

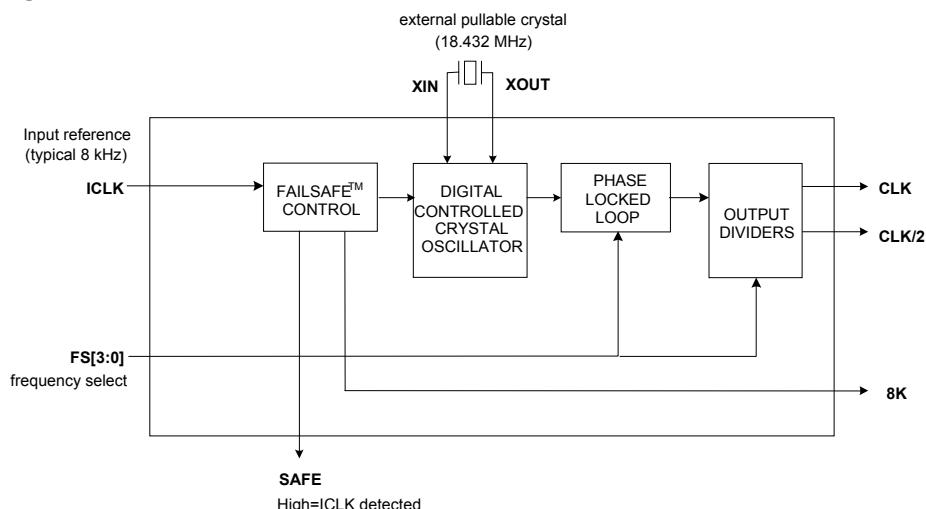


**CYPRESS**

# **FailSafe™ PacketClock™ Global Communications Clock Generator**

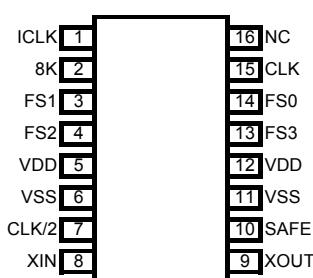
**CY26049-36**

## Features


- Fully integrated phase-locked loop (PLL)
- FailSafe™ output
- PLL driven by a crystal oscillator that is phase aligned with external reference
- Output frequencies selectable and/or programmed to standard communication frequencies
- Low-jitter, high-accuracy outputs
- Commercial and Industrial operation
- $3.3V \pm 5\%$  operation
- 16-lead TSSOP

## Benefits

- Integrated high-performance PLL tailored for telecommunications frequency synthesis eliminates the need for external loop filter components


- When reference is in range, SAFE pin is driven high.
- When reference is off, DCXO maintains clock outputs. SAFE pin is low.
- DCXO maintains continuous operation should the input reference clock fail
- Glitch-free transition simplifies system design
- Selectable output clock rates include T1/DS1, E1, T3/DS3, E3, and OC-3.
- Works with commonly available, low-cost 18.432-MHz crystal
- Zero-ppm error for all output frequencies
- Performance guaranteed for applications that require an extended temperature range
- Compatible across industry standard design platforms
- Industry standard package with  $6.4 \times 5.0 \text{ mm}^2$  footprint and a height profile of just 1.1 mm.

## Logic Block Diagram



## Pin Configuration

**CY26049-36**  
**16-pin TSSOP**  
**Top View**



## Pin Definitions

| Pin Name | Pin Number | Pin Description                                                               |
|----------|------------|-------------------------------------------------------------------------------|
| ICLK     | 1          | <b>Reference Input Clock</b> ; 8 kHz or 10 to 60 MHz.                         |
| 8K       | 2          | <b>Clock Output</b> ; 8 kHz or high impedance in buffer mode.                 |
| FS1      | 3          | <b>Frequency Select 1</b> ; Determines CLK outputs per <i>Table 1</i> .       |
| FS2      | 4          | <b>Frequency Select 2</b> ; Determines CLK outputs per <i>Table 1</i> .       |
| VDD      | 5          | <b>Voltage Supply</b> ; 3.3V.                                                 |
| VSS      | 6          | <b>Ground</b>                                                                 |
| CLK/2    | 7          | <b>Clock Output</b> ; Frequency per <i>Table 1</i> .                          |
| XIN      | 8          | <b>Pullable Crystal Input</b> ; 18.432 MHz.                                   |
| XOUT     | 9          | <b>Pullable Crystal Output</b> ; 18.432 MHz.                                  |
| SAFE     | 10         | <b>High = reference ICLK within range, Low = reference ICLK out of range.</b> |
| VSS      | 11         | <b>Ground</b>                                                                 |
| VDD      | 12         | <b>Voltage Supply</b> ; 3.3V.                                                 |
| FS3      | 13         | <b>Frequency Select 3</b> ; Determines CLK outputs per <i>Table 1</i> .       |
| FS0      | 14         | <b>Frequency Select 0</b> ; Determines CLK outputs per <i>Table 1</i> .       |
| CLK      | 15         | <b>Clock Output</b> ; Frequency per <i>Table 1</i> .                          |
| NC       | 16         | <b>No Connect</b>                                                             |

