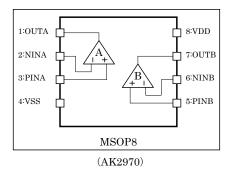


AK2970

Zero Drift Operational Amplifier

1. General Description

AK2970 is the dual channel CMOS operational amplifires which is available to output with very low input offset voltage ($\pm 5\mu V@10V$) and near zero input offset dirft.


It's operated with very small current consumptions, 2mA typ. (VDD:10V), which is available to operate full swing signals in output. AK2970 is appropriate to Sensor Pre Amp. applications.

2. Features

- □ Wide Supply Operation Range: $4.5V \sim 13.2V$ (±2.25V ~ ±6.6V) □ Very Low Input Offset Voltage : ± 5μV max. (@VDD:10V)
- \square Near Zero Dirft over time and temperature : $\pm 20 \text{nV/}^{\circ}\text{C}$ max. (@VDD:10V)
- \square Input Voltage Range : VSS − VDD \square Full Swing Outputs to 10kΩ Load
- ☐ Power Supply Current : 2mA typ. (@VDD: 10V, No Load)
- ☐ Gain Bandwidth : 4MHz typ. ☐ Slew Rate : 4V/µsec typ.
- ☐ Operationg Temperature Range : -40 ~ 125°C
- ☐ Package : MSOP8

Part Name	Channel Nummber	Package
AK2970H	2	MSOP8

3. Block Diagram

4. Pin Configurations and Functions

Pin number	Pin Name	I/O: Note 1	Function
1	OUTA	AO	Amplifier A Output
2	NINA	AI	Amplifier A Inverted Input
3	PINA	AI	Amplifier A No Inverted Input
4	VSS	PWR	Power Supply Ground
5	PINB	AI	Amplifier B No Inverted Input
6	NINB	AI	Amplifier B Inverted Input
7	OUTB	AO	Amplifier B Output
8	VDD	PWR	Positive Power Supply

Note 1.

PWR : Power Supply
AI : Analog Input
AO : Analog Output

5. Absolute Maximum Ratings

(VSS = 0V : Note 2)

Parameter	Symbol	\mathbf{Min}	Max	\mathbf{Units}
Supply Voltage	VDD	-0.3	14	V
Input Voltage	V_{TD}	-0.3	VDD + 0.3	V
Input Current	I_{IN}	-10	+10	mA
Storage Temperature Range	T_{stg}	-55	150	°C

Note 2. All voltage with respect to ground

Note 3. Operational at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

6. Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
Operationg Temperature Range	Ta	-40		125	°C	
Supply Voltage	VDD	4.5		13.2	V	

7. Electrical Characteristics

 \Box DC Characteristics (typical condition is VDD=10V,Ta=25°C)

VDD:10V, Vcm=VDD/2, Ta:-40 to 125°C, unless otherwise noted

Parameter	Symbol	Conditions	min	Тур	Max	Units
Input Voltage Offset	Vio	Ta=25°C,inverting-amp, gain@60dB		±1	± 5	μV
		VDD:10V,all temperature range, inverting-amp, gain@60dB			± 5	μV
		VDD≥5V,All temperature Inverting amp@60dB			±10	μV
		VDD≥4.5V,All temperature Inverting amp@60dB			± 20	μV
Input Voltage	Viod	Inverting amp@60dB		±5	±20	nV/°C
Offset Drift		VDD≥6V Inverting-amp@60dB			±40	nV/°C
		VDD≥5V Inverting-amp@60dB			±50	nV/°C
		Vdd≥4.5V, Inverting-amp@60dB			±70	nV/°C
Input Bias Current	Is	Ta=25°C (@1/2*VDD) Rf=510kΩ : Note 4		±50		pA
Input Common Mode Range	VICM		VSS		VDD	V
Output Voltage Swing	Vom	RL≥10kΩ (@1/2*VDD)	0.1		VDD-0.1	V
CMRR	CMR	@Common mode rage	110	130		dB
		VDD≥5V @ Common mode rage	105			dB
		VDD≥4.5V @ Common mode rage	85			dB
		VDD≥4.5V @(VSS~[VDD-0.1])	100			dB
PSRR	SVR	VDD:4.5V ~ 13.2V	110	130		dB
Large Signal Voltage Gain	Av	RL≥10kΩ (@1/2*VDD) @Max. output range	110	130		dB
Short Circuit Current	Ios	Short Vout and VDD or VSS, by voltage follower		±50		mA
		Short Vout and VDD or VSS, by voltage follower VDD:13.2V			±180	mA
Output Current	Ios	Vcm:VSS@out [VSS+1V] Vcm:VDD@out [VDD-1V]		±15		mA
D 0 :	T	VDD:4.5V	±5			mA
Power Supply	Idd	VDD:10V :Note 5		1.0	1.8	mA/ch
Current		VDD: $4.5 \sim 13.2$ V :Note 5		1.0	2.5	mA/ch

