

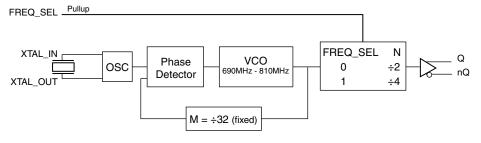
FemtoClock™ Crystal-to-LVDS 400MHz Frequency Synthesizer

PRELIMINARY DATASHEET

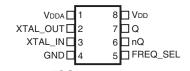
General Description

The ICS844801I-24 is a 400MHz Frequency Synthesizer. The ICS844801I-24 uses an 18pF parallel resonant crystal over the range of 21.5625MHz - 25.3125MHz. The ICS844801I-24 has excellent <1ps phase jitter performance, over the

12kHz - 20MHz integration range. The ICS844801I-24 is packaged in a small 8-pin TSSOP, making it ideal for use in systems with limited board space.


Features

- · One differential LVDS output
- Crystal oscillator interface, 18pF parallel resonant crystal (21.5625MHz – 25.3125MHz)
- Output frequency ranges: 172.5MHz 202.5MHz, and 345MHz – 405MHz
- VCO range: 690MHz 810MHz
- RMS phase jitter at 400MHz, using a 25MHz crystal (12kHz – 20MHz): 0.57ps (typical) @ 3.3V
- Full 3.3V or 2.5V output supply modes
- -40°C to 85°C ambient operating temperature
- Available in both standard (RoHS 5) and lead-free (RoHS 6) packages


Common Configuration Table

	Inpu		Output Frequency		
Crystal Frequency (MHz) FREQ_S		M	N	Multiplication Value M/N	(MHz)
25	0	32	2	16	400
25	1	32	4	8	200

Block Diagram

Pin Assignment

ICS844801I-24
8 Lead TSSOP
4.40mm x 3.0mm x 0.925mmpackage body
G Package
Top View

The Preliminary Information presented herein represents a product in pre-production. The noted characteristics are based on initial product characterization and/or qualification. Integrated Device Technology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.

Table 1. Pin Descriptions

Number	Name	Туре		Description
1	V_{DDA}	Power		Analog supply pin.
2, 3	XTAL_OUT XTAL_IN	Input		Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.
4	GND	Power		Power supply ground.
5	FREQ_SEL	Input	Pullup	Frequency select pin. LVCMOS/LVTTL interface levels.
6, 7	nQ, Q	Output		Differential output pair. LVDS interface levels.
8	V_{DD}	Power		Core supply pin.

NOTE: *Pullup* refers to internal input resistors. See Table 2, *Pin Characteristics*, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{DD}	4.6V
Inputs, V _I XTAL_IN Ohter Inputs	0V to V _{DD} -0.5V to V _{DD} + 0.5V
Outputs, I _O Continuos Current Surge Current	10mA 15mA
Package Thermal Impedance, θ_{JA}	129.5°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 3A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V_{DDA}	Analog Supply Voltage		V _{DD} – 0.07	3.3	V_{DD}	V
I _{DD}	Power Supply Current				83	mA
I _{DDA}	Analog Supply Current				7	mA

Table 3B. Power Supply DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V_{DDA}	Analog Supply Voltage		V _{DD} – 0.07	2.5	V_{DD}	V
I _{DD}	Power Supply Current				78	mA
I _{DDA}	Analog Supply Current				7	mA

Table 3C. LVCMOS/LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{IH} Input High Voltage	Input Lligh Voltage	V _{DD} = 3.3V	2		V _{DD} + 0.3	V
	V _{DD} = 2.5V	1.7		V _{DD} + 0.3	V	
V _{IL}	Input Low Voltage	V _{DD} = 3.3V	-0.3		0.8	V
V IL	input Low Voltage	V _{DD} = 2.5V	-0.3		0.7	V
I _{IH}	Input High Current	V _{DD} = V _{IN} = 3.465V or 2.625V			5	μΑ
I _{IL}	Input Low Current	V _{DD} = 3.465V or 2.625V, V _{IN} = 0V	-150			μΑ

