262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

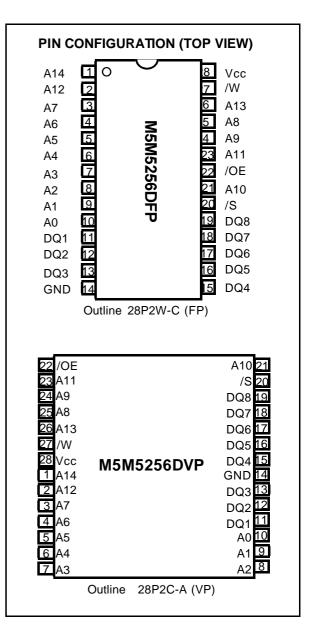
DESCRIPTION

The M5M5256DFP,VP is 262,144-bit CMOS static RAMs organized as 32,768-words by 8-bits which is fabricated using high-performance 3 polysilicon CMOS technology. The use of resistive load NMOS cells and CMOS periphery results in a high density and low power static RAM. Stand-by current is small enough for battery back-up application. It is ideal for the memory systems which require simple interface.

Especially the M5M5256DVP are packaged in a 28-pin thin small outline package.

FEATURE

	Access	Oprating	Power supply current				
Туре	time (max)	Temperature	Active (max)	Stand-by (max)			
M5M5256DFP,VP	70ns	0~70°C		20µA (Vcc=5.5V)			
-70G		0 10 0		12µA (Vcc=3.6V)			
M5M5256DFP,VP			45mA (Vcc=5.5V)	40µA (Vcc=5.5V)			
-70GI	70110	-40~85°C	25mA (Vcc=3.6V)	24µA (Vcc=3.6V)			
M5M5256DFP,VP -70XG	70ns	0~70°C		5μΑ (/cc=5.5V) 2.4μΑ (/cc=3.6V) 0.05μΑ (/cc=3.0V Typical)			


- •Single 3.0~5.5V power supply
- •No clocks, no refresh
- •Data-Hold on +2.0V power supply
- •Directly TTL compatible : all inputs and outputs
- •Three-state outputs: OR-tie capability
- •/OE prevents data contention in the I/O bus
- •Common Data I/O
- •Battery backup capability
- •Low stand-by current 0.05µA(typ.)

PACKAGE

M5M5256DFP : 28 pin 450 mil SOP M5M5256DVP : 28pin 8 X 13.4 mm² TSOP

APPLICATION

Small capacity memory units

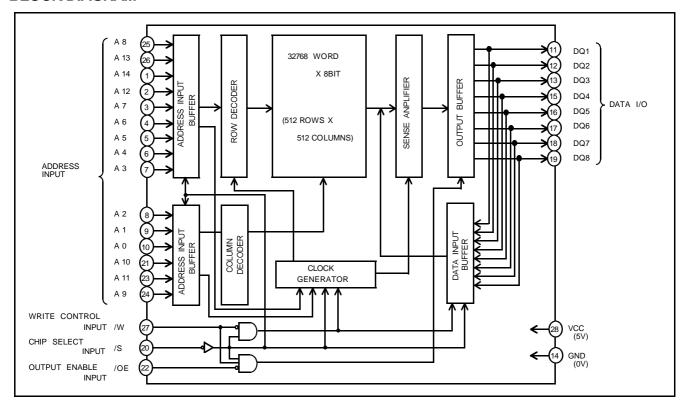
262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

FUNCTION

The operation mode of the M5M5256DFP,VP is determined by a combination of the device control inputs /S, /W and /OE. Each mode is summarized in the function table.

A write cycle is executed whenever the low level /W overlaps with the low level /S. The address must be set up before the write cycle and must be stable during the entire cycle. The data is latched into a cell on the trailing edge of /W, /S, whichever occurs first, requiring the set-up and hold time relative to these edge to be maintained. The output enable /OE directly controls the output stage. Setting the /OE at a high level, the output stage is in a high-impedance state, and the data bus contention problem in the write cycle is eliminated.

A read cycle is executed by setting /W at a high level and /OE at a low level while /S are in an active state.


When setting /S at a high level, the chip is in a non-selectable mode in which both reading and writing are disabled. In this mode, the output stage is in a high-impedance state, allowing OR-tie with other chips and memory expansion by /S. The power supply current is reduced as low as the stand-by current which is specified as Icc3 or Icc4, and the memory data can be held at +2V power supply, enabling battery back-up operation during power failure or power-down operation in the non-selected mode.

FUNCTION TABLE

/S	/W	/OE	Mode	DQ	Icc
Н	Х	Х	Non selection	High-impedance	Stand-by
L	L	Х	Write	Dın	Activ e
L	Н	L	Read	Dоит	Activ e
L	Н	Н		High-impedance	Activ e

Note • "H" and "L" in this table mean VIH and VIL, respectively.

BLOCK DIAGRAM

^{• &}quot;X" in this table should be "H" or "L".

262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3*~7.0	V
Vı	Input voltage	With respect to GND	-0.3*~Vcc+0.3 (Max 7.0)	V
Vo	Output voltage		0~Vcc	V
Pd	Power dissipation	Ta=25°C	700	mW
Topr	Operating temperature	-G,-XG	0~70	°C
I opr	Operating temperature	-GI	-40~85	10
T _{stg}	Storage temperature		-65~150	°C

^{* -3.0}V in case of AC (Pulse width < 30ns)

DC ELECTRICAL CHARACTERISTICS

0	Description	Test conditions			Limits1 (Vcc=3.3±0.3V)			0.1	1.1 14		
Symbol	Parameter	i est condi			Min	c=3.3± Typ	Max	Min	сс=5.0: Тур	±0.5V) Max	Unit
VIH	High-level input voltage				2.0		Vcc +0.3	2.2		Vcc +0.3	V
VIL	Low-level input voltage				-0.3*		0.6	-0.3*		0.8	V
V _{OH1}	High-level output voltage 1	`	5.0±0.5\ 3.3±0.3\	,	2.4			2.4			V
V _{OH2}	High-level output voltage 2	`	5.0±0.5\ 3.3±0.3\	,	Vcc -0.5			Vcc -0.5			V
Vol	Low-level output voltage	IoL=2mA (Vcc=5.0±0.5V) IoL=1mA (Vcc=3.3±0.3V)				0.4			0.4	V	
lı .	Input current	V ₁ =0~Vcc				±1			±1	μΑ	
lo	Output current in off-state	/S=Vih or or /OE=Vih, Vi/O=0~Vcc					±1			±1	μΑ
lcc1	Active supply current (AC, MOS level)	Other inputs<0.2V		70ns	ns 1	13	25		25	40	mA
	(AO, IVIOO IEV EI)			1MHz		1.5	3		2	4	,
lcc2	Active supply current	/S=V _{IL} , Output-oper	1	70ns		14	25		25	45	mA
1002	(AC, TTL level)	other inputs=VIH or V	r inputs=Vін or Vіь 1MHz			1.5	3		4	8	,
			~25°C	-G,-GI			1.2			2	
			~23 C	-XG		0.05	0.3		0.1	0.4	
		/S>Vcc-0.2V,	~40°C	-G,-GI			3.6			6	
lcc3	Stand-by current	other inputs =0~Vcc	~40°C	-XG			0.8			1.2	μΑ
		5	7000	-G,-GI			12			20	
			~70°C	-XG			2.4			5	
			~85°C	-GI			24			40	
Icc4	Stand-by current	/S=V _{IH} ,other inputs=0~Vcc					0.33			3	mA

 $^{^{\}star}\,$ -3.0V in case of AC (Pulse width \leq 30ns)

CAPACITANCE

			Limits		3	Unit
Symbol	Parameter	Test conditions	Min	Typ	Max	Offic
Cı	Input capacitance	V ₁ =GND, V ₁ =25mVrms, f=1MHz			6	pF
Со	Output capacitance	Vo=GND, Vo=25mVrms, f=1MHz			8	рF

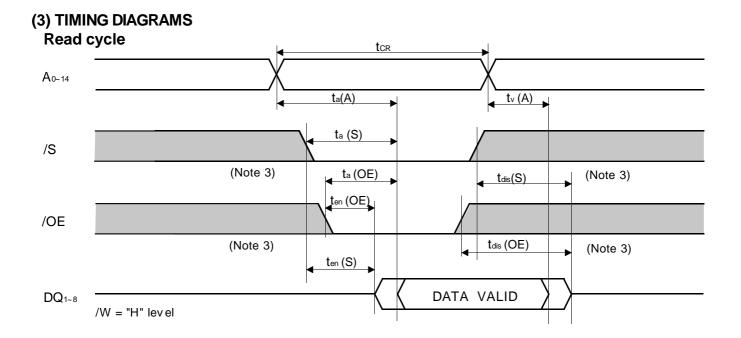
Note 0: Direction for current flowing into an IC is positive (no mark).

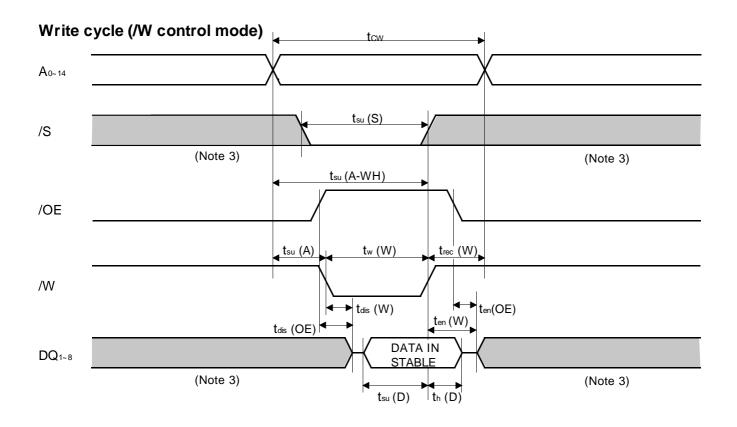
^{2:} C₁, C₀ are periodically sampled and are not 100% tested.

^{1:} Typical value is one at Ta = 25°C.

262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

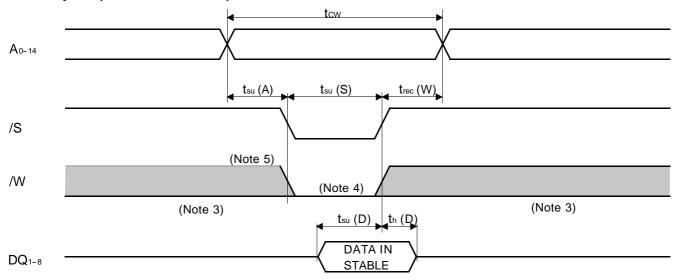
AC ELECTRICAL CHARACTERISTICS


(1) READ CYCLE


	_	Limits1 Vcc=3.3±0.3V		Limits2 Vcc=5.0±0.5V			
Symbol	Parameter	Min	Max	Min	Max	Unit	
tcr	Dood sucle time		IVIAX		IVIAX	20	
	Read cycle time	70		70		ns	
ta(A)	Address access time		70		70	ns	
ta(S)	Chip select access time		70		70	ns	
ta(OE)	Output enable access time		35		35	ns	
tdis(S)	Output disable time after /S high		25		25	ns	
tdis(OE)	Output disable time after /OE high		25		25	ns	
ten(S)	Output enable time after /S low	5		5		ns	
ten(OE)	Output enable time after /OE low	5		5		ns	
t∨(A)	Data valid time after address	10		10		ns	

