

# 24-Stage Frequency Divider

## MC14521B

The MC14521B consists of a chain of 24 flip-flops with an input circuit that allows three modes of operation. The input will function as a crystal oscillator, an RC oscillator, or as an input buffer for an external oscillator. Each flip-flop divides the frequency of the previous flip-flop by two, consequently this part will count up to  $2^{24} = 16,777,216$ . The count advances on the negative going edge of the clock. The outputs of the last seven-stages are available for added flexibility.

### Features

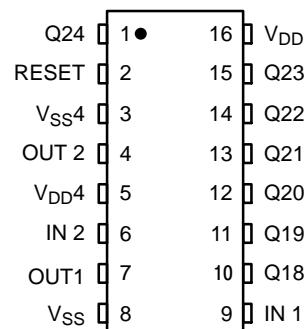
- All Stages are Resettable
- Reset Disables the RC Oscillator for Low Standby Power Drain
- RC and Crystal Oscillator Outputs Are Capable of Driving External Loads
- Test Mode to Reduce Test Time
- $V_{DD}'$  and  $V_{SS}'$  Pins Brought Out on Crystal Oscillator Inverter to Allow the Connection of External Resistors for Low-Power Operation
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load over the Rated Temperature Range
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- This Device is Pb-Free and is RoHS Compliant

### MAXIMUM RATINGS (Voltages Referenced to $V_{SS}$ )

| Parameter                                         | Symbol               | Value                 | Unit |
|---------------------------------------------------|----------------------|-----------------------|------|
| DC Supply Voltage Range                           | $V_{DD}$             | -0.5 to +18.0         | V    |
| Input or Output Voltage Range (DC or Transient)   | $V_{in}$ , $V_{out}$ | -0.5 to $V_{DD}$ +0.5 | V    |
| Input or Output Current (DC or Transient) per Pin | $I_{in}$ , $I_{out}$ | $\pm 10$              | mA   |
| Power Dissipation, per Package (Note 1)           | $P_D$                | 500                   | mW   |
| Ambient Temperature Range                         | $T_A$                | -55 to +125           | °C   |
| Storage Temperature Range                         | $T_{stg}$            | -65 to +150           | °C   |
| Lead Temperature (8-Second Soldering)             | $T_L$                | 260                   | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Operating the device outside its recommended conditions, but still within its maximum rated limits may not cause immediate damage. However, doing so can lead to reduced performance, unpredictable behavior, and potentially shorten the device's lifespan or reliability.

1. Temperature Derating: "D/DW" Package: -7.0 mW/°C From 65 °C To 125 °C


This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation,  $V_{in}$  and  $V_{out}$  should be constrained to the range  $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$ .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either  $V_{SS}$  or  $V_{DD}$ ). Unused outputs must be left open.



SOIC-16  
D SUFFIX  
CASE 751B

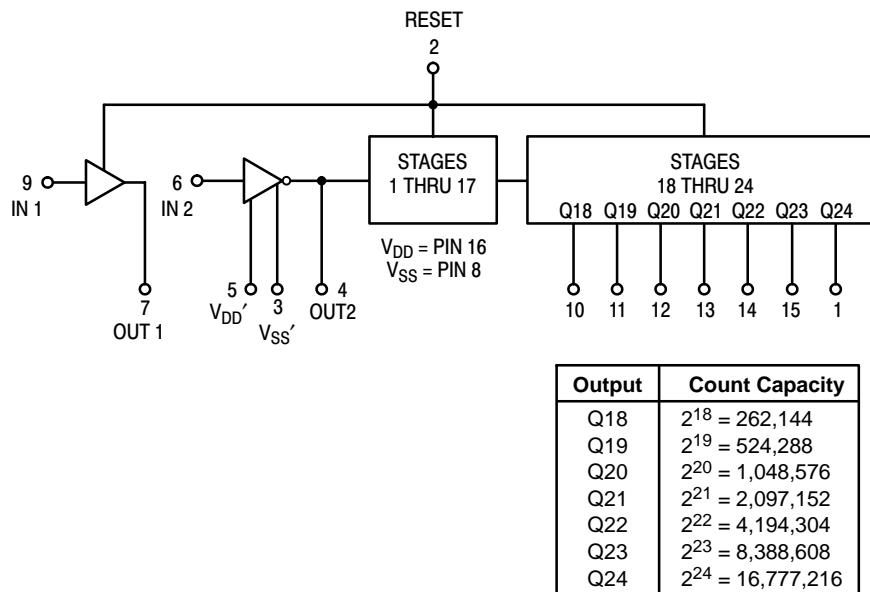
### PIN ASSIGNMENT



### MARKING DIAGRAMS



A = Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
G = Pb-Free Package


### ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

NOTE: Some of the devices on this data sheet have been DISCONTINUED. Please refer to the table on page 2.

# MC14521B

## BLOCK DIAGRAM



## ORDERING INFORMATION

| Device         | Package              | Shipping <sup>†</sup> |
|----------------|----------------------|-----------------------|
| MC14521BDG     | SOIC-16<br>(Pb-Free) | 48 Units / Rail       |
| MC14521BDR2G   | SOIC-16<br>(Pb-Free) | 2500 / Tape & Reel    |
| NLV14521BDR2G* | SOIC-16<br>(Pb-Free) | 2500 / Tape & Reel    |

## DISCONTINUED (Note 2)

|              |                      |                 |
|--------------|----------------------|-----------------|
| NLV14521BDG* | SOIC-16<br>(Pb-Free) | 48 Units / Rail |
|--------------|----------------------|-----------------|

<sup>†</sup> For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, [BRD8011/D](#).

\* NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

2. **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The most current information on these devices may be available on [www.onsemi.com](#).

# MC14521B

## ELECTRICAL CHARACTERISTICS (Voltages Referenced to V<sub>SS</sub>)

| Characteristic                                                                                                                                                                                                                                                                                                                                     | Symbol                                               | V <sub>DD</sub><br>Vdc | -55 °C                                             |       | 25 °C |                 |       | 125 °C |       | Unit |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------|----------------------------------------------------|-------|-------|-----------------|-------|--------|-------|------|------|
|                                                                                                                                                                                                                                                                                                                                                    |                                                      |                        | Min                                                | Max   | Min   | Typ<br>(Note 3) | Max   | Min    | Max   |      |      |
| Output Voltage<br>V <sub>in</sub> = V <sub>DD</sub> or 0<br><br>"0" Level<br>V <sub>in</sub> = 0 or V <sub>DD</sub>                                                                                                                                                                                                                                | V <sub>OL</sub>                                      | 5.0                    | –                                                  | 0.05  | –     | 0               | 0.05  | –      | 0.05  | Vdc  |      |
|                                                                                                                                                                                                                                                                                                                                                    |                                                      | 10                     | –                                                  | 0.05  | –     | 0               | 0.05  | –      | 0.05  | Vdc  |      |
|                                                                                                                                                                                                                                                                                                                                                    |                                                      | 15                     | –                                                  | 0.05  | –     | 0               | 0.05  | –      | 0.05  | Vdc  |      |
|                                                                                                                                                                                                                                                                                                                                                    | V <sub>OH</sub>                                      | 5.0                    | 4.95                                               | –     | 4.95  | 5.0             | –     | 4.95   | –     | Vdc  |      |
|                                                                                                                                                                                                                                                                                                                                                    |                                                      | 10                     | 9.95                                               | –     | 9.95  | 10              | –     | 9.95   | –     | Vdc  |      |
|                                                                                                                                                                                                                                                                                                                                                    |                                                      | 15                     | 14.95                                              | –     | 14.95 | 15              | –     | 14.95  | –     | Vdc  |      |
| Input Voltage<br>(V <sub>O</sub> = 4.5 or 0.5 Vdc)<br>(V <sub>O</sub> = 9.0 or 1.0 Vdc)<br>(V <sub>O</sub> = 13.5 or 1.5 Vdc)<br><br>"1" Level<br>(V <sub>O</sub> = 0.5 or 4.5 Vdc)<br>(V <sub>O</sub> = 1.0 or 9.0 Vdc)<br>(V <sub>O</sub> = 1.5 or 13.5 Vdc)                                                                                     | V <sub>IL</sub>                                      | 5.0                    | –                                                  | 1.5   | –     | 2.25            | 1.5   | –      | 1.5   | Vdc  |      |
|                                                                                                                                                                                                                                                                                                                                                    |                                                      | 10                     | –                                                  | 3.0   | –     | 4.50            | 3.0   | –      | 3.0   | Vdc  |      |
|                                                                                                                                                                                                                                                                                                                                                    |                                                      | 15                     | –                                                  | 4.0   | –     | 6.75            | 4.0   | –      | 4.0   | Vdc  |      |
|                                                                                                                                                                                                                                                                                                                                                    | V <sub>IH</sub>                                      | 5.0                    | 3.5                                                | –     | 3.5   | 2.75            | –     | 3.5    | –     | Vdc  |      |
|                                                                                                                                                                                                                                                                                                                                                    |                                                      | 10                     | 7.0                                                | –     | 7.0   | 5.50            | –     | 7.0    | –     | Vdc  |      |
|                                                                                                                                                                                                                                                                                                                                                    |                                                      | 15                     | 11                                                 | –     | 11    | 8.25            | –     | 11     | –     | Vdc  |      |
| Output Drive Current<br>(V <sub>OH</sub> = 4.5 Vdc)<br>(V <sub>OH</sub> = 9.0 Vdc)<br>(V <sub>OH</sub> = 13 Vdc)<br><br>(V <sub>OH</sub> = 2.5 Vdc)<br>(V <sub>OH</sub> = 4.6 Vdc)<br>(V <sub>OH</sub> = 9.5 Vdc)<br>(V <sub>OH</sub> = 13.5 Vdc)<br><br>(V <sub>OL</sub> = 0.4 Vdc)<br>(V <sub>OL</sub> = 0.5 Vdc)<br>(V <sub>OL</sub> = 1.5 Vdc) | Source<br>Pin 4                                      | I <sub>OH</sub>        | 5.0                                                | -0.25 | –     | -0.2            | -0.36 | –      | -0.14 | –    | mAdc |
|                                                                                                                                                                                                                                                                                                                                                    |                                                      |                        | 10                                                 | -0.62 | –     | -0.5            | -0.9  | –      | -0.35 | –    | mAdc |
|                                                                                                                                                                                                                                                                                                                                                    |                                                      |                        | 15                                                 | -1.8  | –     | -1.5            | -3.5  | –      | -1.1  | –    | mAdc |
|                                                                                                                                                                                                                                                                                                                                                    | Source<br>Pins 1, 7, 10,<br>11, 12, 13, 14<br>and 15 | I <sub>OH</sub>        | 5.0                                                | -3.0  | –     | -2.4            | -4.2  | –      | -1.7  | –    | mAdc |
|                                                                                                                                                                                                                                                                                                                                                    |                                                      |                        | 5.0                                                | -0.64 | –     | -0.51           | -0.88 | –      | -0.36 | –    | mAdc |
|                                                                                                                                                                                                                                                                                                                                                    | Sink                                                 | I <sub>OL</sub>        | 10                                                 | -1.6  | –     | -1.3            | -2.25 | –      | -0.9  | –    | mAdc |
|                                                                                                                                                                                                                                                                                                                                                    |                                                      |                        | 15                                                 | -4.2  | –     | -3.4            | -8.8  | –      | -2.4  | –    | mAdc |
|                                                                                                                                                                                                                                                                                                                                                    | Sink                                                 | I <sub>OL</sub>        | 5.0                                                | 0.64  | –     | 0.51            | 0.88  | –      | 0.36  | –    | mAdc |
|                                                                                                                                                                                                                                                                                                                                                    |                                                      | I <sub>OL</sub>        | 10                                                 | 1.6   | –     | 1.3             | 2.25  | –      | 0.9   | –    | mAdc |
|                                                                                                                                                                                                                                                                                                                                                    |                                                      | I <sub>OL</sub>        | 15                                                 | 4.2   | –     | 3.4             | 8.8   | –      | 2.4   | –    | mAdc |
| Input Current                                                                                                                                                                                                                                                                                                                                      | I <sub>in</sub>                                      | 15                     | –                                                  | ±0.1  | –     | ±0.00001        | ±0.1  | –      | ±1.0  | μAdc |      |
| Input Capacitance<br>(V <sub>in</sub> = 0)                                                                                                                                                                                                                                                                                                         | C <sub>in</sub>                                      | –                      | –                                                  | –     | –     | 5.0             | 7.5   | –      | –     | pF   |      |
| Quiescent Current<br>(Per Package)                                                                                                                                                                                                                                                                                                                 | I <sub>DD</sub>                                      | 5.0                    | –                                                  | 5.0   | –     | 0.005           | 5.0   | –      | 150   | μAdc |      |
| Total Supply Current (Note 4, 5)<br>(Dynamic plus Quiescent,<br>Per Package)<br>(C <sub>L</sub> = 50 pF on all outputs, all<br>buffers switching)                                                                                                                                                                                                  | I <sub>T</sub>                                       | 10                     | I <sub>T</sub> = (0.42 μA/kHz) f + I <sub>DD</sub> |       |       |                 |       |        | μAdc  |      |      |
|                                                                                                                                                                                                                                                                                                                                                    |                                                      | 15                     | I <sub>T</sub> = (0.85 μA/kHz) f + I <sub>DD</sub> |       |       |                 |       |        |       |      |      |
|                                                                                                                                                                                                                                                                                                                                                    |                                                      | 5.0                    | I <sub>T</sub> = (1.40 μA/kHz) f + I <sub>DD</sub> |       |       |                 |       |        |       |      |      |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