## Selector Guide

| Part Number | Input Frequency Range                                                                                   | Outputs | Output Frequencies                                      |
|-------------|---------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------|
| CY26049-36  | 8 kHz or 10 to 60 MHz Reference Input<br>Crystal: 18.432-MHz pullable Crystal per Cypress Specification | 3       | 8 kHz to 155.52 MHz<br>Selectable (see <i>Table 1</i> ) |

## Functional Description

CY26049 is a FailSafe frequency synthesizer with a reference clock input and three clock outputs. The device provides an optimum solution for applications where continuous operation is required in the event of a primary clock failure. The continuous, glitch-free operation is achieved by using a DCXO which serves as a primary clock source. The FailSafe control circuit synchronizes the DCXO with the reference as long as the reference is within the pull range of the crystal.

In the event of a reference clock failure the DCXO maintains the last frequency and phase information of the reference clock. The unique feature of the CY26049-36 is that the DCXO

is in fact the primary clocking source. When the reference clock is restored, the DCXO automatically re-synchronizes to the reference. The status of the reference clock input, as detected by the CY26049-36, is reported by the SAFE pin.

In the buffer mode (FS3:FS0 = 1110 or 1111), the CY26049-36 can be used as a jitter attenuator. In this mode, extensive jitter on the input clock will be "filtered", resulting in a low-jitter output clock.

**Frequency Select Tables**
**Table 1. CY26049-36 Frequency Select–Output Decoding Table–External Mode (MHz except as noted)**

| <b>ICLK</b> | <b>FS3</b> | <b>FS2</b> | <b>FS1</b> | <b>FS0</b> | <b>CLK/2</b>          | <b>CLK</b>            | <b>8K</b>             | <b>Crystal</b> |
|-------------|------------|------------|------------|------------|-----------------------|-----------------------|-----------------------|----------------|
| 8 kHz       | 0          | 0          | 0          | 0          | 1.544                 | 3.088                 | 8 kHz                 | 18.432         |
| 8 kHz       | 0          | 0          | 0          | 1          | 2.048                 | 4.096                 | 8 kHz                 | 18.432         |
| 8 kHz       | 0          | 0          | 1          | 0          | 22.368                | 44.736                | 8 kHz                 | 18.432         |
| 8 kHz       | 0          | 0          | 1          | 1          | 17.184                | 34.368                | 8 kHz                 | 18.432         |
| 8 kHz       | 0          | 1          | 0          | 0          | 77.76                 | 155.52                | 8 kHz                 | 18.432         |
| 8 kHz       | 0          | 1          | 0          | 1          | 16.384                | 32.768                | 8 kHz                 | 18.432         |
| 8 kHz       | 0          | 1          | 1          | 0          | 14.352                | 28.704                | 8 kHz                 | 18.432         |
| 8 kHz       | 0          | 1          | 1          | 1          | High Z <sup>[1]</sup> | High Z <sup>[1]</sup> | High Z <sup>[1]</sup> | 18.432         |
| 8 kHz       | 1          | 0          | 0          | 0          | 18.528                | 37.056                | 8 kHz                 | 18.432         |
| 8 kHz       | 1          | 0          | 0          | 1          | 12.352                | 24.704                | 8 kHz                 | 18.432         |
| 8 kHz       | 1          | 0          | 1          | 0          | 7.68                  | 15.36                 | 8 kHz                 | 18.432         |
| 8 kHz       | 1          | 0          | 1          | 1          | High Z <sup>[1]</sup> | High Z <sup>[1]</sup> | High Z <sup>[1]</sup> | 18.432         |
| 8 kHz       | 1          | 1          | 0          | 0          | 12.288                | 24.576                | 8 kHz                 | 18.432         |
| 8 kHz       | 1          | 1          | 0          | 1          | 16.384                | 32.768                | 8 kHz                 | 18.432         |

