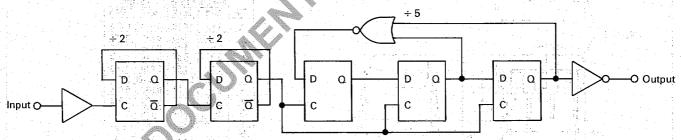
MC3396P

Advance Information

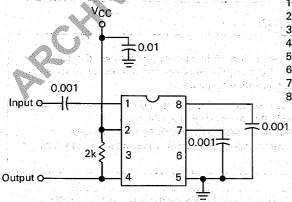
DIVIDE BY 20 PRESCALER

The MC3396P is a fixed ÷20 prescaler for use in frequency synthesizers and similar applications.

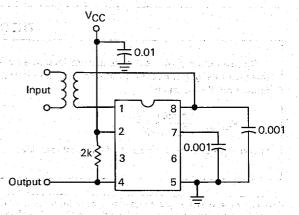
- 200 MHz (typ) Toggle Frequency
- Single 5.0 Volt Supply
- Buffered Clock Input
- 100 mV 400 mV RMS Input Sensitivity
- Open Collector Saturating Output is Capable of Driving TTL and CMOS.


DIVIDE BY 20 PRESCALER

SILICON MONOLITHIC INTEGRATED CIRCUIT



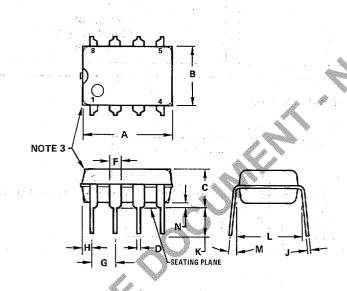
P SUFFIX
PLASTIC PACKAGE
CASE 626


FIGURE 2 — CAPACITOR-COUPLED INPUT

PIN CONNECTIONS

- 1: Input
- 2. VCC
- 3. NC
- 4. Output
- 5. Ground
- 6. NC
- 0.1140
- 7. Bias Decouple
- 8. Bias Decouple

FIGURE 3 — LINK-COUPLED INPUT


MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	8.0	Vdc
Junction Temperature	TJ	150	°C
Operating Temperature Range	TA	-40 to +85	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise noted V_{CC}=5 Vdc, T_A = 25°C, f_{in} = 125 MHz measured in the circuit of Figure 2)

Characteristic	1 1	Min	Тур	Max	Unit
Operating Power Supply Voltage Range		4.5	·_	5.5	Vdc
Current Drain	* 4		30		mA
Operating Input Voltage Range		100		400	mV(rms)
Input Impedance: Real Part Capacitance		— —	600 6.0		Ohms pF
Output Voltage		3.0	4.5		V _{p-p}
Thermal Resistance — θ JA		_	100		°C/W

OUTLINE DIMENSIONS

NOTES:

LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.

- 2. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS)

.4					
7	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.40	10.16	0.370	0.400	
В	6.10	6.60	0.240	0.260	
C	3.94	4.45	0.155	0.175	
D	0.38	0.51	0.015	0.020	
F	1.02	1.52	0.040	0.060	
G	2.54 BSC		0.100 BSC		
H	0.76	1.27	0.030	0.050	
J	0.20	0.30	0.008	0.012	
К	2.92	3.43	0.115	0.135	
L	7.62 BSC		0.300 BSC		
M	_	10°		10°	
Ni Ni	0.51	0.76	0.020	0.030	

CASE 626

THERMAL INFORMATION

The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:

$$P_{D(T_A)} = \frac{T_{J(max)} - T_A}{R_{\theta JA}(Typ)}$$

Where $P_{D(T_A)}$ = Power Dissipation allowable at a given operating

ambient temperature. This must be greater than the sum of the products of the supply voltages and supply currents at the worst case operating condition.

T_{J(max)} = Maximum Operating Junction Temperature as listed in the Maximum Ratings Section

 T_A = Maximum Desired Operating Ambient Temperature $R_{\theta,JA}$ (Type) = Typical Thermal Resistance Junction to Ambient

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

MOTOROLA Semiconductor Products Inc.