4. The formulas given are for the typical characteristics only at 25 °C.

5. To calculate total supply current at loads other than 50 pF: I<sub>T</sub>(C<sub>L</sub>) = I<sub>T</sub>(50 pF) + (C<sub>L</sub> – 50) Vfk where: I<sub>T</sub> is in μA (per package), C<sub>L</sub> in pF, V = (V<sub>DD</sub> – V<sub>SS</sub>) in volts, f in kHz is input frequency, and k = 0.003.

# MC14521B

## SWITCHING CHARACTERISTICS (Note 6) ( $C_L = 50 \text{ pF}$ , $T_A = 25^\circ\text{C}$ )

| Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Symbol              | $V_{DD}$<br>Vdc                    | Min                        | Typ<br>(Note 7)                        | Max                                   | Unit          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------|----------------------------|----------------------------------------|---------------------------------------|---------------|
| Output Rise and Fall Time (Counter Outputs)<br>$t_{TLH}, t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$<br>$t_{TLH}, t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$<br>$t_{TLH}, t_{THL} = (0.55 \text{ ns/pF}) C_L + 12.5 \text{ ns}$                                                                                                                                                                                                                    | $t_{TLH}, t_{THL}$  | 5.0<br>10<br>15                    | —<br>—<br>—                | 100<br>50<br>40                        | 200<br>100<br>80                      | ns            |
| Propagation Delay Time<br>Clock to Q18<br>$t_{PHL}, t_{PLH} = (1.7 \text{ ns/pF}) C_L + 4415 \text{ ns}$<br>$t_{PHL}, t_{PLH} = (0.66 \text{ ns/pF}) C_L + 1667 \text{ ns}$<br>$t_{PHL}, t_{PLH} = (0.5 \text{ ns/pF}) C_L + 1275 \text{ ns}$<br>Clock to Q24<br>$t_{PHL}, t_{PLH} = (1.7 \text{ ns/pF}) C_L + 5915 \text{ ns}$<br>$t_{PHL}, t_{PLH} = (0.66 \text{ ns/pF}) C_L + 2167 \text{ ns}$<br>$t_{PHL}, t_{PLH} = (0.5 \text{ ns/pF}) C_L + 1675 \text{ ns}$ | $t_{PHL}, t_{PLH}$  | 5.0<br>10<br>15<br>5.0<br>10<br>15 | —<br>—<br>—<br>—<br>—<br>— | 4.5<br>1.7<br>1.3<br>6.0<br>2.2<br>1.7 | 9.0<br>3.5<br>2.7<br>12<br>4.5<br>3.5 | $\mu\text{s}$ |
| Propagation Delay Time<br>Reset to $Q_n$<br>$t_{PHL} = (1.7 \text{ ns/pF}) C_L + 1215 \text{ ns}$<br>$t_{PHL} = (0.66 \text{ ns/pF}) C_L + 467 \text{ ns}$<br>$t_{PHL} = (0.5 \text{ ns/pF}) C_L + 350 \text{ ns}$                                                                                                                                                                                                                                                   | $t_{PHL}$           | 5.0<br>10<br>15                    | —<br>—<br>—                | 1300<br>500<br>375                     | 2600<br>1000<br>750                   | ns            |
| Clock Pulse Width                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $t_{WH(\text{cl})}$ | 5.0<br>10<br>15                    | 385<br>150<br>120          | 140<br>55<br>40                        | —<br>—<br>—                           | ns            |
| Clock Pulse Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                | $f_{cl}$            | 5.0<br>10<br>15                    | —<br>—<br>—                | 3.5<br>9.0<br>12                       | 2.0<br>5.0<br>6.5                     | MHz           |
| Clock Rise and Fall Time                                                                                                                                                                                                                                                                                                                                                                                                                                             | $t_{TLH}, t_{THL}$  | 5.0<br>10<br>15                    | —<br>—<br>—                | —<br>—<br>—                            | 15<br>5.0<br>4.0                      | $\mu\text{s}$ |
| Reset Pulse Width                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $t_{WH(\text{R})}$  | 5.0<br>10<br>15                    | 1400<br>600<br>450         | 700<br>300<br>225                      | —<br>—<br>—                           | ns            |
| Reset Removal Time                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $t_{rem}$           | 5.0<br>10<br>15                    | 30<br>0<br>-40             | -200<br>-160<br>-110                   | —<br>—<br>—                           | ns            |

