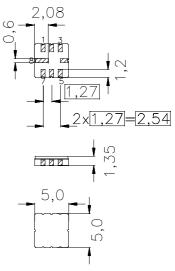


B4839 282,00 MHz

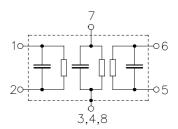
Data Sheet


Features

- Low-loss IF filter for mobile telephone
- Channel selection in GSM, PCN, PCS systems
- Ceramic SMD package
- Very small size

Terminals

Gold-plated Ni


Ceramic package QCC8C

Dimensions in mm, approx. weight 0,10 g

Pin configuration

1,2	Input, balanced
5,6	Output, balanced
7	External coil
3,4,8	To be grounded

Туре	Ordering code	Marking and Package according to	Packing according to		
B4839	B39281-B4839-U310	C61157-A7-A56	F61074-V8070-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	Τ	-20 / +75	°C
Storage temperature range	$T_{ m stg}$	-35 / +85	°C
DC voltage	$V_{\rm DC}$	0	V
Source power	P_{s}	10	dBm

Preliminary format of data sheet Terms of delivery and rights to change design reserved. Page 1 of 4

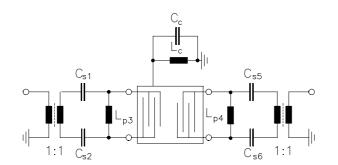
B4839 282,00 MHz

Data Sheet

Characteristics

Operating temperature: $T = -20 \text{ to } +75^{\circ}\text{C}$ Terminating source impedance: $Z_{\text{S}} = 1000 \Omega \parallel -1,1 \text{ pF}$ Terminating load impedance: $Z_{\text{L}} = 1000 \Omega \parallel -1,1 \text{ pF}$

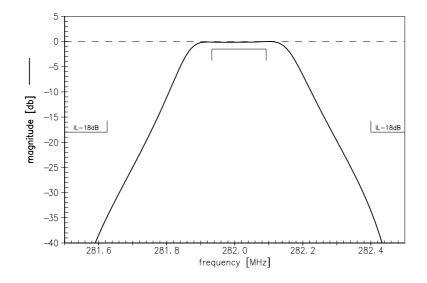
		min.	typ.	max.	
Nominal frequency	f _N	_	282,00	_	MHz
Minimum insertion attenuation		4,0	5,2	6,0	dB
(Including losses in baluns and matching network)					
Amplitude ripple (p-p)	$\Delta \alpha$				
$f_{\rm N}$ - 67,5 kHz $f_{\rm N}$ + 67,5 kHz		_	0,3	1,5	dB
Group delay ripple (p-p)	Δau				
$f_{\rm N}$ - 80,0 kHz $f_{\rm N}$ + 80,0 kHz		_	0,8	1,8	μs
Relative attenuation (relative to α_{min})	$lpha_{rel}$				
$f_{\rm N}$ - 20,00 MHz $f_{\rm N}$ - 5,00 MHz		45	47	_	dB
f_{N} - 5,00 MHz f_{N} - 1,60 MHz		40	47	_	dB
$f_{\rm N}$ - 1,60 MHz $f_{\rm N}$ - 0,80 MHz		35	45	_	dB
f_{N} - 0,80 MHz f_{N} - 0,60 MHz		35	45	_	dB
$f_{\rm N}$ - 0,60 MHz $f_{\rm N}$ - 0,40 MHz		18	38	_	dB
$f_{\rm N}$ + 0,40 MHz $f_{\rm N}$ + 0,60 MHz		18	29	_	dB
$f_{\rm N}$ + 0,60 MHz $f_{\rm N}$ + 0,80 MHz		35	37	_	dB
$f_{\rm N}$ + 0,80 MHz $f_{\rm N}$ + 1,60 MHz		35	39	_	dB
$f_{\rm N}$ + 1,60 MHz $f_{\rm N}$ + 5,00 MHz		40	50	_	dB
f_{N} + 5,00 MHz f_{N} + 20,00 MHz	<u>z</u>	45	53	_	dB
Impedance within the passband					
Input: $Z_{IN} = R_{IN} C_{IN}$		_	1000 1,1	_	$\Omega \parallel pF$
Output: $Z_{OUT} = R_{OUT} \parallel C_{OUT}$		_	1000 1,1	_	Ω pF
Temperature coefficient of frequency 1)	<i>TC</i> _f	_	0,031	_	ppm/K ²
Frequency inversion point	T_0	_	25	_	°C

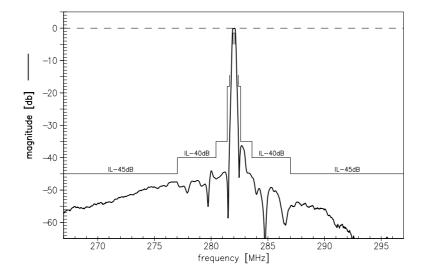

¹⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

B4839 282,00 MHz

Data Sheet

Test matching network to 50 Ω (element values depend on PCB layout):


$$C_{s1} = C_{s6} = 3,9pF$$
 $C_{s2} = C_{s5} = 5,6pF$
 $L_{p3} = L_{p4} = 68nH$
 $L_{c} = 68nH || 1,5pF$



B4839 282,00 MHz

Data Sheet

Transfer function (normalized)