(2) WRITE CYCLE

Symbol	Parameter	Limits1 Vcc=3.3±0.3V		Limits2 Vcc=5.0±0.5V		Unit
Syllibol	i arameter	Min	Max	Min	Max	Offic
tcw	Write cycle time	70		70		ns
t _w (W)	Write pulse width	55		50		ns
tsu(A)	Address setup time	0		0		ns
tsu(A-WH)	Address setup time with respect to /W high	65		65		ns
tsu(S)	Chip select setup time	65		65		ns
tsu(D)	Data setup time	30		30		ns
th(D)	Data hold time	0		0		ns
trec(W)	Write recovery time	0		0		ns
tdis(W)	Output disable time from /W low		25		25	ns
tdis(OE)	Output disable time from /OE high		25		25	ns
ten(W)	Output enable time from /W high	5		5		ns
ten(OE)	Output enable time from /OE low	5		5		ns


262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

Write cycle (/S control mode)

(4) MEASUREMENT CONDITIONS

Limits1:Vcc=3.3±0.3V

Input pulse level VIH=2.4V, VIL=0.4V

Input rise and fall time 5ns

CL=5pF (for ten,tdis)

Transition is measured ±500mV from steady

state voltage. (for ten,tdis)

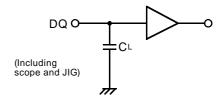


Fig.1 Output load

Vcc

1.8k Ω

Limits2:Vcc=5.0±0.5V

Input pulse level $V_{IH}=2.4V, V_{IL}=0.6V$

Input rise and fall time 5ns

Reference level VoH=VoL=1.5V

Output load Fig.2, CL=100pF

CL=5pF (for ten,tdis)

Transition is measured ±500mV from steady state voltage. (for ten,tdis)

DQ O 990Ω (Including scope and JIG)

Fig.2 Output load

Note 3: Hatching indicates the state is "don't care".

- 4: Writing is executed in overlap of /S and /W low.
- 5: If /W goes low simultaneously with or prior to /S, the outputs remain in the high impedance state.
- 6 : Don't apply inverted phase signal externally when DQ pin is output mode.
- 7: ten, tdis are periodically sampled and are not 100% tested.

262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

POWER DOWN CHARACTERISTICS

(1) ELECTRICAL CHARACTERISTICS

0	5 .	- .	1141		•	Limits	•	
Symbol	Parameter	I est co	nditions		Min	Тур	Max	Unit
VCC (PD)	Power down supply voltage							V
	Ohim a ala at immed 10	2.2V ≤ VCC(PD)			2.2			V
VI (/S)	Chip select input /S	hip select input /S 2V< Vcc(PD) < 2.2V		VCC(PD)		V		
		Vcc = 3V,/S > Vcc-0.2V, Other inputs=0~Vcc	~25°C	-G,-GI			1	
				-XG		0.05	0.2	Ī
			~40°C	-G,-GI			3	
ICC (PD)	Power down supply current			-XG			0.6	μΑ
			7000	-G,-GI			10	
			~70°C	-XG			2	
			~85°C	-GI			20	

(2) TIMING REQUIREMENTS

0				11.26		
Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
tsu (PD)	Power down set up time		0			ns
trec (PD)	Power down recovery time		tCR			ns

(3) POWER DOWN CHARACTERISTICS

/S control mode

Vcc

3.0V

3.0V

4.2V

/S ≥ Vcc-0.2V

262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

Renesas Technology Corp.

Nippon Bldg.,6-2,Otemachi 2-chome,Chiyoda-ku,Tokyo,100-0004 Japan

Keep safety first in your circuit designs!

Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials

 These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.

 Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation assumes as technology Corporation product distributor for the latest product information before purchasing a product listed herein.

 The information described here may contain technical inaccuracies or typographical errors.

 Please also pay attention to information published by Renesas Technology Corporation assumes on responsibility for any damage, liability for any damage, liability or other loss resulting from the information on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

- the information contained herein.

 Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

 The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.

 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the papersum of t
- other than the approved destination.
- Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

