
August 2000

### **High-Speed CMOS Logic**



**FUNCTIONAL DIAGRAM** 

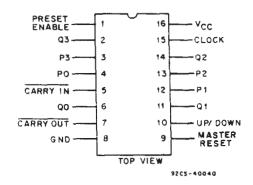
# Presettable Synchronous 4-Bit Up/Down Counters

CD54/74HC/HCT4510 BCD Decade Counter, Asynchronous Reset CD54/74HC/HCT4516 4-Bit Binary Counter, Asynchronous Reset

#### Type Features:

- Synchronous counting and asynchronous loading
- Look-ahead carry for high-speed counting

The CD54/74HC/HCT4510 presettable BCD up/down counter and the CD54/74HC/HCT4516 presettable binary up/down counter consist of four synchronously clocked D-type flip-flops (with a gating structure to provide T-type flip-flop capability) connected as counters. These counters can be cleared by a high level on the Master Reset line, and can be preset to any binary number present on the preset inputs by a high level on the Preset Enable line. The 4510 will count out of non-BCD counter states in a maximum of two clock pulses in the up mode, and a maximum of four clock pulses in the down mode.


If the Carry-In input is held low, the counter advances up or down on each positive-going clock transition. Synchronous cascading is accomplished by connecting all clock inputs in parallel and connecting the Carry-Out of a less significant stage to the Carry-In of a more significant stage.

The 4510 and 4516 can be cascaded in the ripple mode by connecting the Carry-Out to the clock of the next stage. If the Up/Down input changes during a terminal count, the Carry-Out must be gated with the clock, and the Up/Down input must change while the clock is high. This method provides a clean clock signal to the subsequent counting stage. (See Fig. 5.)

The CD54HC/HCT4510 and the CD54HC/HCT4516 are supplied in 16-lead ceramic dual-in-line frit-seal packages (F suffix). The CD74HC/HCT4510 and the CD74HC/HCT-4516 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

#### Family Features:

- Fanout (over temperature range):
  Standard outputs 10 LSTTL loads
  Bus driver outputs 15 LSTTL loads
- Wide operating temperature range: CD74HC/HCT: -40 to +85° C
- Balanced propagation delay and transition times
- Significant power reduction compared to LSTTL logic ICs
- CD54HC/CD74HC types: 2 to 6 V operation High noise immunity: N<sub>IL</sub>=30%, N<sub>IH</sub>=30% of V<sub>CC</sub>; @ V<sub>CC</sub>=5 V
- CD54HCT/CD74HCT types: 4.5 to 5.5 V operation Direct LSTTL input logic compatibility V<sub>IL</sub>=0.8 V max., V<sub>IH</sub>=2 V min. CMOS input compatibility I<sub>I</sub>≤1 μA @ V<sub>OL</sub>, V<sub>OH</sub>



TERMINAL ASSIGNMENT

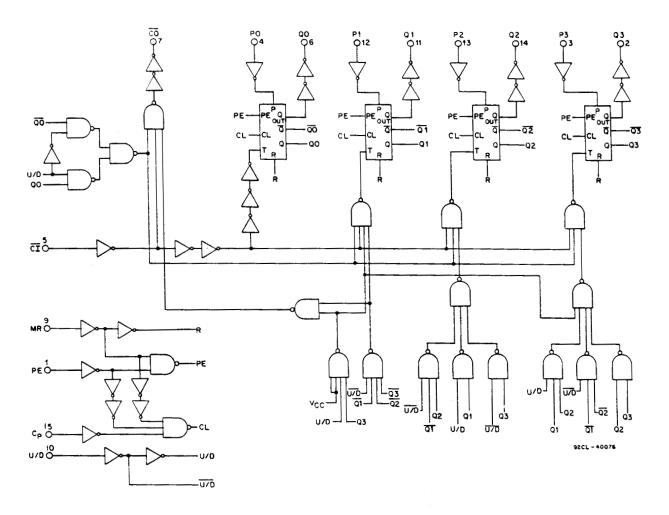



Fig. 1 - Logic diagram for HC/HCT4510.

