

TAS5000Digital Audio PWM Processor

Data Manual

December 2000 Digital Audio

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

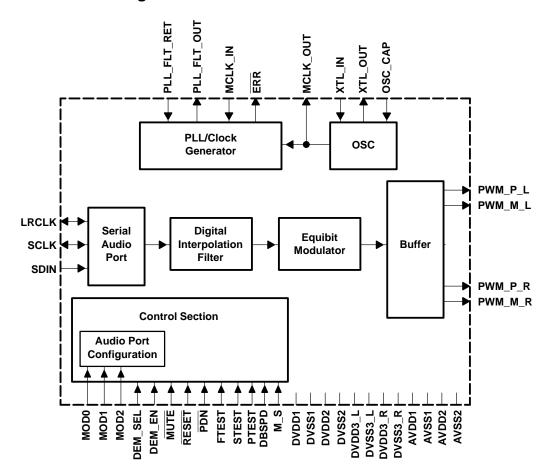
Copyright © 2000, Texas Instruments Incorporated

Contents

Se	ection		Title	Page
1	Introd	duction .		1–1
	1.1	Feature	es	1–1
	1.2	Functio	nal Block Diagram	1–2
	1.3	Sugges	sted System Block Diagrams	1–3
	1.4		al Assignments	1–5
	1.5		g Information	1–5
	1.6	Termina	al Functions	1–6
2	Funct	tional De	escription	2–1
	2.1	Serial A	Audio Port	2–1
	2.2	System	Clocks – Master Mode and Slave Mode	2–1
	2.3	Oscillat	or/Sampling Frequency	2–1
	2.4	Phase I	Locked Loop (PLL)/Clock Generation	2–1
	2.5	Digital I	Interpolation Filter	2–2
	2.6	Digital I	PWM Modulator	2–2
	2.7	Control	, Status, and Operational Modes	2–2
		2.7.1	Power Up	2–2
		2.7.2	Reset	2–3
		2.7.3	Power Down	2–3
		2.7.4	Mute	2–3
		2.7.5	Double Speed	2–4
		2.7.6	De-Emphasis Filter	2–4
		2.7.7	Error Status Reporting (ERR pin)	2–4
	2.8	Serial I	nterface Formats	2–4
		2.8.1	MSB First Right Justified (for 16-, 20-, 24-bits)	2–5
		2.8.2	IIS Compatible Serial Format (for 16-, 20-, 24-bits)	2–5
		2.8.3	MSB Left Justified Serial Interface Format (for 16 bits)	2–6
		2.8.4	DSP Compatible Serial Interface Format (for 16 bits)	2–6
	2.9	PWM C	Outputs	2–6
3	Elect	rical Spe	cifications	3–1
	3.1	Absolut	te Maximum Ratings	3–1
	3.2	Recom	mended Operating Conditions	3–1
	3.3		al Characteristics	3–2
		3.3.1	Static Digital Specifications	3–2
		3.3.2	Digital Interpolation Filter and PWM Modulator	3–2
		3.3.3	TAS5000/TAS5100 System Performance Measured at the Speaker Terminals	3–2
	3 /	Switchi	ng Characteristics	3_2

	3.4.1 Serial Audio Ports Slave Mode	3–2 3–3
	3.4.2 Serial Addio Forts Master Mode	3–3
4	Parameter Measurement Information	4–1
	Application Information	5–1
	••	
	List of Illustrations	
Figi	ure Title	Page
_	System #1: Stereo Configuration Using Two TAS5100 Amplifiers	1–3
	System #2: Stereo Configuration With DSP	1–3
	System #3: 6-Channel Audio Playback	1–4
	Power-Up Timing (RESET preceding PDN)	2–2
	Power-Up Timing (PDN preceding (RESET)	2–3
2–3	Reset Timing	2–3
2–4	Power-Down Timing	2–3
2–5	De-Emphasis Filter Characteristics	2–4
2–6	MSB First Right Justified	2–5
2–7	IIS Compatible Serial Format	2–5
2–8	MSB Left Justified Serial Interface Format	2–6
2–9	DSP Compatible Serial Interface Format	2–6
4–1	Right Justified, IIS, Left Justified Serial Protocol Timing	4–1
	Right, Left, and IIS Serial Mode Timing Requirement	4–1
4–3	Serial Audio Ports Master Mode Timing	4–1
	DSP Serial Port Timing	4–1
	DSP Serial Port Expanded Timing	4–2
	DSP Absolute Timing Requirement	4–2
5–1	Connection Diagram, Slave Mode (typical)	5–1
	List of Tables	
Tab	le Title	Page
2–1	Oscillator, External Clock, and PLL Functions	2–2
	Mute Description	2–4
	De-Emphasis Selection	2–4
2–4	Hardware Selection of Serial Audio Modes	2–5

