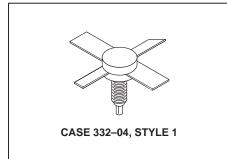
The RF Line


Microwave Pulse Power Transistor

Designed for Class B and C common base amplifier applications in short pulse TACAN, IFF, and DME transmitters.

- Guaranteed Performance @ 1090 MHz, 50 Vdc Output Power = 90 Watts Peak Minimum Gain = 8.4 dB
- 100% Tested for Load Mismatch at All Phase Angles with 10:1 VSWR
- **Industry Standard Package**
- Nitride Passivated
- Gold Metallized for Long Life and Resistance to Metal Migration
- Internal Input Matching for Broadband Operation
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MRF1090MA

90 W PEAK, 960-1215 MHz **MICROWAVE POWER TRANSISTOR NPN SILICON**

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Base Voltage	V _{CBO}	70	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	Vdc
Collector-Current — Peak (1)	I _C	6.0	Adc
Total Device Dissipation @ T _C = 25°C (1) (2) Derate above 25°C	P _D	290 1.66	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (3)	$R_{ heta JC}$	0.6	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

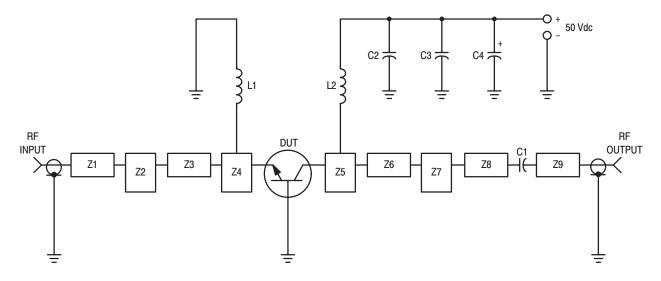
Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage $(I_C = 25 \text{ mAdc}, V_{BE} = 0)$	V _{(BR)CES}	70	_	_	Vdc
Collector–Base Breakdown Voltage (I _C = 25 mAdc, I _E = 0)	V _{(BR)CBO}	70	_	_	Vdc
Emitter–Base Breakdown Voltage ($I_E = 5.0 \text{ mAdc}, I_C = 0$)	V _{(BR)EBO}	4.0	_	_	Vdc
Collector Cutoff Current $(V_{CB} = 50 \text{ Vdc}, I_E = 0)$	I _{CBO}	_	_	5.0	mAdc

ON CHARACTERISTICS

DC Current Gain (4)	h _{FE}	10	30	_	_
$(I_C = 2.5 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc})$					

NOTES:

(continued)


- 1. Pulse Width = $10 \mu s$, Duty Cycle = 1%.
- 2. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.
- 3. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.
- 4. 80 μs Pulse on Tektronix 576 or equivalent.

REV 9

ELECTRICAL CHARACTERISTICS — **continued** $(T_C = 25^{\circ}C)$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
DYNAMIC CHARACTERISTICS						
Output Capacitance (V _{CB} = 50 Vdc, I _E = 0, f = 1.0 MHz)	C _{ob}	_	12	16	pF	
FUNCTIONAL TESTS (Pulse Width = 10 μs, Duty Cycle = 1.0%)	•	•	•	•	•	
Common–Base Amplifier Power Gain (V _{CC} = 50 Vdc, P _{out} = 90 W pk, f = 1090 MHz)	G _{PB}	8.4	10.8	_	dB	
Collector Efficiency (V _{CC} = 50 Vdc, P _{out} = 90 W pk, f = 1090 MHz)	η	35	40	_	%	
Load Mismatch (V _{CC} = 50 Vdc, P _{out} = 90 W pk, f = 1090 MHz, VSWR = 10:1 All Phase Angles)	Ψ	No Degradation in Power Output				

C1, C2 — 220 pF Chip Capacitor, 100-mil ATC

 $\begin{array}{l} \text{C3} - 0.1 \; \mu\text{F} \\ \text{C4} - 47 \; \mu\text{F}/75 \; \text{V} \end{array}$

L1, L2 — 3 Turns #18 AWG, 1/8" ID

Z1-Z9 — Distributed Microstrip Elements,

See Photomaster

Board Material — 0.031" Thick Glass Teflon, ε_r = 2.5

Figure 1. 1090 MHz Test Circuit

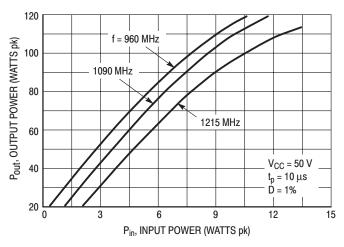


Figure 2. Output Power versus Input Power

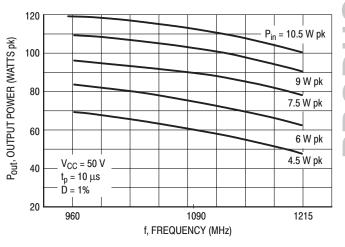
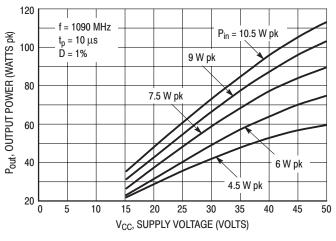



Figure 3. Output Power versus Frequency

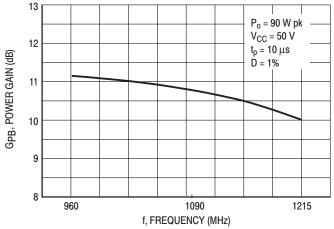
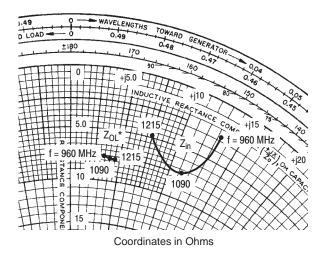



Figure 4. Output Power versus Supply Voltage

Figure 5. Power Gain versus Frequency

ARCHIVE INFORMATION

 $P_{out} = 90 \text{ W pk}$ $V_{CC} = 50 \text{ V}$ $t_p = 10 \text{ \mu s}$ D = 1%

f	Z _{in}	Z _{OL} *
MHz	Ohms	Ohms
960	2.8 + j13.2	7.6 + j3.5
1090	7.4 + j11.4	7.6 + j4.0
1215	4.7 + j7.5	7.7 + j4.5

Z_{OL}* = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage, and frequency.

Figure 6. Series Equivalent Input/Output Impedance

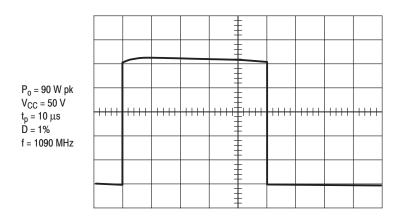
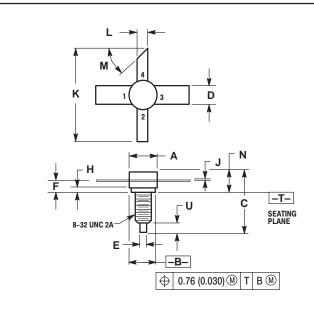



Figure 7. Typical Pulse Performance

MOTOROLA RF DEVICE DATA MRF1090MA

PACKAGE DIMENSIONS

- 1. DIMENSION K APPLIES TWO PLACES. 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1973.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	6.86	7.62	0.270	0.300	
В	6.10	6.60	0.240	0.260	
С	16.26	16.76	0.640	0.660	
D	4.95	5.21	0.195	0.205	
Е	1.40	1.65	0.055	0.065	
F	2.67	4.32	0.105	0.170	
Н	1.40	1.65	0.055	0.065	
J	0.08	0.18	0.003	0.007	
K	15.24		0.600		
L	2.41	2.67	0.095	0.105	
М	45 °NOM		45 °	NOM	
N	4.97	6.22	0.180	0.245	
U	2.92	3.68	0.115	0.145	

STYLE 1:

PIN 1. BASE

2. EMITTER 3. BASE

COLLECTOR

CASE 332-04 ISSUE D

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu. Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334

Technical Information Center: 1-800-521-6274

HOME PAGE: http://www.motorola.com/semiconductors/

MRF1090MA/D