### TRUTH TABLE

| CL | CI | U/D | PE | MR | ACTION     |
|----|----|-----|----|----|------------|
| Х  | н  | Х   | L  | L  | NO COUNT   |
|    | L  | н   | L  | L  | COUNT UP   |
|    | L  | L   | L  | L  | COUNT DOWN |
| x  | ×  | ×   | н  | L  | PRESET     |
| X  | x  | x   | x  | н  | RESET      |

X = Don't Care H = High Voltage Level L = Low Voltage Level

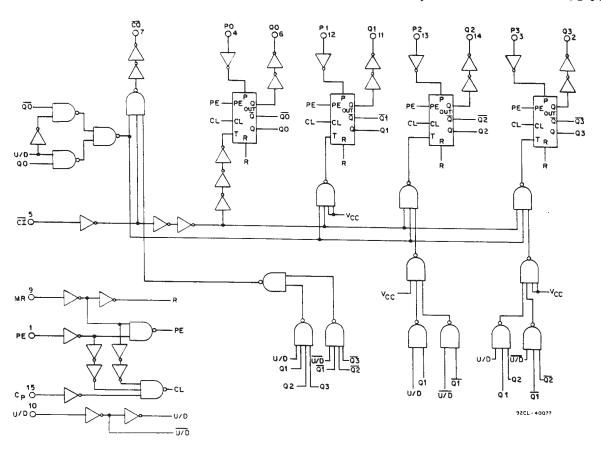



Fig. 2 - Logic diagram for HC/HCT4516.

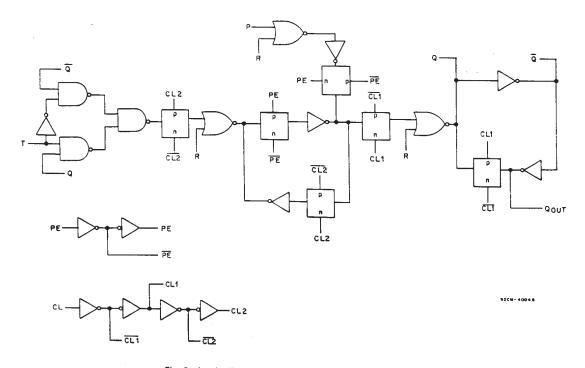



Fig. 3 - Logic diagram of flip-flops for HC/HCT4510/4516.

### MAXIMUM RATINGS, Absolute-Maximum Values:

| DC SUPPLY-VOLTAGE, (Vcc):                                                      |                                       |
|--------------------------------------------------------------------------------|---------------------------------------|
| (Voltages referenced to ground)                                                | 0.5 to +7 V                           |
| DC INPUT DIODE CURRENT, $I_{IK}$ (FOR $V_i < -0.5$ V OR $V_i > V_{CC} +0.5$ V) |                                       |
| DC OUTPUT DIODE CURRENT, lok (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V               | /)±20 mA                              |
| DC DRAIN CURRENT, PER OUTPUT (Io) (FOR ~0.5 V < Vo < Vcc +0.5 V)               | ±25 mA                                |
| DC Vcc OR GROUND CURRENT (Icc)                                                 | ±50 mA                                |
| POWER DISSIPATION PER PACKAGE (Pp):                                            |                                       |
| For T <sub>A</sub> = -40 to +60°C (PACKAGE TYPE E)                             | 500 mW                                |
| For T <sub>A</sub> = +60 to +85° C (PACKAGE TYPE E)                            | Derate Linearly at 8 mW/°C to 300 mW  |
| For T <sub>A</sub> = -55 to +100°C (PACKAGE TYPE F,H)                          | 500 mW                                |
| For T <sub>A</sub> = +100 to +125°C (PACKAGE TYPE F,H)                         | Derate Linearly at 8 mW/° C to 300 mW |
| For T <sub>A</sub> = -40 to +70°C (PACKAGE TYPE M)                             | 400 mW                                |
| For T <sub>A</sub> = +70 to +125°C (PACKAGE TYPE M)                            | Derate Linearly at 6 mW/°C to 70 mW   |
| OPERATING-TEMPERATURE RANGE (TA):                                              |                                       |
| PACKAGE TYPE F,H                                                               | 55 to +125° C                         |
| PACKAGE TYPE E,M                                                               |                                       |
| STORAGE TEMPERATURE (Tstg)                                                     | 65 to +150°C                          |
| LEAD TEMPERATURE (DURING SOLDERING):                                           |                                       |
| At distance 1/16 $\pm$ 1/32 in. (1.59 $\pm$ 0.79 mm) from case for 10 s max.   | +265°C                                |
| Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)               |                                       |
| with solder contacting lead tips only                                          | +300°C                                |
|                                                                                |                                       |

#### **RECOMMENDED OPERATING CONDITIONS**

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

| CHARACTERISTIC                                                            | LIN  | IITS | UNITS |
|---------------------------------------------------------------------------|------|------|-------|
| CHARACTERISTIC                                                            | MIN. | MAX. | ONITS |
| Supply-Voltage Range (For T <sub>A</sub> =Full Package Temperature Range) |      |      |       |
| Vcc:*                                                                     |      |      |       |
| CD54/74HC Types                                                           | 2    | 6    | V     |
| CD54/74HCT Types                                                          | 4.5  | 5.5  | ٧     |
| DC Input or Output Voltage, V <sub>I</sub> , V <sub>O</sub>               | 0    | Vcc  | V     |
| Operating Temperature, T <sub>A</sub> :                                   |      |      |       |
| CD74 Types                                                                | -40  | +85  | °C    |
| CD54 Types                                                                | -55  | +125 |       |
| Input Rise and Fall Times, t,tf:                                          |      |      |       |
| at 2 V                                                                    | 0    | 1000 |       |
| at 4.5 V                                                                  | 0    | 500  | ns    |
| at 6 V                                                                    | 0    | 400  |       |

<sup>\*</sup>Unless otherwise specified, all voltages are referenced to Ground.