1 Introduction


The TAS5000 is an innovative, cost-effective, high-performance 24-bit stereo digital modulator based on Equibit™ technology. This product converts input PCM serial digital audio data to an output PWM audio data stream. The TAS5000 is designed to be connected to two TAS5100 mono true digital amplifiers for driving loudspeakers. This all-digital audio system contains only two analog components in the signal chain—an L-C low-pass filter at the speaker terminals. It can provide up to 90 dB SNR at the speaker terminals. It has a wide variety of serial input options including right justified (16, 20, or 24-bit), IIS (16, 20, or 24-bit), left justified (16-bit), or DSP (16-bit) data formats. It is fully compatible with AES standard sampling rates of 44.1 kHz, 48 kHz, 88.2 kHz, and 96 kHz including providing de-emphasis for 44.1 kHz, and 48 kHz sample rates. The TAS5000 and TAS5100 system can be used in a range of products such as microcomponent systems, PC speakers, home theater in a box, convergence products, A/V receivers, or TV sets.

1.1 Features

- True Digital Audio Amplifier
- High Quality Audio
- 16-, 20-, or 24 Bit Input Data
- Sampling Rates: 44.1 kHz, 48 kHz, 88.2 kHz, and 96 kHz
- Supports Master and Slave Modes
- 90 dB SNR (EIAJ) and Dynamic Range at the Speaker Terminals
- 3.3 V Power Supply Operation
- Economical 48-Pin TQFP Package
- Digital De-Emphasis: 44.1 kHz and 48 kHz
- High Power Efficiency
- Clock Oscillator Circuit for Master Modes
- Low Jitter Internal PLL
- Mute
- Good Phase Characteristics
- Excellent PSRR

Equibit is the trademark of Texas Instruments.

1.2 Functional Block Diagram

1.3 Suggested System Block Diagrams

See application notes for more details.

