

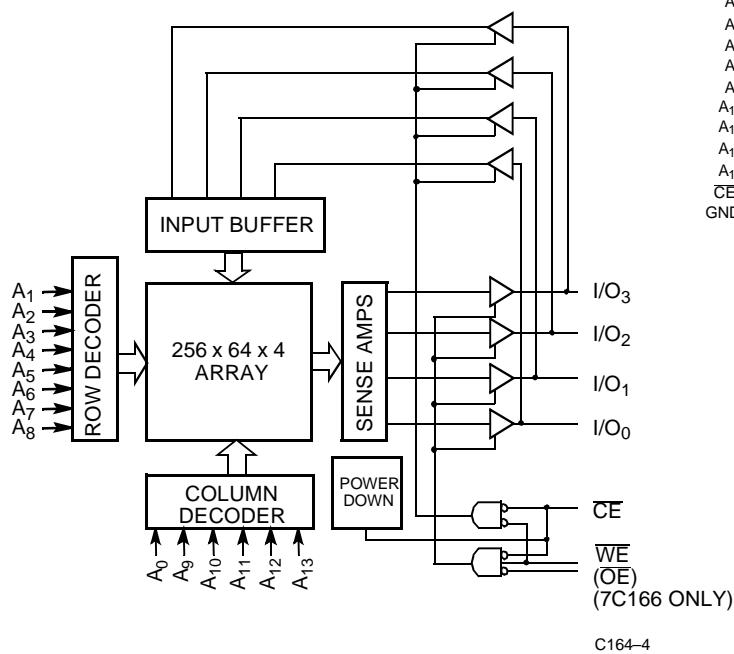
16K x 4 Static RAM

Features

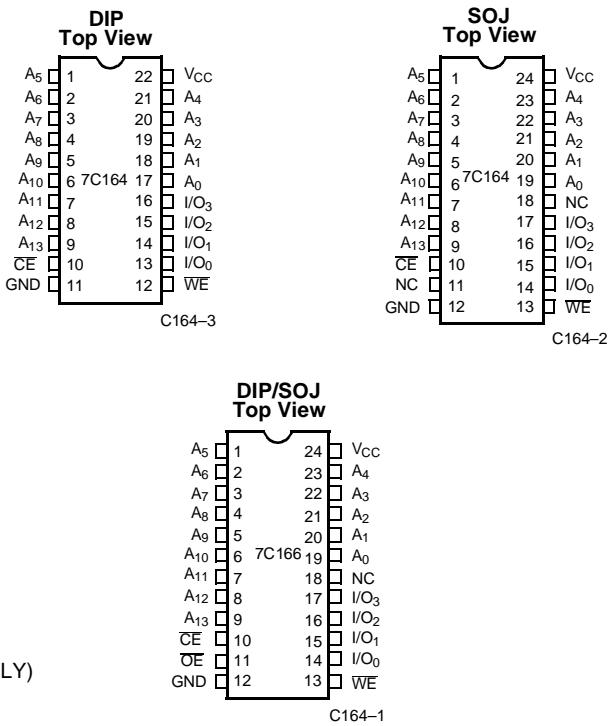
- High speed
 - 15 ns
- Output enable (\overline{OE}) feature (7C166)
- CMOS for optimum speed/power
- Low active power
 - 633 mW
- Low standby power
 - 220 mW
- TTL-compatible inputs and outputs
- Automatic power-down when deselected

Functional Description

The CY7C164 and CY7C166 are high-performance CMOS static RAMs organized as 16,384 by 4 bits. Easy memory expansion is provided by an active LOW chip enable (\overline{CE}) and


three-state drivers. The CY7C166 has an active low output enable (\overline{OE}) feature. Both devices have an automatic power-down feature, reducing the power consumption by 65% when deselected.

Writing to the device is accomplished when the chip enable (\overline{CE}) and write enable (\overline{WE}) inputs are both LOW (and the output enable (\overline{OE}) is LOW for the 7C166). Data on the four input/output pins (I/O0 through I/O3) is written into the memory location specified on the address pins (A0 through A13).


Reading the device is accomplished by taking chip enable (\overline{CE}) LOW (and \overline{OE} LOW for 7C166), while write enable (\overline{WE}) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data I/O pins.