**Table 2. CY26049-36 Frequency Select–Output Decoding Table–Buffer Mode**

| <b>ICLK</b> | <b>FS3</b> | <b>FS2</b> | <b>FS1</b> | <b>FS0</b> | <b>CLK/2</b> | <b>CLK</b> | <b>8K</b>             | <b>Crystal</b> |
|-------------|------------|------------|------------|------------|--------------|------------|-----------------------|----------------|
| 20 to 60    | 1          | 1          | 1          | 0          | ICLK/2       | ICLK       | High Z <sup>[1]</sup> | ICLK/2         |
| 10 to 30    | 1          | 1          | 1          | 1          | 2*ICLK       | 4*ICLK     | High Z <sup>[1]</sup> | ICLK           |

**Note:**

1. High Z = high impedance.

**Absolute Maximum Conditions**

Supply Voltage ( $V_{DD}$ ) ..... -0.5 to +7.0V  
 DC Input Voltage ..... -0.5V to  $V_{DD}$ +0.5  
 Storage Temperature (Non-Condensing) ..... -55°C to +125°C  
 Junction Temperature ..... -40°C to +125°C

Data Retention @  $T_j=125^\circ C$  ..... >10 years  
 Package Power Dissipation ..... 350 mW  
 ESD (Human Body Model) MIL-STD-883 ..... 2000V  
 (Above which the useful life may be impaired. For user guidelines, not tested.)

**Recommended Pullable Crystal Specifications<sup>[2]</sup>**

| Parameter    | Description                                              | Comments                                                                    | Min. | Typ.   | Max. | Units |
|--------------|----------------------------------------------------------|-----------------------------------------------------------------------------|------|--------|------|-------|
| $F_{NOM}$    | Nominal crystal frequency                                | Parallel resonance, fundamental mode, AT cut                                | —    | 18.432 | —    | MHz   |
| $C_{LNOM}$   | Nominal load capacitance                                 |                                                                             | —    | 14     | —    | pF    |
| $R_1$        | Equivalent series resistance (ESR)                       | Fundamental mode                                                            | —    | —      | 25   | Ω     |
| $R_3/R_1$    | Ratio of third overtone mode ESR to fundamental mode ESR | Ratio used because typical $R_1$ values are much less than the maximum spec | 3    | —      | —    |       |
| DL           | Crystal drive level                                      | No external series resistor assumed                                         | —    | 0.5    | 2    | mW    |
| $F_{3SEPHI}$ | Third overtone separation from $3*F_{NOM}$               | High side                                                                   | 400  | —      | —    | ppm   |
| $F_{3SEPL0}$ | Third overtone separation from $3*F_{NOM}$               | Low side                                                                    | —    | —      | -200 | ppm   |
| $C_0$        | Crystal shunt capacitance                                |                                                                             | —    | —      | 7    | pF    |
| $C_0/C_1$    | Ratio of shunt to motional capacitance                   |                                                                             | 180  | —      | 250  |       |
| $C_1$        | Crystal motional capacitance                             |                                                                             | 14.4 | 18     | 21.6 | fF    |

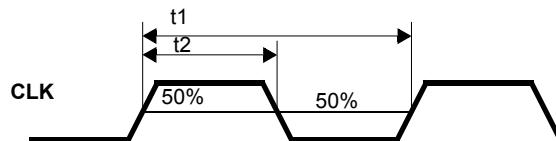
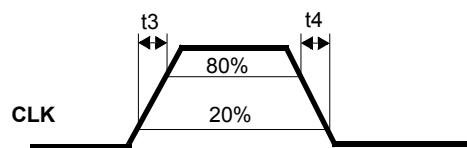
**Recommended Operating Conditions**

| Parameter   | Description                                                                                        | Min. | Typ. | Max. | Unit |
|-------------|----------------------------------------------------------------------------------------------------|------|------|------|------|
| $V_{DD}$    | Operating Voltage                                                                                  | 3.15 | 3.3  | 3.45 | V    |
| $T_{AC}$    | Ambient Temperature (Commercial Temperature)                                                       | 0    | —    | 70   | °C   |
| $T_{AI}$    | Ambient Temperature (Industrial Temperature)                                                       | -40  | —    | 85   | °C   |
| $C_{LOAD}$  | Max Output Load Capacitance                                                                        | —    | —    | 15   | pF   |
| $t_{pu}$    | Power-up time for all $V_{DDs}$ to reach minimum specified voltage (power ramps must be monotonic) | 0.05 | —    | 500  | ms   |
| $t_{ER(I)}$ | 8 kHz Input Edge Rate, 20% to 80% of $V_{DD} = 3.3V$                                               | 0.07 | —    | —    | V/ns |