#### STATIC ELECTRICAL CHARACTERISTICS

|                              |                 | CD74HC4510/4518/CD54HC4510/4518 |       |              |                               |               |                |            |               | CD74H          | CT45               | 510/45                  | 16/C                 | D54H         | CT45 | 10/45          | 16            |                | UNITS          |     |                                                  |
|------------------------------|-----------------|---------------------------------|-------|--------------|-------------------------------|---------------|----------------|------------|---------------|----------------|--------------------|-------------------------|----------------------|--------------|------|----------------|---------------|----------------|----------------|-----|--------------------------------------------------|
|                              |                 |                                 | EST   | is           | 74HC/54HC 74HC<br>TYPES TYPES |               |                | - 1        | 54HC<br>TYPES |                | TEST<br>CONDITIONS |                         | 74HCT/54HCT<br>TYPES |              |      | 74HCT<br>TYPES |               | 54HCT<br>TYPES |                |     |                                                  |
| CHARACTERISTI                |                 | V,                              | lo    | Vcc          | +                             | 25° C         |                | -40<br>+85 |               | -5!<br>+12!    | .                  | V <sub>i</sub>          | Voc                  | +25°C        |      |                | -40/<br>+85°C |                | -55/<br>+125°C |     |                                                  |
|                              |                 | ٧                               | mA    | ٧            | Min                           | Тур           | Max            | Min        | Max           | Min            | Mex                | V                       | ٧                    | Min          | Тур  | Max            | Min           | Max            | Min            | Max |                                                  |
| High-Level                   | $\neg \neg$     |                                 |       | 2            | 1.5                           |               | _              | 1.5        | _             | 1.5            | -                  |                         | 4.5                  |              |      |                |               |                |                |     |                                                  |
| Input Voltage                | V <sub>IH</sub> | 1                               |       | 4.5          | 3.15                          | _             | _              | 3.15       | _             | 3.15           |                    | _                       | to                   | 2            | -    | -              | 2             | -              | 2              | -   | ٧                                                |
|                              |                 |                                 |       | 6            | 4.2                           | _             | _              | 4.2        |               | 4.2            | _                  |                         | 5.5                  | <u> </u>     |      |                |               |                |                |     |                                                  |
| Low-Level                    | l               |                                 |       | 2            | _                             | _             | 0.5            |            | 0.5           | _              | 0.5                |                         | 4.5                  |              |      |                |               |                |                |     |                                                  |
| Input Voltage                | ViL             | Ì                               |       | 4.5          | -                             | -             | 1.35           |            | 1.35          |                | 1.35               | _                       | to                   | -            |      | 0.8            | -             | 0.8            | -              | 0.8 | V                                                |
|                              |                 |                                 |       | 6            | _                             | _             | 1.8            | _          | 1.8           | _              | 1.8                |                         | 5.5                  | -            | ļ    | <u> </u>       |               | <u> </u>       | ļ              |     |                                                  |
| High-Level                   |                 | ViL                             |       | 2            | 1.9                           | _             | <del>  -</del> | 1.9        |               | 1.9            | -                  | ViL                     |                      |              |      |                |               |                |                |     |                                                  |
| Output Voltage               | Voн             | or                              | ~0.02 | 4.5          | 4.4                           | -             | -              | 4.4        |               | 4.4            | ļ <u> </u>         | or                      | 4.5                  | 4.4          | -    | -              | 4.4           | -              | 4.4            | -   | ٧                                                |
| CMOS Loads                   |                 | Viн                             |       | 6            | 5.9                           | -             | -              | 5.9        | _             | 5.9            | <del>  -</del>     | ViH                     | -                    | ┥—           |      | -              | -             | <b>├</b> ─     |                | -   |                                                  |
|                              |                 | Vil                             |       | <del> </del> |                               | -             |                | -          |               | -              | $\vdash$           | Vil                     |                      |              | 1    |                |               |                |                |     | .,,                                              |
| TTL Loads                    |                 | or                              | -4    | 4.5          | 3.98                          | <del> -</del> | <del> -</del>  | 3.84       | ļ=            | 3.7            | 1-                 | or                      | 4.5                  | 3.98         | -    | -              | 3.84          | -              | 3.7            | -   | ٧                                                |
|                              |                 | V <sub>IH</sub>                 | -5.2  | 6            | 5.48                          | +=            | 0.1            | 5.34       | 0.1           | 5.2            | -                  | V <sub>IH</sub>         | $\vdash$             | +            | +-   | -              | $\vdash$      | ┿              | -              | +-  |                                                  |