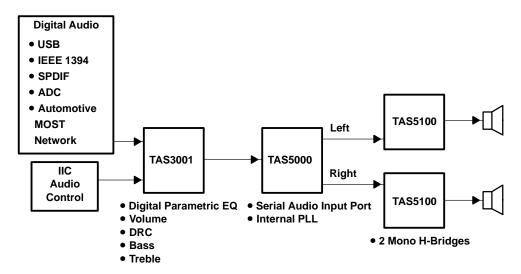


Figure 1–1. System #1: Stereo Configuration Using Two TAS5100 Amplifiers

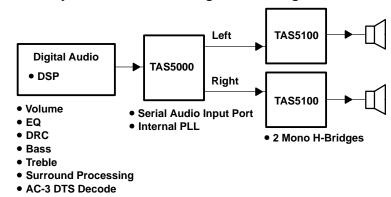


Figure 1-2. System #2: Stereo Configuration With DSP

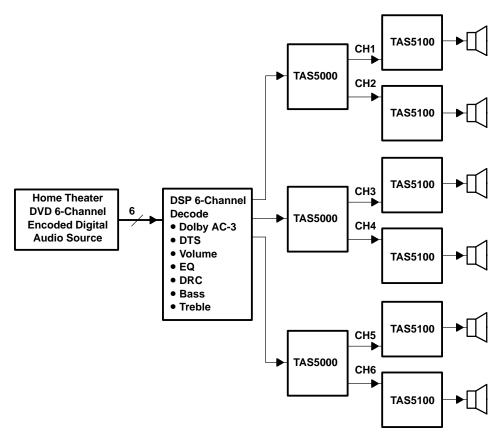


Figure 1-3. System #3: 6-Channel Audio Playback

1.4 Terminal Assignments

NC - No internal connection

1.5 Ordering Information

TA	PACKAGE
0°C to 70°C	TAS5000PFB

1.6 Terminal Functions

TERMII	NAL	1/0	DESCRIPTION			
NAME	NO.	1/0				
AVDD1	48	-	Analog supply for oscillator			
AVDD2	2		Analog supply for PLL			
AVSS1	44	ı	Analog ground for oscillator			
AVSS2	5	ı	Analog ground for PLL			
DBSPD	39	ı	Indicates sample rate is double speed (88.2 kHz or 96 kHz), active high			
DEM_EN	43	ı	De-emphasis enable, active high			
DEM_SEL	42	I	De-emphasis select (0 = 44.1 kHz, 1 = 48 kHz)			
DVDD1	12, 14	ı	Digital voltage supply for logic			
DVDD2	31	ı	Digital voltage supply for PWM reclocking			
DVDD3_L	36	I	Digital voltage supply for PWM output (left)			
DVDD3_R	25	I	Digital voltage supply for PWM output (right)			
DVSS1	13, 15	I	Digital ground for Logic			
DVSS2	30	I	Digital ground for PWM reclocking			
DVSS3_L	37	ı	Digital ground for PWM output (left)			
DVSS3_R	24	ı	Digital ground for PWM output (right)			
ERR	23	0	System error flag, active low			
FTEST	41	I	Tied to DVSS1 for normal operation			
LRCLK	18	I/O	Left/right clock (input when M_S = 0; output when M_S = 1)			
MCLK_IN	1	ı	MCLK input			
MCLK_OUT	16	0	Buffered system clock output if M_S = 1; otherwise set to 0			
MOD0	22	I	Serial interface selection pin, bit 0			
MOD1	21	ı	Serial interface selection pin, bit 1			
MOD2	20	ı	Serial interface selection pin, bit 2 (MSB)			
M_S	10	ı	Master/slave, Master=1, Slave=0			
MUTE	38	ı	Muted signal = 0, Normal mode = 1			
NC	6, 11, 26, 27, 32, 33		No connection			
OSC_CAP	45	ı	Oscillator cap return			
PDN	8	-	Power down, active low			
PTEST	9	-	Tied to DVSS1 for normal operation			
PLL_FLT_OUT	3	0	Output terminal for external PLL filter			
PLL_FLT_RET	4		Return for external PLL filter			
PWM_M_L	34	0	PWM left output (differential –) Positive H-bridge side			
PWM_M_R	28	0	PWM right output (differential –) Positive H-bridge side			
PWM_P_L	35	0	PWM left output (differential +) Positive H-bridge side			
PWM_P_R	29	0	PWM right output (differential +) Positive H-bridge side			
RESET	7	I	Reset (active low)			
SCLK	17	I/O	Shift clock (input when M_S = 0, output when M_S = 1)			
SDIN	19	Ī	Stereo serial audio data input			
STEST	40	ı	Tied to DVSS1 for normal operation			
XTL_IN	47	I	Crystal or clock input (MCLK input)			
XTL_OUT	46	0	Crystal output (not for external usage) NC when XTL_IN is MCLK input			

2 Functional Description

2.1 Serial Audio Port

The serial audio port consists of a shift clock (SCLK pin), a left/right frame synchronization clock (LRCLK pin), and a data input (SDIN pin). The serial audio port supports standard serial PCM formats (Fs = 44.1 kHz, 48 kHz, 88.2 kHz, or 96 kHz) stereo. See section 2.8 for Serial Interface Formats.

2.2 System Clocks – Master Mode and Slave Mode

The TAS5000 allows multiple system clocking schemes. In this document, master mode indicates that the TAS5000 provides system clocks to other parts of the system (M_S=1). Audio system clocks of frequency 256Fs MCLK_OUT, 64 Fs SCLK, and Fs LRCLK are output from this device when it is configured in master mode. Slave mode indicates that a system master other than the TAS5000 provides system clocks (LRCLK, SCLK, and MCLK_IN) to the TAS5000 (M_S = 0). The TAS5000 operates with LRCLK and SCLK synchronized to MCLK. TAS5000 does not require any specific phase relationship between LRCLK and MCLK, but there must be synchronization. If the synchronization between MCLK and LRCLK changes more than 10 MCLK periods during one sample period (LRCLK), the TAS5000 will initiate an internal reset. In the slave mode MCLK_OUT is driven low. Table 2–1 shows all the possible master and slave modes.

2.3 Oscillator/Sampling Frequency

The sampling frequency is determined by the crystal (master mode) or master clock in (slave mode) which should be either 11.2896 MHz (Fs = 44.1 kHz) or 12.288 MHz (Fs = 48 kHz). Twice the normal sampling frequency can be selected by using the DBSPD pin which allows usage of Fs = 88.2 kHz or Fs = 96 kHz. In the double-speed slave mode (DBSPD = $1, M_S = 0$), the external clock input is either 22.5796 MHz (Fs = 88.2 kHz) or 24.576 MHz (Fs = 96 kHz). Table 2–1 explains the proper clock selection.

2.4 Phase Locked Loop (PLL)/Clock Generation

A low jitter PLL is incorporated for internal use. Connections for the PLL external loop filter are provided as PLL_FLT_RET and PLL_FLT_OUT. See Figure 5–1 for a suggested external loop filter. If the PLL loses lock, the error status pin (ERR) will go low. Note that ERR can go low for other conditions as well. See section 2.7.7 Error Status Reporting.

Table 2-1. Oscillator, External Clock, and PLL Functions

DESCRIPTION	M_S	DBSPD	XTL_IN (MHz) [†]	MCLK_IN (MHz) [‡]	SCLK (MHz)¶	LRCLK (kHz)¶	MCLK_OUT (MHz) [#]
Master, normal speed	1	0	11.2896		2.8224	44.1	11.2896
Master, normal speed	1	0	12.288	_	3.072	48	12.288
Master, double speed	1	1	_	22.5792§	5.6448	88.2	22.5792
Master, double speed	1	1	_	24.576§	6.144	96	24.576
Slave, normal speed	0	0	_	11.2896§	2.8224	44.1	Digital GND
Slave, normal speed	0	0	_	12.288§	3.072	48	Digital GND
Slave, double speed	0	1	_	22.5792§	5.6448	88.2	Digital GND
Slave, double speed	0	1	_	24.576§	6.144	96	Digital GND

TEither a crystal oscillator or an external clock of the specified frequency can be connected to XTL_IN.

2.5 Digital Interpolation Filter

The 24-bit high performance linear phase FIR interpolation filter up-samples the input digital data at a rate of 4 times (double speed mode = 88.2 kHz or 96 kHz) or 8 times (normal mode = 44.1 kHz or 48 kHz) the incoming sample rate. This filter provides very low pass-band ripple and optimized time domain transient response for accurate music reproduction.

2.6 Digital PWM Modulator

The interpolation filter output is sent to the modulator. This modulator consists of a high performance 4th order digital noise shaper and a PCM to PWM converter. Following the noise shaper, the PCM signal is fed into a very low distortion PCM to PWM conversion block, buffered and output from the chip. The modulation scheme is based on a 2-state control of the H-bridge output.

2.7 Control, Status, and Operational Modes

The TAS5000 control section consists of several control-input pins. Three serial mode pins (MOD0, MOD1, and MOD2) are provided to select various serial data formats. During normal operating conditions if any of the MOD0, MOD1, or MOD2 pins changes state, a reset sequence is initiated (see paragraph 2.7.2). Also provided are separate power-down (PDN), reset (RESET), and mute (MUTE) pins. The ERR pin indicates that an error has occurred.

2.7.1 **Power Up**

At power up the \overline{ERR} pin is asserted low and the PWM outputs go to the hard mute state in which the P outputs are held low and the M outputs are held high. Following initialization, the TAS5000 will come up in the operational state. There are two cases of power-up timing. The first case is shown in Figure 2–1 with \overline{RESET} preceding \overline{PDN} . The second case is shown in Figure 2–2 with \overline{PDN} preceding \overline{RESET} .

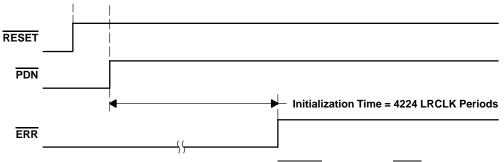


Figure 2–1. Power-Up Timing (RESET preceding PDN)

^{\$\}frac{1}{2}MCLK_IN tied low when input to XTL_IN is provided; XTL_IN tied low when MCLK_IN is provided.

[§] External MCLK connected to MCLK_IN input

[¶] SCLK and LRCLK are outputs when M_S=1, inputs when M_S=0.

[#]MCLK_OUT is driven low when M_S=0.

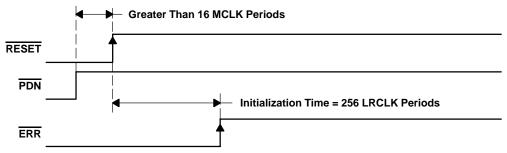


Figure 2–2. Power-Up Timing (PDN preceding RESET)

2.7.2 Reset

The reset signal for the TAS5000 should be applied whenever toggling the M_S, DBSPD signal. This reset is asynchronous. See Figure 2–3 for reset timing. To initiate the reset sequence the RESET pin is asserted low. As long as the pin is held low the chip is in the reset state. During this reset time the PWM outputs are hard-muted (P-outputs held low and M-outputs held high) and the ERR status pin is held low. Assuming PDN is high, the rising edge of the reset pulse begins chip initialization. After 256 LRCLK periods the TAS5000 will begin normal operation.

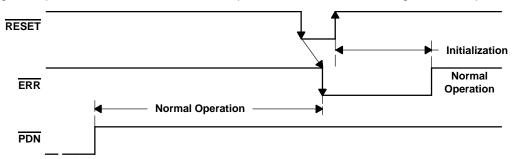


Figure 2-3. Reset Timing

2.7.3 Power Down

When PDN is low (see Figure 2–4. Power-Down Timing) both the PLL and the oscillator are shut down. Note that power down is an asynchronous operation. To place the device in total power-down mode, both RESET and PDN must be held low. As long as these pins are held low, the chip is in the power-down state and the PWM outputs are hard muted with the P outputs held low and the M outputs held high. To place the device back into normal mode, see section 2.7.1 for power-up timing.

NOTE: In order for the dynamic logic to be properly powered down, the clocks should not be stopped before the $\overline{\text{PDN}}$ pin goes low. Otherwise, the device may drain additional supply current.

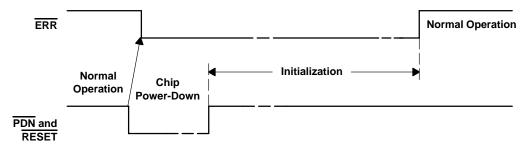


Figure 2-4. Power-Down Timing

2.7.4 Mute

The TAS5000 provides a mute function that is used when the $\overline{\text{MUTE}}$ pin is asserted low. See Table 2–2 for Mute Description. This mute is a quiet mute; that is, the mute is accomplished by outputting a zero value waveform in which both sides of the differential PWM outputs have a 50% duty cycle.

Table 2-2. Mute Description

MUTE	PWM_P PWM_M		DESCRIPTION
0	50% Duty cycle	50% Duty cycle	Mute
1	DATA	DATA	Normal operation

2.7.5 Double Speed

Double-speed mode is used to support sampling rates of 88.2 kHz and 96 kHz. In order to put the TAS5000 in double-speed mode with the device in normal operating conditions, the RESET pin must be held low while switching the DBSPD pin high. After RESET pin is brought high again, a reset sequence takes place (see paragraph 2.7.2). If the change is at power up, a power up sequence is originated (see paragraph 2.7.1).

2.7.6 De-Emphasis Filter

For audio sources that have been pre-emphasized, a precision 50 μs/15 μs de-emphasis filter is provided to support the sampling rates of 44.1 kHz and 48 kHz. Pins DEM_SEL and DEM_EN select the de-emphasis functions. See Figure 2–5 for a graph showing the de-emphasis filtering characteristics. See Table 2–3 for de-emphasis selection.

When the DEM_EN pin or the DEM_SEL pin change state, the PWM outputs go into the quiet mute state. After 128 LRCLK periods for initialization, the PWM outputs are driven to the normal (unmuted) mode.

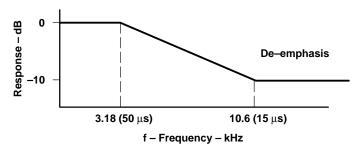


Figure 2-5. De-Emphasis Filter Characteristics

2.7.6.1 De-Emphasis Selection

De-emphasis selection is accomplished by using the DEM_SEL and DEM_EN pins. See Table 2–3 for de-emphasis selection description.

 DEM_SEL
 DEM_EN
 DESCRIPTION

 X
 0
 De-emphasis disabled

 0
 1
 De-emphasis enabled for Fs = 44.1 kHz

 1
 1
 De-emphasis enabled for Fs = 48 kHz

Table 2-3. De-Emphasis Selection

2.7.7 Error Status Reporting (ERR pin)

The following is a list of the error conditions that will cause the $\overline{\mathsf{ERR}}$ status pin to be asserted low:

- No clocks
- Clock phase errors

When any of the above conditions is met, the $\overline{\mathsf{ERR}}$ will go low and the PWM outputs will go to the hard mute state. If the error condition is removed, the TAS5000 is reinitialized and the $\overline{\mathsf{ERR}}$ pin will be asserted high.