6. The formulas given are for the typical characteristics only at  $25^\circ\text{C}$ .

7. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

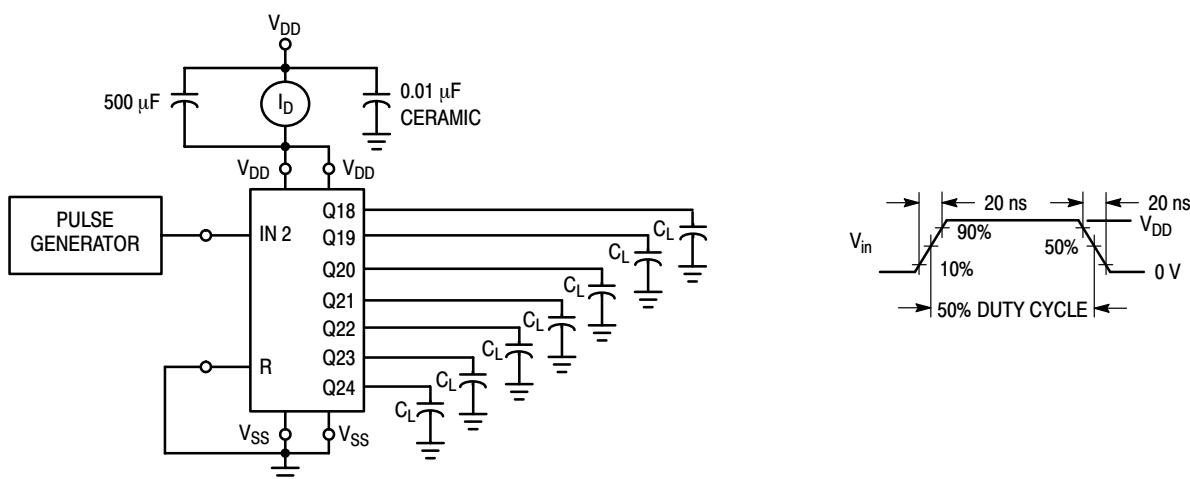



Figure 1. Power Dissipation Test Circuit and Waveform

## MC14521B

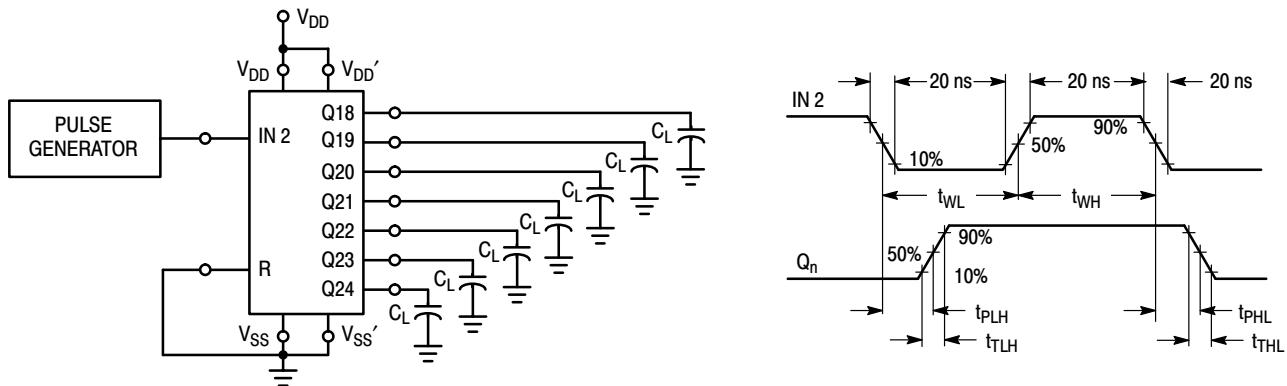
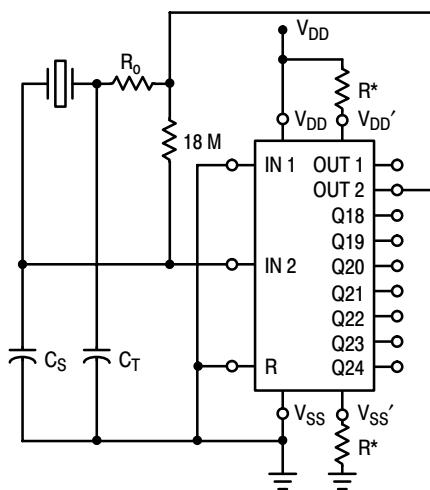




Figure 2. Switching Time Test Circuit and Waveforms



\* Optional for low power operation,  
 $10 \text{ k}\Omega \leq R \leq 70 \text{ k}\Omega$ .

Figure 3. Crystal Oscillator Circuit

| Characteristic                                                                                                                                                                       | 500 kHz Circuit | 50 kHz Circuit  | Unit                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|------------------------|
| Crystal Characteristics<br>Resonant Frequency<br>Equivalent Resistance, $R_S$                                                                                                        | 500<br>1.0      | 50<br>6.2       | kHz<br>k $\Omega$      |
| External Resistor/Capacitor Values<br>$R_o$<br>$C_T$<br>$C_S$                                                                                                                        | 47<br>82<br>20  | 750<br>82<br>20 | k $\Omega$<br>pF<br>pF |
| Frequency Stability<br>Frequency Change as a Function<br>of $V_{DD}$ ( $T_A = 25^\circ\text{C}$ )<br>$V_{DD}$ Change from 5.0 V to 10 V<br>$V_{DD}$ Change from 10 V to 15 V         | + 6.0<br>+ 2.0  | + 2.0<br>+ 2.0  | ppm<br>ppm             |
| Frequency Change as a Function<br>of Temperature ( $V_{DD} = 10 \text{ V}$ )<br>$T_A$ Change from $-55^\circ\text{C}$ to $+25^\circ\text{C}$<br>MC14521 only<br>Complete Oscillator* | - 4.0<br>+ 100  | - 2.0<br>+ 120  | ppm<br>ppm             |
| $T_A$ Change from $+25^\circ\text{C}$ to $+125^\circ\text{C}$<br>MC14521 only<br>Complete Oscillator*                                                                                | - 2.0<br>- 160  | - 2.0<br>- 560  | ppm<br>ppm             |

\*Complete oscillator includes crystal, capacitors, and resistors.

Figure 4. Typical Data for Crystal Oscillator Circuit

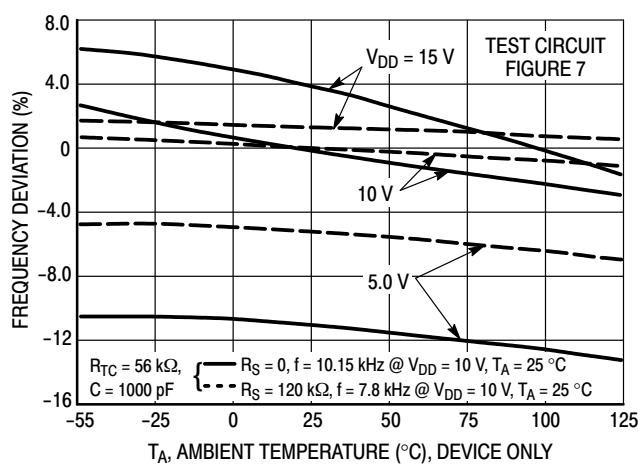



Figure 5. RC Oscillator Stability

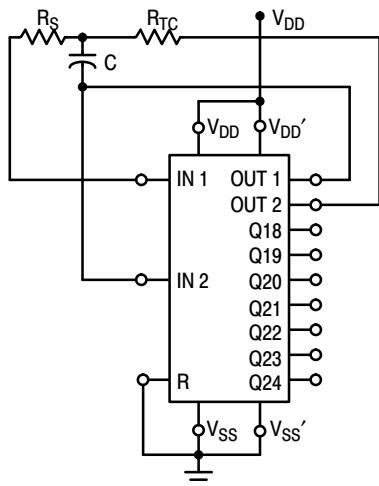



Figure 7. RC Oscillator Circuit

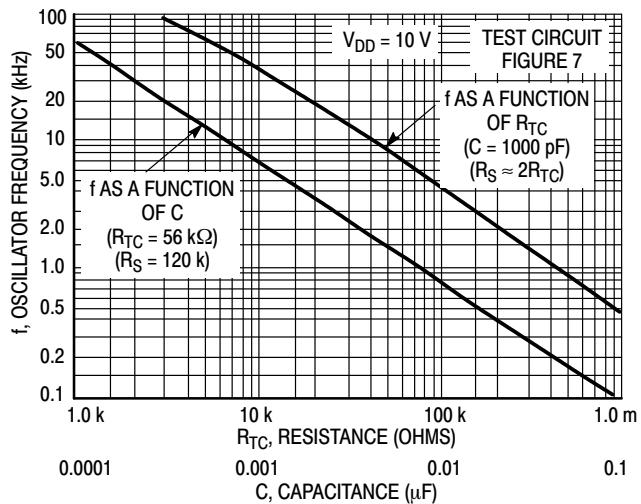



Figure 6. RC Oscillator Frequency as a Function of  $R_{TC}$  and  $C$

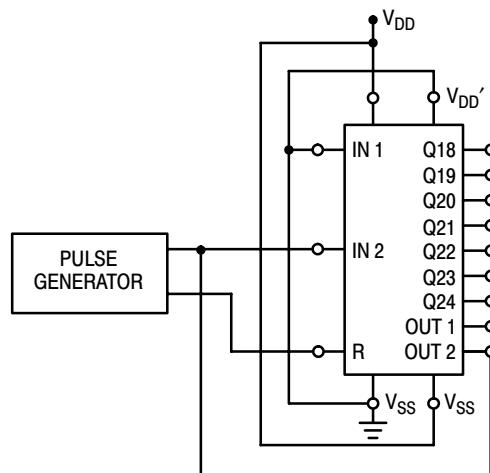
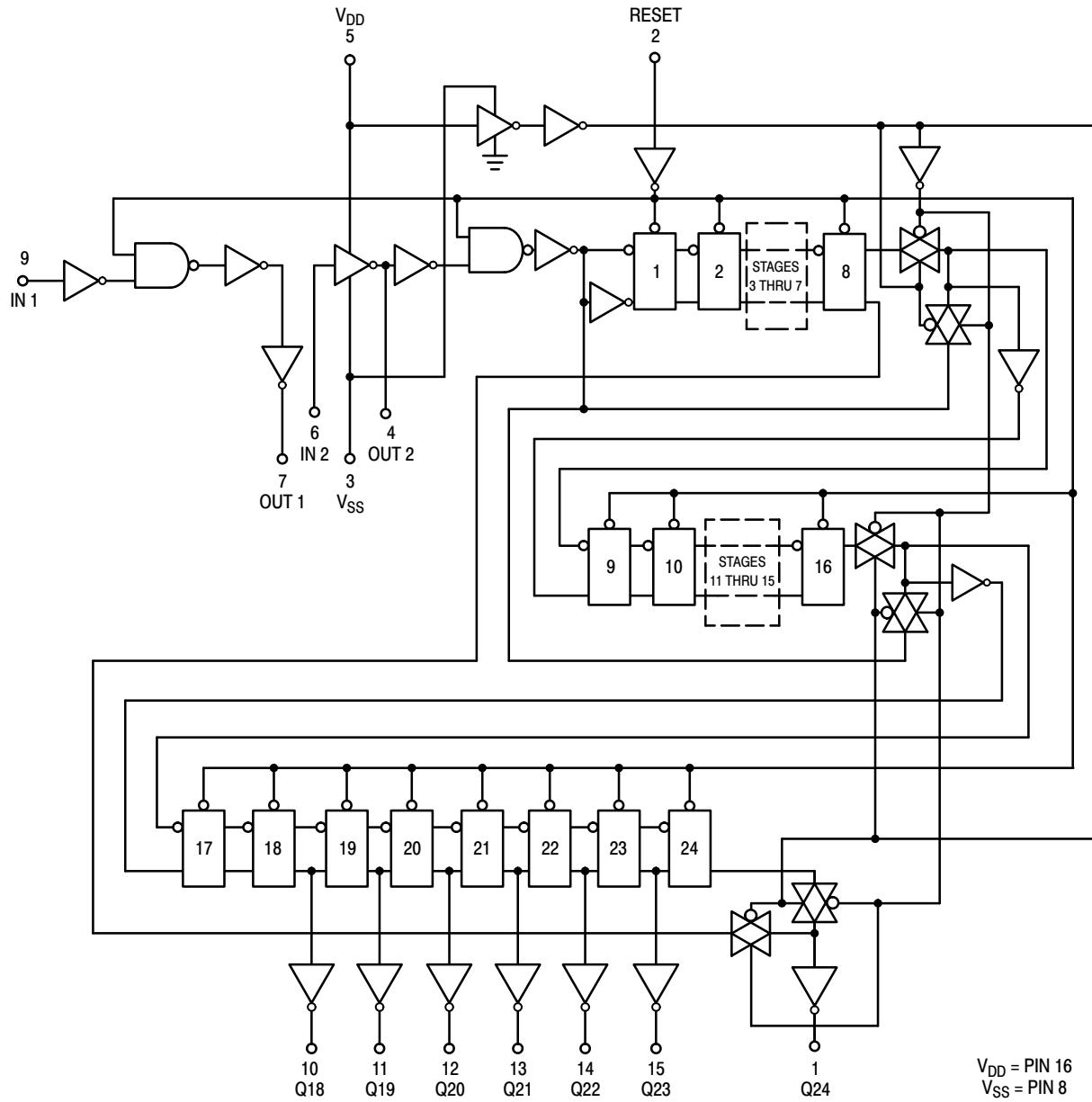



Figure 8. Functional Test Circuit


**MC14521B**

## FUNCTIONAL TEST SEQUENCE

| <p>A test function (see Figure 8) has been included for the reduction of test time required to exercise all 24 counter stages. This test function divides the counter into three 8-stage sections, and 255 counts are loaded in each of the 8-stage sections in parallel. All flip-flops are now at a logic "1". The counter is now returned to the normal 24-stages in series configuration. One more pulse is entered into Input 2 (In 2) which will cause the counter to ripple from an all "1" state to an all "0" state.</p> | Inputs |      | Outputs |           |           | Comments     |                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|---------|-----------|-----------|--------------|----------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reset  | In 2 | Out 2   | $V_{SS'}$ | $V_{DD'}$ | Q18 thru Q24 | Counter is in three 8-stage sections in parallel mode Counter is reset. In 2 and Out 2 are connected together. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1      | 0    | 0       | $V_{DD}$  | GND       | 0            | First "0" to "1" transition on In 2, Out 2 node.                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0      | 1    | 1       |           |           |              | 255 "0" to "1" transitions are clocked into this In 2, Out 2 node.                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0      | 0    |         |           |           |              |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1      | 1    |         |           |           |              |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -      | -    |         |           |           |              |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -      | -    |         |           |           |              |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1      | 1    |         |           |           |              | 1 The 255th "0" to "1" transition.                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0      | 0    |         |           |           |              | 1                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0      | 0    |         |           |           |              | 1                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1      | 0    |         |           |           |              | 1 Counter converted back to 24-stages in series mode.                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1      | 0    |         |           |           |              | 1 Out 2 converts back to an output.                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0      | 1    |         |           |           |              | 0 Counter ripples from an all "1" state to an all "0" stage.                                                   |

