

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

January 1996 Revised March 2001

74LCX821

Low Voltage 10-Bit D-Type Flip-Flop with 5V Tolerant Inputs and Outputs

General Description

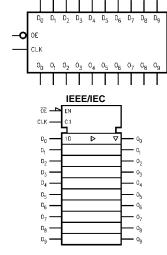
The LCX821 consists of ten D-type Flip-Flops with 3-STATE outputs for bus organized system applications. The device is designed for low voltage (2.5V or 3.3V) $\rm V_{CC}$ applications with capability of interfacing to a 5V signal environment.

The LCX821 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs and outputs
- \blacksquare 2.3V–3.6V $\rm V_{CC}$ specifications provided
- \blacksquare 7.0 ns t_{PD} max (V_{CC} = 3.3V), 10 μ A I_{CC} max
- Power-down high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- \pm 24 mA output drive ($V_{CC} = 3.0V$)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance:

Human Body Model > 2000V Machine Model > 200V


Note 1: To ensure the high-impedance state during power up or down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description
74LCX821WM	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74LCX821MSA	MSA24	24-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LCX821MTC	MTC24	24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix "X" to the ordering code.

Logic Symbols

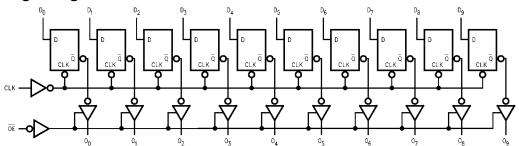
Connection Diagram

Pin Descriptions

Pin Names	Description
D ₀ –D ₉	Data Inputs
CLK	Clock Input
ŌĒ	Output Enable Input
O ₀ -O ₉	3-STATE Latch Outputs

Function Table

l	nputs		Internal	Outputs	
ŌE	CLK	D	Q	O _n	Function
Н	Н	L	NC	Z	Hold
Н	Н	Н	NC	Z	Hold
Н	~	L	L	Z	Load
Н	~	Н	Н	Z	Load
L	~	L	L	L	Data Available
L	~	Н	Н	Н	Data Available
L	Н	L	NC	NC	No Change in Data
L	Н	Н	NC	NC	No Change in Data


H = HIGH Voltage Level L = LOW Voltage Level

- X = Immaterial
- Z = High Impendance = LOW-to-HIGH Transition
- NC = No Change

Functional Description

The LCX821 consists of ten edge-triggered flip-flops with individual D-type inputs with 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The ten flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CLK) transition. With the Output Enable (\overline{OE}) LOW, the contents of the ten flip-flops are available at the outputs. When $\overline{\text{OE}}$ is HIGH, the outputs go to the high impedance state. Operation of the OE input does not affect the state of the flip-flops.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 2) Symbol Parameter Value Conditions Units -0.5 to +7.0 ٧ Supply Voltage V_{CC} ٧ DC Input Voltage -0.5 to +7.0 V_{I} DC Output Voltage Output in 3-STATE Vo -0.5 to +7.0 ٧ Output in HIGH or LOW State (Note 3) -0.5 to $V_{CC} + 0.5$ DC Input Diode Current -50 V_I < GND mΑ I_{IK} DC Output Diode Current -50 V_O < GND mΑ +50 $V_O > V_{CC}$ DC Output Source/Sink Current ±50 mΑ lο I_{CC} DC Supply Current per Supply Pin ±100 mΑ DC Ground Current per Ground Pin ±100 mΑ I_{GND} Storage Temperature -65 to +150 °C T_{STG}

Recommended Operating Conditions (Note 4)

Symbol	Parameter	Min	Max	Units	
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	V
V _I	Input Voltage		0	5.5	V
V _O	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	V
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		±24	
		$V_{CC} = 2.7V - 3.0V$ $V_{CC} = 2.3V - 2.7V$		±12	mA
		$V_{CC} = 2.3V - 2.7V$		±8	
T _A	Free-Air Operating Temperature		-40	85	°C
Δt/ΔV	Input Edge Rate, $V_{IN} = 0.8V - 2.0V$, $V_{CC} = 3.0V$		0	10	ns/V