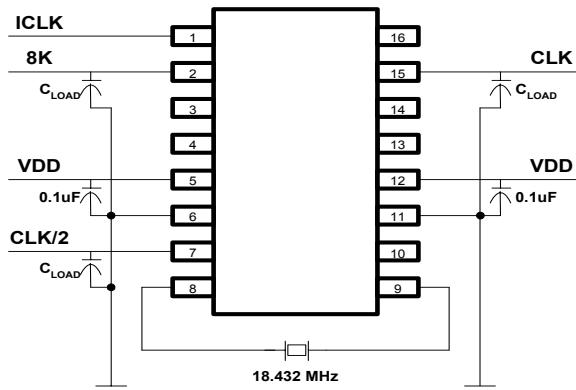
**DC Electrical Specifications** (Commercial Temp: 0° to 70°C)

| Parameter | Description            | Test Conditions                                                 | Min. | Typ. | Max. | Unit     |
|-----------|------------------------|-----------------------------------------------------------------|------|------|------|----------|
| $I_{OH}$  | Output High Current    | $V_{OH} = V_{DD} - 0.5$ , $V_{DD} = 3.3V$ (source)              | 12   | 24   | —    | mA       |
| $I_{OL}$  | Output Low Current     | $V_{OL} = 0.5$ , $V_{DD} = 3.3V$ (sink)                         | 12   | 24   | —    | mA       |
| $V_{IH}$  | Input High Voltage     | CMOS Levels                                                     | 0.7  | —    | —    | $V_{DD}$ |
| $V_{IL}$  | Input High Voltage     | CMOS Levels                                                     | —    | —    | 0.3  | $V_{DD}$ |
| $I_{IH}$  | Input High Current     | $V_{IH}=V_{DD}$                                                 | —    | 5    | 10   | μA       |
| $I_{IL}$  | Input Low Current      | $V_{IL}=0V$                                                     | —    | 5    | 10   | μA       |
| $C_{IN}$  | Input Capacitance      |                                                                 | —    | —    | 7    | pF       |
| $I_{OZ}$  | Output Leakage Current | High Z <sup>[1]</sup> output                                    | —    | ± 5  | —    | μA       |
| $I_{DD}$  | Supply Current         | $C_{LOAD} = 15 \text{ pF}$ , $V_{DD} = 3.45V$ , FS [3:0] = 0100 | —    | —    | 45   | mA       |
|           |                        | $C_{LOAD} = 15 \text{ pF}$ , $V_{DD} = 3.45V$ , FS [3:0] = 1101 | —    | —    | 30   | mA       |