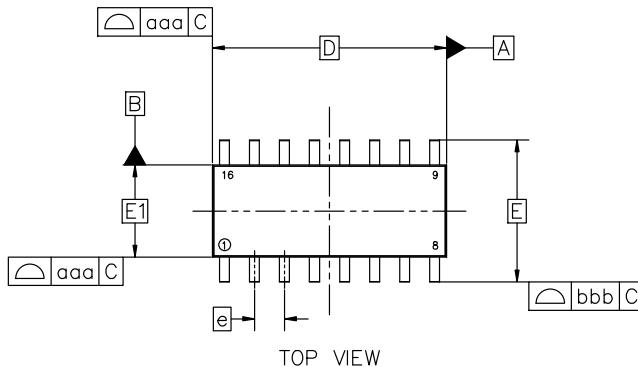
# MC14521B

## LOGIC DIAGRAM

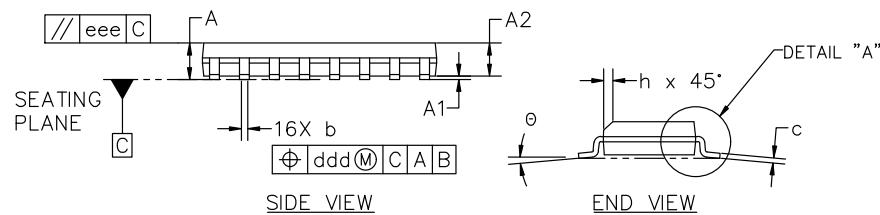


**REVISION HISTORY**

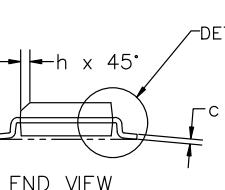
| Revision | Description of Changes                                                                    | Date      |
|----------|-------------------------------------------------------------------------------------------|-----------|
| 11       | Rebranded the Data Sheet to <b>onsemi</b> format. NLV14521BDG OPN marked as Discontinued. | 10/3/2025 |


This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.

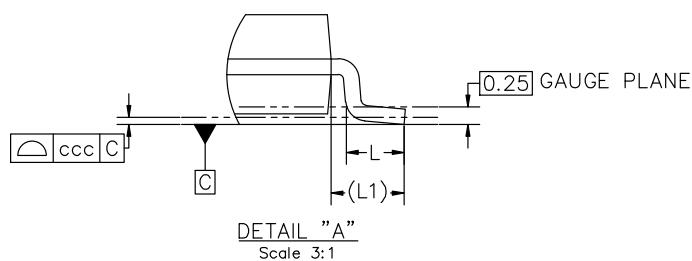

**SOIC-16 9.90x3.90x1.37 1.27P**  
CASE 751B  
ISSUE M


DATE 18 OCT 2024

## NOTES:


1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES.
3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15mm PER SIDE.
5. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127mm TOTAL IN EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION.

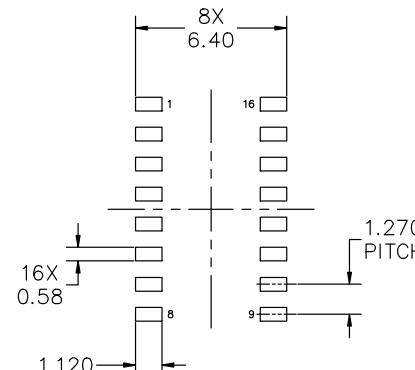



TOP VIEW



SIDE VIEW



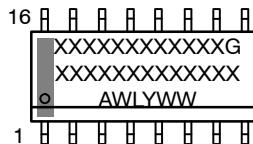

END VIEW

Detail "A"  
Scale 3:1

| MILLIMETERS |          |      |      |
|-------------|----------|------|------|
| DIM         | MIN      | NOM  | MAX  |
| A           | 1.35     | 1.55 | 1.75 |
| A1          | 0.10     | 0.18 | 0.25 |
| A2          | 1.25     | 1.37 | 1.50 |
| b           | 0.35     | 0.42 | 0.49 |
| c           | 0.19     | 0.22 | 0.25 |
| D           | 9.90 BSC |      |      |
| E           | 6.00 BSC |      |      |
| E1          | 3.90 BSC |      |      |
| e           | 1.27 BSC |      |      |
| h           | 0.25     | ---  | 0.50 |
| L           | 0.40     | 0.83 | 1.25 |
| L1          | 1.05 REF |      |      |
| θ           | 0°       | ---  | 7°   |

| TOLERANCE OF FORM AND POSITION |      |
|--------------------------------|------|
| aaa                            | 0.10 |
| bbb                            | 0.20 |
| ccc                            | 0.10 |
| ddd                            | 0.25 |
| eee                            | 0.10 |




## RECOMMENDED MOUNTING FOOTPRINT

\*FOR ADDITIONAL INFORMATION ON OUR  
PB-FREE STRATEGY AND SOLDERING DETAILS,  
PLEASE DOWNLOAD THE onsemi SOLDERING  
AND MOUNTING TECHNIQUES REFERENCE  
MANUAL, SOLDERRM/D

|                  |                              |                                                                                                                                                                                     |
|------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DOCUMENT NUMBER: | 98ASB42566B                  | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| DESCRIPTION:     | SOIC-16 9.90x3.90x1.37 1.27P | PAGE 1 OF 2                                                                                                                                                                         |

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

**GENERIC  
MARKING DIAGRAM\***



XXXXX = Specific Device Code

A = Assembly Location

WL = Wafer Lot

Y = Year

WW = Work Week

G = Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

**STYLE 1:**  
 PIN 1. COLLECTOR  
 2. BASE  
 3. Emitter  
 4. NO CONNECTION  
 5. Emitter  
 6. BASE  
 7. COLLECTOR  
 8. COLLECTOR  
 9. BASE  
 10. Emitter  
 11. NO CONNECTION  
 12. Emitter  
 13. BASE  
 14. COLLECTOR  
 15. Emitter  
 16. COLLECTOR

**STYLE 2:**  
 PIN 1. CATHODE  
 2. ANODE  
 3. NO CONNECTION  
 4. CATHODE  
 5. CATHODE  
 6. NO CONNECTION  
 7. ANODE  
 8. CATHODE  
 9. CATHODE  
 10. ANODE  
 11. NO CONNECTION  
 12. CATHODE  
 13. CATHODE  
 14. NO CONNECTION  
 15. ANODE  
 16. CATHODE

**STYLE 3:**  
 PIN 1. COLLECTOR, DYE #1  
 2. BASE, #1  
 3. Emitter, #1  
 4. COLLECTOR, #1  
 5. COLLECTOR, #2  
 6. BASE, #2  
 7. Emitter, #2  
 8. COLLECTOR, #2  
 9. COLLECTOR, #3  
 10. BASE, #3  
 11. Emitter, #3  
 12. COLLECTOR, #3  
 13. COLLECTOR, #4  
 14. BASE, #4  
 15. Emitter, #4  
 16. COLLECTOR, #4

**STYLE 4:**  
 PIN 1. COLLECTOR, DYE #1  
 2. COLLECTOR, #1  
 3. COLLECTOR, #2  
 4. COLLECTOR, #2  
 5. COLLECTOR, #3  
 6. COLLECTOR, #3  
 7. COLLECTOR, #4  
 8. COLLECTOR, #4  
 9. BASE, #4  
 10. Emitter, #4  
 11. BASE, #3  
 12. Emitter, #3  
 13. BASE, #2  
 14. Emitter, #2  
 15. BASE, #1  
 16. Emitter, #1

**STYLE 5:**  
 PIN 1. DRAIN, DYE #1  
 2. DRAIN, #1  
 3. DRAIN, #2  
 4. DRAIN, #2  
 5. DRAIN, #3  
 6. DRAIN, #3  
 7. DRAIN, #4  
 8. DRAIN, #4  
 9. GATE, #4  
 10. SOURCE, #4  
 11. GATE, #3  
 12. SOURCE, #3  
 13. GATE, #2  
 14. SOURCE, #2  
 15. GATE, #1  
 16. SOURCE, #1

**STYLE 6:**  
 PIN 1. CATHODE  
 2. CATHODE  
 3. CATHODE  
 4. CATHODE  
 5. CATHODE  
 6. CATHODE  
 7. CATHODE  
 8. CATHODE  
 9. ANODE  
 10. ANODE  
 11. ANODE  
 12. ANODE  
 13. ANODE  
 14. ANODE  
 15. ANODE  
 16. ANODE

**STYLE 7:**  
 PIN 1. SOURCE N-CH  
 2. COMMON DRAIN (OUTPUT)  
 3. COMMON DRAIN (OUTPUT)  
 4. GATE P-CH  
 5. COMMON DRAIN (OUTPUT)  
 6. COMMON DRAIN (OUTPUT)  
 7. COMMON DRAIN (OUTPUT)  
 8. SOURCE P-CH  
 9. SOURCE P-CH  
 10. COMMON DRAIN (OUTPUT)  
 11. COMMON DRAIN (OUTPUT)  
 12. COMMON DRAIN (OUTPUT)  
 13. GATE N-CH  
 14. COMMON DRAIN (OUTPUT)  
 15. COMMON DRAIN (OUTPUT)  
 16. SOURCE N-CH

|                  |                              |                                                                                                                                                                                     |
|------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DOCUMENT NUMBER: | 98ASB42566B                  | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| DESCRIPTION:     | SOIC-16 9.90x3.90X1.37 1.27P | PAGE 2 OF 2                                                                                                                                                                         |

**onsemi** and **Onsemi** are trademarks of Semiconductor Components Industries, LLC dba **onsemi** or its subsidiaries in the United States and/or other countries. **onsemi** reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

**onsemi**, **ONSEMI**, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at [www.onsemi.com/site/pdf/Patent-Marking.pdf](http://www.onsemi.com/site/pdf/Patent-Marking.pdf). **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## ADDITIONAL INFORMATION

### TECHNICAL PUBLICATIONS:

Technical Library: [www.onsemi.com/design/resources/technical-documentation](http://www.onsemi.com/design/resources/technical-documentation)  
onsemi Website: [www.onsemi.com](http://www.onsemi.com)

### ONLINE SUPPORT: [www.onsemi.com/support](http://www.onsemi.com/support)

For additional information, please contact your local Sales Representative at  
[www.onsemi.com/support/sales](http://www.onsemi.com/support/sales)