| Low-Level                    | .,              | ViL                             | 0.02  | 4.5          | =                             | 干             | 0.1            | ┼▔         | 0.1           | <del>  -</del> | 0.1                | V <sub>IL</sub>         | 4.5                  | _            | _    | 0.1            | _             | 0.1            | _              | 0.1 | v                                                |
| Output Voltage<br>CMOS Loads | Vol             | or<br>V <sub>IH</sub>           | 0.02  | 6            | +                             | -             | 0.1            | +=         | 0.1           | -              | 0.1                | J or<br>V <sub>IM</sub> | 4.5                  | -            | -    | 0.1            | -             | 0.1            | -              | 0.1 | *                                                |
| CMUS LOADS                   |                 | VIL                             |       | +            | +-                            | ⊢             | 10.1           | +-         | 0.1           | ╀              | 10.1               | Vil                     | $\vdash$             | +-           | +    | +-             | +             | +-             | +              | +-  |                                                  |
| TTL Loads                    |                 | or                              | 4     | 4.5          | -                             | +-            | 0.26           | 1_         | 0.33          | +-             | 0.4                | or                      | 4.5                  | _            | _    | 0.26           |               | 0.33           |                | 0.4 | l v                                              |
| 172 20803                    |                 | VIH                             | 5.2   | 6            | 1=                            | -             | 0.26           | +          | 0.33          | +=             | 0.4                | V <sub>IH</sub>         | 1                    | 1            |      | 1              |               | 1              |                |     |                                                  |
| Input Leakage                |                 | - 111                           | 1     | +-           | +                             | $\vdash$      | 5/12/5         | +          | 1             | +-             | 1                  | Any                     | +                    | +            | +-   | +              | +             | +              |                | +   | <del>                                     </del> |
| Current                      | l,              | Vcc                             |       |              |                               |               |                |            |               |                |                    | Voltage                 |                      |              | Ì    |                |               |                |                |     |                                                  |
|                              | .,              | or                              |       | 6            | -                             | -             | ±0.1           | -          | ±1            | -              | ±1                 | Between                 | 5.5                  | ·   -        | -    | ±0.            | 1   -         | ±1             | -              | ±1  | μА                                               |
|                              |                 | Gnd                             |       |              |                               |               |                |            |               |                | 1                  | Vcc & Gnd               |                      | ŀ            | ŀ    |                |               |                |                |     |                                                  |
| Quiescent -                  |                 | Vcc                             |       | 1            |                               |               |                | 1          |               |                |                    | Vcc                     | 1                    |              | T    |                |               |                |                |     |                                                  |
| Device Current               | lcc             | or                              | 0     | 6            | _                             | _             | 8              | _          | 80            | -              | 160                | or                      | 5.5                  | 5   <u> </u> | _    | 8              | -             | 80             | -              | 160 | μΑ                                               |
|                              |                 | Gnd                             |       |              |                               |               |                |            |               |                |                    | Gnd                     |                      |              |      |                | .             |                |                |     | I                                                |
| Additional                   |                 | T                               |       |              |                               |               |                |            |               |                |                    |                         | 4.5                  |              |      |                |               |                |                | T   |                                                  |
| Quiescent Device             |                 |                                 |       |              |                               |               |                |            |               |                |                    | V <sub>cc</sub> -2.1    | ì                    | - 1          | 100  | 36             | .   _         | 45             | ٠ ا ـ          | 490 | μА                                               |
| Current per input            |                 |                                 |       |              |                               |               |                |            |               |                |                    | Vcc -2.1                | 5.1                  |              | 104  | 1 30           | "  -          | 45             | ′   ~          | 490 | μΑ                                               |
| pin: 1 unit load             | Δlcc*           |                                 |       |              |                               |               |                |            |               |                |                    |                         |                      | _            |      |                |               | L              |                |     |                                                  |

<sup>\*</sup>For dual-supply systems theoretical worst case ( $V_{t}$  = 2.4  $V_{t}$   $V_{cc}$  = 5.5 V) specification is 1.8 mA.

### **HCT Input Loading Table**

| Input       | Unit Loads* |
|-------------|-------------|
| P0-P3       | 0.75        |
| MR          | 1.5         |
| U/D, PE, CI | 1           |
| СР          | 1.25        |

<sup>\*</sup>Unit Load is  $\Delta I_{CC}$  limit specified in Static Characteristics Chart, e.g., 360  $\mu A$  max. @ 25° C.