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

Note 4: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
Зуппон		Conditions	(V)	Min	Max	Ullits
√ _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		V
			2.7 - 3.6	2.0		. •
/ _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	V
			2.7 – 3.6		8.0	Ť v
/он	HIGH Level Output Voltage	$I_{OH} = -100 \mu A$	2.3 – 3.6	V _{CC} - 0.2		
		$I_{OH} = -8 \text{ mA}$	2.3	1.8		Ì
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		V
		$I_{OH} = -18 \text{ mA}$	3.0	2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	2.2		Ì
V _{OL}	LOW Level Output Voltage	$I_{OL} = 100 \mu A$	2.3 – 3.6		0.2	
		$I_{OL} = 8 \text{ mA}$	2.3		0.6	
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	Ì
		I _{OL} = 24 mA	3.0		0.55	İ
ı	Input Leakage Current	$0 \le V_1 \le 5.5V$	2.3 – 3.6		±5.0	μΑ
OZ	3-STATE Output Leakage	$0 \le V_O \le 5.5V$	2.3 – 3.6		±5.0	
		$V_I = V_{IH}$ or V_{IL}	2.3 – 3.6		±3.0	μΑ
OFF	Power-Off Leakage Current	V _I or V _O = 5.5V	0		10	μΑ

DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	V _{CC}	T _A = -40°0	C to +85°C	Units
Cymbol	i arameter	Conditions	(V)	Min	Max	Onito
Icc	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 – 3.6		10	цΑ
		3.6V ≤ V _I , V _O ≤ 5.5V (Note 5)	2.3 – 3.6		±10	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 – 3.6		500	μΑ

Note 5: Outputs disabled or 3-STATE only.

AC Electrical Characteristics

			$T_A = -40$ °C to +85 °C, $R_L = 500\Omega$					
Symbol	Parameter	V _{CC} = 3.	$\rm V_{CC}=3.3V\pm0.3V$		V _{CC} = 2.7V		$\rm V_{CC}=2.5V\pm0.2V$	
	Faranteter	C _L =	50 pF	C _L =	C _L = 50 pF		C _L = 30 pF	
		Min	Max	Min	Max	Min	Max	
f_{MAX}	Maximum Clock Frequency	150						MHz
t _{PHL}	Propagation Delay	1.5	7.0	1.5	7.5	1.5	8.4	ns
t _{PLH}	CLK to O _n	1.5	7.0	1.5	7.5	1.5	8.4	115
t _{PZL}	Output Enable Time	1.5	7.5	1.5	8.0	1.5	9.8	ns
t_{PZH}		1.5	7.5	1.5	8.0	1.5	9.8	115
t _{PLZ}	Output Disable Time	1.5	6.5	1.5	7.0	1.5	7.8	ns
t_{PHZ}		1.5	6.5	1.5	7.0	1.5	7.8	115
toshl	Output to Output Skew		1.0					ns
toslh	(Note 6)		1.0					115
t _S	Setup Time, D _n to CLK	2.5		2.5		4.0		ns
t _H	Hold Time, D _n to CLK	1.5		1.5		2.0		ns
t _W	CLK Pulse Width	3.3		3.3		4.0		ns

Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{CC}	$T_A = 25^{\circ}C$	Units
Oyillboi	T drameter	Conditions	(V)	Typical	Oille
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	0.6	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3V, V_{IL} = 0V$	3.3	-0.8	V
1		$C_L = 30 \text{ pF, } V_{IH} = 2.5 \text{V, } V_{IL} = 0 \text{V}$	2.5	-0.6	

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
Co	Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_{I} = 0V$ or V_{CC} , $f = 10$ MHz	20	pF

AC LOADING and WAVEFORMS Generic for LCX Family

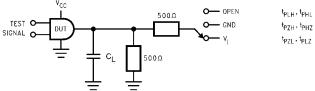
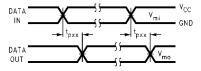
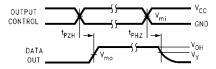
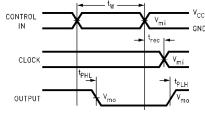
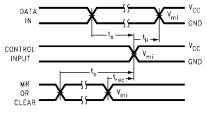
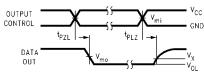




FIGURE 1. AC Test Circuit (C_L includes probe and jig capacitance)


Test	Switch
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V at $V_{CC} = 3.3 \pm 0.3V$ V_{CC} x 2 at $V_{CC} = 2.5 \pm 0.2V$
t_{PZH}, t_{PHZ}	GND