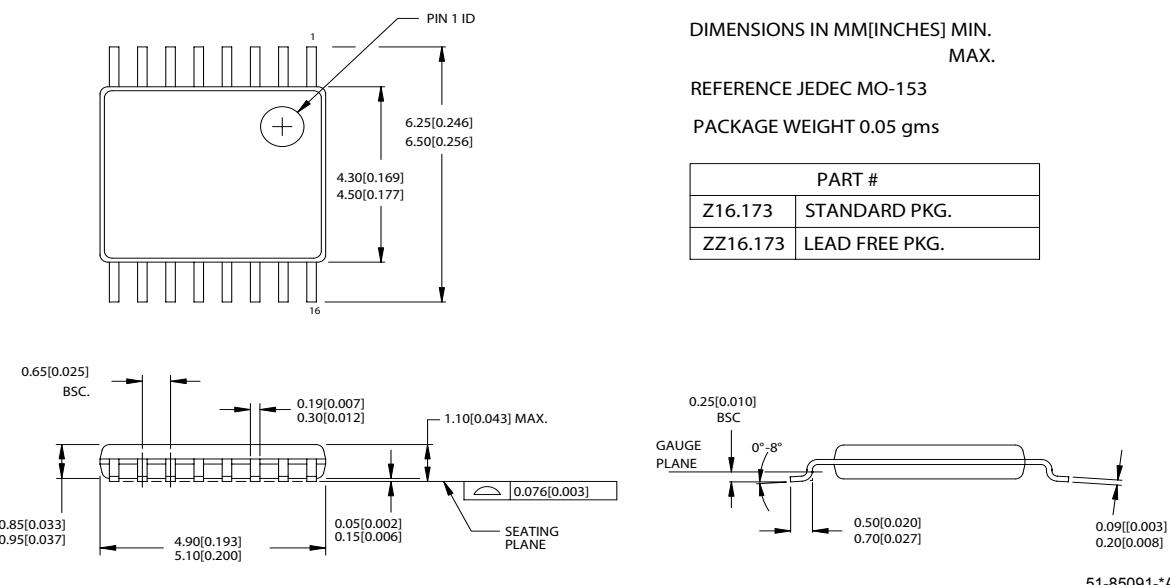
**Note:**



2. Ecliptek ECX-5761-18.432 M and ECX-5762-18.432 M meets these specifications.

**DC Electrical Specifications** (Industrial Temp:  $-40^{\circ}$  to  $85^{\circ}$ C)


| Parameter | Description            | Test Conditions                                        | Min. | Typ.    | Max. | Unit     |
|-----------|------------------------|--------------------------------------------------------|------|---------|------|----------|
| $I_{OH}$  | Output High Current    | $V_{OH} = V_{DD} - 0.5$ , $V_{DD} = 3.3V$ (source)     | 10   | 20      | —    | mA       |
| $I_{OL}$  | Output Low Current     | $V_{OL} = 0.5$ , $V_{DD} = 3.3V$ (sink)                | 10   | 20      | —    | mA       |
| $V_{IH}$  | Input High Voltage     | CMOS Levels                                            | 0.7  | —       | —    | $V_{DD}$ |
| $V_{IL}$  | Input High Voltage     | CMOS Levels                                            | —    | —       | 0.3  | $V_{DD}$ |
| $I_{IH}$  | Input High Current     | $V_{IH} = V_{DD}$                                      | —    | 5       | 10   | $\mu A$  |
| $I_{IL}$  | Input Low Current      | $V_{IL} = 0V$                                          | —    | 5       | 10   | $\mu A$  |
| $C_{IN}$  | Input Capacitance      |                                                        | —    | —       | 7    | pF       |
| $I_{OZ}$  | Output Leakage Current | High Z <sup>[1]</sup> output                           | —    | $\pm 5$ | —    | $\mu A$  |
| $I_{DD}$  | Supply Current         | $C_{LOAD} = 15$ pF, $V_{DD} = 3.45V$ , FS [3:0] = 0100 | —    | —       | 50   | mA       |
|           |                        | $C_{LOAD} = 15$ pF, $V_{DD} = 3.45V$ , FS [3:0] = 1101 | —    | —       | 35   | mA       |

**AC Electrical Specifications** (Commercial Temp:  $0^{\circ}$  to  $70^{\circ}$  C and Industrial Temp:  $-40^{\circ}$  to  $85^{\circ}$ C)


| Parameter      | Description                        | Test Conditions                                                                                 | Min. | Typ. | Max. | Unit |
|----------------|------------------------------------|-------------------------------------------------------------------------------------------------|------|------|------|------|
| $f_{ICLK-E}$   | Frequency, Input Clock             | Input Clock Frequency, External Mode                                                            | —    | 8.00 | —    | kHz  |
| $f_{ICLK-B}$   | Frequency, Input Clock             | Input Clock Frequency, Buffer Mode                                                              | 10   | —    | 60   | MHz  |
| LR             | FailSafe Lock Range <sup>[3]</sup> | Range of reference ICLK for Safe = High                                                         | -250 | —    | +250 | ppm  |
| $DC = t_2/t_1$ | Output Duty Cycle                  | Duty Cycle defined in Figure 1, measured at 50% of $V_{DD}$                                     | 45   | 50   | 55   | %    |
| $T_{PJIT1}$    | Clock Jitter; output > 5 MHz       | Period Jitter, Peak to Peak, 10,000 periods                                                     | —    | —    | 250  | ps   |
|                |                                    | RMS Period Jitter, RMS                                                                          | —    | —    | 50   | ps   |
| $T_{PJIT2}$    | Clock Jitter; output <5 MHz        | Period Jitter, Peak to Peak, 10,000 periods                                                     | —    | —    | 500  | ps   |
|                |                                    | RMS Period Jitter, RMS                                                                          | —    | —    | 100  | ps   |
| $t_6$          | PLL Lock Time                      | Time for PLL to lock within $\pm 150$ ppm of target frequency                                   | —    | —    | 3    | ms   |
| $t_{fs\_lock}$ | Failsafe Lock Time                 | Time for PLL to lock to ICKL (outputs phase aligned with ICKL and Safe = High)                  | —    | —    | 7    | s    |
| $f_{error}$    | Frequency Synthesis Error          | Actual mean frequency error vs. target                                                          | —    | 0    | —    | ppm  |
| ER             | Rising Edge Rate                   | Output Clock Edge Rate, Measured from 20% to 80% of $V_{DD}$ , $C_{LOAD} = 15$ pF See Figure 2. | 0.8  | 1.4  | 2    | V/ns |
| EF             | Falling Edge Rate                  | Output Clock Edge Rate, Measured from 20% to 80% of $V_{DD}$ , $C_{LOAD} = 15$ pF See Figure 2. | 0.8  | 1.4  | 2    | V/ns |