### SWITCHING CHARACTERISTICS (Vcc=5 V, Tx=25°C, Input tr,tr=6 ns)

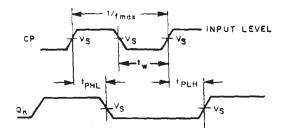
|                               |                    |                     | TYPICAL | VALUES |    |       |    |
|-------------------------------|--------------------|---------------------|---------|--------|----|-------|----|
| CHARACTERISTIC                |                    | C <sub>L</sub> (pF) | 45      | 510    | 45 | UNITS |    |
|                               |                    |                     | HC      | HCT    | НС | HCT   |    |
| Propagation Delay:            |                    |                     |         |        |    |       |    |
| CP to Qn                      | telh, tehl         | 15                  | 18      | 21     | 18 | 21    |    |
| CP to CO                      | telh, tehl         | 15                  | 22      | 24     | 22 | 24    |    |
| PE to Qn                      | tech, tehu         | 15                  | 21      | 22     | 21 | 22    |    |
| PE to CO                      | tplH, tpHL         | 15                  | 25      | 28     | 25 | 28    | ns |
| MR to Qn                      | tenc               | 15                  | 18      | 18     | 18 | 18    |    |
| MR to CO                      | t <sub>PLH</sub> _ | 15                  | 20      | 20     | 20 | 20    |    |
| Ci to CO                      | терн, тенс         | 15                  | 10      | 13     | 10 | 13    |    |
| Power Dissipation Capacitance | CPD*               |                     | 59      | 65     | 68 | 72    | ρF |

<sup>\*</sup>C<sub>PD</sub> is used to determine the dynamic power consumption, per package.

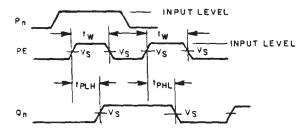
 $P_D = C_{PD} V_{CC}^2 f_i + \Sigma (C_L V_{CC}^2 f_o)$  where  $f_i = input$  frequency

fo = output frequency

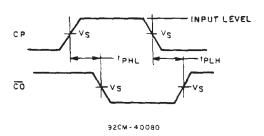
C<sub>L</sub> = output load capacitance


Vcc = supply voltage.

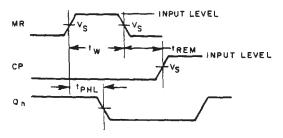
#### PRE-REQUISITE FOR SWITCHING FUNCTION


|                   |                  |            |      |          |          |          |      | LIM    | ITS      |          |      |       |          |      |          |
|-------------------|------------------|------------|------|----------|----------|----------|------|--------|----------|----------|------|-------|----------|------|----------|
|                   | l                | TEST       |      | 25       | °C       |          | -40  | 0°C to | +85°     | C        | -5   | °C to | +125     | °C   |          |
| CHARACTERISTIC    | :                | CONDITIONS | HC   |          | Н        | HCT      |      | 74HC   |          | 74HCT    |      | 54HC  |          | ICT  | UNITS    |
|                   |                  | Vcc (V)    | Min. | Max.     | Min.     | Max.     | Min. | Max.   | Min.     | Max.     | Min. | Max.  | Min.     | Max. |          |
| Pulse Width:      |                  | 2          | 80   |          | _        | _        | 100  | -      | _        | _        | 120  | -     |          | _    |          |
| CP                | tw               | 4.5        | 16   | —        | 16       | -        | 20   | -      | 20       | -        | 24   | —     | 24       | -    | }        |
|                   |                  | 6          | 14   |          |          |          | 17   |        |          | <u> </u> | 20   |       | -        | -    | ļ        |
|                   |                  | 2          | 100  | <b>—</b> | Γ-       | _        | 125  |        | _        | _        | 150  | -     | Γ-       | -    | ]        |
| MR                | tw               | 4.5        | 20   | -        | 20       |          | 25   |        | 25       | —        | 30   | -     | 30       | _    |          |
|                   |                  | 6          | 17   |          |          |          | 21   |        |          | _        | 26   |       | _        | _    |          |
|                   | -                | 2          | 80   | -        | - T      | -        | 100  | -      | -        | -        | 120  | _     | —        | T -  | ] .      |
| PE                | $t_{\mathbf{W}}$ | 4.5        | 16   | -        | 16       | _        | 20   |        | 20       | -        | 24   | -     | 24       | -    |          |
|                   |                  | 6          | 14   | <u> </u> | <u> </u> |          | 17   | _      | <u>L</u> | _        | 20   |       | 1 -      |      | l        |
| Setup Time,       | tsu              | 2          | 100  | _        | -        | _        | 125  | _      | [ =      | $\vdash$ | 150  | T     | _        | _    | Ţ        |
| Pn to PE,         |                  | 4.5        | 20   | _        | 20       | -        | 25   | -      | 25       | -        | 30   | -     | 30       | -    | ns       |
| CI to CP          |                  | 6          | 17   | _        | _        | _        | 21   | _      | L        | ] _      | 26   | -     | -        | -    | )        |
| Hold Time,        | tн               | 2          | 3    | -        | -        | -        | 3    | -      | -        | - T      | 3    | T -   | _        | _    | 7        |
| Pn to PE          |                  | 4.5        | 3    | -        | 3        | -        | 3    | -      | 3        |          | 3    | _     | 3        | _    |          |
|                   |                  | 6          | 3_   | <u> </u> |          | <u> </u> | 3    |        |          |          | 3    |       |          |      |          |
|                   |                  | 2          | 5    | -        | _        | _        | 5    | _      | -        |          | 5    |       | T-       | T -  | 1        |
| CI to CP          | t <sub>H</sub>   | 4.5        | 5    | -        | 5        |          | 5    | -      | 5        | -        | 5    | -     | 5        | 1 -  |          |
|                   |                  | 6          | 5    |          |          |          | 5    | _      | <u> </u> | 1 -      | 5    |       |          |      |          |
|                   |                  | 2          | 0    | <b>—</b> | -        | _        | 0    | -      | -        | -        | 0    | 1 =   | T-       | T-   | 7)       |
| U/D to CP         | tн               | 4.5        | 0    | -        | 0        | -        | 0    | -      | 0        |          | 0    | -     | 0        | -    |          |
|                   |                  | 6          | 0    |          |          |          | 0    |        |          |          | 0    |       |          |      | 1        |
| Removal Time:     |                  | 2          | 80   | _        | T-       |          | 100  | _      | _        | _        | 120  | Τ-    | <b>—</b> | T =  |          |
| MR to CP          | t <sub>REM</sub> | 4.5        | 16   | -        | 16       |          | 20   | -      | 20       | -        | 24   | -     | 24       | -    |          |
|                   |                  | 6          | 14   |          | 1 –      |          | 17   | 1-     | 1 -      |          | 20   |       | _   _    |      | <u> </u> |
| Maximum Frequency |                  | 2          | 6    | T -      | T -      | T -      | 5    | _      | T =      | T-       | 4    | T -   | -        | -    |          |
| CP                | <b>f</b> MAX     | 4.5        | 30   | -        | 30       | -        | 24   | -      | 24       | -        | 20   | -     | 20       | -    | MHz      |
|                   |                  | 6          | 35   | -        | -        | -        | 28   | -      | -        | -        | 24   | -     | _        | -    |          |

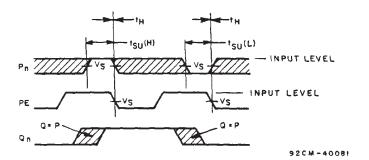
### SWITCHING CHARACTERISTICS (CL=50 pF, Input trit=6 ns)