2.8 Serial Interface Formats

The TAS5000 is compatible with eight different serial interfaces. Available interface options are IIS, right justified, left justified, and DSP Frame. Table 2–4 indicates how these options are selected using the MOD0, MOD1, and MOD2 pins.

	Table 2-4. Traitware delection of deliar Addio Modes							
MODE	MOD2 PIN	MOD1 PIN	MOD0 PIN	SERIAL INTERFACE SDIN				
0	0	0	0	16 bit, MSB first; right justified				
1	0	0	1	20 bit, MSB first; right justified				
2	0	1	0	24 bit, MSB first; right justified				
3	0	1	1	16 bit IIS				
4	1	0	0	20 bit IIS				
5	1	0	1	24 bit IIS				
6	1	1	0	16 bit MSB first, left justified				
7	1	1	1	16 hit DSP frame				

Table 2-4. Hardware Selection of Serial Audio Modes

The following figures illustrate the relationship between the SCLK, LRCLK and the serial data I/O for the different interface protocols. Note that there are always 64 SCLKs per LRCLK. The nondata bits are padded with binary 0.

2.8.1 MSB First Right Justified (for 16-, 20-, 24-bits)

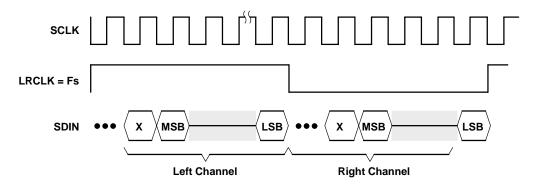


Figure 2-6. MSB First Right Justified

Note the following characteristics of this protocol.

- Left channel is received when LRCLK is high.
- Right channel is received when LRCLK is low.
- The SDIN data is justified to the trailing edge of the LRCLK
- SDIN is sampled at the rising edge of SCLK.
- If LRCLK phase changes by more than 10 MCLKs, then the chip automatically resets.

2.8.2 IIS Compatible Serial Format (for 16-, 20-, 24-bits)

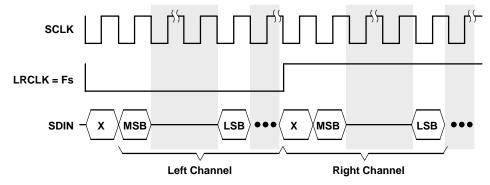


Figure 2-7. IIS Compatible Serial Format

Note the following characteristics of this protocol.

- Left channel is received when LRCLK is low.
- Right channel is received when LRCLK is high.
- SDIN is sampled with the rising edge of SCLK.

2.8.3 MSB Left Justified Serial Interface Format (for 16 bits)

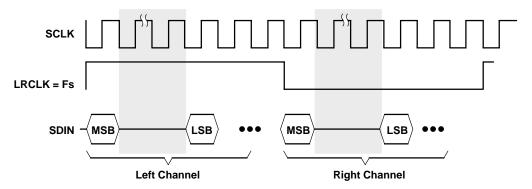


Figure 2-8. MSB Left Justified Serial Interface Format

Note the following characteristics of this protocol.

- Left channel is received when LRCLK is high.
- · Right channel is received when LRCLK is low.
- The SDIN data is justified to the leading edge of the LRCLK.
- SDIN is sampled with the rising edge of SCLK.

2.8.4 DSP Compatible Serial Interface Format (for 16 bits)

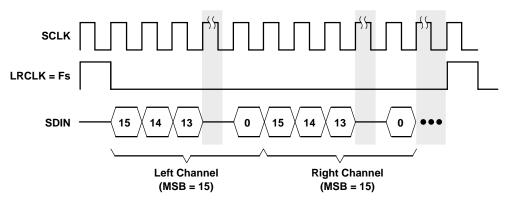


Figure 2-9. DSP Compatible Serial Interface Format

Note the following characteristics of this protocol.

• Serial data is sampled with the falling edge of SCLK.

2.9 PWM Outputs

Designed to be used with TAS5100.

3 Electrical Specifications

3.1 Absolute Maximum Ratings[†]

Analog supply voltage range, AV _{DD1} , AV _{DD2})	-0.3 V to 4.2 V
Digital power supply voltage, DV _{DD1} , DV _{DD2} , DV _{DD3} L, DV _{DD3} R	-0.3 V to 4.2 V
Digital input voltage, V _I (see Note 1)	to DV _{DDX} +0.3 V
Operating free-air temperature, T _A	0°C to 70°C
Storage temperature, T _{sta}	–65°C to 150°C
ESD	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. DVDD1, DVDD2, DVDD3_L, DVDD3_R

3.2 Recommended Operating Conditions

 $(T_A=25^{\circ}C;DV_{DD1}=DV_{DD2}=DV_{DD3_L}=DV_{DD3_R}=3.3~V~\pm10\%,~AV_{DD1}=AV_{DD2}=3.3~V~\pm10\%,~Fs=44.1~kHz)~Voltages~at~analog~inputs~and~outputs~are~with~respect~to~ground$

			MIN	TYP	MAX	UNIT
Supply voltage	Digital	DVDDX [‡]	3	3.3	3.6	V
Supply ourrent	Digital	Operating		18		mA
Supply current	Digital	Power down§		2	20	μΑ
Power dissipation	Digital	Operating		59.4		mW
Power dissipation	Digital	Power down§		6.6	72	μW
Supply voltage	Analog	AVDDX¶	3	3.3	3.6	V
Supply current	Analog	Operating		8		mA
- Supply current	Analog	Power down§		10	100	μΑ
Power dissipation	Analog	Operating		26.4		mW
Power dissipation	Analog	Power down§		33	360	μW

[‡]DVDD1, DVDD2, DVDD3_L, DVDD3_R

[§] If the clocks are turned off

[¶] AVDD1, AVDD2

3.3 Electrical Characteristics

3.3.1 Static Digital Specifications

 $(T_{A} = 25^{\circ}C; \, DV_{DD1} = DV_{DD2} = DV_{DD3_L} = DV_{DD3_R} = 3.3 \,\, V \, \pm 10\%, \, AV_{DD1} = AV_{DD2} = 3.3 \,\, V \, \pm 10\%)$

		MIN	MAX	UNIT
VIH	High-level input voltage	2	DVDD1	V
V _{IL}	Low-level input voltage	0	0.8	V
Vон	High-level output voltage, $(I_O = -1 \text{ mA})$	2.4		V
VOL	Low-level output voltage, (I _O = 4 mA)		0.4	V
	Input leakage current	-10	10	μΑ

3.3.2 Digital Interpolation Filter and PWM Modulator

 $(T_A=25^{\circ}C;DV_{DD1}=DV_{DD2}=DV_{DD3_L}=DV_{DD3_R}=3.3~V~\pm10\%,~AV_{DD1}=AV_{DD2}=3.3~V~\pm10\%,~Fs=44.1~kHz)$ All the terms characterized by frequency will scale with the normal mode sampling frequency, Fs.

	MIN	TYP	MAX	UNIT
Pass band	0		20	kHz
Pass band ripple		±0.012		dB
Stop band		24.1		kHz
Stop band attenuation (24.1 kHz to 152.3 kHz)	50			dB
Group delay		700		μS
PWM modulation index (gain)		0.93		

3.3.3 TAS5000/TAS5100 System Performance Measured at the Speaker Terminals

Reference section 4.4 in the TAS5100 Data Manual

3.4 Switching Characteristics

3.4.1 Serial Audio Ports Slave Mode

 $(T_A = 25^{\circ}C, DV_{DD1} = DV_{DD2} = DV_{DD3} L = DV_{DD3} R = AV_{DD1} = AV_{DD2} = 3.3 V \pm 10\%)$

	PARAMETER	MIN	TYP	MAX	UNIT
f(SCLK)	SCLK frequency			6.144	MHz
t _{SU} (SDIN)	SDIN setup time before SCLK rising edge	20			ns
t _h (SDIN)	SDIN hold time from SCLK rising edge	10			ns
F(LRCLK)	LRCLK frequency	44.1	48	96	kHz
	MCLK duty cycle		50%		
	SCLK duty cycle		50%		
	LRCLK duty cycle		50%		
t _{SU} (LRCLK)	LRCLK edge setup before SCLK rising edge	20			ns

3.4.2 Serial Audio Ports Master Mode

Load conditions: 50pF

 $\underline{(T_{A} = 25^{\circ}C,\, DV_{DD1} = DV_{DD2} = DV_{DD3}_L = DV_{DD3}_R = AV_{DD1} = AV_{DD2} = 3.3 \ V \pm 10\%)}$

