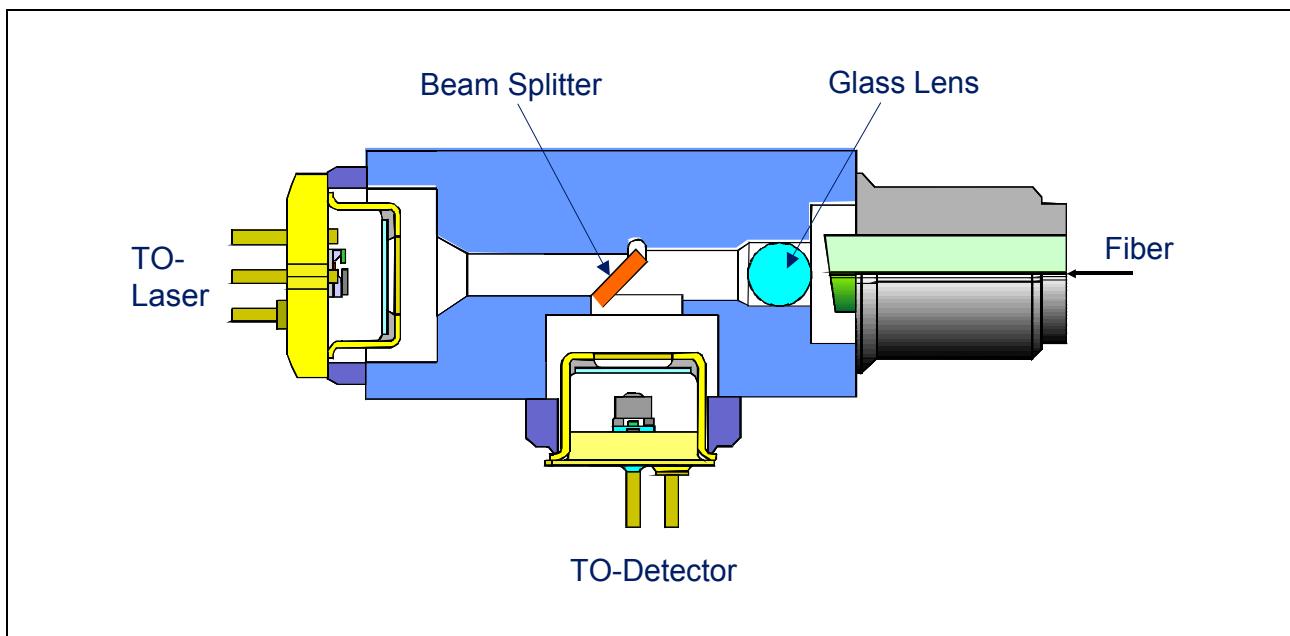


Ternary PIN Photodiode**SRD00224x**
SRD00225x**Features**

- InGaAs/InP PIN photodiode
- Designed for applications in fiber-optics communication systems
- Sensitive receiver for 2nd and 3rd optical window (1300 nm and 1550 nm)
- Suitable for bit rates up to 2.5 Gbit/s
- For singlemode and multimode applications SONET OC-1...OC-48, SDH STM-1...STM-16
- Low junction and low package capacitance
- Fast switching times
- Low dark current
- Excellent noise immunity
- High reverse current stability from planar structure
- Hermetically sealed TO46 package

Pin Configuration**Pin Configuration****Figure 1 Receiver**

Description


The Infineon optical receiver module has been designed for use in optical networks and is suitable for bit rates up to max. 2.5 Gbit/s if used without any TIA.

The optical receiver module uses a high-speed PIN photodetector optional coupled with a hybrid low noise transimpedance amplifier (PIN-TIA). The optical receiver photodiode can be used for 1310 nm or 1550 nm optical communications.

The PIN photodiode is made of InGaAs/InP and has an active diameter of 75 μm . The function of the PIN and PIN-TIA optical receiver module is to detect input optical power, to transduce the incident radiation into current (PIN) and then to convert the current into a voltage (PIN-TIA).

The low input noise current density of the used transimpedance amplifiers in PIN-TIA's provides the optical receiver module, when used with appropriate filtering, with ample sensitivity for realizing minimum input power requirements. Designers of optical receivers can use the module in any application that benefits from integration of the photodiode and TIA into a TO coaxial package. Typical for such applications are receivers for digital crossconnects, digital loop carriers, add/drop-multiplexers and optical network units.

Last but not least the fast switching times, low dark currents and the packaging in a compact and hermetically sealed TO46 make the optical receivers usable in many other fiber optic receiver applications. One application is the use in a Compact realization of a transceiver in one module like the so called BIDI® ([Figure 2](#)).

Figure 2 Compact Realization of the Transceiver in One Module

Technical Data

All data refer to the full operating temperature range unless otherwise specified.

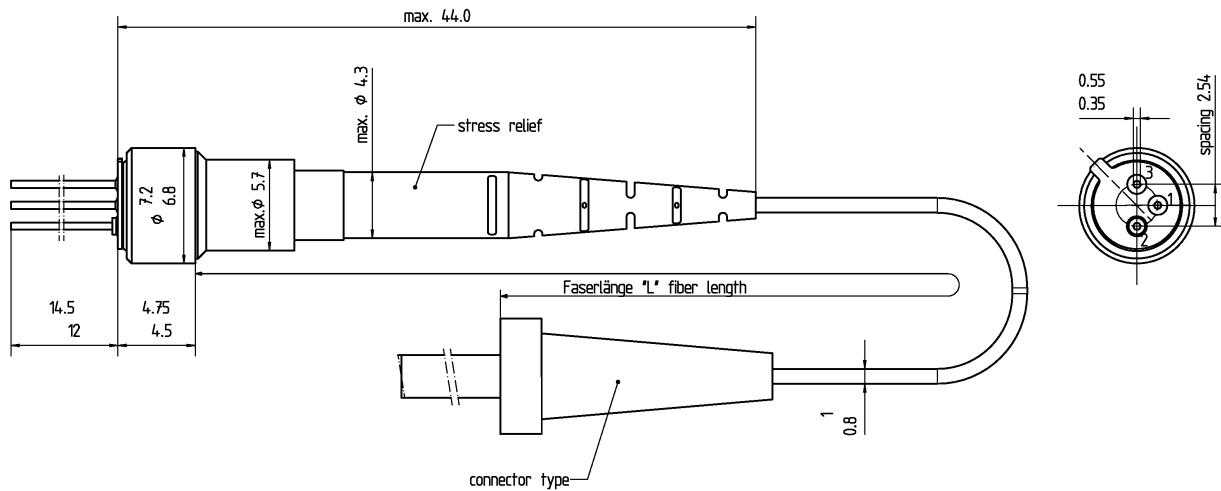
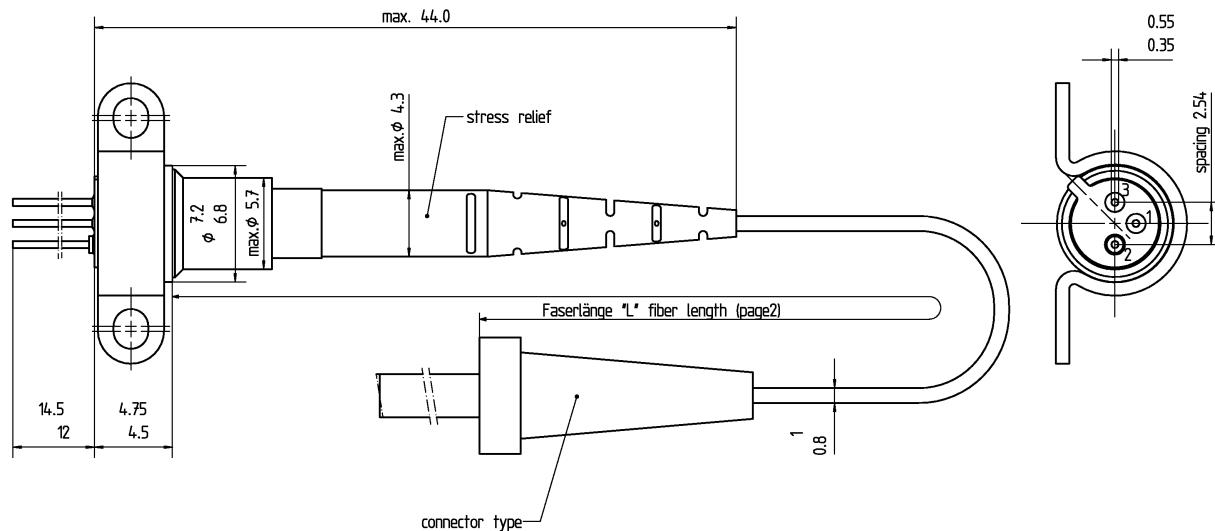
Absolute Maximum Ratings

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Module				
Operating temperature range at case	T_C	-40	85	°C
Storage temperature range	T_{stg}	-40	85	°C
Soldering temperature ($t_{max} = 10$ s, 2 mm distance from bottom edge of case)	T_S		260	°C
Receiver Diode				
Reverse Voltage	V_R		20	V
Forward Current	I_F		10	mA
Optical power into the optical port	P_{port}		1	mW

Receiver Diode Electro-Optical Characteristics

Parameter	Symbol	Limit Values			Unit
		min.	typ.	max.	
Spectral sensitivity $V_R = -2$ V, $P_{opt} = 1$ μ W	S_{1310nm} S_{1550nm}	0.8	0.9		A/W
Change in Spectral Sensitivity in Operating Temperature Range	ΔS			0.2	%/K
Dark current $V_R = 5$ V, $P_{opt} = 0$ mW	$I_{D 25^\circ C}$ $I_{D 85^\circ C}$			5 50	nA
Total Capacitance $V_R = 3$ V, $f = 1$ MHz, $V_{RF} = 30$ mV	C		0.8	1	pF
Rise and fall time (10%...90%) $V_R = 5$ V, $P_{opt} = (0.1...1)$ mW, 50Ω	t_r, t_f		200	300	ps
Cut Off Frequency $\lambda = 1310$ nm, $V_R = 5$ V, 50Ω	f_{3dB}	1			GHz
Return Loss $\lambda = 1310$ nm	RL			-27	dB

End of Life Time Characteristics



Parameter	Symbol	Limit Values		Unit
		min.	max.	
Detector Dark Current, $V_R = 2$ V, $T = T_{max}$	I_R		400	nA

Fiber Data

The mechanical fiber characteristics are described in the following table.

Fiber Characteristics

Parameter	Limit Values			Unit
	min.	typ.	max.	
Mode Field Diameter		50		µm
Cladding Diameter	123	125	127	
Mode Field/Cladding Concentricity Error			1	
Cladding Non-circularity			2	%
Mode Field Non-circularity			6	
Cut off Wavelength	1270			nm
Jacket Diameter	0.8		1	mm
Bending Radius	30			
Tensile Strength Fiber Case	5			N
Length	0.8		1.2	m

Package Outlines
Package Outlines
SRD00224x

SRD00225x

Dimensions in mm

Figure 3

Flange Options

Type	Flange
SRD00224x	without
SRD00225x	with

Connector Options

Model	Type
SRD00224H	MM FC/PC
SRD00225H	
SRD00224G	SM FC/PC
SRD00225G	
SRD00224O	MM SC/PC 0°
SRD00225O	
SRD00224N	SM SC/PC 0°
SRD00225N	
SRD00224Q	MM SC 8° APC
SRD00225Q	
SRD00224P	SM SC 8° APC
SRD00225P	
SRD00224W	MM without connector
SRD00225W	
SRD00224Z	SM without connector
SRD00225Z	
Other connectors on request	

SRD00224x

SRD00225x

Revision History: **2001-12-01**

DS0

Previous Version:

Page	Subjects (major changes since last revision)
	Document's layout has been changed: 2002-Aug.

For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at <http://www.infineon.com>.

Edition 2001-12-01

**Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81541 München, Germany**

**© Infineon Technologies AG 2002.
All Rights Reserved.**

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life-support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.