|                    |                  |            |        |      |              |      |          | LIM   | ITS    |          |          |        |          |                |       |
|--------------------|------------------|------------|--------|------|--------------|------|----------|-------|--------|----------|----------|--------|----------|----------------|-------|
|                    |                  | ١,,        |        | 25   | °C           |      | -4       | 0°C t | o +85° | C        | -5       | 5°C to | +125     | °C             |       |
| CHARACTERIS        | TIC              | VCC<br>(V) | НС     |      | нст          |      | 74HC     |       | 74HCT  |          | 54HC     |        | 54HCT    |                | UNITS |
|                    |                  |            | Min.   | Max. | Min.         | Max. | Min.     | Max.  | Min.   | Max.     | Min.     | Max.   | Min.     | Max.           |       |
| Propagation Delay: | tplH             | 2          |        | 220  | -            | _    | -        | 275   | _      | _        | _        | 330    | _        | T -            |       |
| CP to Qn           | tpHL             | 4.5        | -      | 44   | -            | 50   | -        | 55    | —      | 63       | -        | 66     | -        | 75             |       |
|                    |                  | 6          | _      | 37   |              |      |          | 47    |        | <u> </u> |          | 56     | _        | _              | ]     |
| _                  | tplH             | 2          |        | 260  | -            | -    | -        | 325   | _      | _        | _        | 390    | -        | <u> </u>       | ]     |
| CP to CO           | t <sub>PHL</sub> | 4.5        | -      | 52   | -            | 58   |          | 65    | _      | 73       | l —      | 78     |          | 87             |       |
|                    |                  | 6          |        | 44   | _            | _    | _        | 55    |        | _        | _        | 66     |          | _              |       |
|                    | tpLH             | 2          | -      | 250  |              | _    | -        | 315   | _      | _        | _        | 375    | T -      | _              | ]     |
| PE to Qn           | t <sub>PHL</sub> | 4.5        |        | 50   | -            | 53   | -        | 63    | -      | 66       | -        | 75     | -        | 80             |       |
|                    |                  | 6          |        | 43   |              |      | _        | 54    |        |          | <u></u>  | 64     |          | -              |       |
| _                  | tpuH             | 2          | -      | 300  | _            | -    | _        | 375   | _      | _        | T —      | 450    | <b>—</b> | T -            |       |
| PE to CO           | t <sub>PHL</sub> | 4.5        | -      | 60   | -            | 68   | _        | 75    | _      | 85       | _        | 90     | -        | 102            |       |
|                    |                  | 6          |        | 51   | _            |      | <u>_</u> | 64    | -      | -        | _        | 76     | —        | -              |       |
|                    |                  | 2          | -      | 210  | -            |      | T-       | 265   | _      | -        | _        | 315    | <b>—</b> | _              | ns    |
| MR to Qn           | t <sub>PHL</sub> | 4.5        | -      | 42   |              | 42   | -        | 53    | -      | 53       | -        | 63     | -        | 63             |       |
|                    |                  | 6          |        | 36   |              |      |          | 45    | _      | —        | _        | 54     | -        | -              |       |
|                    |                  | 2          | _      | 235  | <del>-</del> | T -  | _        | 295   | T-     | T-       | -        | 355    | -        | 1-             | 7     |
| MR to CO           | tplH             | 4.5        | _      | 47   | -            | 47   |          | 59    | -      | 59       | -        | 71     | -        | 71             |       |
|                    |                  | 6          |        | 40   |              |      |          | 50    | -      | -        |          | 60     |          | -              |       |
|                    | tplH             | 2          | _      | 125  | _            | T —  | _        | 155   | -      | T —      | <u> </u> | 190    | _        | T-             | 1     |
| CI to CO           | tpHL             | 4.5        | -      | 25   | -            | 31   | -        | 31    | -      | 39       | -        | 38     | -        | 47             |       |
|                    |                  | 6          |        | 21   | _            | -    | _        | 26    | -      | _        | -        | 32     | _        |                |       |
| Transition Time:   | tTHL             | 2          | $\top$ | 75   | _            | _    | _        | 95    | 1-     | -        | 1-       | 110    | _        | <del> </del> - | 1     |
| Qn, CO             | t <sub>TLH</sub> | 4.5        | -      | 15   | -            | 15   | _        | 19    | _      | 19       |          | 22     | _        | 22             |       |
|                    |                  | 6          | _      | 13   | _            | -    | -        | 16    |        | _        | -        | 19     | -        |                |       |
| Input Capacitance  | Cı               |            | _      | 10   |              | 10   | T =      | 10    |        | 10       | 1-       | 10     | 1-       | 10             | pF    |




(a) Clock to output delays and clock pulse width.




(c) Preset Enable pulse width and Preset Enable to output delays.



(b) Clock to carry out delays.



(d) Master reset pulse width, master reset to output delay and master reset to clock removal time.



(e) Setup and hold times data to Preset Enable (PE).

|                       | 54/74HC         | 54/74HCT |  |  |  |
|-----------------------|-----------------|----------|--|--|--|
| Input Level           | V <sub>cc</sub> | 3 V      |  |  |  |
| Switching Voltage, Vs | 50% Vcc         | 1.3 V    |  |  |  |

Fig. 4 - AC waveforms.

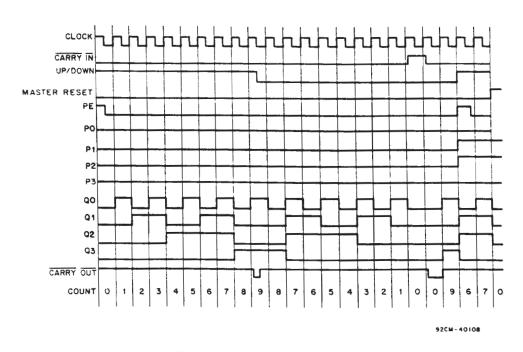



Fig. 5 - Timing diagram for CD54/74HC/HCT4510.