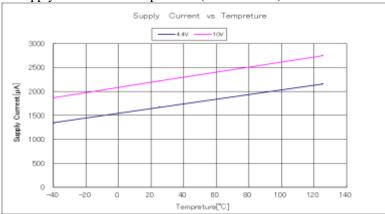
Note 4. It is defined by "offset voltage (Voff)" of transformer impedance amplifier. When beedback resister is Rf. Input bias current is expressed by a following formula. Is= Voff/Rf When using it as transformer impedance amplifier, "VCOM=VDD/2" are recommended. Note 5. It does not contain output drive current.

Rev.1.01Ea 2013/2

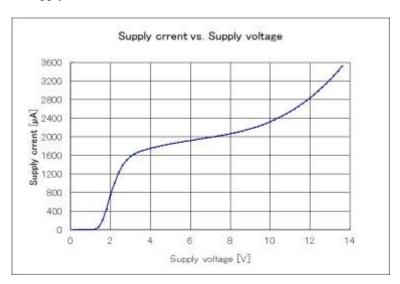
■ Analog AC Characteristics (typ. value condition: VDD=10V, Ta=25°C)

VDD=10V、 Vcm=VDD/2、 Ta:-40~125°C , unless otherwise noted

項	I	記号	条件	\min	Тур	max	単位
Gain Banb Width		GB	Inverting-amp@60dB Load cap.= 20pF		4		MHz
			VDD:13.2V			6.5	MHz
			VDD:4.5V	3			m MHz
Slew rate	Slew rate		Av =1, Load cap.=20pF, 10%⇔90%		4		V/µs
			VDD:13.2V			10	V/µs
			VDD:4.5V	1.7			V/µs
Voltage No	ise Density	Vni	@1kHz		50		nVrms/√Hz
			0.1~10Hz :Note 6		0.8		$\mu V pp$
			0.1~1Hz :Note 6		0.3		$\mu V pp$
Overload Recovery Time		Tor	Av:-50 times, Load capacitance: 20pF, 200mV input, VDD:10V, ±10% attainment time of the last value		10		μsec
Input	Differential	CIND			1.5		pF
Capacitance	Common Mode	CINC			5		рF
Maximum Capacitance Loads		CL				150	рF

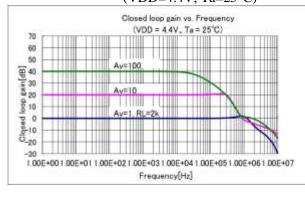

Note 6. It was converted from noise density.

<Reference information>

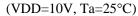

- When output load=150pF, phase margin = 70deg typ.
- Chopper clock frequency: 10kHz typ.

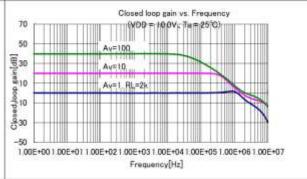
8. Typical Operating Characteristics (Reference)

■ Supply Current vs. Temperature (Vin:1/2VDD)

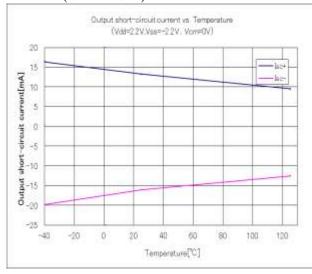


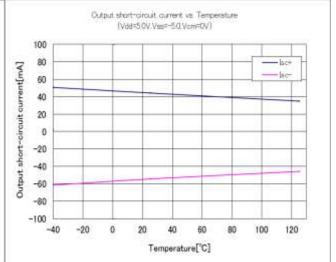
■ Supply Current vs. VDD (Vin:1/2VDD)

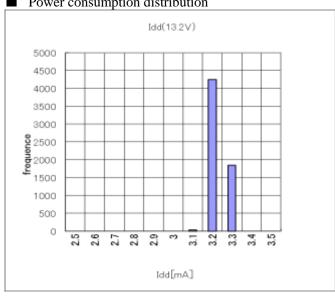



■Closed loop gain vs. frequency

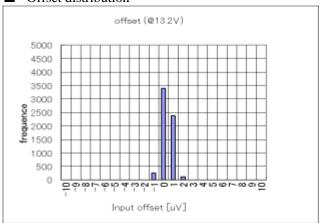
(VDD=4.4V, Ta=25°C)

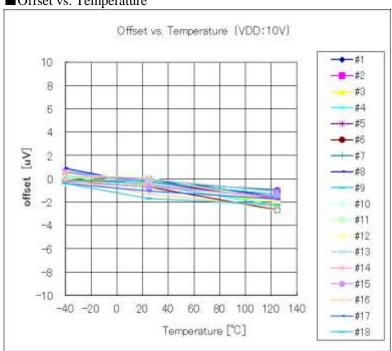

\blacksquare Closed loop gain vs. frequency

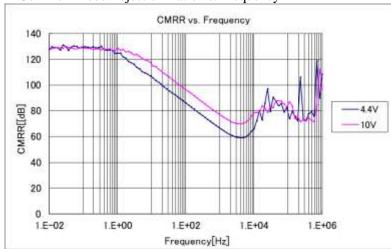



■ Short circuit current vs. Temperature $(VDD=\pm 2.2V)$

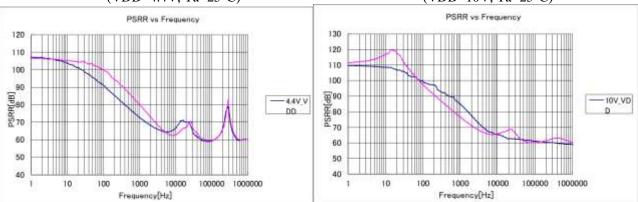
■ Short circuit current vs. Temperature $(VDD=\pm 5V)$



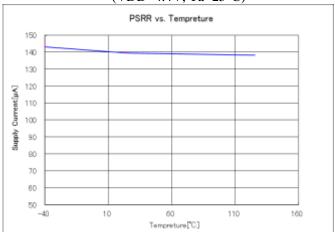

■ Power consumption distribution


■ Offset distribution

■Offset vs. Temperature

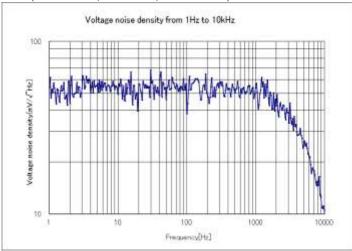


■ Common Mode Rejection Ratio vs. Frequency



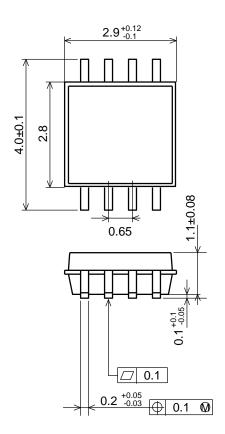
■ Power Supply Rejection Ratio vs. Frequency (VDD=4.4V, Ta=25°C)

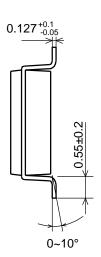
■ Power Supply Rejection Ratio vs. Frequency (VDD=10V, Ta=25°C)



■ Power Supply Rejection Ratio vs. Temperature (VDD=4.4V, Ta=25°C)

■ Voltage noise density

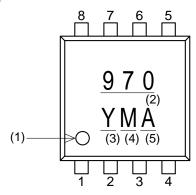

(VDD=10V, Ta=25°C, f=0~10kHz)



9. Package

9.1. Outline Dimensions

MSOP8



(unit:mm)

9.2.Marking

MSOP8

- (1) 1 pin indicator
- (1) Prinidicator
 (2) Part number (AK2970 : 970)
 (3) Date code (Year)
 (4) Date code (Month)
 (5) In-house control code

IMPORTANT NOTICE

These products and their specifications are subject to change without notice. When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products.

Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement

of any patent, intellectual property, or other rights in the application or use of such information contained herein. Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs,

currency exchange, or strategic materials. AKM products are neither intended nor authorized for use as critical components_{Note1} in any safety, life support, or other hazard related device or system_{Note2}, and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here:

Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether

directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore

meet very high standards of performance and reliability.

Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.

It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise

places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.