	PARAMETER	MIN	TYP	MAX	UNIT
t(MSD)	MCLK to SCLK	0		5	ns
t(MLRD)	MLCK to LRCLK	0		5	ns
	SCLK, LRCLK duty cycle	50%			

3.4.3 DSP Serial Interface Mode

 $(T_A = 25^{\circ}C, DV_{DD1} = DV_{DD2} = DV_{DD3_L} = DV_{DD3_R} = AV_{DD1} = AV_{DD2} = 3.3 \text{ V} \pm 10\%)$

	PARAMETER	MIN	TYP	MAX	UNIT
f(SCLK)	SCLK frequency			6.144	MHz
t _W (FSHIGH)	Pulse duration, sync		1/(64×f _S)		ns
t _{su} (SDIN), t _{su} (LRCLK)	SDIN and LRCLK setup time before SCLK falling edge	20			ns
t _h (SDIN), t _h (LRCLK)	SDIN and LRCLK hold time from SCLK falling edge	10		ns	
	SCLK duty cycle		50%		

4 Parameter Measurement Information

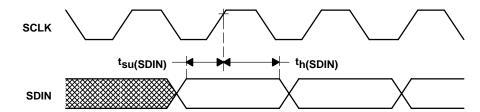
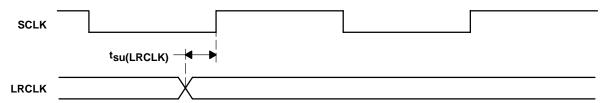



Figure 4-1. Right Justified, IIS, Left Justified Serial Protocol Timing

NOTE: Serial data is sampled with the rising edge of SCLK (setup time = 20 ns and hold time = 10 ns)

Figure 4-2. Right, Left, and IIS Serial Mode Timing Requirement

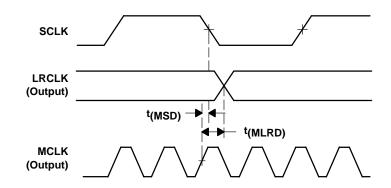
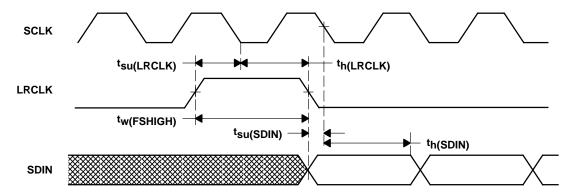
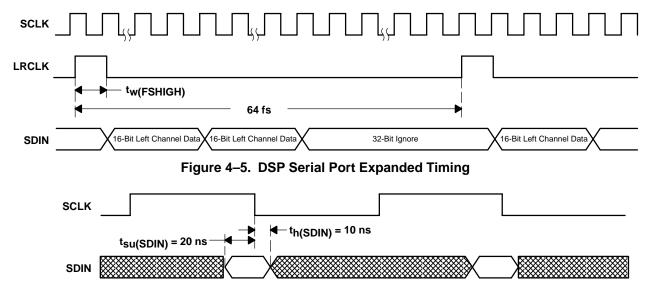
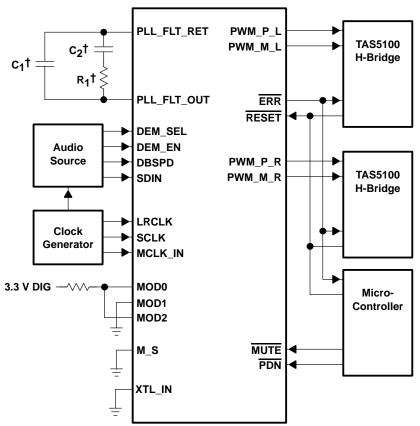


Figure 4-3. Serial Audio Ports Master Mode Timing


Figure 4-4. DSP Serial Port Timing

NOTE: Serial data is sampled with the falling edge of SCLK (setup time = 20 ns and hold time = 10 ns)

Figure 4–6. DSP Absolute Timing Requirement

5 Application Information

[†] See application note for values

Figure 5-1. Connection Diagram, Slave Mode (typical)

PACKAGE OPTION ADDENDUM

4-Aug-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins F	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TAS5000PFB	NRND	TQFP	PFB	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TAS5000PFBG4	NRND	TQFP	PFB	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.