedance   |

X = Don't care

Z = High impedance "off" state


H = High voltage level

L = Low voltage level

# 20-bit buffer/line driver, non-inverting, with $30\Omega$ termination resistors (3-State)

# 74ALVCH162827

# **LOGIC DIAGRAM**



## RECOMMENDED OPERATING CONDITIONS

| SYMBOL                          | PARAMETER                                                                     | CONDITIONS                                                                         | MIN    | MAX             | UNIT |
|---------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------|-----------------|------|
| V                               | DC supply voltage 2.5V range (for max. speed performance @ 30 pF output load) |                                                                                    | 2.3    | 2.7             | V    |
| Vcc                             | DC supply voltage 3.3V range (for max. speed performance @ 50 pF output load) |                                                                                    | 3.0    | 3.6             | V    |
| VI                              | DC Input voltage range                                                        |                                                                                    | 0      | V <sub>CC</sub> | V    |
| V <sub>O</sub>                  | DC output voltage range                                                       |                                                                                    | 0      | V <sub>CC</sub> | V    |
| T <sub>amb</sub>                | Operating free-air temperature range                                          |                                                                                    | -40    | +85             | °C   |
| t <sub>r</sub> , t <sub>f</sub> | Input rise and fall times                                                     | $V_{CC} = 2.3 \text{ to } 3.0 \text{V}$<br>$V_{CC} = 3.0 \text{ to } 3.6 \text{V}$ | 0<br>0 | 20<br>10        | ns/V |

#### **ABSOLUTE MAXIMUM RATINGS**

In accordance with the Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground = 0V)

| SYMBOL                             | PARAMETER                                                         | CONDITIONS                                                                    | RATING                       | UNIT   |  |
|------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------|--------|--|
| V <sub>CC</sub>                    | DC supply voltage                                                 |                                                                               | -0.5 to +4.6                 | V      |  |
| I <sub>IK</sub>                    | DC input diode current                                            | V <sub>I</sub> < 0                                                            | -50                          | mA     |  |
| VI                                 | DC input voltage                                                  | Note 1                                                                        | -0.5 to +4.6                 | V      |  |
| I <sub>OK</sub>                    | DC output diode current                                           | $V_O > V_{CC}$ or $V_O < 0$                                                   | ±50                          | mA     |  |
| Vo                                 | DC output voltage                                                 | Note 1                                                                        | -0.5 to V <sub>CC</sub> +0.5 | V      |  |
| I <sub>O</sub>                     | DC output source or sink current                                  | $V_O = 0$ to $V_{CC}$                                                         | ±50                          | mA     |  |
| I <sub>GND</sub> , I <sub>CC</sub> | DC V <sub>CC</sub> or GND current                                 |                                                                               | ±100                         | mA     |  |
| T <sub>stg</sub>                   | Storage temperature range                                         |                                                                               | -65 to +150                  | °C     |  |
| P <sub>TOT</sub>                   | Power dissipation per package –plastic thin-medium-shrink (TSSOP) | For temperature range: –40 to +125 °C above +55°C derate linearly with 8 mW/K | 600                          | 600 mW |  |

### NOTE:

<sup>1.</sup> The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

# 20-bit buffer/line driver, non-inverting, with $30\boldsymbol{\Omega}$ termination resistors (3-State)

# 74ALVCH162827

### DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltage are referenced to GND (ground = 0 V).

|                   |                                         |                                                                                |                      | LIMITS                |      |      |  |
|-------------------|-----------------------------------------|--------------------------------------------------------------------------------|----------------------|-----------------------|------|------|--|
| SYMBOL            | PARAMETER                               | TEST CONDITIONS                                                                | Temp =               | = -40°C to +8         | 5°C  | UNIT |  |
|                   |                                         |                                                                                | MIN                  | TYP <sup>1</sup>      | MAX  | 1    |  |
| .,                |                                         | V <sub>CC</sub> = 2.3 to 2.7V                                                  | 1.7                  | 1.2                   |      | ,,   |  |
| $V_{IH}$          | HIGH level Input voltage                | V <sub>CC</sub> = 2.7 to 3.6V                                                  | 2.0                  | 1.5                   |      | V    |  |
|                   | $V_{CC} = 2.3 \text{ to } 2.7 \text{V}$ |                                                                                |                      | 1.2                   | 0.7  | .,   |  |
| $V_{IL}$          | LOW level Input voltage                 | V <sub>CC</sub> = 2.7 to 3.6V                                                  |                      | 1.5                   | 0.8  | \ \  |  |
|                   |                                         | $V_{CC}$ = 2.3 to 3.6V; $V_I$ = $V_{IH}$ or $V_{IL}$ ; $I_O$ = $-100\mu A$     | V <sub>CC</sub> -0.2 | V <sub>CC</sub>       |      |      |  |
|                   |                                         | $V_{CC} = 2.3V$ ; $V_I = V_{IH}$ or $V_{IL}$ ; $I_O = -4mA$                    | V <sub>CC</sub> -0.4 | V <sub>CC</sub> -0.11 |      | 1    |  |
|                   |                                         | $V_{CC} = 2.3V$ ; $V_I = V_{IH}$ or $V_{IL}$ ; $I_O = -6mA$                    | V <sub>CC</sub> -0.6 | V <sub>CC</sub> -0.17 |      | 1    |  |
| $V_{OH}$          | HIGH level output voltage               | $V_{CC} = 2.7V$ ; $V_I = V_{IH}$ or $V_{IL}$ ; $I_O = -4mA$                    | V <sub>CC</sub> -0.5 | V <sub>CC</sub> -0.09 |      | V    |  |
|                   |                                         | $V_{CC} = 2.7V$ ; $V_I = V_{IH}$ or $V_{IL}$ ; $I_O = -8mA$                    | V <sub>CC</sub> -0.7 | V <sub>CC</sub> -0.19 |      | 1    |  |
|                   |                                         | $V_{CC} = 3.0V$ ; $V_I = V_{IH}$ or $V_{IL}$ ; $I_O = -6mA$                    | V <sub>CC</sub> -0.6 | V <sub>CC</sub> -0.13 |      | 1    |  |
|                   |                                         | $V_{CC} = 3.0V$ ; $V_I = V_{IH}$ or $V_{IL}$ ; $I_O = -12mA$                   | V <sub>CC</sub> -1.0 | V <sub>CC</sub> -0.27 |      | 1    |  |
|                   |                                         | $V_{CC}$ = 2.3 to 3.6V; $V_I$ = $V_{IH}$ or $V_{IL}$ ; $I_O$ = 100 $\mu$ A     |                      | GND                   | 0.20 |      |  |
|                   |                                         | $V_{CC} = 2.3V$ ; $V_I = V_{IH}$ or $V_{IL}$ ; $I_O = 4mA$                     |                      | 0.07                  | 0.40 | 1    |  |
|                   |                                         | $V_{CC} = 2.3V$ ; $V_I = V_{IH}$ or $V_{IL}$ ; $I_O = 6mA$                     |                      | 0.11                  | 0.55 | 1    |  |
| $V_{OL}$          | LOW level output voltage                | $V_{CC} = 2.7V$ ; $V_I = V_{IH}$ or $V_{IL}$ ; $I_O = 4mA$                     |                      | 0.06                  | 0.40 | ٧    |  |
|                   |                                         | $V_{CC} = 2.7V$ ; $V_I = V_{IH}$ or $V_{IL}$ ; $I_O = 8mA$                     |                      | 0.13                  | 0.60 | ]    |  |
|                   |                                         | $V_{CC} = 3.0V$ ; $V_I = V_{IH}$ or $V_{IL}$ ; $I_O = 6mA$                     |                      | 0.09                  | 0.55 |      |  |
|                   |                                         | $V_{CC} = 3.0V$ ; $V_I = V_{IH}$ or $V_{IL}$ ; $I_O = 12mA$                    |                      | 0.19                  | 0.80 | 1    |  |
| IĮ                | Input leakage current                   | $V_{CC}$ = 2.3 to 3.6V;<br>$V_I$ = $V_{CC}$ or GND                             |                      | 0.1                   | 5    | μА   |  |
| I <sub>OZ</sub>   | 3-State output OFF-state current        | $V_{CC}$ = 2.3 to 3.6V; $V_I$ = $V_{IH}$ or $V_{IL}$ ; $V_O$ = $V_{CC}$ or GND |                      | 0.1                   | 10   | μА   |  |
| I <sub>CC</sub>   | Quiescent supply current                | $V_{CC} = 2.3$ to 3.6V; $V_I = V_{CC}$ or GND; $I_O = 0$                       |                      | 0.2                   | 40   | μΑ   |  |
| $\Delta I_{CC}$   | Additional quiescent supply current     | $V_{CC} = 2.3V \text{ to } 3.6V; V_I = V_{CC} - 0.6V; I_O = 0$                 |                      | 150                   | 750  | μА   |  |
| I <sub>BHL</sub>  | Bus hold LOW sustaining current         | $V_{CC} = 2.3V; V_I = 0.7V^2$                                                  | 45                   | -                     |      | μΑ   |  |
| la                | Rue hold HIGH custoining current        | $V_{CC} = 2.3V; V_I = 1.7V^2$                                                  | -45                  |                       |      | ,,,  |  |
| Iвнн              | Bus hold HIGH sustaining current        | $V_{CC} = 3.0V; V_1 = 2.0V^2$                                                  | <del>-</del> 75      | -175                  |      | μА   |  |
| I <sub>BHLO</sub> | Bus hold LOW overdrive current          | $V_{CC} = 3.6V^2$                                                              | 500                  |                       |      | μΑ   |  |
| I <sub>BHHO</sub> | Bus hold HIGH overdrive current         | $V_{CC} = 3.6V^2$                                                              | -500                 |                       |      | μΑ   |  |

5

All typical values are at T<sub>amb</sub> = 25°C.
Valid for data inputs of bus hold parts.