Waveform for Inverting and Non-Inverting Functions


3-STATE Output High Enable and Disable Times for Logic

Propagation Delay. Pulse Width and t_{rec} Waveforms

Setup Time, Hold Time and Recovery Time for Logic

3-STATE Output Low Enable and Disable Times for Logic

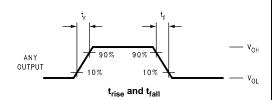
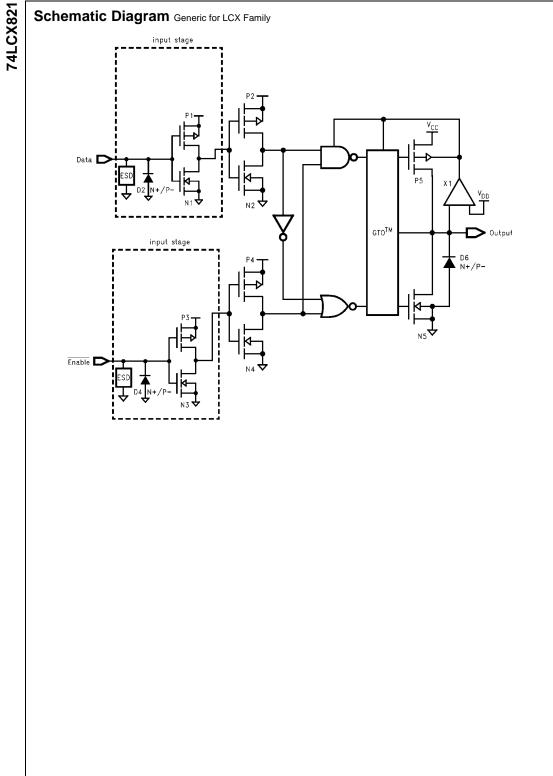
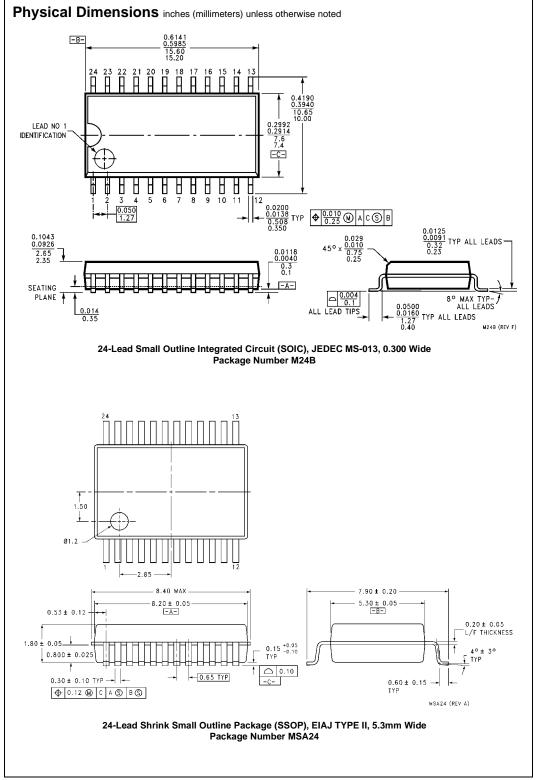
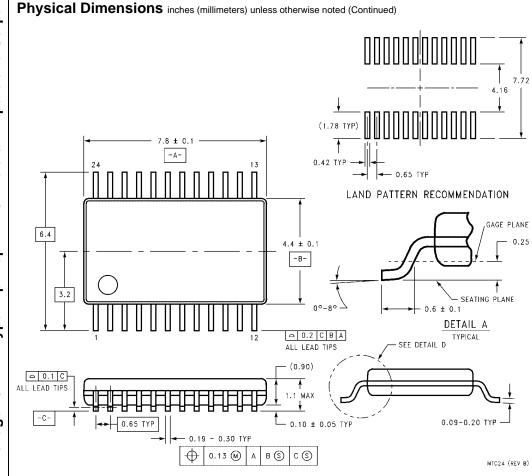





FIGURE 2. Waveforms (Input Characteristics; f = 1 MHz, $t_r = t_f = 3 \text{ns}$)

Symbol	V _{cc}					
Symbol	$3.3V \pm 0.3V$	2.7V	2.5V ± 0.2V			
V _{mi}	1.5V	1.5V	V _{CC} /2			
V_{mo}	1.5V	1.5V	V _{CC} /2			
V _x	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V			
V _y	V _{OH} – 0.3V	V _{OH} – 0.3V	V _{OH} – 0.15V			

24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC24

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: 74LCX821MTCX