The I/O pins stay in a high-impedance state when chip enable (\overline{CE}) is HIGH (or output enable (\overline{OE}) is HIGH for 7C166). A die coat is used to insure alpha immunity.

Logic Block Diagram

Pin Configurations

Selection Guide^[1]

	7C164-12 7C166-12	7C164-15 7C166-15	7C164-20 7C166-20	7C164-25 7C166-25	7C164-35 7C166-35
Maximum Access Time (ns)	12	15	20	25	35
Maximum Operating Current (mA)	160	115	80	70	70
Maximum Standby Current (mA)	40/20	40/20	40/20	20/20	20/20

Shaded area contains advanced information.

Note:

1. For military specifications, see the CY6C164A/CY7C166A datasheet

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature -65°C to $+150^{\circ}\text{C}$

Ambient Temperature with

Power Applied -55°C to $+125^{\circ}\text{C}$

Supply Voltage to Ground Potential -0.5V to $+7.0\text{V}$

DC Voltage Applied to Outputs
in High Z State^[2] -0.5V to $+7.0\text{V}$

DC Input Voltage^[2] -0.5V to $+7.0\text{V}$

Output Current into Outputs (LOW) 20 mA

Static Discharge Voltage $>2001\text{V}$
(per MIL-STD-883, Method 3015)

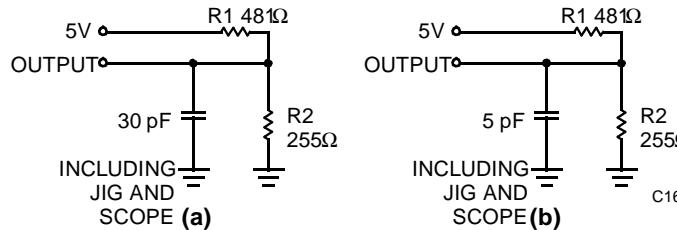
Latch-Up Current $>200\text{ mA}$

Operating Range

Range	Ambient Temperature	V_{CC}
Commercial	0°C to $+70^{\circ}\text{C}$	$5\text{V} \pm 10\%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	7C164-12 7C166-12		7C164-15 7C166-15		7C164-20 7C166-20		7C164-25, 35 7C166-25, 35		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$V_{CC} = \text{Min.}$, $I_{OH} = -4.0\text{ mA}$	2.4		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$V_{CC} = \text{Min.}$, $I_{OL} = 8.0\text{ mA}$		0.4		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
V_{IL}	Input LOW Voltage ^[2]		-0.5	0.8	-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Load Current	$\text{GND} \leq V_I \leq V_{CC}$	-5	+5	-5	+5	-5	+5	-5	+5	μA
I_{OZ}	Output Leakage Current	$\text{GND} \leq V_O \leq V_{CC}$, Output Disabled	-5	+5	-5	+5	-5	+5	-5	+5	μA
I_{OS}	Output Short Circuit Current ^[3]	$V_{CC} = \text{Max.}$, $V_{OUT} = \text{GND}$		-350		-350		-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$V_{CC} = \text{Max.}$, $I_{OUT} = 0\text{ mA}$		160		115		80		70	mA
I_{SB1}	Automatic \overline{CE} Power-Down Current ^[4]	$\text{Max. } V_{CC}, \overline{CE} \geq V_{IH}$, Min. Duty Cycle = 100%		40		40		40		20	mA
I_{SB2}	Automatic \overline{CE} Power-Down Current ^[4]	$\text{Max. } V_{CC},$ $\overline{CE} \geq V_{CC} - 0.3\text{V}$, $V_{IN} \geq V_{CC} - 0.3\text{V}$ or $V_{IN} \leq 0.3\text{V}$		20		20		20		20	mA


Shaded area contains advanced information.

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$T_A = 25^{\circ}\text{C}$, $f = 1\text{ MHz}$, $V_{CC} = 5.0\text{V}$	10	pF
C_{OUT}	Output Capacitance		10	pF

Notes:

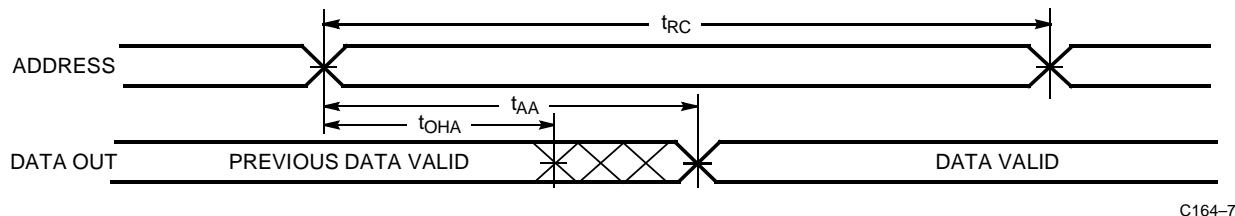
2. Minimum voltage is equal to -3.0V for pulse durations less than 30 ns.
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. A pull-up resistor to V_{CC} on the \overline{CE} input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

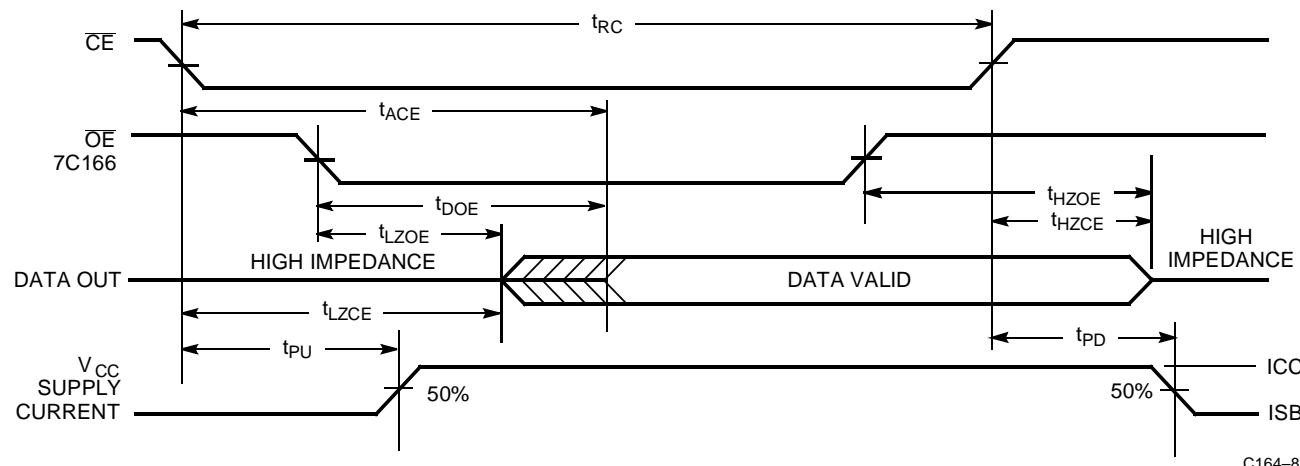
Switching Characteristics Over the Operating Range^[6]

Parameter	Description	7C164-12 7C166-12		7C164-15 7C166-15		7C164-20 7C166-20		7C164-25 7C166-25		7C164-35 7C166-35		Unit	
		Min.	Max.										
READ CYCLE													
t_{RC}	Read Cycle Time	12		15		20		25		35		ns	
t_{AA}	Address to Data Valid		12		15		20		25		35	ns	
t_{OHA}	Output Hold from Address Change	3		3		5		5		5		ns	
t_{ACE}	\overline{CE} LOW to Data Valid		12		15		20		25		35	ns	
t_{DOE}	\overline{OE} LOW to Data Valid	7C166	6		10		10		12		15	ns	
t_{LZOE}	\overline{OE} LOW to Low Z	7C166	0		3		3		3		3	ns	
t_{HZOE}	\overline{OE} HIGH to High Z	7C166		7		8		8		10		12	ns
t_{LZCE}	\overline{CE} LOW to Low Z ^[7]		3		3		5		5		5	ns	
t_{HZCE}	\overline{CE} HIGH to High Z ^[7, 8]			7		8		8		10		15	ns
t_{PU}	CE LOW to Power-Up		0		0		0		0		0		ns
t_{PD}	CE HIGH to Power-Down			12		15		20		20		20	ns
WRITE CYCLE ^[9]													
t_{WC}	Write Cycle Time	12		15		20		20		25		ns	
t_{SCE}	CE LOW to Write End	8		12		15		20		25		ns	
t_{AW}	Address Set-Up to Write End	9		12		15		20		25		ns	
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns	
t_{SA}	Address Set-Up to Write Start	0		0		0		0		0		ns	
t_{PWE}	WE Pulse Width	8		12		15		15		20		ns	
t_{SD}	Data Set-Up to Write End	6		10		10		10		15		ns	
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns	
t_{LZWE}	WE HIGH to Low Z ^[7]		3		5		5		5		5	ns	
t_{HZWE}	WE LOW to High Z ^[7, 8]			6		7		7		7		10	ns

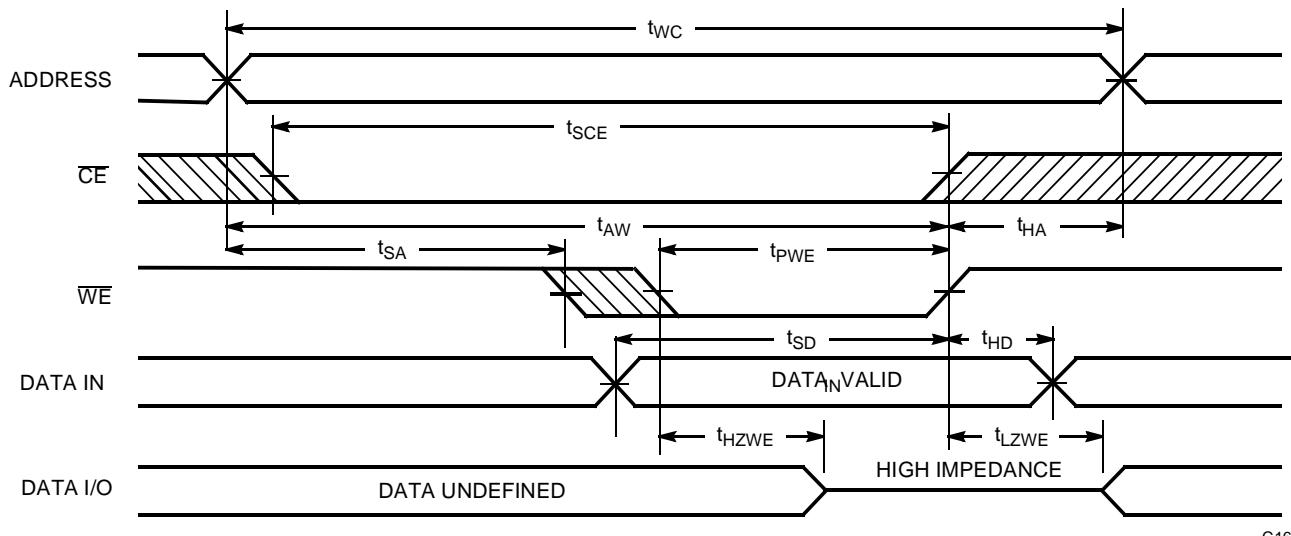

Shaded area contains advanced information.

Notes:

- Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} for any given device. These parameters are guaranteed by design and not 100% tested.
- t_{HZCE} and t_{HZWE} are specified with $C_L = 5$ pF as in part (b) in AC Test Loads. Transition is measured ± 500 mV from steady-state voltage.
- The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

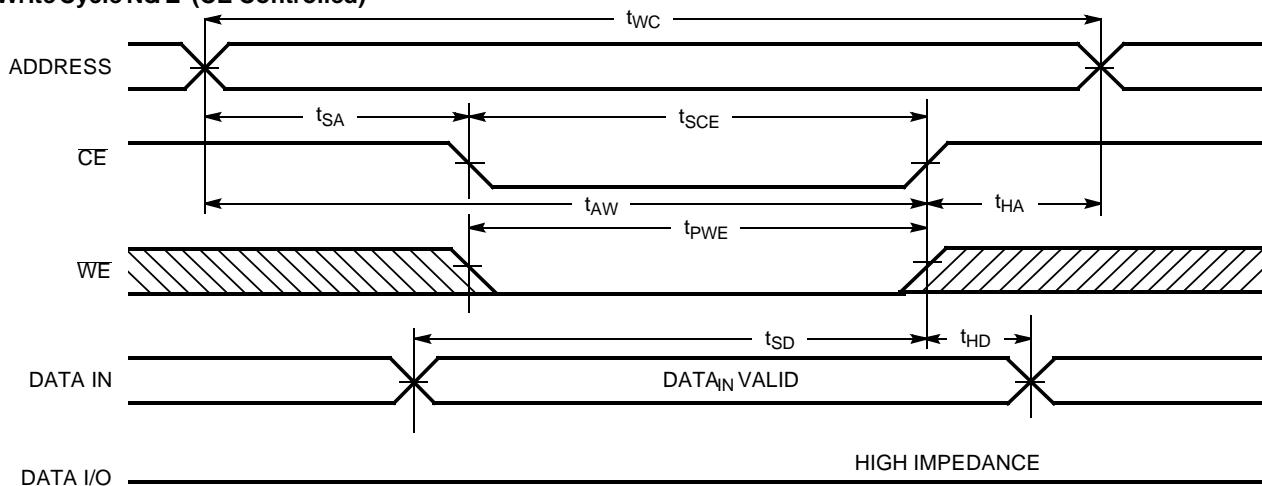

Switching Waveforms

ReadCycle No.1 [10,11]


C164-7

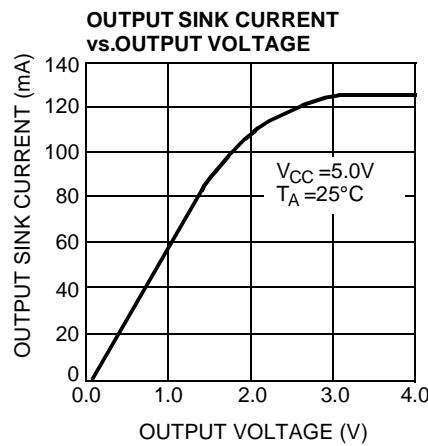
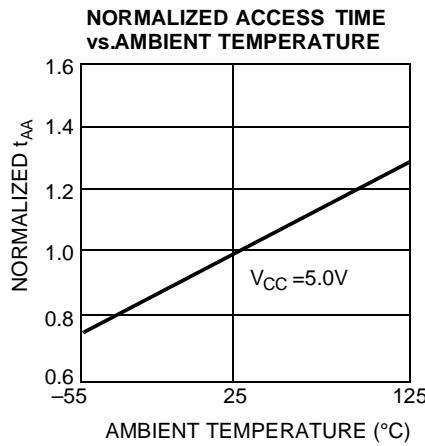
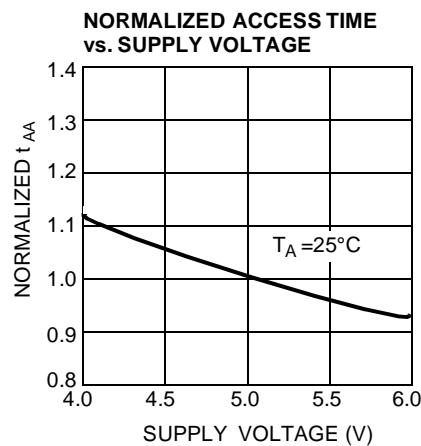
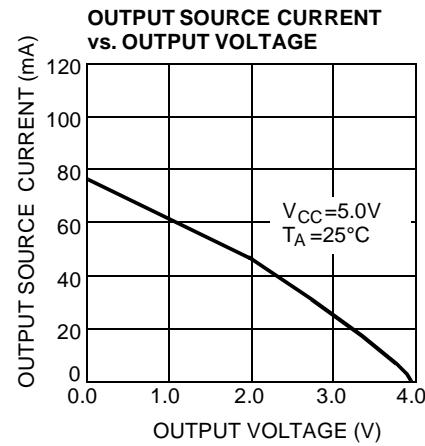
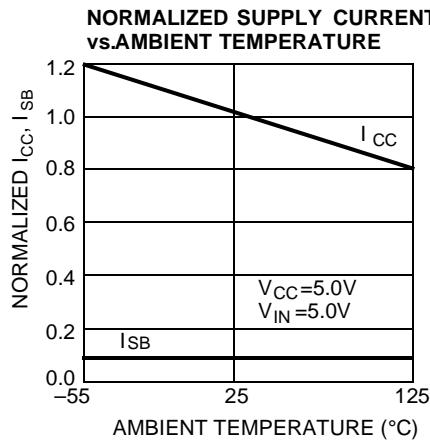
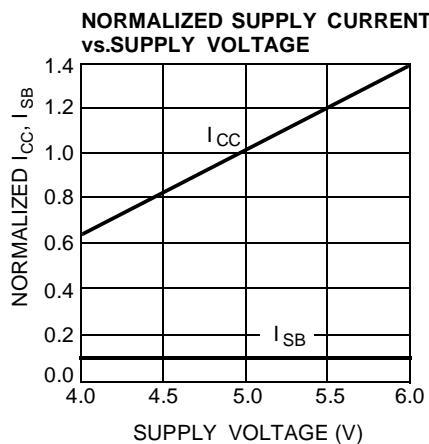
Read Cycle No.2 [10,12]

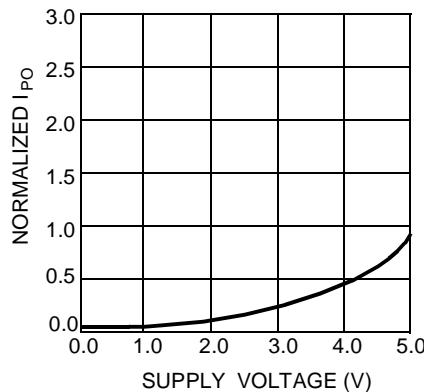
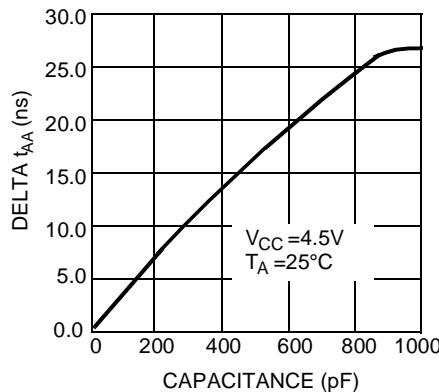
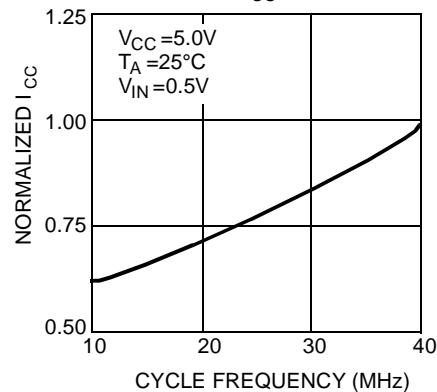
C164-8


Write Cycle No. 1 (WE Controlled) [9,13]

C164-9

Notes:







10. \overline{WE} is HIGH for read cycle.
11. Device is continuously selected, $\overline{CE} = V_{IL}$. (7C166: $\overline{OE} = V_{IL}$ also).
12. Address valid prior to or coincident with \overline{CE} transition LOW.
13. 7C166 only: Data I/O will be high impedance if $\overline{OE} = V_{IH}$.




Switching Waveforms (continued)
Write Cycle No. 2 (CE Controlled) [9,13,14]

C164-10

Note:

 14. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)
**TYPICAL POWER-ON CURRENT
vs. SUPPLY VOLTAGE**

**TYPICAL ACCESS TIME CHANGE
vs. OUTPUT LOADING**

NORMALIZED I_{CC} vs. CYCLE TIME

CY7C164 Truth Table

CE	WE	Input/Output	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

CY7C166 Truth Table

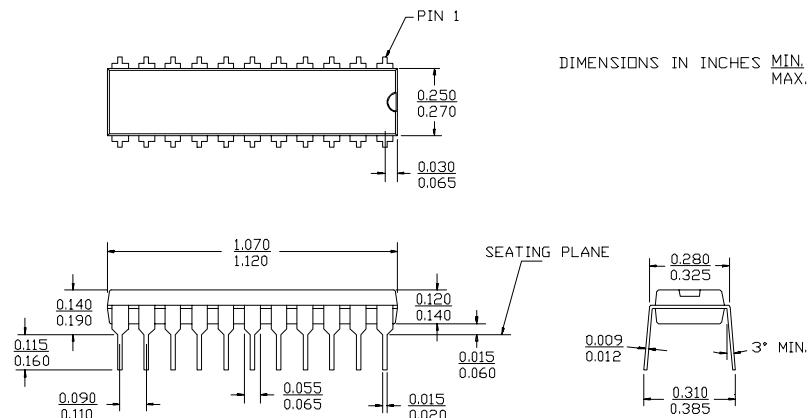
CE	WE	OE	Input/Output	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	H	Data In	Write
L	H	H	High Z	Write

Address Designators

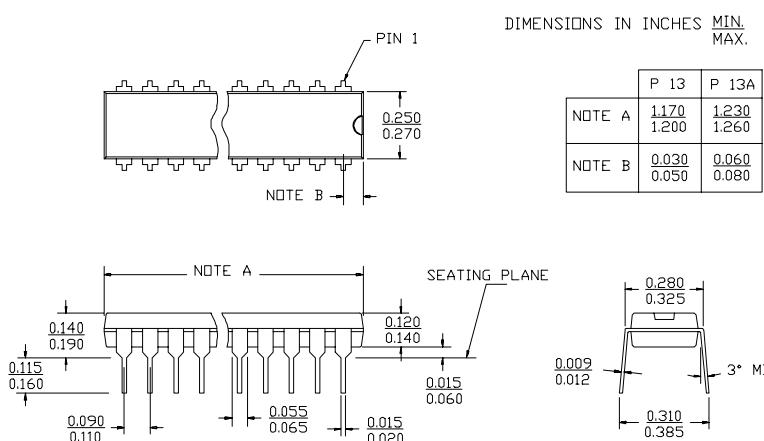
Address Name	Address Function	CY 7C164 Pin Number	CY7C166 Pin Number
A5	X3	1	1
A6	X4	2	2
A7	X5	3	3
A8	X6	4	4
A9	X7	5	5
A10	Y5	6	6
A11	Y4	7	7
A12	Y0	8	8
A13	Y1	9	9
A0	Y2	17	19
A1	Y3	18	20
A2	X0	19	21
A3	X1	20	22
A4	X2	21	23

Ordering Information

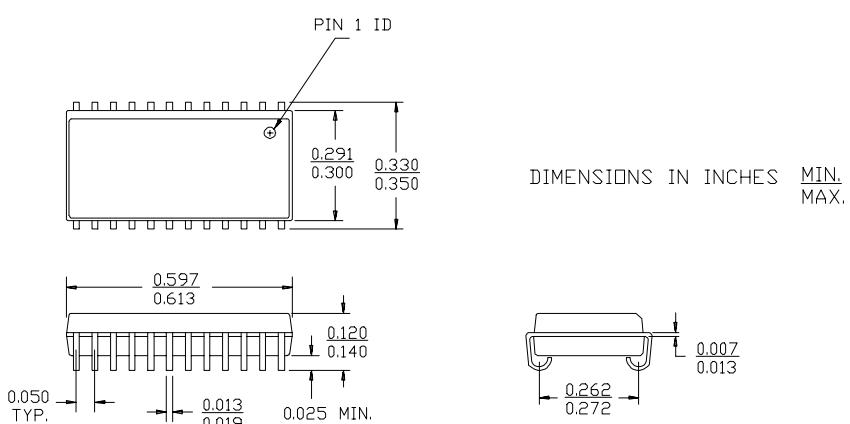
Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C164-12PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C164-12VC	V13	24-Lead Molded SOJ	
15	CY7C164-15PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C164-15VC	V13	24-Lead Molded SOJ	
20	CY7C164-20PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C164-20VC	V13	24-Lead Molded SOJ	
25	CY7C164-25PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C164-25VC	V13	24-Lead Molded SOJ	
35	CY7C164-35PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C164-35VC	V13	24-Lead Molded SOJ	


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C166-12PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C166-12VC	V13	24-Lead Molded SOJ	
15	CY7C166-15PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C166-15VC	V13	24-Lead Molded SOJ	
20	CY7C166-20PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C166-20VC	V13	24-Lead Molded SOJ	
25	CY7C166-25PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C166-25VC	V13	24-Lead Molded SOJ	
35	CY7C166-35PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C166-35VC	V13	24-Lead Molded SOJ	

Shaded areas contain advanced information.


Document #: 38-00032-I

Package Diagrams


22-Lead (300-Mil) Molded DIP P9

24-Lead (300-Mil) Molded DIP P13/P13A

24-Lead Molded SOJ V13