**Voltage and Timing Definitions**

**Figure 1. Duty Cycle Definition;  $DC = t_2/t_1$** 

**Figure 2. Rise and Fall Time Definitions:  $ER = 0.6 \times V_{DD} / t_3$ ,  $EF = 0.6 \times V_{DD} / t_4$** 
**Note:**

3. Dependent on crystals chosen and crystal specs.

**Test Circuit**

**Ordering Information**

| Ordering Code    | Package Type                | Operating Temperature Range |
|------------------|-----------------------------|-----------------------------|
| CY26049ZC-36     | 16-lead TSSOP               | Commercial 0 to 70°C        |
| CY26049ZC-36T    | 16-lead TSSOP-Tape and Reel | Commercial 0 to 70°C        |
| CY26049ZI-36     | 16-lead TSSOP               | Industrial -40 to 85°C      |
| CY26049ZI-36T    | 16-lead TSSOP-Tape and Reel | Industrial -40 to 85°C      |
| <b>Lead Free</b> |                             |                             |
| CY26049ZXC-36    | 16-lead TSSOP               | Commercial 0 to 70°C        |
| CY26049ZXC-36T   | 16-lead TSSOP-Tape and Reel | Commercial 0 to 70°C        |
| CY26049ZXI-36    | 16-lead TSSOP               | Industrial -40 to 85°C      |
| CY26049ZXI-36T   | 16-lead TSSOP-Tape and Reel | Industrial -40 to 85°C      |

**Package Diagram**
**16-lead TSSOP 4.40 MM Body Z16.173**


FailSafe and PacketClock are trademarks of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.

**Document History Page**

| <b>Document Title:</b> CY26049-36 FailSafe™ PacketClock™ Global Communications Clock Generator<br><b>Document Number:</b> 38-07415 |                |                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>REV.</b>                                                                                                                        | <b>ECN NO.</b> | <b>Issue Date</b> | <b>Orig. of Change</b> | <b>Description of Change</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| **                                                                                                                                 | 114749         | 08/08/02          | CKN                    | New Data Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| *A                                                                                                                                 | 120067         | 01/06/03          | CKN                    | Changed "FailSafe is a trademark of Silicon Graphics, Inc." to read "FailSafe is a trademark of Cypress Semiconductor"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| *B                                                                                                                                 | 128000         | 07/15/03          | IJA                    | Changed Benefits to read "When reference is in range, SAFE pin is driven high"<br>Changed first sentence to "CY26049 is a FailSafe frequency synthesizer with a reference clock input and three clock outputs"<br>Changed title from "Failsafe™ PacketClock™ Global Communications Clocks" to "FailSafe™ PacketClock™ Global Communications Clock Generator"<br>Changed definitions in Pin Description Table<br>Replaced format for Absolute Maximum Conditions<br>Replaced Recommended Pullable Crystal Specifications table<br>Added $t_{pu}$ to Recommended Operating Conditions<br>Added $I_{IH}$ and $I_{IL}$ to DC Electrical Specifications<br>Replaced AC Electrical Specifications from Cy26049-16 data sheet<br>Changed Voltage and Timing Definitions to match CY2410 data sheet<br>Moved Package Diagram to end of data sheet |
| *C                                                                                                                                 | 244412         | See ECN           | RGL                    | Spec. ( $t_{ER(I)}$ ) Input Edge Rate in the Recommended Operating Conditions Table<br>Added Lead Free Devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |