

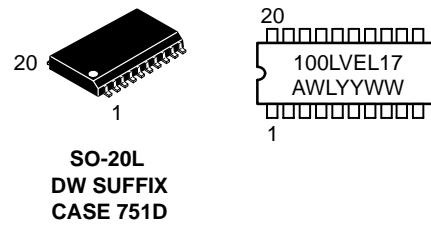
# MC100LVEL17

## 3.3V ECL Quad Differential Receiver

The MC100LVEL17 is a 3.3 V ECL, quad differential receiver. The device is functionally equivalent to the E116 device with the capability of operation from either a -3.3 V or +3.3 V supply voltage.

Under open input conditions, the  $\overline{D}$  input will be biased at  $V_{CC}/2$  and the D input will be pulled down to  $V_{EE}$ . This operation will force the Q output LOW and ensure stability.

The  $V_{BB}$  pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to  $V_{BB}$  as a switching reference voltage.  $V_{BB}$  may also rebias AC coupled inputs. When used, decouple  $V_{BB}$  and  $V_{CC}$  via a 0.01  $\mu$ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used,  $V_{BB}$  should be left open.


- 325 ps Propagation Delay
- High Bandwidth Output Transitions
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range:  $V_{CC} = 3.0$  V to 3.8 V with  $V_{EE} = 0$  V
- NECL Mode Operating Range:  $V_{CC} = 0$  V with  $V_{EE} = -3.0$  V to -3.8 V
- Internal Input Pulldown Resistors D Inputs; Pullup and Pulldown on  $\overline{D}$  Inputs
- Q Output will Default LOW with Inputs Open or at  $V_{EE}$



**ON Semiconductor®**

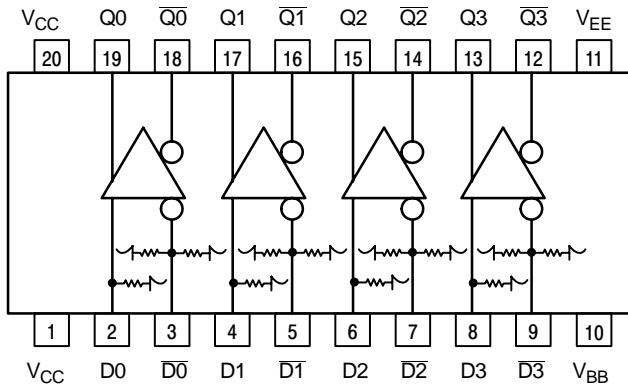
<http://onsemi.com>

### MARKING DIAGRAM\*



SO-20L  
DW SUFFIX  
CASE 751D

A = Assembly Location  
WL = Wafer Lot  
YY = Year  
WW = Work Week


\*For additional marking information, refer to Application Note AND8002/D.

### ORDERING INFORMATION

| Device          | Package | Shipping <sup>†</sup> |
|-----------------|---------|-----------------------|
| MC100LVEL17DW   | SO-20L  | 38 Units/Rail         |
| MC100LVEL17DWR2 | SO-20L  | 1000 Tape & Reel      |

<sup>†</sup>For additional tape and reel information, refer to Brochure BRD8011/D.

# MC100LVEL17



\* All V<sub>CC</sub> pins are tied together on the die.

Warning: All V<sub>CC</sub> and V<sub>EE</sub> pins must be externally connected to Power Supply to guarantee proper operation.

**Figure 1. Logic Diagram and Pinout: (Top View)**

## PIN DESCRIPTION

| PIN                          | FUNCTION                      |
|------------------------------|-------------------------------|
| D <sub>n</sub> , $\bar{D}_n$ | ECL Differential Data Inputs  |
| Q <sub>n</sub> , $\bar{Q}_n$ | ECL Differential Data Outputs |
| V <sub>BB</sub>              | Reference Voltage Output      |
| V <sub>CC</sub>              | Positive Supply               |
| V <sub>EE</sub>              | Negative Supply               |

## ATTRIBUTES

| Characteristics                                               | Value                                                     |
|---------------------------------------------------------------|-----------------------------------------------------------|
| Internal Input Pulldown Resistor                              | 75 k $\Omega$                                             |
| Internal Input Pullup Resistor                                | 75 k $\Omega$                                             |
| ESD Protection                                                | Human Body Model<br>Machine Model<br>Charged Device Model |
| Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) | Level 1                                                   |
| Flammability Rating                                           | Oxygen Index: 28 to 34                                    |
| Transistor Count                                              | 141                                                       |
| Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test        |                                                           |

1. For additional information, see Application Note AND8003/D.

# MC100LVEL17

## MAXIMUM RATINGS (Note 2)

| Symbol        | Parameter                                          | Condition 1                      | Condition 2                            | Rating            | Units        |
|---------------|----------------------------------------------------|----------------------------------|----------------------------------------|-------------------|--------------|
| $V_{CC}$      | PECL Mode Power Supply                             | $V_{EE} = 0$ V                   |                                        | 8 to 0            | V            |
| $V_{EE}$      | NECL Mode Power Supply                             | $V_{CC} = 0$ V                   |                                        | -8 to 0           | V            |
| $V_I$         | PECL Mode Input Voltage<br>NECL Mode Input Voltage | $V_{EE} = 0$ V<br>$V_{CC} = 0$ V | $V_I \leq V_{CC}$<br>$V_I \geq V_{EE}$ | 6 to 0<br>-6 to 0 | V<br>V       |
| $I_{out}$     | Output Current                                     | Continuous<br>Surge              |                                        | 50<br>100         | mA<br>mA     |
| $I_{BB}$      | $V_{BB}$ Sink/Source                               |                                  |                                        | $\pm 0.5$         | mA           |
| TA            | Operating Temperature Range                        |                                  |                                        | -40 to +85        | °C           |
| $T_{stg}$     | Storage Temperature Range                          |                                  |                                        | -65 to +150       | °C           |
| $\theta_{JA}$ | Thermal Resistance (Junction-to-Ambient)           | 0 LFPM<br>500 LFPM               | SO-20L<br>SO-20L                       | 90<br>60          | °C/W<br>°C/W |
| $\theta_{JC}$ | Thermal Resistance (Junction-to-Case)              | Standard Board                   | SO-20L                                 | 30 to 35          | °C/W         |
| $T_{sol}$     | Wave Solder                                        | <2 to 3 sec @ 248°C              |                                        | 265               | °C           |

2. Maximum Ratings are those values beyond which device damage may occur.

## LVPECL DC CHARACTERISTICS $V_{CC} = 3.3$ V; $V_{EE} = 0.0$ V (Note 3)

| Symbol      | Characteristic                                               | -40 °C       |      |      | 25°C |      |      | 85°C |      |      | Unit |
|-------------|--------------------------------------------------------------|--------------|------|------|------|------|------|------|------|------|------|
|             |                                                              | Min          | Typ  | Max  | Min  | Typ  | Max  | Min  | Typ  | Max  |      |
| $I_{EE}$    | Power Supply Current                                         |              | 26   | 31   |      | 26   | 31   |      | 27   | 33   | mA   |
| $V_{OH}$    | Output HIGH Voltage (Note 4)                                 | 2215         | 2295 | 2420 | 2275 | 2345 | 2420 | 2275 | 2345 | 2420 | mV   |
| $V_{OL}$    | Output LOW Voltage (Note 4)                                  | 1470         | 1605 | 1745 | 1490 | 1595 | 1680 | 1490 | 1595 | 1680 | mV   |
| $V_{IH}$    | Input HIGH Voltage (Single-Ended)                            | 2135         |      | 2420 | 2135 |      | 2420 | 2135 |      | 2420 | mV   |
| $V_{IL}$    | Input LOW Voltage (Single-Ended)                             | 1490         |      | 1825 | 1490 |      | 1825 | 1490 |      | 1825 | mV   |
| $V_{BB}$    | Output Voltage Reference                                     | 1.92         |      | 2.04 | 1.92 |      | 2.04 | 1.92 |      | 2.04 | V    |
| $V_{IHCMR}$ | Input HIGH Voltage Common Mode Range (Differential) (Note 5) |              |      |      |      |      |      |      |      |      |      |
|             |                                                              | Vpp < 500 mV | 1.3  |      | 2.9  | 1.2  |      | 2.9  | 1.2  |      | V    |
| $I_{IH}$    | Input HIGH Current                                           |              |      | 150  |      |      | 150  |      |      | 150  | μA   |
|             |                                                              | Dn           | 0.5  |      | 0.5  |      | 0.5  |      |      |      | μA   |
| $I_{IL}$    | Input LOW Current                                            | Dn           | -300 |      | -300 |      | -300 |      |      |      | μA   |
|             |                                                              | Dn           |      |      |      |      |      |      |      |      | μA   |

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

3. Input and output parameters vary 1:1 with  $V_{CC}$ .  $V_{EE}$  can vary  $\pm 0.3$  V.
4. Outputs are terminated through a 50 ohm resistor to  $V_{CC}$ -2 volts.
5.  $V_{IHCMR}$  min varies 1:1 with  $V_{EE}$ , max varies 1:1 with  $V_{CC}$ . The  $V_{IHCMR}$  range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between  $V_{ppmin}$  and 1 V.

# MC100LVEL17

## LVNECL DC CHARACTERISTICS $V_{CC} = 0.0$ V; $V_{EE} = -3.3$ V (Note 6)

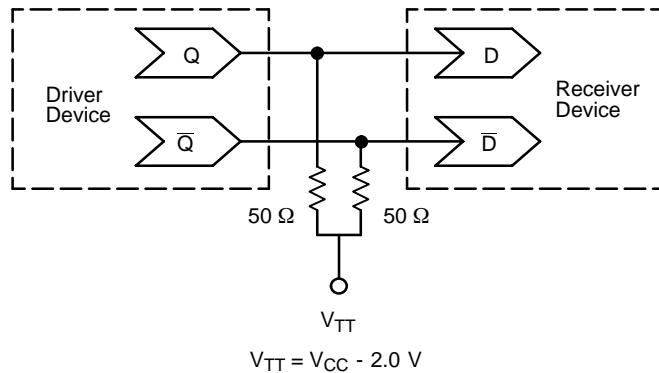
| Symbol      | Characteristic                                               | -40 °C          |        |        | 25°C   |        |        | 85°C   |        |        | Unit |
|-------------|--------------------------------------------------------------|-----------------|--------|--------|--------|--------|--------|--------|--------|--------|------|
|             |                                                              | Min             | Typ    | Max    | Min    | Typ    | Max    | Min    | Typ    | Max    |      |
| $I_{EE}$    | Power Supply Current                                         |                 | 26     | 31     |        | 26     | 31     |        | 27     | 33     | mA   |
| $V_{OH}$    | Output HIGH Voltage (Note 7)                                 | - 1085          | - 1005 | - 880  | - 1025 | - 955  | - 880  | - 1025 | - 955  | - 880  | mV   |
| $V_{OL}$    | Output LOW Voltage (Note 7)                                  | - 1830          | - 1695 | - 1555 | - 1810 | - 1705 | - 1620 | - 1810 | - 1705 | - 1620 | mV   |
| $V_{IH}$    | Input HIGH Voltage (Single-Ended)                            | - 1165          |        | - 880  | - 1165 |        | - 880  | - 1165 |        | - 880  | mV   |
| $V_{IL}$    | Input LOW Voltage (Single-Ended)                             | - 1810          |        | - 1475 | - 1810 |        | - 1475 | - 1810 |        | - 1475 | mV   |
| $V_{BB}$    | Output Voltage Reference                                     | - 1.38          |        | - 1.26 | - 1.38 |        | - 1.26 | - 1.38 |        | - 1.26 | V    |
| $V_{IHCMR}$ | Input HIGH Voltage Common Mode Range (Differential) (Note 8) |                 |        |        |        |        |        |        |        |        |      |
|             | $V_{pp} < 500$ mV                                            | - 2.0           |        | - 0.4  | - 2.1  |        | - 0.4  | - 2.1  |        | - 0.4  | V    |
| $I_{IH}$    | Input HIGH Current                                           |                 |        | 150    |        |        | 150    |        |        | 150    | μA   |
|             | Input LOW Current                                            | Dn              | 0.5    |        |        | 0.5    |        |        | 0.5    |        | μA   |
|             |                                                              | $\overline{Dn}$ | - 300  |        |        | - 300  |        |        | - 300  |        | μA   |

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

6. Input and output parameters vary 1:1 with  $V_{CC}$ .  $V_{EE}$  can vary  $\pm 0.3$  V.
7. Outputs are terminated through a 50 ohm resistor to  $V_{CC}$ -2 volts.
8.  $V_{IHCMR}$  min varies 1:1 with  $V_{EE}$ , max varies 1:1 with  $V_{CC}$ . The  $V_{IHCMR}$  range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between  $V_{pp\min}$  and 1 V.

## AC CHARACTERISTICS $V_{CC} = 3.3$ V; $V_{EE} = 0.0$ V or $V_{CC} = 0.0$ V; $V_{EE} = -3.3$ V (Note 9)

| Symbol                 | Characteristic                                                                                     | -40 °C       |            |                 | 25°C       |            |                 | 85°C       |            |                 | Unit       |    |
|------------------------|----------------------------------------------------------------------------------------------------|--------------|------------|-----------------|------------|------------|-----------------|------------|------------|-----------------|------------|----|
|                        |                                                                                                    | Min          | Typ        | Max             | Min        | Typ        | Max             | Min        | Typ        | Max             |            |    |
| $f_{max}$              | Maximum Toggle Frequency                                                                           |              |            |                 |            | 1.75       |                 |            |            |                 | GHz        |    |
| $t_{PLH}$<br>$t_{PHL}$ | Propagation Delay<br>D to Q                                                                        | Diff<br>S.E. | 330<br>280 |                 | 530<br>580 | 350<br>300 |                 | 550<br>600 | 360<br>310 |                 | 560<br>610 | ps |
| $t_{SKEW}$             | Skew<br>Output-to-Output (Note 10)<br>Part-to-Part (Diff) (Note 10)<br>Duty Cycle (Diff) (Note 11) |              |            | 75<br>200<br>25 |            |            | 75<br>200<br>25 |            |            | 75<br>200<br>25 | ps         |    |
| $t_{JITTER}$           | Random Clock Jitter (RMS)                                                                          |              |            |                 |            | 0.7        |                 |            |            |                 | ps         |    |
| $V_{PP}$               | Input Swing (Note 12)                                                                              | 150          |            | 1000            | 150        |            | 1000            | 150        |            | 1000            | mV         |    |
| $t_r$<br>$t_f$         | Output Rise/Fall Times Q<br>(20% - 80%)                                                            | 280          |            | 550             | 280        |            | 550             | 280        |            | 550             | ps         |    |


9.  $V_{EE}$  can vary  $\pm 0.3$  V.

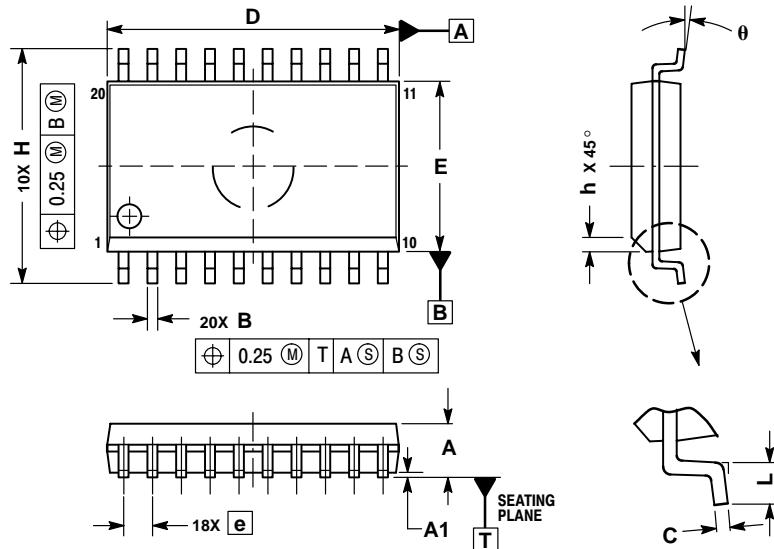
10. Skews are valid across specified voltage range, part-to-part skew is for a given temperature.

11. Duty cycle skew is the difference between a  $t_{PLH}$  and  $t_{PHL}$  propagation delay through a device.

12.  $V_{pp\min}$  is minimum input swing for which AC parameters guaranteed. The device has a DC gain of  $\approx 40$ .

## MC100LVEL17




**Figure 2. Typical Termination for Output Driver and Device Evaluation  
(See Application Note AND8020 - Termination of ECL Logic Devices.)**

### Resource Reference of Application Notes

- AN1404** - ECLinPS Circuit Performance at Non-Standard  $V_{IH}$  Levels
- AN1405** - ECL Clock Distribution Techniques
- AN1406** - Designing with PECL (ECL at +5.0 V)
- AN1503** - ECLinPS I/O SPICE Modeling Kit
- AN1504** - Metastability and the ECLinPS Family
- AN1560** - Low Voltage ECLinPS SPICE Modeling Kit
- AN1568** - Interfacing Between LVDS and ECL
- AN1596** - ECLinPS Lite Translator ELT Family SPICE I/O Model Kit
- AN1650** - Using Wire-OR Ties in ECLinPS Designs
- AN1672** - The ECL Translator Guide
- AND8001** - Odd Number Counters Design
- AND8002** - Marking and Date Codes
- AND8020** - Termination of ECL Logic Devices
- AND8090** - AC Characteristics of ECL Devices

## PACKAGE DIMENSIONS

**SO-20L**  
**DW SUFFIX**  
**PLASTIC SOIC PACKAGE**  
**CASE 751D-05**  
**ISSUE F**



## NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

| MILLIMETERS |          |       |
|-------------|----------|-------|
| DIM         | MIN      | MAX   |
| A           | 2.35     | 2.65  |
| A1          | 0.10     | 0.25  |
| B           | 0.35     | 0.49  |
| C           | 0.23     | 0.32  |
| D           | 12.65    | 12.95 |
| E           | 7.40     | 7.60  |
| e           | 1.27 BSC |       |
| H           | 10.05    | 10.55 |
| h           | 0.25     | 0.75  |
| L           | 0.50     | 0.90  |
| θ           | 0 °      | 7 °   |

**ON Semiconductor** and  are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

## PUBLICATION ORDERING INFORMATION

## Literature Fulfillment:

Literature Distribution Center for ON Semiconductor  
 P.O. Box 5163, Denver, Colorado 80217 USA  
**Phone:** 303-675-2175 or 800-344-3860 Toll Free USA/Canada  
**Fax:** 303-675-2176 or 800-344-3867 Toll Free USA/Canada  
**Email:** ONlit@hibbertco.com

**N. American Technical Support:** 800-282-9855 Toll Free USA/Canada

**JAPAN:** ON Semiconductor, Japan Customer Focus Center  
 2-9-1 Kamiimeguro, Meguro-ku, Tokyo, Japan 153-0051  
**Phone:** 81-3-5773-3850

**ON Semiconductor Website:** <http://onsemi.com>

For additional information, please contact your local  
 Sales Representative.