Table 3D. LVDS DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OD}	Differential Output Voltage			415		mV
ΔV_{OD}	V _{OD} Magnitude Change			40		mV
V _{OS}	Offset Voltage			1.22		V
ΔV _{OS}	V _{OS} Magnitude Change			50		mV

Table 3E. LVDS DC Characteristics, V_{DD} = 2.5V ± 5%, T_A = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OD}	Differential Output Voltage			380		mV
ΔV_{OD}	V _{OD} Magnitude Change			40		mV
V _{OS}	Offset Voltage			1.17		V
ΔV _{OS}	V _{OS} Magnitude Change			50		mV

Table 4. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency		21.5625		25.3125	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Drive Level				1	mW

AC Electrical Characteristics

Table 5A. AC Characteristics, $V_{DD} = 3.3 V \pm 5\%$, $T_A = -40 ^{\circ} C$ to $85 ^{\circ}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f.	Output Frequency		172.5		202.5	MHz
†OUT	Output Frequency		345		405	MHz
fiit/(2)	RMS Phase Jitter,	200MHz, Integration Range: 12kHz – 20MHz		0.62		ps
fjit(Ø)	Random; NOTE 1	400MHz, Integration Range: 12kHz – 20MHz		0.57		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%		305		ps
odc	Output Duty Cycle			50		%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

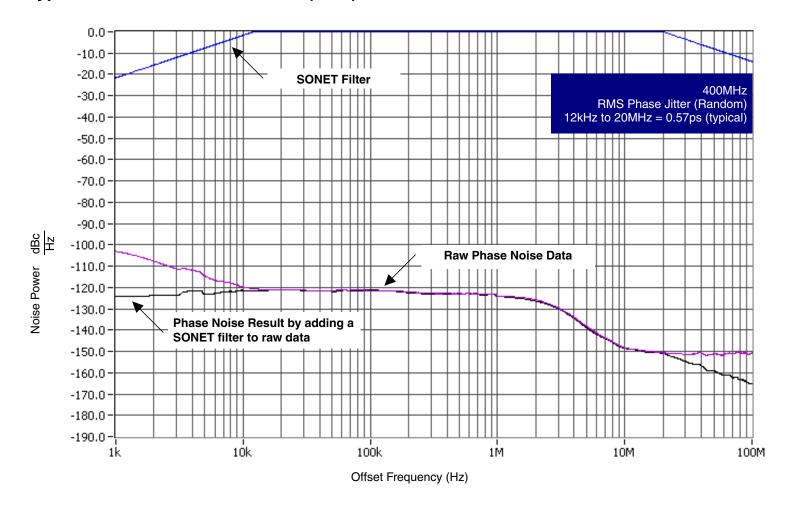
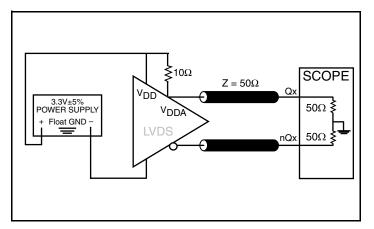
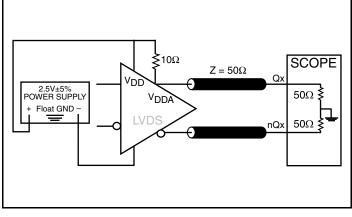
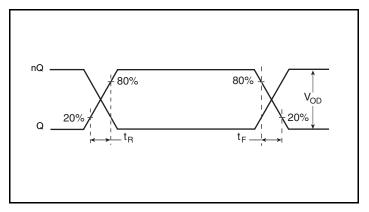

NOTE 1: Please refer to Phase Noise Plot.

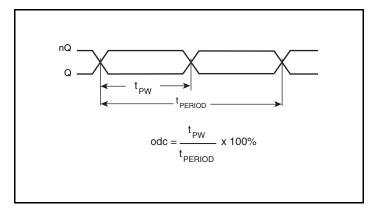
Table 5B. AC Characteristics, V_{DD} = 2.5V \pm $5\%,\,T_{A}$ = $\text{-}40^{\circ}C$ to 85°

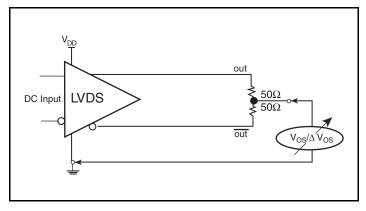

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f	Output Fraguanay		172.5		202.5	MHz
† _{OUT}	Output Frequency		345		405	MHz
fi:t/(X)	RMS Phase Jitter,	200MHz, Integration Range: 12kHz – 20MHz		0.64		ps
<i>t</i> jit(Ø)	Random	400MHz, Integration Range: 12kHz – 20MHz		0.57		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%		310		ps
odc	Output Duty Cycle			50		%

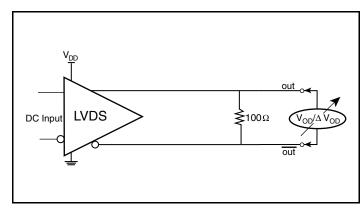
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.


Typical Phase Noise at 400MHz (3.3V)

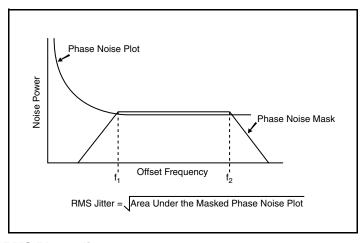

Parameter Measurement Information


3.3V LVDS Output Load AC Test Circuit


2.5V LVDS Output Load AC Test Circuit


Output Rise/Fall Time

Output Duty Cycle/Pulse Width/Period



Offset Voltage Setup

Differential Output Voltage Setup

Parameter Measurement Information, continued

RMS Phase Jitter

Application Information

Power Supply Filtering Technique

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The ICS844801I-24 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} and V_{DDA} should be individually connected to the power supply plane through vias, and $0.01\mu F$ bypass capacitors should be used for each pin. Figure 1 illustrates this for a generic V_{DD} pin and also shows that V_{DDA} requires that an additional 10Ω resistor along with a $10\mu F$ bypass capacitor be connected to the V_{DDA} pin.

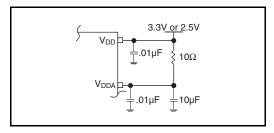


Figure 1. Power Supply Filtering

Crystal Input Interface

The ICS844801I-24 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using a 25MHz, 18pF parallel resonant

crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

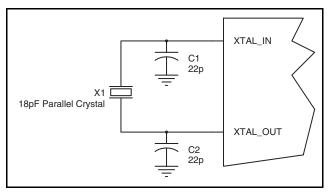


Figure 2. Crystal Input Interface

Overdriving the XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 3A*. The XTAL_OUT pin can be left floating. The maximum amplitude of the input signal should not exceed 2V and the input edge rate can be as slow as 10ns. This configuration requires that the output impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition,

matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and making R2 50Ω . By overdriving the crystal oscillator, the device will be functional, but note, the device performance is guaranteed by using a quartz crystal.

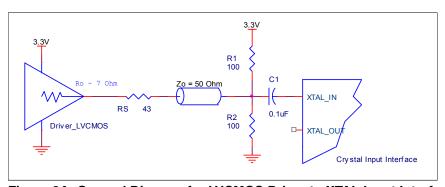


Figure 3A. General Diagram for LVCMOS Driver to XTAL Input Interface

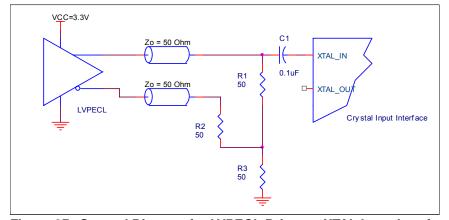


Figure 3B. General Diagram for LVPECL Driver to XTAL Input Interface

LVDS Driver Termination

A general LVDS interface is shown in Figure 4. Standard termination for LVDS type output structure requires both a 100Ω parallel resistor at the receiver and a 100Ω differential transmission line environment. In order to avoid any transmission line reflection issues, the 100Ω resistor must be placed as close to the receiver as possible. IDT offers a full line of LVDS compliant devices with two types of output structures: current source and voltage source. The standard

termination schematic as shown in Figure X can be used with either type of output structure. If using a non-standard termination, it is recommended to contact IDT and confirm if the output is a current source or a voltage source type structure. In addition, since these outputs are LVDS compatible, the input receivers amplitude and common mode input range should be verified for compatibility with the output.

Figure 4. Typical LVDS Driver Termination

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS844801I-24. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS844801I-24 is the sum of the core power plus the analog power plus the power dissipation in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipation in the load.

• Power (core)_{MAX} = $V_{DD\ MAX}$ * ($I_{DD\ MAX}$ + $I_{DDA\ MAX}$) = 3.465V * (83mA + 7mA) = **311.85mW**

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 1 meter per second and a multi-layer board, the appropriate value is 125.5°C/W per Table 6 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}\text{C} + 0.312\text{W} * 125.5^{\circ}\text{C/W} = 124.2^{\circ}\text{C}$. This is below the limit of 125°C .

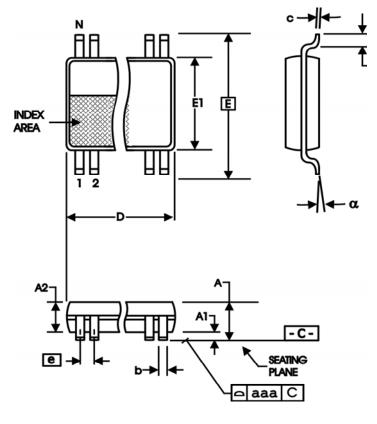
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance θ_{JA} for 8 Lead TSSOP, Forced Convection

θ_{JA} by Velocity					
Meters per Second	0	1	2.5		
Multi-Layer PCB, JEDEC Standard Test Boards	129.5°C/W	125.5°C/W	123.5°C/W		

Reliability Information

Table 7. $\theta_{\mbox{\scriptsize JA}}$ vs. Air Flow Table for a 8 Lead TSSOP


θ_{JA} vs. Air Flow					
Meters per Second	0	1	2.5		
Multi-Layer PCB, JEDEC Standard Test Boards	129.5°C/W	125.5°C/W	123.5°C/W		

Transistor Count

The transistor count for ICS844801I-24 is: 1662

Package Outline and Package Dimensions

Package Outline - G Suffix for 8 Lead TSSOP

Table 8. Package Dimensions

All Dimensions in Millimeters					
Symbol	Minimum Maximum				
N	8				
Α		1.20			
A 1	0.5	0.15			
A2	0.80	1.05			
b	0.19	0.30			
С	0.09	0.20			
D	2.90	3.10			
Е	6.40 Basic				
E1	4.30	4.50			
е	0.65 Basic				
L	0.45	0.75			
α	0°	8°			
aaa		0.10			

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 8. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
844801AGI-24	4Al24	8 Lead TSSOP	Tube	-40°C to 85°C
844801AGI-24T	4Al24	8 Lead TSSOP	2500 Tape & Reel	-40°C to 85°C
844801AGI-24LF	Al24L	"Lead-Free" 8 Lead TSSOP	Tube	-40°C to 85°C
844801AGI-24LFT	Al24L	"Lead-Free" 8 Lead TSSOP	2500 Tape & Reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

6024 Silver Creek Valley Road San Jose, California 95138 **Sales** 800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT Technical Support netcom@idt.com +480-763-2056

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.