# 20-bit buffer/line driver, non-inverting, with $30 \ensuremath{\Omega}$ termination resistors (3-State)

74ALVCH162827

# AC CHARACTERISTICS FOR $V_{CC}$ = 2.5V $\pm$ 0.2V

 $GND = 0V; \ t_r = t_f \leq 2.0ns; \ C_L = 30pF$ 

|                                    | SYMBOL PARAMETER                           |      |     |                  |     |    |
|------------------------------------|--------------------------------------------|------|-----|------------------|-----|----|
| SYMBOL                             |                                            |      | V   | UNIT             |     |    |
|                                    |                                            |      | MIN | TYP <sup>1</sup> | MAX |    |
| t <sub>PHL</sub> /t <sub>PLH</sub> | Propagation delay<br>nAn to nYn            | 1, 3 | 1.0 | 2.9              | 4.6 | ns |
| t <sub>PZH</sub> /t <sub>PZL</sub> | 3-State output enable time nOEn to nYn     | 2, 3 | 1.4 | 3.9              | 6.4 | ns |
| t <sub>PHZ</sub> /t <sub>PLZ</sub> | 3-State output disable time<br>nOEn to nYn | 2,3  | 1.7 | 2.2              | 5.9 | ns |

### NOTE:

# AC CHARACTERISTICS FOR $V_{CC}$ = 3.0V $\pm$ 0.3V

 $GND = 0V; \ t_r = t_f \le 2.5 ns; \ C_L = 50 pF$ 

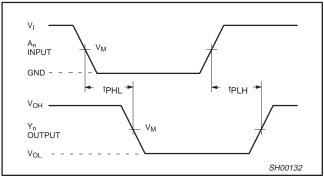
|                                    | SYMBOL PARAMETER                        |      |                          | LIMITS              |     | LIM                         |     |                   |
|------------------------------------|-----------------------------------------|------|--------------------------|---------------------|-----|-----------------------------|-----|-------------------|
| SYMBOL                             |                                         |      | YMBOL PARAMETER WAVEFORM |                     | ٧c  | $_{\rm CC}$ = 3.3 $\pm$ 0.3 | 3V  | V <sub>CC</sub> = |
|                                    |                                         |      | MIN                      | TYP <sup>1, 2</sup> | MAX | TYP <sup>1</sup>            | MAX |                   |
| t <sub>PHL</sub> /t <sub>PLH</sub> | Propagation delay<br>nAn to nYn         | 1, 3 | 1.5                      | 2.9                 | 4.2 | 3.1                         | 4.7 | ns                |
| t <sub>PZH</sub> /t <sub>PZL</sub> | 3-State output enable time nOEn to nYn  | 2, 3 | 1.6                      | 3.7                 | 5.4 | 4.4                         | 6.5 | ns                |
| t <sub>PHZ</sub> /t <sub>PLZ</sub> | 3-State output disable time nOEn to nYn | 2, 3 | 1.8                      | 3.0                 | 4.7 | 3.2                         | 5.2 | ns                |

- 1. All typical values are at  $V_{CC}$   $T_{amb}$  = 25°C. 2. Typical value is measured at  $V_{CC}$  = 3.3V.

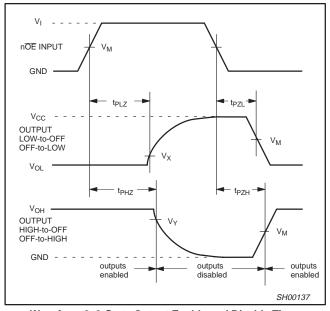
<sup>1.</sup> All typical values are at  $V_{CC}$  = 2.5V and  $T_{amb}$  = 25°C.

# 20-bit buffer/line driver, non-inverting, with $30\Omega$ termination resistors (3-State)

# 74ALVCH162827

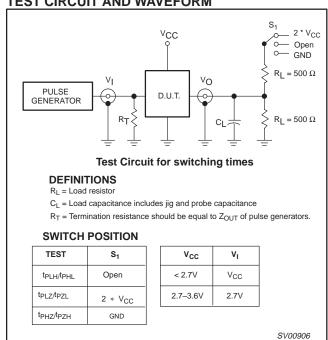

# AC WAVEFORMS FOR $V_{CC} = 2.3V$ TO 2.7V

 $V_{M} = 0.5 V_{CC}$   $V_{X} = V_{OL} + 0.15 V_{CC}$  $V_Y = V_{OH} - 0.15V$   $V_{OL}$  and  $V_{OH}$  are the typical output voltage drop that occur with the output load.


# AC WAVEFORMS FOR $V_{CC} = 3.0V$ TO 3.6V AND $V_{CC} = 2.7V RANGE$

 $V_{M} = 1.5 \text{ V}$   $V_{X} = V_{OL} + 0.3 \text{V}$ 

 $V_Y = V_{OH} - 0.3V$   $V_{OL}$  and  $V_{OH}$  are the typical output voltage drop that occur with the output load.

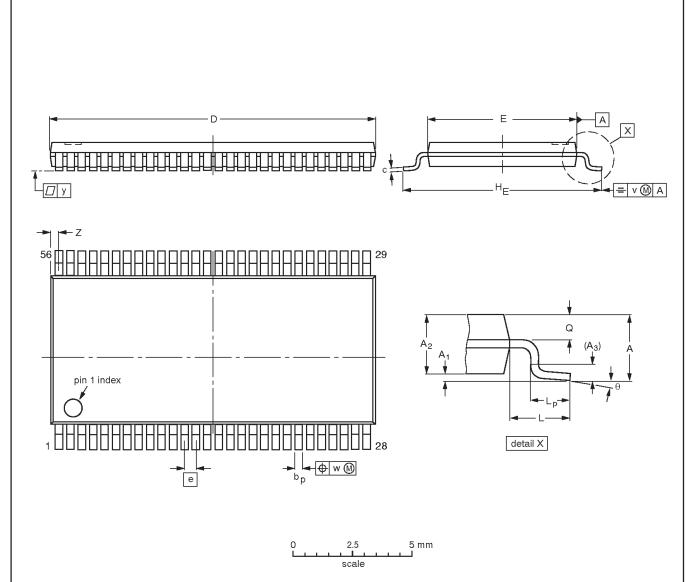



Waveform 1. Input (nAx) to Output (nYx) Propagation Delays



Waveform 2. 3-State Output Enable and Disable Times

### TEST CIRCUIT AND WAVEFORM




Waveform 3. Load circuitry for switching times

# 20-bit buffer/line driver, non-inverting, with $30\Omega$ termination resistors (3-State)

# TSSOP56: plastic thin shrink small outline package; 56 leads; body width 6.1mm

SOT364-1



# DIMENSIONS (mm are the original dimensions).

| UNIT | A<br>max. | A <sub>1</sub> | A <sub>2</sub> | А3   | bp           | С          | D <sup>(1)</sup> | E <sup>(2)</sup> | е   | HE         | L   | Lp         | Q            | ٧    | w    | у   | z          | θ        |
|------|-----------|----------------|----------------|------|--------------|------------|------------------|------------------|-----|------------|-----|------------|--------------|------|------|-----|------------|----------|
| mm   | 1.2       | 0.15<br>0.05   | 1.05<br>0.85   | 0.25 | 0.28<br>0.17 | 0.2<br>0.1 | 14.1<br>13.9     | 6.2<br>6.0       | 0.5 | 8.3<br>7.9 | 1.0 | 0.8<br>0.4 | 0.50<br>0.35 | 0.25 | 0.08 | 0.1 | 0.5<br>0.1 | 8°<br>0° |

#### Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

| OUTLINE  |     | REFER    | EUROPEAN | ISSUE DATE |            |                                  |
|----------|-----|----------|----------|------------|------------|----------------------------------|
| VERSION  | IEC | JEDEC    | EIAJ     |            | PROJECTION | 1330E DATE                       |
| SOT364-1 |     | MO-153EE |          |            |            | <del>-93-02-03</del><br>95-02-10 |

1998 Sep 29 8

20-bit buffer/line driver, non-inverting, with  $30\Omega$  termination resistors (3-State)

74ALVCH162827

**NOTES** 

1998 Sep 29

9

# 20-bit buffer/line driver, non-inverting, with $30\Omega$ termination resistors (3-State)

74ALVCH162827

|                           | DEFINITIONS            |                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|---------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Data Sheet Identification |                        | Definition                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| Objective Specification   | Formative or in Design | This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.                                                                                                         |  |  |  |  |  |  |
| Preliminary Specification | Preproduction Product  | This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. |  |  |  |  |  |  |
| Product Specification     | Full Production        | This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.                                                      |  |  |  |  |  |  |

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

## LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

Date of release: 06-98

Document order number: 9397-750-04603

Let's make things better.

Philips Semiconductors





# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

# NXP:

74ALVCH162827DG 74ALVCH162827DG-T 74ALVCH162827DGG:1 74ALVCH162827DGG,1