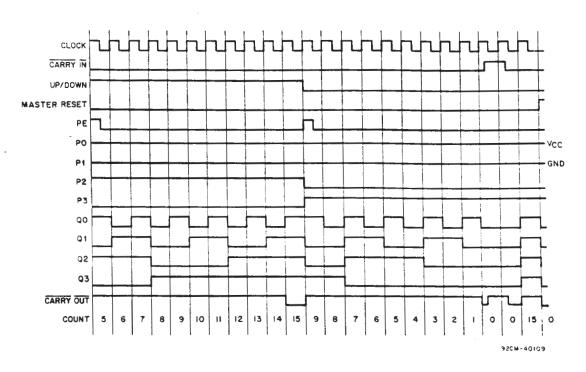
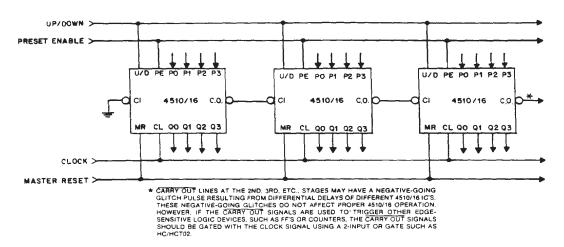
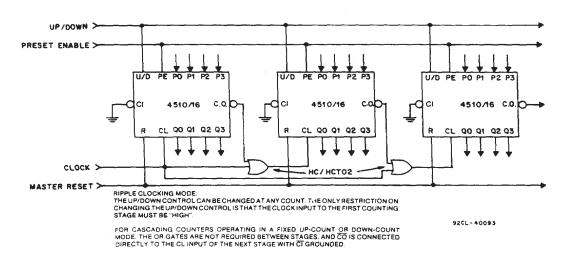





Fig. 6 - Timing diagram for CD54/74HC/HCT4516.



### (a) Parallel clocking.



(b) Ripple clocking.

Fig. 7 - Cascading counter packages.

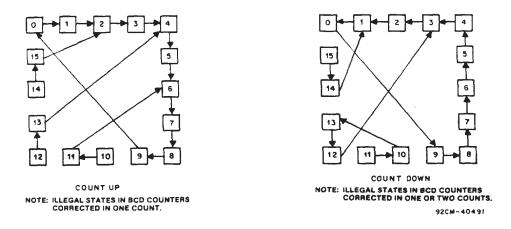



Fig. 8 - HC/HCT4510 State Diagrams.



### PACKAGE OPTION ADDENDUM

30-Mar-2005

#### **PACKAGING INFORMATION**

| Orderable Device | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins Package<br>Qty | Eco Plan <sup>(2)</sup> | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup> |
|------------------|-----------------------|-----------------|--------------------|---------------------|-------------------------|------------------|------------------------------|
| CD54HC4516F3A    | OBSOLETE              | CDIP            | J                  | 16                  | TBD                     | Call TI          | Call TI                      |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

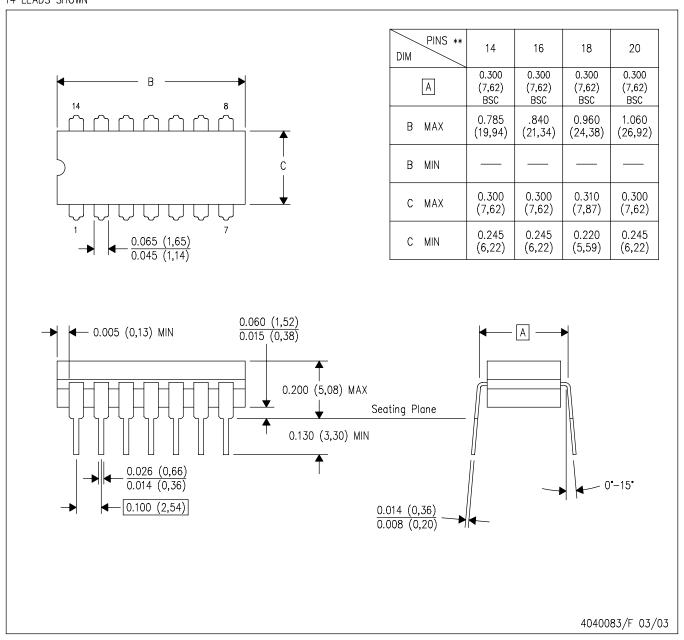
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.


Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

### 14 LEADS SHOWN



NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products         |                        | Applications       |                           |
|------------------|------------------------|--------------------|---------------------------|
| Amplifiers       | amplifier.ti.com       | Audio              | www.ti.com/audio          |
| Data Converters  | dataconverter.ti.com   | Automotive         | www.ti.com/automotive     |
| DSP              | dsp.ti.com             | Broadband          | www.ti.com/broadband      |
| Interface        | interface.ti.com       | Digital Control    | www.ti.com/digitalcontrol |
| Logic            | logic.ti.com           | Military           | www.ti.com/military       |
| Power Mgmt       | power.ti.com           | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers | microcontroller.ti.com | Security           | www.ti.com/security       |
|                  |                        | Telephony          | www.ti.com/telephony      |
|                  |                        | Video & Imaging    | www.ti.com/video          |
|                  |                        | Wireless           | www.ti.com/wireless       |
|                  |                        |                    |                           |

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated