

TDA6650ATT; TDA6651ATT

5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner (digital and analog)

Rev. 01 — 14 December 2004

Product data sheet

1. General description

The TDA6650ATT; TDA6651ATT is a programmable 3-band mixer / oscillator and low phase noise PLL synthesizer intended for pure 3-band tuner concepts applied to hybrid (digital and analog) terrestrial and cable TV reception.

The device includes three double balanced mixers for low, mid and high bands, three oscillators for the corresponding bands, a switchable IF amplifier, a wideband AGC detector and a low noise PLL synthesizer. The frequencies of the three bands are shown in [Table 1](#). Two pins are available between the mixer output and the IF amplifier input to enable IF filtering for improved signal handling and to improve the adjacent channel rejection.

Table 1: Recommended band limits in MHz for ISDBT and NTSC Japan tuners [\[1\]](#) [\[2\]](#)

Band	RF input		Oscillator	
	Min	Max	Min	Max
Low	91.25	217.25	150	276
Mid	217.25	463.25	276	522
High	463.25	765.25	522	824

[1] RF input frequency is the frequency of the corresponding picture carrier for analog standard.

[2] For bandwidth optimization please refer to *Application note CC0306V2*.

The IF amplifier is switchable in order to drive both symmetrical and asymmetrical outputs. When it is used as an asymmetrical amplifier, the IFOUTB pin needs to be connected to the supply voltage V_{CCA} .

Five open-drain PMOS ports are included on the IC. Two of them, BS1 and BS2, are also dedicated to the selection of the low, mid and high bands. PMOS port BS5 pin is shared with the ADC.

The AGC detector provides a control that can be used in a tuner to set the gain of the RF stage. Six AGC take-over points are available by software. Two programmable AGC time constants are available for search tuning and normal tuner operation.

The local oscillator signal is fed to the fractional-N divider. The divided frequency is compared to the comparison frequency into the fast phase detector which drives the charge pump. The loop amplifier is also on-chip, including the high-voltage transistor to drive directly the 33 V tuning voltage without the need to add an external transistor.

The comparison frequency is obtained from an on-chip crystal oscillator. The crystal frequency can be output to the XTOUT pin to drive the clock input of a digital demodulation IC.

PHILIPS

Control data is entered via the I²C-bus; six serial bytes are required to address the device, select the Local Oscillator (LO) frequency, select the step frequency, program the output ports and set the charge pump current or enable or disable the crystal output buffer, select the AGC take-over point and time constant and/or select a specific test mode. A status byte concerning the AGC level detector and the ADC voltage can be read out on the SDA line during a read operation. During a read operation, the loop 'in-lock' flag, the power-on reset flag and the automatic loop bandwidth control flag are read.

The device has 4 programmable addresses. Each address can be selected by applying a specific voltage to pin AS, enabling the use of multiple devices in the same system.

The I²C-bus is fast mode compatible, except for the timing as described in the functional description and is compatible with 5 V, 3.3 V and 2.5 V microcontrollers depending on the voltage applied to pin BVS.

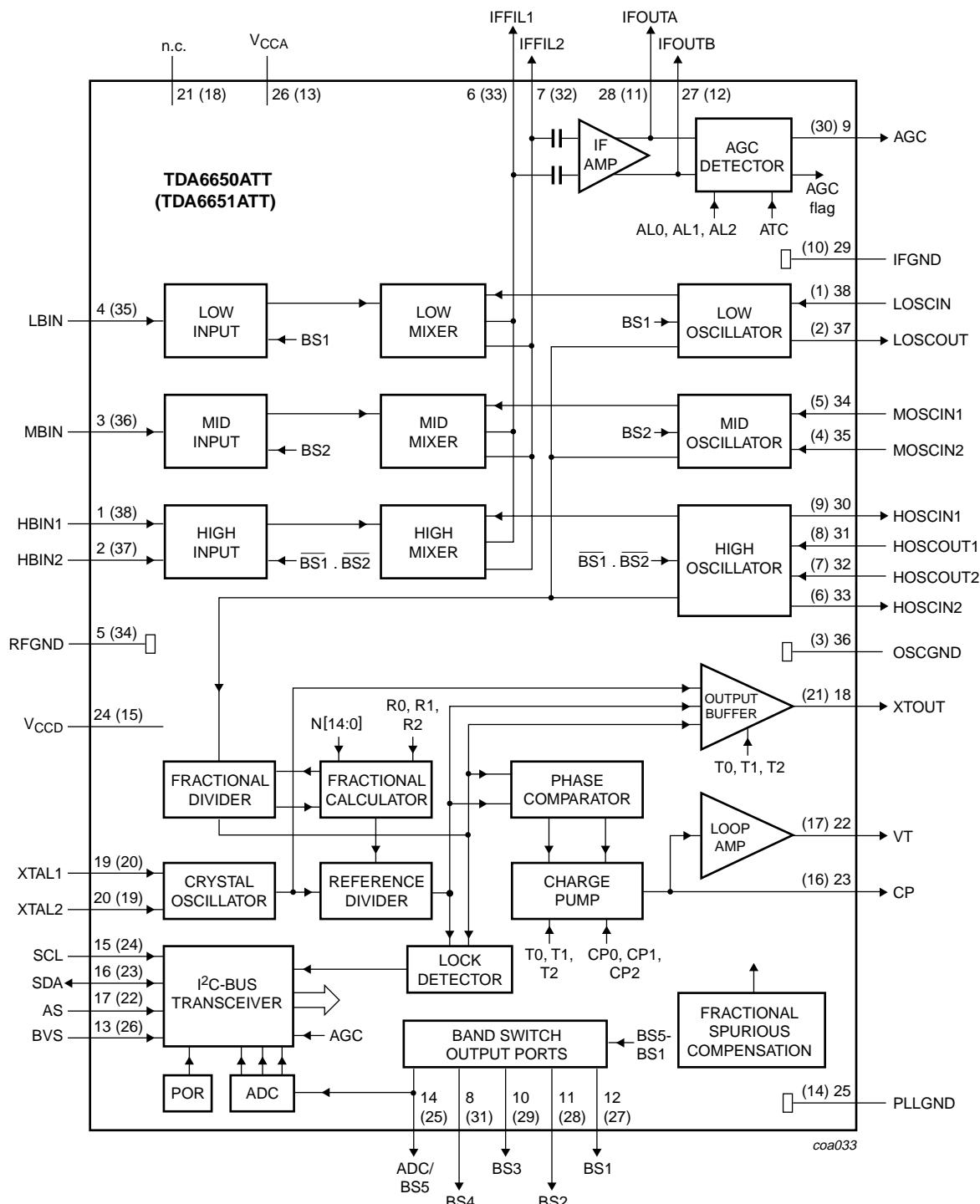
2. Features

- Single-chip 5 V mixer / oscillator and low phase noise PLL synthesizer for TV and VCR tuners, dedicated to hybrid (digital and analog) and pure digital applications for Japanese standards (NTSC and ISDB-T)
- Five possible step frequencies to cope with different digital terrestrial TV and analog TV standards
- Eight charge pump currents between 40 μ A and 600 μ A to reach the optimum phase noise performance over the bands
- I²C-bus protocol compatible with 2.5 V, 3.3 V and 5 V microcontrollers:
 - ◆ Address + 5 data bytes transmission (I²C-bus write mode)
 - ◆ Address + 1 status byte (I²C-bus read mode)
 - ◆ Four independent I²C-bus addresses.
- Five PMOS open-drain ports with 15 mA source capability for band switching and general purpose; one of these ports is combined with a 5-step ADC
- Wideband AGC detector for internal tuner AGC:
 - ◆ Six programmable take-over points
 - ◆ Two programmable time constants
 - ◆ AGC flag.
- In-lock flag
- Crystal frequency output buffer
- 33 V tuning voltage output
- Fractional-N programmable divider
- Balanced mixers with a common emitter input for the low band and for the mid band (each single input)
- Balanced mixer with a common base input for the high band (balanced input)
- 2-pin asymmetrical oscillator for the low band
- 2-pin symmetrical oscillator for the mid band
- 4-pin symmetrical oscillator for the high band
- Switched concept IF amplifier with both asymmetrical and symmetrical outputs to drive low impedance or SAW filters i.e. 500 Ω / 40 pF.

3. Applications

For all applications, the recommendations given in the latest *Application note CC0419* **must** be used.

3.1 Application summary


- Digital and analog terrestrial tuners (ISDBT and NTSC Japan)
- Cable tuners (QAM)
- Digital TV sets
- Digital set-top boxes.

4. Ordering information

Table 2: Ordering information

Type number	Package			Version
	Name	Description		
TDA6650ATT	TSSOP38	plastic thin shrink small outline package; 38 leads; body width 4.4 mm; lead pitch 0.5 mm		SOT510-1
TDA6651ATT				

5. Block diagram

The pin numbers in parenthesis represent the TDA6651ATT.

Fig 1. Block diagram

6. Pinning information

6.1 Pin description

Table 3: Pin description

Symbol	Pin	Description	
		TDA6650ATT	TDA6651ATT
HBIN1	1	38	high band RF input 1
HBIN2	2	37	high band RF input 2
MBIN	3	36	mid band RF input
LBIN	4	35	low band RF input
RFGND	5	34	RF ground
IFFIL1	6	33	IF filter output 1
IFFIL2	7	32	IF filter output 2
BS4	8	31	PMOS open-drain output port 4 for general purpose
AGC	9	30	AGC output
BS3	10	29	PMOS open-drain output port 3 for general purpose
BS2	11	28	PMOS open-drain output port 2 to select the mid band
BS1	12	27	PMOS open-drain output port 1 to select the low band
BVS	13	26	bus voltage selection input
ADC/BS5	14	25	ADC input or PMOS open-drain output port 5 for general purpose
SCL	15	24	I ² C-bus serial clock input
SDA	16	23	I ² C-bus serial data input and output
AS	17	22	I ² C-bus address selection input
XTOOUT	18	21	crystal frequency buffer output
XTAL1	19	20	crystal oscillator input 1
XTAL2	20	19	crystal oscillator input 2
n.c.	21	18	not connected
VT	22	17	tuning voltage output
CP	23	16	charge pump output
V _{CCD}	24	15	supply voltage for the PLL part
PLLGND	25	14	PLL ground
V _{CCA}	26	13	supply voltage for the analog part
IFOUTB	27	12	IF output B for symmetrical amplifier and asymmetrical IF amplifier switch input
IFOUTA	28	11	IF output A
IFGND	29	10	IF ground
HOSCIN1	30	9	high band oscillator input 1
HOSCOUT1	31	8	high band oscillator output 1
HOSCOUT2	32	7	high band oscillator output 2

Table 3: Pin description ...continued

Symbol	Pin		Description
	TDA6650ATT	TDA6651ATT	
HOSCIN2	33	6	high band oscillator input 2
MOSCIN1	34	5	mid band oscillator input 1
MOSCIN2	35	4	mid band oscillator input 2
OSCGND	36	3	oscillators ground
LOSCOUT	37	2	low band oscillator output
LOSCIN	38	1	low band oscillator input

6.2 Pinning

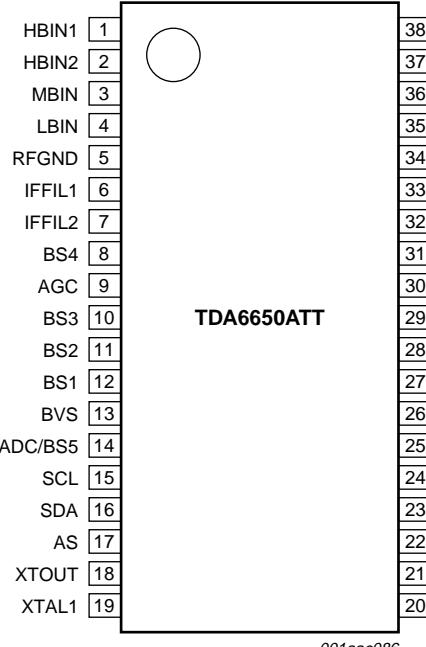


Fig 2. Pin configuration TDA6650ATT

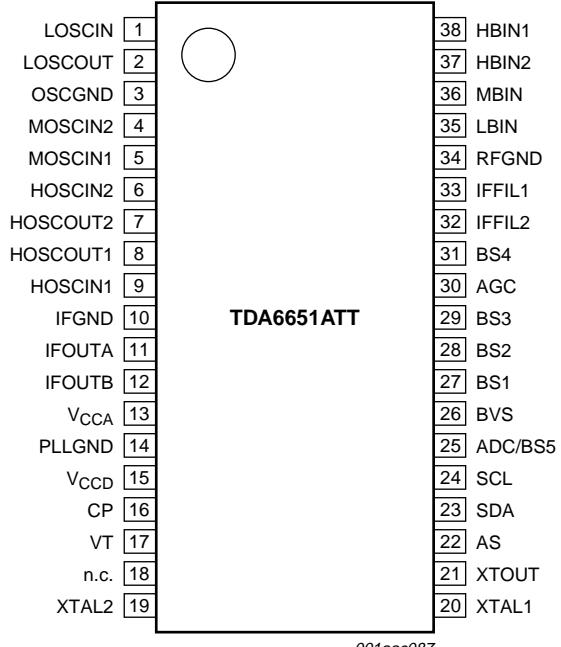


Fig 3. Pin configuration TDA6651ATT

7. Functional description

7.1 Mixer, oscillator and PLL (MOPLL) functions

Bit BS1 enables the BS1 port, the low band mixer and the low band oscillator. Bit BS2 enables the BS2 port, the mid band mixer and the mid band oscillator. When both BS1 and BS2 bits are logic 0, the high band mixer and the high band oscillator are enabled.

The oscillator signal is applied to the fractional-N programmable divider. The divided signal f_{div} is fed to the phase comparator where it is compared in both phase and frequency with the comparison frequency f_{comp} . This frequency is derived from the signal present on the crystal oscillator f_{xtal} and divided in the reference divider. There is a fractional calculator on the chip that generates the data for the fractional divider as well as

the reference divider ratio, depending on the step frequency selected. The crystal oscillator requires a 4 MHz crystal in series with an 18 pF capacitor between pins XTAL1 and XTAL2.

The output of the phase comparator drives the charge pump and the loop amplifier section. This amplifier has an on-chip high voltage drive transistor. Pin CP is the output of the charge pump, and pin VT is the pin to drive the tuning voltage to the varicap diodes of the oscillators and the tracking filters. The loop filter has to be connected between pins CP and VT. The spurious signals introduced by the fractional divider are automatically compensated by the spurious compensation block.

It is possible to drive the clock input of a digital demodulation IC from pin XTOUT with the 4 MHz signal from the crystal oscillator. This output is also used to output $\frac{1}{2}f_{\text{div}}$ and f_{comp} signals in a specific test mode (see [Table 8](#)). It is possible to switch off this output, which is recommended when it is not used.

For test and alignment purposes, it is also possible to release the tuning voltage output by selecting the sinking mode (see [Table 8](#)), and by applying an external voltage on pin VT.

In addition to the BS1 and BS2 output ports that are used for the band selection, there are three general purpose ports BS3, BS4 and BS5. All five ports are PMOS open-drain type, each with 15 mA drive capability. The connection for port BS5 and the ADC input is combined on one pin. It is not possible to use the ADC if port BS5 is used.

The AGC detector compares the level at the IF amplifier output to a reference level which is selected from 6 different levels via the I²C-bus. The time constant of the AGC can be selected via the I²C-bus to cope with normal operation as well as with search operation.

When the output level on pin AGC is higher than the threshold V_{RMH} , then bit AGC = 1. When the output level on pin AGC is lower than the threshold V_{RML} , then bit AGC = 0. Between these two thresholds, bit AGC is not defined. The status of the AGC bit can be read via the I²C-bus according to the read mode as described in [Table 12](#).

7.2 I²C-bus voltage

The I²C-bus lines SCL and SDA can be connected to an I²C-bus system tied to 2.5 V, 3.3 V or 5 V. The choice of the bus input threshold voltages is made with pin BVS that can be left open-circuit, connected to the supply voltage or to ground (see [Table 4](#)).

Table 4: I²C-bus voltage selection

Pin BVS connection	Bus voltage	Logic level	
		LOW	HIGH
To ground	2.5 V	0 V to 0.75 V	1.75 V to 5.5 V
Open-circuit	3.3 V	0 V to 1.0 V	2.3 V to 5.5 V
To V_{CC}	5 V	0 V to 1.5 V	3.0 V to 5.5 V

7.3 Phase noise, I²C-bus traffic and crosstalk

While the TDA6650ATT; TDA6651ATT is dedicated for hybrid terrestrial applications, the low noise PLL will clean up the noise spectrum of the VCOs close to the carrier to reach noise levels at 1 kHz offset from the carrier compatible with e.g. ISDB-T reception.

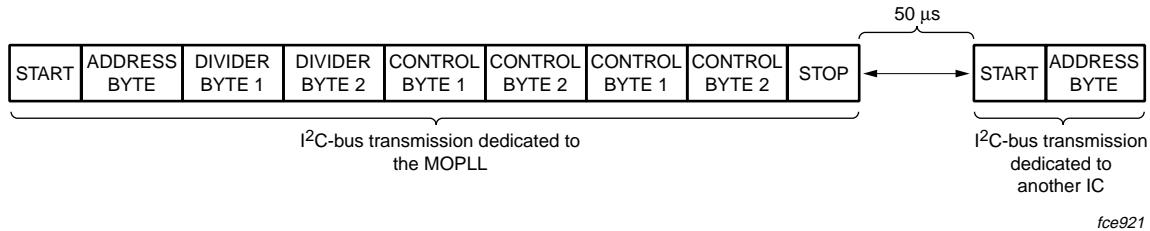
Linked to this noise improvement, some disturbances may become visible while they were not visible because they were hidden into the noise in analog dedicated applications and circuits.

This is especially true for disturbances coming from the I²C-bus traffic, whatever this traffic is intended for the MOPLL or for another slave on the bus.

To avoid this I²C-bus crosstalk and be able to have a clean noise spectrum, it is necessary to use a bus gate that enables the signal on the bus to drive the MOPLL only when the communication is intended for the tuner part (such a kind of I²C-bus gate is included into the Philips terrestrial channel decoders), and to avoid unnecessary repeated sending of the same information.

8. I²C-bus protocol

The TDA6650ATT; TDA6651ATT is controlled via the two-wire I²C-bus. For programming, there is one device address (7 bits) and the R/W bit for selecting read or write mode. To be able to have more than one MOPLL in an I²C-bus system, one of four possible addresses is selected depending on the voltage applied to address selection pin AS (see [Table 7](#)).


The TDA6650ATT; TDA6651ATT fulfils the fast mode I²C-bus, according to the Philips I²C-bus specification (see [Section 21](#)), except for the timing as described in [Figure 4](#). The I²C-bus interface is designed in such a way that the pins SCL and SDA can be connected to 5 V, 3.3 V or to 2.5 V pulled-up I²C-bus lines, depending on the voltage applied to pin BVS (see [Table 4](#)).

8.1 Write mode; R/W = 0

After the address transmission (first byte), data bytes can be sent to the device (see [Table 5](#)). Five data bytes are needed to fully program the TDA6650ATT; TDA6651ATT. The I²C-bus transceiver has an auto-increment facility that permits programming the device within one single transmission (address + 5 data bytes).

The TDA6650ATT; TDA6651ATT can also be partly programmed on the condition that the first data byte following the address is byte 2 (divider byte 1) or byte 4 (control byte 1). The first bit of the first data byte transmitted indicates whether byte 2 (first bit = 0) or byte 4 (first bit = 1) will follow. Until an I²C-bus STOP condition is sent by the controller, additional data bytes can be entered without the need to re-address the device. The fractional calculator is updated only at the end of the transmission (STOP condition). Each control byte is loaded after the 8th clock pulse of the corresponding control byte. Main divider data are valid only if no new I²C-bus transmission is started (START condition) during the computation period of 50 μ s.

Both DB1 and DB2 need to be sent to change the main divider ratio. If the value of the ratio selection bits R2, R1 and R0 are changed, the bytes DB1 and DB2 have to be sent in the same transmission.

Fig 4. Example of I²C-bus transmission frameTable 5: I²C-bus write data format

Name	Byte	Bit									Ack
		MSB [1]									
Address byte	1	1	1	0	0	0	MA1	MA0	R/W = 0	A	
Divider byte 1 (DB1)	2	0	N14	N13	N12	N11	N10	N9	N8	A	
Divider byte 2 (DB2)	3	N7	N6	N5	N4	N3	N2	N1	N0	A	
Control byte 1 (CB1); see Table 6	4	1	T/A = 1	T2	T1	T0	R2	R1	R0	A	
		1	T/A = 0	0	0	ATC	AL2	AL1	AL0	A	
Control byte 2 (CB2)	5	CP2	CP1	CP0	BS5	BS4	BS3	BS2	BS1	A	

[1] MSB is transmitted first.

Table 6: Description of write data format bits

Bit	Description
A	acknowledge
MA1 and MA0	programmable address bits; see Table 7
R/W	logic 0 for write mode
N14 to N0	programmable LO frequency; $N = N14 \times 2^{14} + N13 \times 2^{13} + N12 \times 2^{12} + \dots + N1 \times 2^1 + N0$
T/A	test/AGC bit
	T/A = 0: the next 6 bits sent are AGC settings
	T/A = 1: the next 6 bits sent are test and reference divider ratio settings
T2, T1 and T0	test bits; see Table 8
R2, R1, and R0	reference divider ratio and programmable frequency step; see Table 9
ATC	AGC current setting and time constant; capacitor on pin AGC = 150 nF
	ATC = 0: AGC current = 220 nA; AGC time constant = 2 s
	ATC = 1: AGC current = 9 μA; AGC time constant = 50 ms
AL2, AL1 and AL0	AGC take-over point bits; see Table 10
CP2, CP1 and CP0	charge pump current; see Table 11
BS5, BS4, BS3, BS2 and BS1	PMOS ports control bits
	BS _n = 0: corresponding port is off, high-impedance state (status at power-on reset)
	BS _n = 1: corresponding port is on; $V_O = V_{CC} - V_{DS(sat)}$

8.1.1 I²C-bus address selection

The device address contains programmable address bits MA1 and MA0, which offer the possibility of having up to four MOPLL ICs in one system. [Table 7](#) gives the relationship between the voltage applied to the AS input and the MA1 and MA0 bits.

Table 7: Address selection

Voltage applied to pin AS	MA1	MA0
0 V to 0.1V _{CC}	0	0
0.2V _{CC} to 0.3V _{CC} or open-circuit	0	1
0.4V _{CC} to 0.6V _{CC}	1	0
0.9V _{CC} to V _{CC}	1	1

8.1.2 XTOUT output buffer and mode setting

The crystal frequency can be sent to pin XTOUT and used in the application, for example to drive the clock input of a digital demodulator, saving a quartz crystal in the bill of material. To output f_{xtal} , it is necessary to set T[2:0] to 001. If the output signal on this pin is not used, it is recommended to disable it, by setting T[2:0] to 000. This pin is also used to output $\frac{1}{2}f_{div}$ and f_{comp} in a test mode. At power-on, the XTOUT output buffer is set to on, supplying the f_{xtal} signal. The relation between the signal on pin XTOUT and the setting of the T[2:0] bits is given in [Table 8](#).

Table 8: XTOUT buffer status and test modes

T2	T1	T0	Pin XTOUT	Mode
0	0	0	disabled	normal mode with XTOUT buffer off
0	0	1	f_{xtal} (4 MHz)	normal mode with XTOUT buffer on
0	1	0	$\frac{1}{2}f_{div}$	charge pump off
0	1	1	f_{xtal} (4 MHz)	not used ^[1]
1	0	0	f_{comp}	test mode
1	0	1	$\frac{1}{2}f_{div}$	test mode
1	1	0	f_{xtal} (4 MHz)	charge pump sinking current ^[2]
1	1	1	disabled	charge pump sourcing current

[1] This is an on-chip function that automatically sets internal values for the PLL. This function is not optimized for ISDB-T and NTSC-Japan and therefore must not be used.

[2] This is the default mode at power-on reset. This mode disables the tuning voltage.

8.1.3 Step frequency setting

The step frequency is set by three bits, giving five steps to cope with different application requirements.

The reference divider ratio is automatically set depending on bits R2, R1 and R0. The phase detector works at either 4 MHz, 2 MHz or 1 MHz.

[Table 9](#) shows the step frequencies and corresponding reference divider ratios. When the value of bits R2, R1 and R0 are changed, it is necessary to re-send the data bytes DB1 and DB2.

Table 9: Reference divider ratio select bits

R2	R1	R0	Reference divider ratio	Frequency comparison	Frequency step
0	0	0	2	2 MHz	62.5 kHz
0	0	1	1	4 MHz	142.86 kHz
0	1	0	1	4 MHz	166.67 kHz
0	1	1	4	1 MHz	50 kHz
1	0	0	1	4 MHz	125 kHz
1	0	1	-	-	reserved
1	1	0	-	-	reserved
1	1	1	-	-	reserved

8.1.4 AGC detector setting

The AGC take-over point can be selected out of 6 levels according to [Table 10](#).

Table 10: AGC programming

AL2	AL1	AL0	Typical take-over point level
0	0	0	[1] 124 dB μ V (p-p)
0	0	1	[1] 121 dB μ V (p-p)
0	1	0	[1] 118 dB μ V (p-p)
0	1	1	[2] 115 dB μ V (p-p)
1	0	0	[2] 112 dB μ V (p-p)
1	0	1	[2] 109 dB μ V (p-p)
1	1	0	[3] $I_{AGC} = 0$ A
1	1	1	[4] $V_{AGC} = 3.5$ V

[1] This take-over point is available for both symmetrical and asymmetrical modes.

[2] This take-over point is available for asymmetrical mode only.

[3] The AGC current sources are disabled. The AGC output goes into a high-impedance state and an external AGC source can be connected in parallel and will not be influenced.

[4] The AGC detector is disabled and $I_{AGC} = 9$ μ A.

8.1.5 Charge pump current setting

The charge pump current can be chosen from 8 values depending on the value of bits CP2, CP1 and CP0 bits; see [Table 11](#).

Table 11: Charge pump current

CP2	CP1	CP0	Charge pump current number	Typical current (absolute value in μ A)
0	0	0	1	38
0	0	1	2	54
0	1	0	3	83
0	1	1	4	122
1	0	0	5	163

Table 11: Charge pump current ...*continued*

CP2	CP1	CP0	Charge pump current number	Typical current (absolute value in μ A)
1	0	1	6	254
1	1	0	7	400
1	1	1	8	580

8.2 Read mode; R/W = 1

Data can be read from the device by setting the R/W bit to 1 (see [Table 12](#)). After the device address has been recognized, the device generates an acknowledge pulse and the first data byte (status byte) is transferred on the SDA line (MSB first). Data is valid on the SDA line during a HIGH level of the SCL clock signal.

A second data byte can be read from the device if the microcontroller generates an acknowledge on the SDA line (master acknowledge). End of transmission will occur if no master acknowledge occurs. The device will then release the data line to allow the microcontroller to generate a STOP condition.

Table 12: I²C-bus read data format

Name	Byte	Bit									Ack
			MSB [1]								
Address byte	1	1	1	0	0	0	MA1	MA0	R/W = 1	A	
Status byte	2	POR	FL	0	1	AGC	A2	A1	A0	-	

[1] MSB is transmitted first.

Table 13: Description of read data format bits

Bit	Description
A	acknowledge
POR	power-on reset flag POR = 0, normal operation POR = 1, power-on reset
FL	in-lock flag FL = 0, not locked FL = 1, the PLL is locked
AGC	internal AGC flag AGC = 0 when internal AGC is active ($V_{AGC} < V_{RML}$) AGC = 1 when internal AGC is not active ($V_{AGC} > V_{RMH}$)
A2, A1, A0	digital outputs of the 5-level ADC; see Table 14

Table 14: ADC levels

Voltage applied to pin ADC [1]	A2	A1	A0
0.6V _{CC} to V _{CC}	1	0	0
0.45V _{CC} to 0.6V _{CC}	0	1	1

Table 14: ADC levels ...continued

Voltage applied to pin ADC [1]	A2	A1	A0
0.3V _{CC} to 0.45V _{CC}	0	1	0
0.15V _{CC} to 0.3V _{CC}	0	0	1
0 V to 0.15V _{CC}	0	0	0

[1] Accuracy is $\pm 0.03V_{CC}$. Bit BS5 must be set to logic 0 to disable the BS5 output port. The BS5 output port uses the same pin as the ADC and can not be used when the ADC is in use.

8.3 Status at power-on reset

At power on or when the supply voltage drops below approximately 2.85 V (at $T_{amb} = 25^{\circ}\text{C}$), internal registers are set according to [Table 15](#).

At power on, the charge pump current is set to 580 μA , the test bits T[2:0] are set to 110 which means that the charge pump is sinking current, the tuning voltage output is disabled. The XTOUT buffer is on, driving the 4 MHz signal from the crystal oscillator and all the ports are off. As a consequence, the high band is selected by default.

Table 15: Default setting at power-on reset

Name	Byte	Bit [1]									
		MSB									
Address byte	1	1	1	0	0	0	MA1	MA0	X		
Divider byte 1 (DB1)	2	0	N14 = X	N13 = X	N12 = X	N11 = X	N10 = X	N9 = X	N8 = X		
Divider byte 2 (DB2)	3	N7 = X	N6 = X	N5 = X	N4 = X	N3 = X	N2 = X	N1 = X	N0 = X		
Control byte 1 (CB1)	4	1	T/A = X [2]	T2 = 1	T1 = 1	T0 = 0	R2 = X	R1 = X	R0 = X		
		1	T/A = X [3]	0	0	ATC = 0	AL2 = 0	AL1 = 1	AL0 = 0		
Control byte 2 (CB2)	5	CP2 = 1	CP1 = 1	CP0 = 1	BS5 = 0	BS4 = 0	BS3 = 0	BS2 = 0	BS1 = 0		

[1] X means that this bit is not set or reset at power-on reset.

[2] The next six bits are written, when bit T/A = 1 in a write sequence.

[3] The next six bits are written, when bit T/A = 0 in a write sequence.

9. Internal circuitry

Table 16: Internal pin configuration

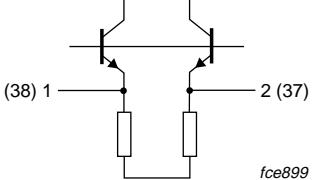
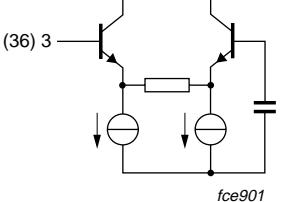
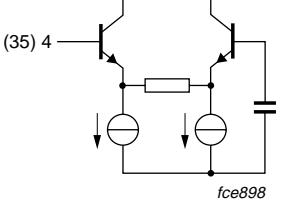
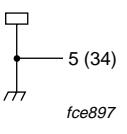
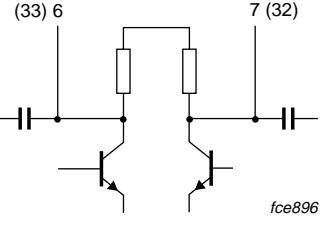
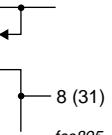
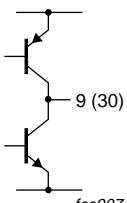
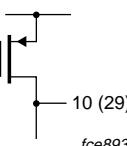
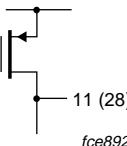
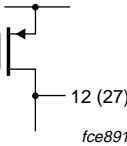
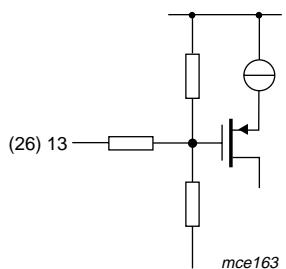
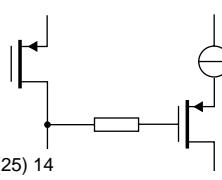












Symbol	Pin	Average DC voltage versus band selection			Description [1]	
		TDA6650ATT	TDA6651ATT	Low		
HBIN1	1	38		n.a.	n.a.	1.0 V
HBIN2	2	37		n.a.	n.a.	1.0 V
					 fce899	
MBIN	3	36		n.a.	1.8 V	n.a.
					 fce901	
LBIN	4	35		1.8 V	n.a.	n.a.
					 fce898	
RFGND	5	34		-	-	-
					 fce897	
IFFIL1	6	33		3.7 V	3.7 V	3.7 V
IFFIL2	7	32		3.7 V	3.7 V	3.7 V
					 fce896	
BS4	8	31		high-Z or $V_{CC} - V_{DS}$	high-Z or $V_{CC} - V_{DS}$	high-Z or $V_{CC} - V_{DS}$
					 fce895	

Table 16: Internal pin configuration ...continued

Symbol	Pin		Average DC voltage versus band selection			Description [1]
	TDA6650ATT	TDA6651ATT	Low	Mid	High	
AGC	9	30	0 V or 3.5 V	0 V or 3.5 V	0 V or 3.5 V	 fce907
BS3	10	29	high-Z or $V_{CC} - V_{DS}$	high-Z or $V_{CC} - V_{DS}$	high-Z or $V_{CC} - V_{DS}$	 fce893
BS2	11	28	high-Z	$V_{CC} - V_{DS}$	high-Z	 fce892
BS1	12	27	$V_{CC} - V_{DS}$	high-Z	high-Z	 fce891
BVS	13	26	2.5 V	2.5 V	2.5 V	 mce163
ADC/BS5	14	25	V_{CEsat} or high-Z	V_{CEsat} or high-Z	V_{CEsat} or high-Z	 fce887

Table 16: Internal pin configuration ...continued

Table 16: Internal pin configuration ...continued

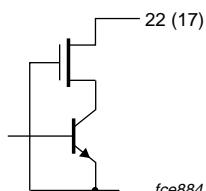
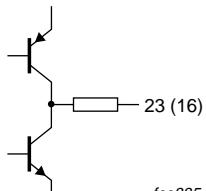
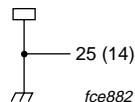
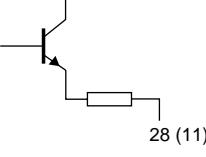
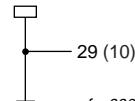
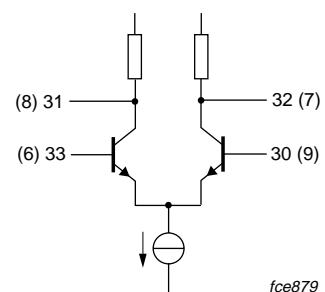
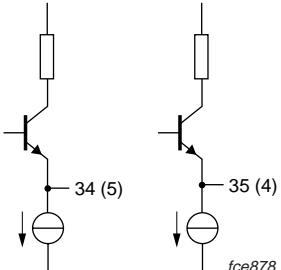
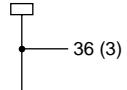
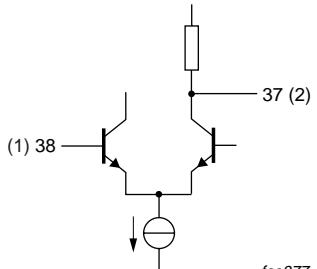









Symbol	Pin		Average DC voltage versus band selection			Description [1]
	TDA6650ATT	TDA6651ATT	Low	Mid	High	
VT	22	17	V _{VT}	V _{VT}	V _{VT}	 fce884
CP	23	16	1.8 V	1.8 V	1.8 V	 fce885
V _{CCD}	24	15	5 V	5 V	5 V	
PLLGND	25	14	-	-	-	 fce882
V _{CCA}	26	13	5 V	5 V	5 V	
IFOUTB	27	12	2.1 V	2.1 V	2.1 V	
IFOUTA	28	11	2.1 V	2.1 V	2.1 V	 fce886
IFGND	29	10	-	-	-	 fce880
HOSCIN1	30	9	2.2 V	2.2 V	1.8 V	
HOSCOUT1	31	8	5 V	5 V	2.5 V	
HOSCOUT2	32	7	5 V	5 V	2.5 V	
HOSCIN2	33	6	2.2 V	2.2 V	1.8 V	 fce879

Table 16: Internal pin configuration ...continued

Symbol	Pin		Average DC voltage versus band selection			Description [1]
	TDA6650ATT	TDA6651ATT	Low	Mid	High	
MOSCIN1	34	5	2.3 V	1.3 V	2.3 V	
MOSCIN2	35	4	2.3 V	1.3 V	2.3 V	
OSCGND	36	3	-	-	-	
LOSCOUT	37	2	1.7 V	1.4 V	1.4 V	
LOSCIN	38	1	2.9 V	3.5 V	3.5 V	

[1] The pin numbers in parenthesis refer to the TDA6651ATT.

10. Limiting values

Table 17: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Positive currents are entering the IC and negative currents are going out of the IC; all voltages are referenced to ground (GND) [1].

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CCA} , V_{CCD}	supply voltage		-0.3	+6	V
V_{VT}	tuning voltage output		-0.3	+35	V
V_{SDA}	serial data input and output voltage		-0.3	+6	V
I_{SDA}	serial data output current	during acknowledge	0	10	mA
V_{SCL}	serial clock input voltage		-0.3	+6	V
V_{AS}	address selection input voltage		-0.3	+6	V

Table 17: Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134). Positive currents are entering the IC and negative currents are going out of the IC; all voltages are referenced to ground (GND) [1].

Symbol	Parameter	Conditions	Min	Max	Unit
V_n	voltage on all other inputs, outputs and combined inputs and outputs, except GNDs	$4.5 \text{ V} < V_{CC} < 5.5 \text{ V}$	[2] -0.3	$V_{CC} + 0.3$	V
I_{BSn}	PMOS port output current	corresponding port on; open-drain	-20	0	mA
$I_{BS(\text{tot})}$	sum of all PMOS port output currents	open-drain	-50	0	mA
$t_{sc(\text{max})}$	maximum short-circuit time	each pin to V_{CC} or to GND	-	10	s
T_{stg}	storage temperature		-40	+150	°C
T_{amb}	ambient temperature	[3] -20	$T_{amb(\text{max})}$		°C
T_j	junction temperature		-	150	°C

[1] Maximum ratings cannot be exceeded, not even momentarily without causing irreversible IC damage. Maximum ratings cannot be accumulated.

[2] V_{CC} refers to the operating supply voltage.

[3] The maximum allowed ambient temperature $T_{amb(\text{max})}$ depends on the assembly conditions of the package and especially on the design of the printed-circuit board. The application mounting must be done in such a way that the maximum junction temperature is never exceeded. An estimation of the junction temperature can be obtained through measurement of the temperature of the top center of the package (T_{package}). The temperature difference junction to case (ΔT_{j-c}) is estimated at about 13 °C on the demo board (PCB 827-3). The junction temperature $T_j = T_{\text{package}} + \Delta T_{j-c}$.

11. Thermal characteristics

Table 18: Thermal characteristics

Symbol	Parameter	Conditions	Typ	Unit
$R_{th(j-a)}$	thermal resistance from junction to ambient	[1] [2] [3]		
	TDA6650ATT		82	K/W
	TDA6651ATT		74	K/W

[1] Measured in free air as defined by JEDEC standard JESD51-2.

[2] These values are given for information only. The thermal resistance depends strongly on the nature and design of the printed-circuit board used in the application. The thermal resistance given corresponds to the value that can be measured on a multilayer printed-circuit board (4 layers) as defined by JEDEC standard.

[3] The junction temperature influences strongly the reliability of an IC. The printed-circuit board used in the application contributes in a large part to the overall thermal characteristic. It must therefore be insured that the junction temperature of the IC never exceeds $T_{j(\text{max})} = 150$ °C at the maximum ambient temperature.

12. Characteristics

Table 19: Characteristics

$V_{CCA} = V_{CCD} = 5 \text{ V}$; $T_{amb} = 25^\circ\text{C}$; values are given for an asymmetrical IF output loaded with a 75Ω load or with a symmetrical IF output loaded with $1.25 \text{ k}\Omega$; positive currents are entering the IC and negative currents are going out of the IC; the performances of the circuits are measured in the measurement circuits [Figure 27](#) and [28](#) for digital application or in the measurement circuits [Figure 29](#) and [30](#) for hybrid application; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit	
Supply							
V_{CC}	supply voltage		4.5	5.0	5.5	V	
I_{CC}	supply current	PMOS ports off	80	96	115	mA	
		one PMOS port on: sourcing 15 mA	96	112	131	mA	
		two PMOS ports on: one port sourcing 15 mA and one other port sourcing 5 mA	101	117	136	mA	
General functions							
V_{POR}	power-on reset supply voltage	power-on reset active if $V_{CC} < V_{POR}$	-	2.85	3.5	V	
Δf_{lock}	frequency range the PLL is able to synthesize		64	-	1024	MHz	
Crystal oscillator [1]							
f_{xtal}	crystal frequency		-	4.0	-	MHz	
$ Z_{xtal} $	input impedance (absolute value)	$f_{xtal} = 4 \text{ MHz}$; $V_{CC} = 4.5 \text{ V}$ to 5.5 V $T_{amb} = -20^\circ\text{C}$ to $T_{amb(max)}$, see Section 10	350	430	-	Ω	
P_{xtal}	crystal drive level	$f_{xtal} = 4 \text{ MHz}$	[2]	-	70	μW	
PMOS ports: pins BS1, BS2, BS3, BS4 and BS5							
$I_{LO(off)}$	output leakage current in off state	$V_{CC} = 5.5 \text{ V}$; $V_{BS} = 0 \text{ V}$	-10	-	-	μA	
$V_{DS(sat)}$	output saturation voltage	only corresponding buffer is on, sourcing 15 mA; $V_{DS(sat)} = V_{CC} - V_{BS}$	-	0.2	0.4	V	
ADC input: pin ADC							
V_i	ADC input voltage	see Table 14	0	-	5.5	V	
I_{IH}	HIGH-level input current	$V_{ADC} = V_{CC}$	-	-	10	μA	
I_{IL}	LOW-level input current	$V_{ADC} = 0 \text{ V}$	-10	-	-	μA	
Address selection input: pin AS							
I_{IH}	HIGH-level input current	$V_{AS} = 5.5 \text{ V}$	-	-	10	μA	
I_{IL}	LOW-level input current	$V_{AS} = 0 \text{ V}$	-10	-	-	μA	
Bus voltage selection input: pin BVS							
I_{IH}	HIGH-level input current	$V_{BVS} = 5.5 \text{ V}$	-	-	100	μA	
I_{IL}	LOW-level input current	$V_{BVS} = 0 \text{ V}$	-100	-	-	μA	
Buffered output: pin XTOUT							
$V_{o(p-p)}$	square wave AC output voltage (peak-to-peak value)		[3]	-	400	-	mV
Z_o	output impedance		-	175	-	Ω	

Table 19: Characteristics ...continued

$V_{CCA} = V_{CCD} = 5 \text{ V}$; $T_{amb} = 25^\circ\text{C}$; values are given for an asymmetrical IF output loaded with a 75Ω load or with a symmetrical IF output loaded with $1.25 \text{ k}\Omega$; positive currents are entering the IC and negative currents are going out of the IC; the performances of the circuits are measured in the measurement circuits [Figure 27](#) and [28](#) for digital application or in the measurement circuits [Figure 29](#) and [30](#) for hybrid application; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
I²C-bus						
Inputs: pins SCL and SDA						
f_{clk}	clock frequency	frequency on SCL	-	-	400	kHz
V_{IL}	LOW-level input voltage	$V_{BVS} = 0 \text{ V}$	0	-	0.75	V
		$V_{BVS} = 2.5 \text{ V}$ or open-circuit	0	-	1.0	V
		$V_{BVS} = 5 \text{ V}$	0	-	1.5	V
V_{IH}	HIGH-level input voltage	$V_{BVS} = 0 \text{ V}$	1.75	-	5.5	V
		$V_{BVS} = 2.5 \text{ V}$ or open-circuit	2.3	-	5.5	V
		$V_{BVS} = 5 \text{ V}$	3.0	-	5.5	V
I_{IH}	HIGH-level input current	$V_{CC} = 0 \text{ V}$; $V_{BUS} = 5.5 \text{ V}$	-	-	10	μA
		$V_{CC} = 5.5 \text{ V}$; $V_{BUS} = 5.5 \text{ V}$	-	-	10	μA
I_{IL}	LOW-level input current	$V_{CC} = 0 \text{ V}$; $V_{BUS} = 1.5 \text{ V}$	-	-	10	μA
		$V_{CC} = 5.5 \text{ V}$; $V_{BUS} = 0 \text{ V}$	-10	-	-	μA
Output: pin SDA						
I_{LH}	leakage current	$V_{SDA} = 5.5 \text{ V}$	-	-	10	μA
$V_{O(ack)}$	output voltage during acknowledge	$I_{SDA} = 3 \text{ mA}$	-	-	0.4	V
Charge pump output: pin CP						
$ I_o $	output current (absolute value)	see Table 11	-	-	-	μA
$I_{L(off)}$	off-state leakage current	charge pump off ($T[2:0] = 010$)	-15	0	+15	nA
Tuning voltage output: pin VT						
$I_{L(off)}$	leakage current when switched-off	tuning supply voltage = 33 V	-	-	10	μA
$V_{o(cl)}$	output voltage when the loop is closed	tuning supply voltage = 33 V; $R_L = 15 \text{ k}\Omega$	0.3	-	32.7	V
Noise performance						
$J_{\phi(\text{rms})}$	phase jitter (RMS value)	integrated between 1 kHz and 1 MHz offset from the carrier				
		digital application	-	0.5	-	deg
		hybrid application	-	0.6	-	deg
Low band mixer, including IF amplifier						
f_{RF}	RF frequency	picture carrier	[4]	91.25	-	219.143 MHz

Table 19: Characteristics ...continued

$V_{CCA} = V_{CCD} = 5$ V; $T_{amb} = 25$ °C; values are given for an asymmetrical IF output loaded with a $75\ \Omega$ load or with a symmetrical IF output loaded with $1.25\ k\Omega$; positive currents are entering the IC and negative currents are going out of the IC; the performances of the circuits are measured in the measurement circuits [Figure 27](#) and [28](#) for digital application or in the measurement circuits [Figure 29](#) and [30](#) for hybrid application; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
G_v	voltage gain	asymmetrical IF output; $R_L = 75\ \Omega$; see Figure 14				
		$f_{RF} = 91.25$ MHz	20	23.5	26	dB
		$f_{RF} = 219.143$ MHz	20	24.0	26	dB
		symmetrical IF output; $R_L = 1.25\ k\Omega$; see Figure 15				
NF	noise figure	$f_{RF} = 91.25$ MHz	25	27.5	31	dB
		$f_{RF} = 219.143$ MHz	25	27.5	31	dB
		$f_{RF} = 150$ MHz	-	7	10	dB
V_o	output voltage causing 1 % cross modulation in channel	asymmetrical application; see Figure 18		[5]		
		$f_{RF} = 91.25$ MHz	107	110	-	$\text{dB}\mu\text{V}$
		$f_{RF} = 219.143$ MHz	107	110	-	$\text{dB}\mu\text{V}$
		symmetrical application; see Figure 19		[5]		
V_i	input voltage causing 750 Hz frequency deviation pulling in channel	$f_{RF} = 91.25$ MHz	117	120	-	$\text{dB}\mu\text{V}$
		$f_{RF} = 219.143$ MHz	117	120	-	$\text{dB}\mu\text{V}$
		asymmetrical IF output	-	85	-	$\text{dB}\mu\text{V}$
$V_{i(lock)}$	input level without lock-out	see Figure 25	[7]	-	-	120 $\text{dB}\mu\text{V}$
G_i	input conductance	$f_{RF} = 91.25$ MHz; see Figure 5	-	0.15	-	mS
		$f_{RF} = 219.43$ MHz; see Figure 5	-	0.20	-	mS
C_i	input capacitance	$f_{RF} = 91.25$ MHz to 219.43 MHz; see Figure 5	-	1.60	-	pF
Mid band mixer, including IF amplifier						
f_{oper}	operating frequency		163.25	-	465.143	MHz
f_{RF}	RF frequency	picture carrier	[4]	223.25	-	465.143 MHz
G_v	voltage gain	asymmetrical IF output; load = $75\ \Omega$; see Figure 14				
		$f_{RF} = 223.25$ MHz	20	23.5	26	dB
		$f_{RF} = 465.143$ MHz	20	24	26	dB
		symmetrical IF output; load = $1.25\ k\Omega$; see Figure 15				
NF	noise figure	$f_{RF} = 223.25$ MHz	25	27	31	dB
		$f_{RF} = 465.143$ MHz	25	27.5	31	dB
		$f_{RF} = 300$ MHz; see Figure 17	-	8	11	dB

Table 19: Characteristics ...continued

$V_{CCA} = V_{CCD} = 5$ V; $T_{amb} = 25$ °C; values are given for an asymmetrical IF output loaded with a $75\ \Omega$ load or with a symmetrical IF output loaded with $1.25\ k\Omega$; positive currents are entering the IC and negative currents are going out of the IC; the performances of the circuits are measured in the measurement circuits [Figure 27](#) and [28](#) for digital application or in the measurement circuits [Figure 29](#) and [30](#) for hybrid application; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_o	output voltage causing 1 % cross modulation in channel	asymmetrical application; see Figure 18	[5]	107	110	$\text{dB}\mu\text{V}$
		$f_{RF} = 223.25$ MHz				
	symmetrical application; see Figure 19	$f_{RF} = 465.143$ MHz	[5]	107	110	$\text{dB}\mu\text{V}$
		$f_{RF} = 223.25$ MHz				
V_i	input voltage causing 750 Hz frequency deviation pulling in channel	asymmetrical IF output	-	87	-	$\text{dB}\mu\text{V}$
$V_{i(lock)}$	input level without lock-out	see Figure 25	[7]	-	-	120 $\text{dB}\mu\text{V}$
G_i	input conductance	see Figure 6	-	0.3	-	mS
C_i	input capacitance	see Figure 6	-	1.1	-	pF
High band mixer, including IF amplifier						
f_{oper}	operating frequency		355.25	-	767.143	MHz
f_{RF}	RF frequency	picture carrier	[4]	471.25	-	767.143 MHz
G_v	voltage gain	asymmetrical IF output; load = $75\ \Omega$; see Figure 20	31.5	35	37.5	dB
		$f_{RF} = 471.25$ MHz				
	symmetrical IF output; load = $1.25\ k\Omega$; see Figure 21	$f_{RF} = 767.143$ MHz	31.5	33.5	37.5	dB
		$f_{RF} = 471.25$ MHz				
NF	noise figure, not corrected for image	35.5	38.5	41.5	dB	
		$f_{RF} = 767.143$ MHz	35.5	37	41.5	dB
V_o	output voltage causing 1 % cross modulation in channel	asymmetrical application; see Figure 23	[5]	107	110	$\text{dB}\mu\text{V}$
		$f_{RF} = 471.25$ MHz	107	110	-	$\text{dB}\mu\text{V}$
	symmetrical application; see Figure 24	$f_{RF} = 767.143$ MHz				
$V_{i(lock)}$	input level without lock-out	$f_{RF} = 471.25$ MHz	117	120	-	$\text{dB}\mu\text{V}$
		$f_{RF} = 767.143$ MHz	117	120	-	$\text{dB}\mu\text{V}$

Table 19: Characteristics ...continued

$V_{CCA} = V_{CCD} = 5 \text{ V}$; $T_{amb} = 25^\circ \text{ C}$; values are given for an asymmetrical IF output loaded with a 75Ω load or with a symmetrical IF output loaded with $1.25 \text{ k}\Omega$; positive currents are entering the IC and negative currents are going out of the IC; the performances of the circuits are measured in the measurement circuits [Figure 27](#) and [28](#) for digital application or in the measurement circuits [Figure 29](#) and [30](#) for hybrid application; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_i	input voltage causing 750 Hz frequency deviation pulling in channel	asymmetrical IF output	-	75	-	$\text{dB}\mu\text{V}$
Z_i	input impedance ($R_S + jL_S\omega$)	$f_{RF} = 471.25 \text{ MHz}$; see Figure 7				
		R_S	-	35	-	Ω
		L_S	-	8	-	nH
		$f_{RF} = 767.143 \text{ MHz}$; see Figure 7				
		R_S	-	36	-	Ω
		L_S	-	8	-	nH
Low band oscillator						
f_{osc}	oscillator frequency		[7] 150	-	276.143	MHz
$\Delta f_{osc(V)}$	oscillator frequency shift with supply voltage		[8] -	110	300	kHz
$\Delta f_{osc(T)}$	oscillator frequency drift with temperature	$\Delta T = 25 \text{ }^\circ\text{C}$; $V_{CC} = 5 \text{ V}$ with compensation	[9] -	900	-	kHz
$\Phi_{osc(dig)}$	phase noise, carrier to sideband noise in digital application	$\pm 1 \text{ kHz}$ frequency offset; $f_{comp} = 4 \text{ MHz}$; see Figure 8 , 27 and 28	82	90	-	dBc/Hz
		$\pm 10 \text{ kHz}$ frequency offset; worst case in the frequency range; see Figure 9 , 27 and 28	87	94	-	dBc/Hz
		$\pm 100 \text{ kHz}$ frequency offset; worst case in the frequency range; see Figure 10 , 27 and 28	104	115	-	dBc/Hz
		$\pm 1.4 \text{ MHz}$ frequency offset; worst case in the frequency range; see Figure 27 and 28	-	117	-	dBc/Hz
$\Phi_{osc(hyb)}$	phase noise, carrier to sideband noise in hybrid application	$\pm 1 \text{ kHz}$ frequency offset; $f_{comp} = 4 \text{ MHz}$; see Figure 11 , 29 and 30	75	81	-	dBc/Hz
		$\pm 10 \text{ kHz}$ frequency offset; worst case in the frequency range; see Figure 12 , 29 and 30	85	92	-	dBc/Hz
		$\pm 100 \text{ kHz}$ frequency offset; worst case in the frequency range; see Figure 13 , 29 and 30	104	115	-	dBc/Hz
		$\pm 1.4 \text{ MHz}$ frequency offset; worst case in the frequency range; see Figure 29 and 30	-	117	-	dBc/Hz
RSC_{p-p}	ripple susceptibility of V_{CC} (peak-to-peak value)	$V_{CC} = 5 \text{ V} \pm 5 \text{ %}$; worst case in the frequency range; ripple frequency 500 kHz	[10] 15	200	-	mV

Table 19: Characteristics ...continued

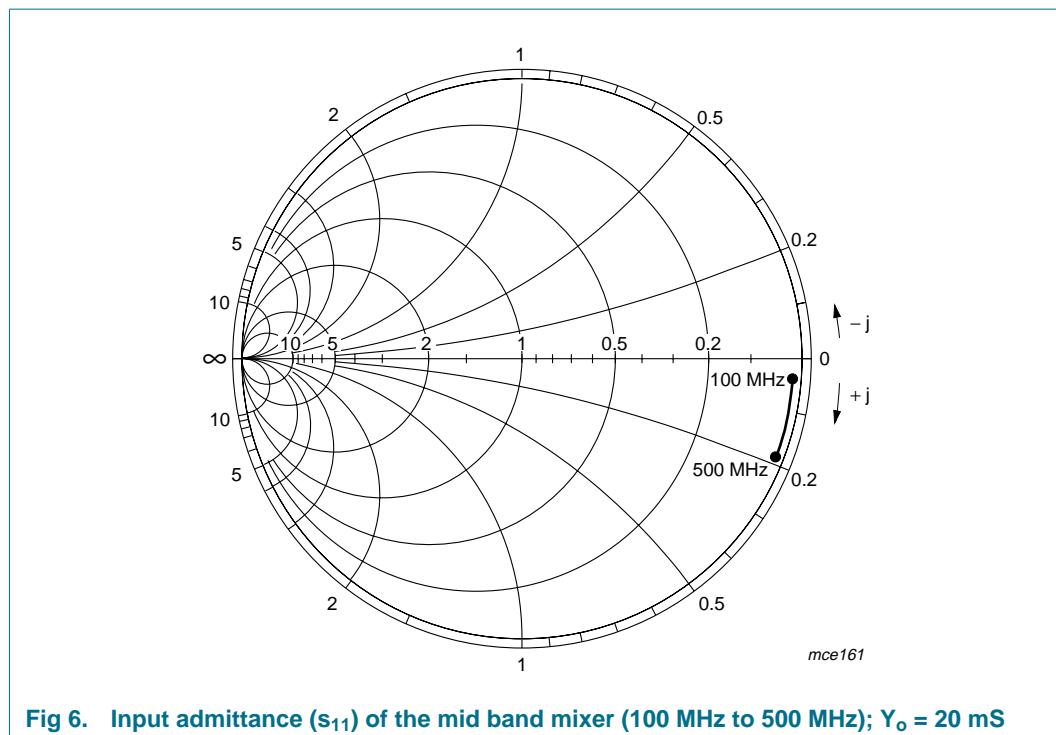
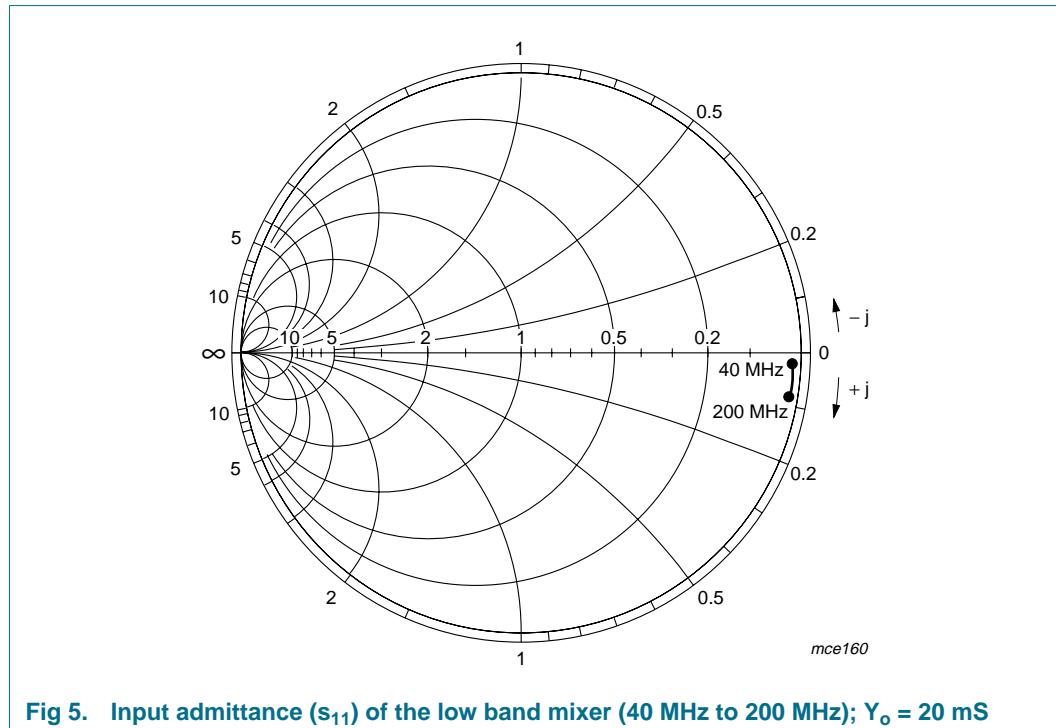
$V_{CCA} = V_{CCD} = 5$ V; $T_{amb} = 25$ °C; values are given for an asymmetrical IF output loaded with a $75\ \Omega$ load or with a symmetrical IF output loaded with $1.25\ k\Omega$; positive currents are entering the IC and negative currents are going out of the IC; the performances of the circuits are measured in the measurement circuits [Figure 27](#) and [28](#) for digital application or in the measurement circuits [Figure 29](#) and [30](#) for hybrid application; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit	
Mid band oscillator							
f_{osc}	oscillator operating frequency		222	-	522.143	MHz	
	oscillator frequency	[7]	276	-	522.143	MHz	
$\Delta f_{osc(V)}$	oscillator frequency shift with supply voltage	[8]	-	300	-	kHz	
$\Delta f_{osc(T)}$	oscillator frequency drift with temperature	$\Delta T = 25$ °C; $V_{CC} = 5$ V with compensation	[9]	-	1500	-	kHz
$\Phi_{osc(dig)}$	phase noise, carrier to sideband noise in digital application	± 1 kHz frequency offset; $f_{comp} = 4$ MHz; see Figure 8 , 27 and 28	85	90	-	dBc/Hz	
		± 10 kHz frequency offset; worst case in the frequency range; see Figure 9 , 27 and 28	87	94	-	dBc/Hz	
		± 100 kHz frequency offset; worst case in the frequency range; see Figure 10 , 27 and 28	104	112	-	dBc/Hz	
		± 1.4 MHz frequency offset; worst case in the frequency range; see Figure 27 and 28	-	116	-	dBc/Hz	
$\Phi_{osc(hyb)}$	phase noise, carrier to sideband noise in hybrid application	± 1 kHz frequency offset; $f_{comp} = 4$ MHz; see Figure 11 , 29 and 30	80	86	-	dBc/Hz	
		± 10 kHz frequency offset; worst case in the frequency range; see Figure 12 , 29 and 30	85	92	-	dBc/Hz	
		± 100 kHz frequency offset; worst case in the frequency range; see Figure 13 , 29 and 30	104	115	-	dBc/Hz	
		± 1.4 MHz frequency offset; worst case in the frequency range; see Figure 29 and 30	-	115	-	dBc/Hz	
RSC_{p-p}	ripple susceptibility of V_{CC} (peak-to-peak value)	$V_{CC} = 5$ V $\pm 5\%$; worst case in the frequency range; ripple frequency 500 kHz	[10]	15	140	-	mV
High band oscillator							
f_{osc}	oscillator operating frequency		414	-	824.143	MHz	
	oscillator frequency	[7]	522	-	824.143	MHz	
$\Delta f_{osc(V)}$	oscillator frequency shift with supply voltage	[8]	-	300	-	kHz	
$\Delta f_{osc(T)}$	oscillator frequency drift with temperature	$\Delta T = 25$ °C; $V_{CC} = 5$ V; with compensation	[9]	-	1100	-	kHz

Table 19: Characteristics ...continued

$V_{CCA} = V_{CCD} = 5$ V; $T_{amb} = 25$ °C; values are given for an asymmetrical IF output loaded with a $75\ \Omega$ load or with a symmetrical IF output loaded with $1.25\ k\Omega$; positive currents are entering the IC and negative currents are going out of the IC; the performances of the circuits are measured in the measurement circuits [Figure 27](#) and [28](#) for digital application or in the measurement circuits [Figure 29](#) and [30](#) for hybrid application; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit	
$\Phi_{osc(dig)}$	phase noise, carrier to sideband noise in digital application	± 1 kHz frequency offset; $f_{comp} = 4$ MHz; see Figure 8 , 27 and 28	80	85	-	dBc/Hz	
		± 10 kHz frequency offset; worst case in the frequency range; see Figure 9 , 27 and 28	85	91	-	dBc/Hz	
		± 100 kHz frequency offset; worst case in the frequency range; see Figure 11 , 27 and 28	104	112	-	dBc/Hz	
		± 1.4 MHz frequency offset; worst case in the frequency range; see Figure 27 and 28	-	117	-	dBc/Hz	
$\Phi_{osc(hyb)}$	phase noise, carrier to sideband noise in hybrid application	± 1 kHz frequency offset; $f_{comp} = 4$ MHz; see Figure 11 , 29 and 30	80	86	-	dBc/Hz	
		± 10 kHz frequency offset; worst case in the frequency range; see Figure 12 , 29 and 30	82	88	-	dBc/Hz	
		± 100 kHz frequency offset; worst case in the frequency range; see Figure 13 , 29 and 30	104	112	-	dBc/Hz	
		± 1.4 MHz frequency offset; worst case in the frequency range; see Figure 29 and 30	-	117	-	dBc/Hz	
RSC_{p-p}	ripple susceptibility of V_{CC} (peak-to-peak value)	$V_{CC} = 5$ V $\pm 5\%$; worst case in the frequency range; ripple frequency 500 kHz	[10]	15	40	-	mV
IF amplifier							
Z_0	output impedance	asymmetrical IF output					
		R_S at 57 MHz	-	50	-	Ω	
		L_S at 57 MHz	-	4.7	-	nH	
	symmetrical IF output						
		R_S at 57 MHz	-	100	-	Ω	
		L_S at 57 MHz	-	10	-	nH	
Rejection at the IF output (IF amplifier in asymmetrical mode)							
INT_{div}	divider interferences in IF level	worst case	[11]	-	-	20	$dB\mu V$
INT_{xtal}	crystal oscillator interferences rejection	$V_{IF} = 100\ dB\mu V$; worst case in the frequency range	[12]	-	-	-50	dBc
$INT_{f(step)}$	step frequency rejection	$V_{IF} = 100\ dB\mu V$; worst case in the frequency range	[13]				
		digital application		-	-	-50	dBc
		hybrid application		-	-	-57	dBc



Table 19: Characteristics ...continued

$V_{CCA} = V_{CCD} = 5$ V; $T_{amb} = 25$ °C; values are given for an asymmetrical IF output loaded with a $75\ \Omega$ load or with a symmetrical IF output loaded with $1.25\ k\Omega$; positive currents are entering the IC and negative currents are going out of the IC; the performances of the circuits are measured in the measurement circuits [Figure 27](#) and [28](#) for digital application or in the measurement circuits [Figure 29](#) and [30](#) for hybrid application; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
INT _{XTH}	crystal oscillator harmonics in the IF frequency		[14]	-	-	50 dB μ V
AGC output (IF amplifier in asymmetrical mode): pin AGC						
AGC _{TOP(p-p)}	AGC take-over point (peak-to-peak level)	bits AL[2:0] = 000	122.5	124	125.5	dB μ V
I _{source(fast)}	source current fast		7.5	9.0	11.6	μ A
I _{source(slow)}	source current slow		185	220	280	nA
V _o	output voltage	maximum level	3.45	3.55	3.8	V
		minimum level	0	-	0.1	V
V _{o(dis)}	output voltage with AGC disabled	bits AL[2:0] = 111	3.45	3.55	3.8	V
V _{RF(slip)}	RF voltage range to switch the AGC from active to not active mode		-	-	0.5	dB
V _{RML}	low threshold AGC output voltage	AGC bit = 0 or AGC not active	0	-	2.8	V
V _{RMH}	high threshold AGC output voltage	AGC bit = 1 or AGC active	3.2	3.55	3.8	V
I _{LO}	leakage current	bits AL[2:0] = 110; $0 < V_{AGC} < V_{CC}$	-50	-	+50	nA

- [1] Important recommendation: to obtain the performances mentioned in this specification, the serial resistance of the crystal used with this oscillator must never exceed $120\ \Omega$. The crystal oscillator is guaranteed to operate at any supply voltage between 4.5 V and 5.5 V and at any temperature between -20 °C and + $T_{amb(max)}$, as defined in [Section 10](#).
- [2] The drive level is expected with a $50\ \Omega$ series resistance of the crystal at series resonance. The drive level will be different with other series resistance values.
- [3] The V_{XTOUT} level is measured when the pin XTOUT is loaded with $5\ k\Omega$ in parallel with $10\ pF$.
- [4] The RF frequency range is defined by the oscillator frequency range and the intermediate frequency (IF).
- [5] The 1 % cross modulation performance is measured with AGC detector turned off (AGC bits set to 110).
- [6] The IF output signal stays stable within the range of the step frequency for any RF input level up to 120 dB μ V.
- [7] Limits are related to the tank circuits used in [Figure 27](#) and [28](#) for digital application or [Figure 29](#) and [30](#) for hybrid application. Frequency bands may be adjusted by the choice of external components.
- [8] The frequency shift is defined as a change in oscillator frequency when the supply voltage varies from $V_{CC} = 5$ V to 4.5 V or from $V_{CC} = 5$ V to 5.25 V. The oscillator is free running during this measurement.
- [9] The frequency drift is defined as a change in oscillator frequency when the ambient temperature varies from $T_{amb} = 25$ °C to 50 °C or from $T_{amb} = 25$ °C to 0 °C. The oscillator is free running during this measurement.
- [10] The supply ripple susceptibility is measured in the measurement circuit according to [Figure 27](#) to [Figure 30](#) using a spectrum analyzer connected to the IF output. An unmodulated RF signal is applied to the test board RF input. A sinewave signal with a frequency of 500 kHz is superimposed onto the supply voltage. The amplitude of this ripple signal is adjusted to bring the 500 kHz sidebands around the IF carrier to a level of -53.5 dB with respect to the carrier.
- [11] This is the level of divider interferences close to the IF frequency. The low and mid band inputs must be left open (i.e. not connected to any load or cable); the high band inputs are connected to an hybrid.
- [12] Crystal oscillator interference means the 4 MHz sidebands caused by the crystal oscillator.
- [13] The step frequency rejection is the level of step frequency sidebands related to the carrier. The measurement is done for $V_{IF} = 100$ dB μ V. This specification point corresponds to the worst case observed in the frequency range. This parameter is specified for $f_{step} = 142.86$ kHz in digital applications and $f_{step} = 62.5$ kHz, 50 kHz or 142.86 kHz in hybrid application.

[14] This is the level of the 13th and 15th harmonics of the 4 MHz crystal oscillator into the IF output.

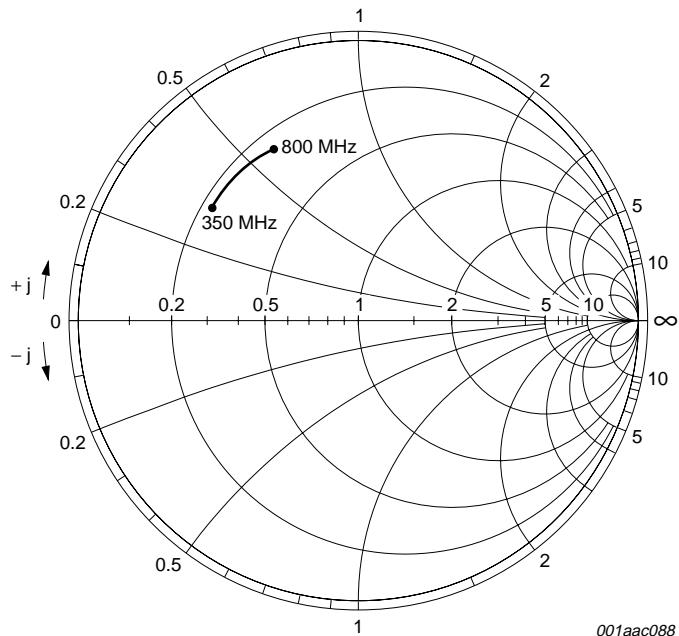


Fig 7. Input impedance (s_{11}) of the high band mixer (350 MHz to 800 MHz); $Z_o = 100 \Omega$

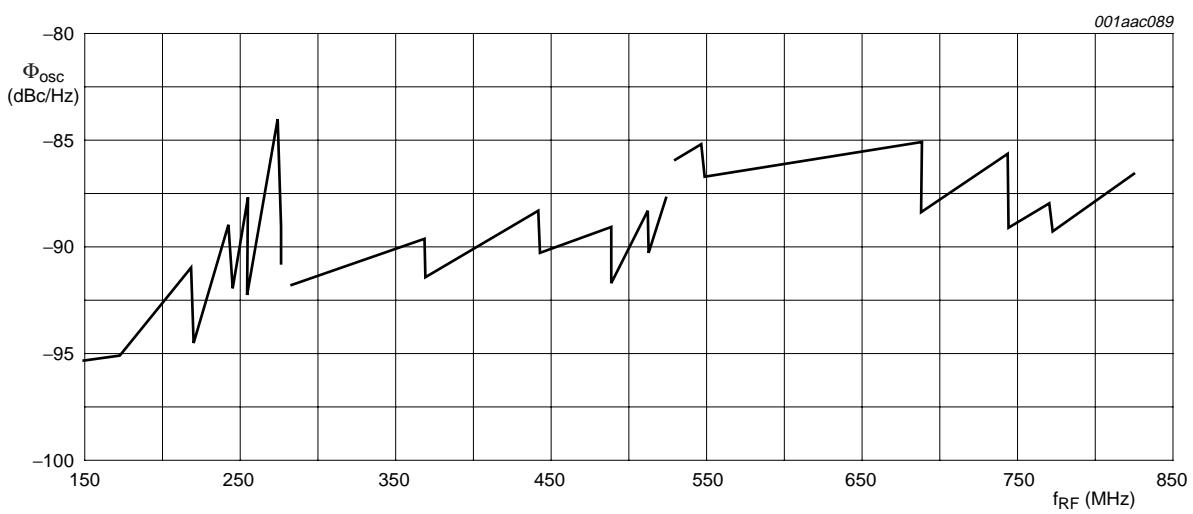


Fig 8. 1 kHz phase noise typical performance in digital application (Figure 27 and 28)

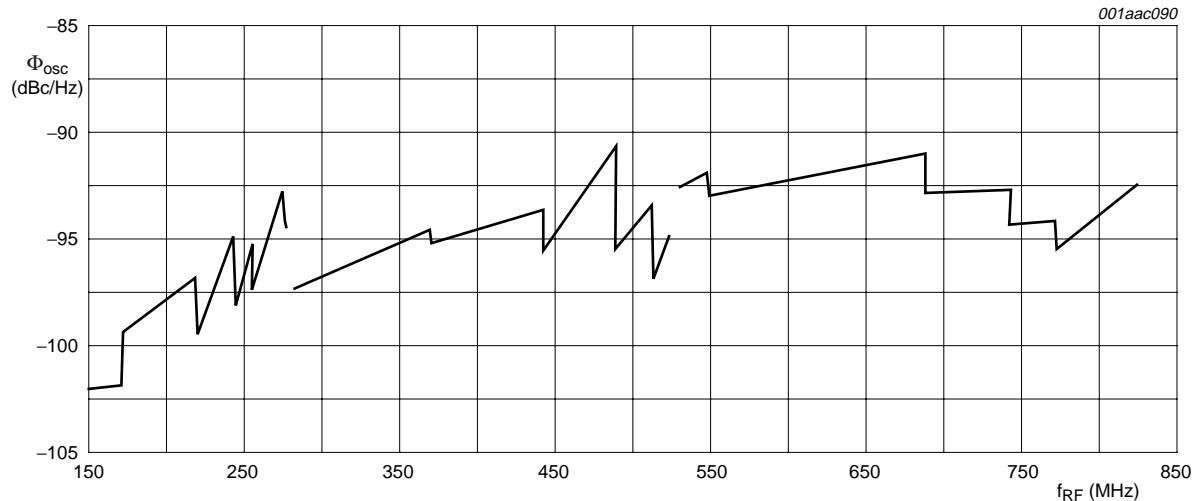


Fig 9. 10 kHz phase noise typical performance in digital application (Figure 27 and 28)

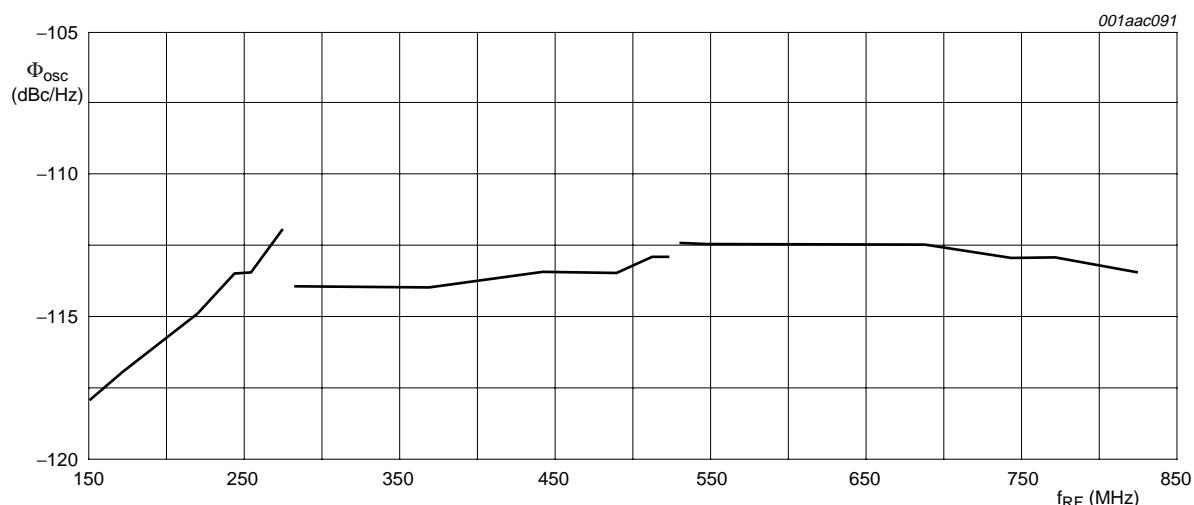


Fig 10. 100 kHz phase noise typical performance in digital application (Figure 27 and 28)

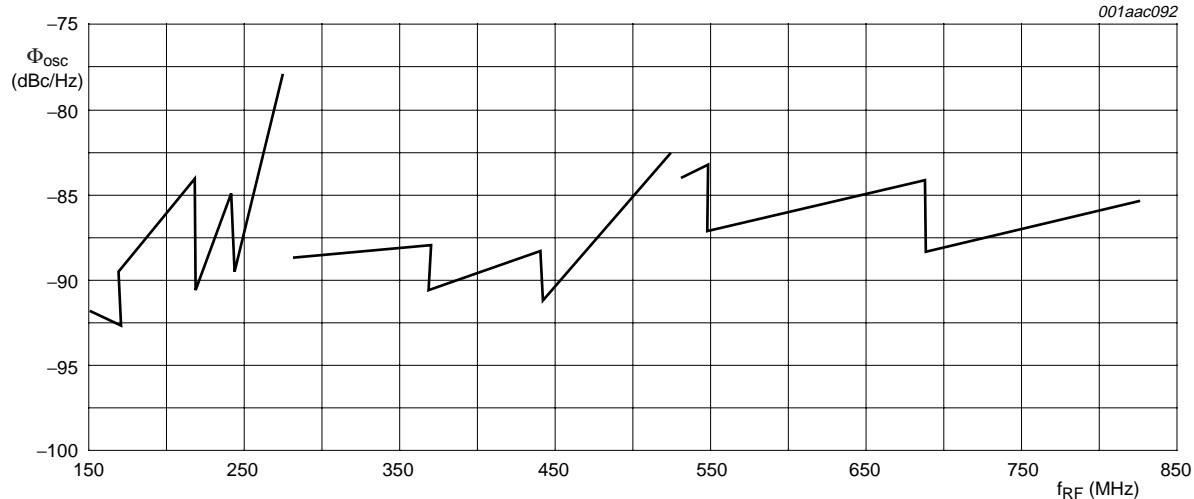


Fig 11. 1 kHz phase noise typical performance in hybrid application (Figure 29 and 30)

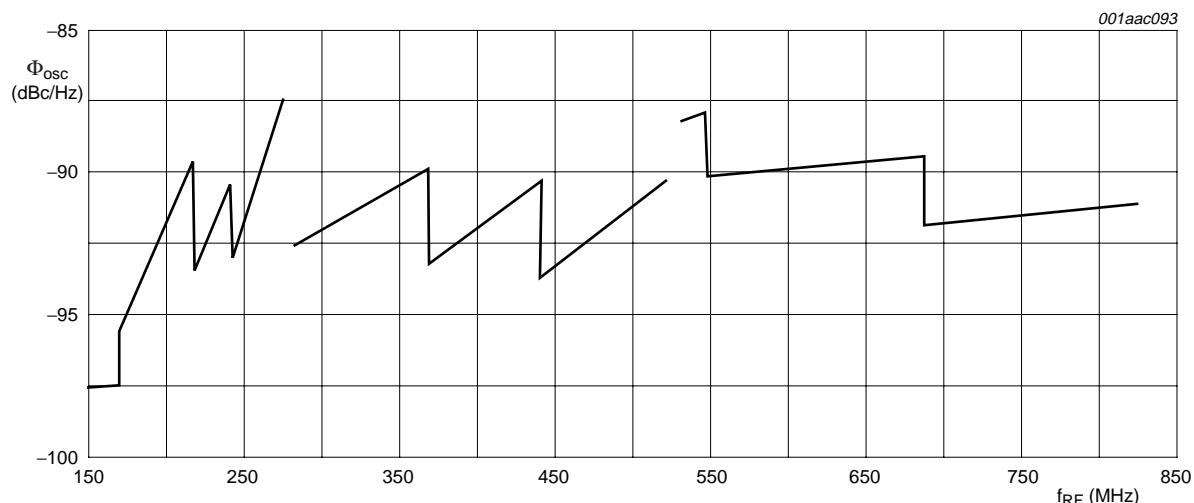


Fig 12. 10 kHz phase noise typical performance in hybrid application (Figure 29 and 30)

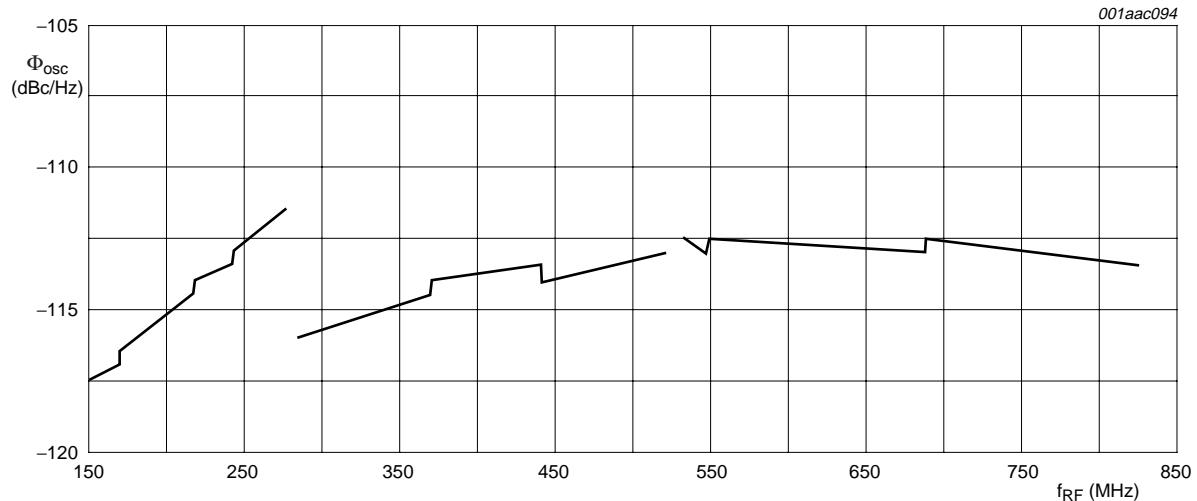
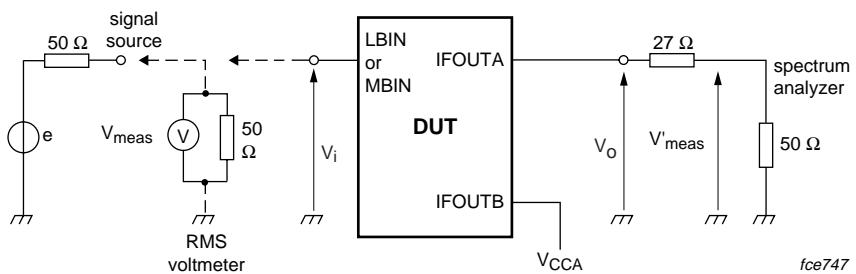
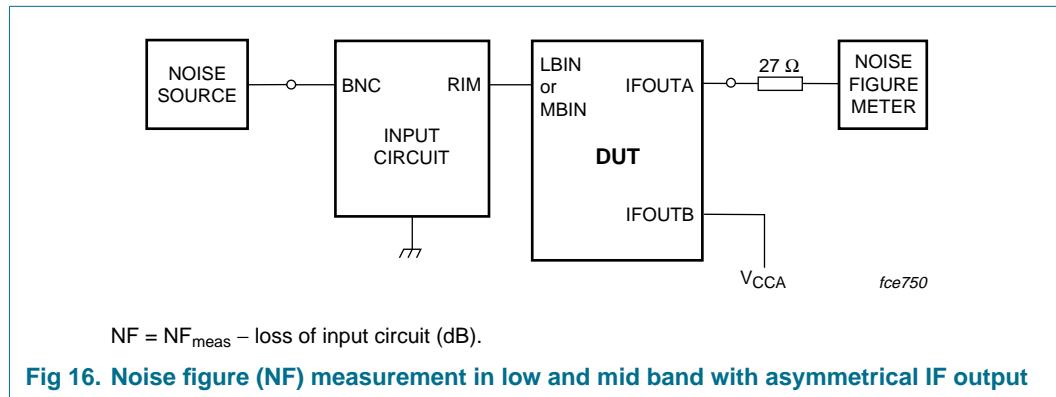
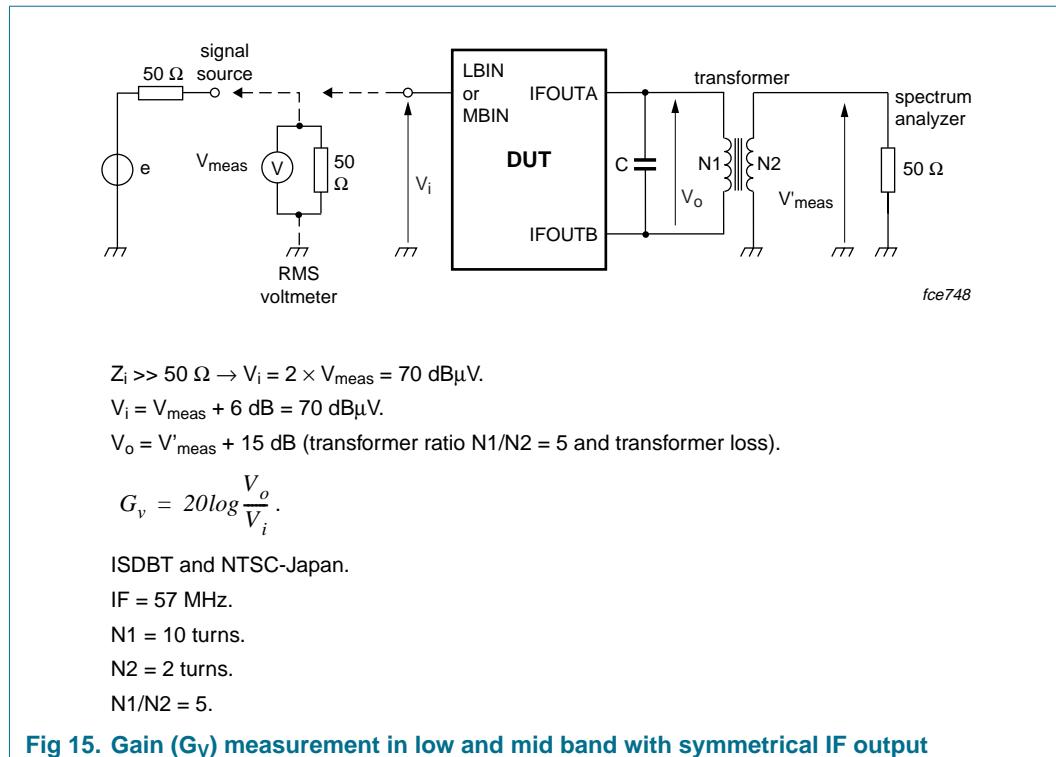
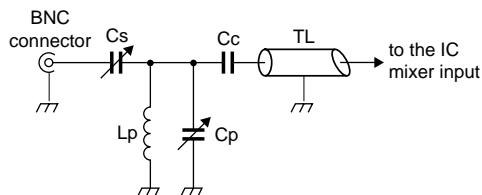



Fig 13. 100 kHz phase noise typical performance in hybrid application (Figure 29 and 30)

$$Z_i \gg 50 \Omega \rightarrow V_i = 2 \times V_{\text{meas}} = 70 \text{ dB}\mu\text{V}.$$

$$V_i = V_{\text{meas}} + 6 \text{ dB} = 70 \text{ dB}\mu\text{V}.$$

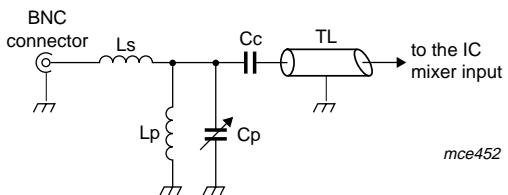


$$V_o = V'_{\text{meas}} + 3.75 \text{ dB}.$$


$$G_v = 20 \log \frac{V_o}{V_i}.$$

ISDBT and NTSC-Japan.

IF = 57 MHz.

Fig 14. Gain (G_v) measurement in low and mid band with asymmetrical IF output

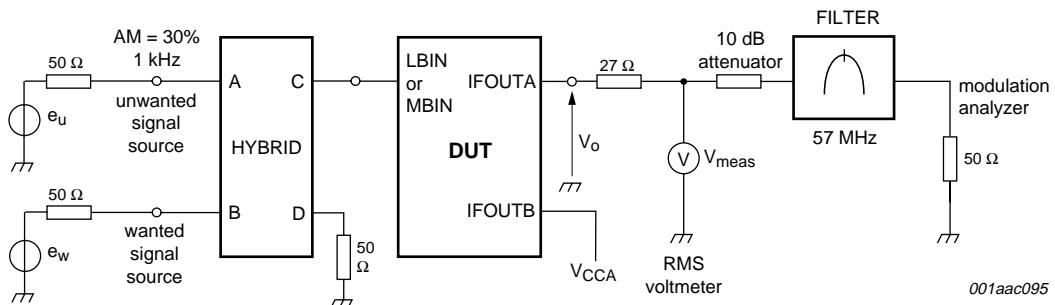


a. Schematic 1

For $f_{RF} = 150$ MHz

Loss = 0 dB.

 $C_s = 0.8$ pF to 8 pF trimmer. $C_p = 0.4$ pF to 2.5 pF trimmer. $L_p = 4$ turns, 4.5 mm, 0.4 mm wire air coil. $C_c = 4.7$ nF.TL: 50 Ω semi rigid cable length = 75 mm.


b. Schematic 2

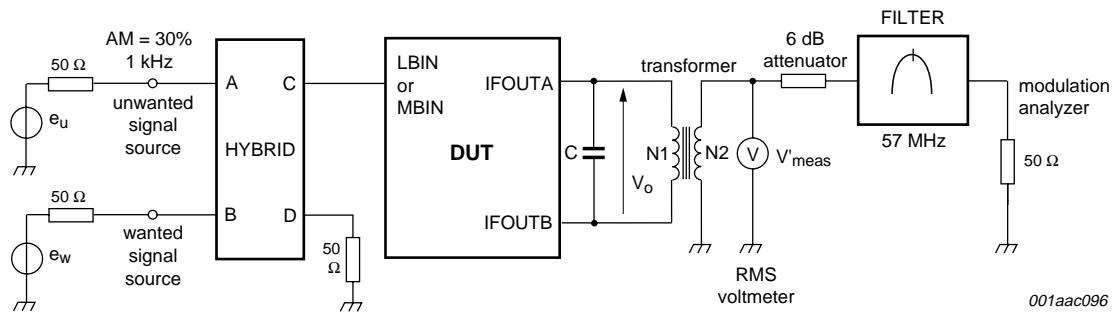
For $f_{RF} = 300$ MHz.

Loss = 0.5 dB.

 $L_s = 2$ turns, 1.5 mm, 0.4 mm wire air coil. $C_p = 8.2$ pF in parallel with a 0.8 pF to 8 pF trimmer. $L_p = 2$ turns, 1.5 mm, 0.4 mm wire air coil. $C_c = 4.7$ nF.TL: 50 Ω semi rigid cable length = 75 mm.

Fig 17. Input circuit for optimum noise figure measurement

$$V_o = V_{meas} + 3.75 \text{ dB.}$$


$$V'_{meas} = V_o - (\text{transformer ratio } N1/N2 = 5 \text{ and loss}).$$

Wanted signal source at f_{RFpix} is 80 dB μ V.Unwanted output signal at f_{snd} .

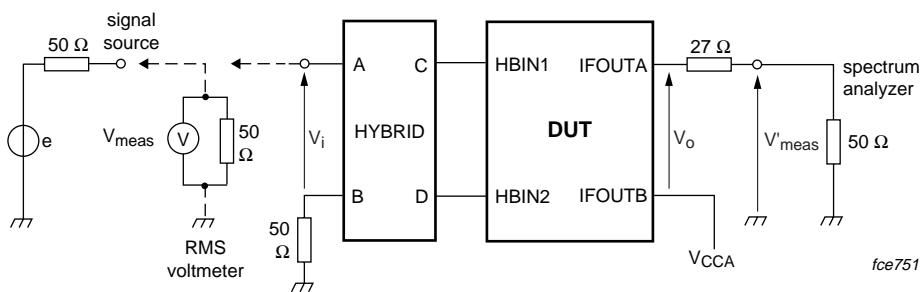
The level of unwanted signal is measured by causing 0.3 % AM modulation in the wanted signal.

 $N1 = 10$ turns. $N2 = 2$ turns. $N1/N2 = 5$.

Fig 18. Cross modulation measurement in low and mid band with asymmetrical IF output

$$V'_{\text{meas}} = V_o - (\text{transformer ratio } N1/N2 = 5 \text{ and loss}).$$

Wanted signal source at f_{RFpix} is 80 dB μ V.


The level of unwanted signal V_o at f_{snd} is measured by causing 0.3 % AM modulation in the wanted output signal.

N1 = 10 turns.

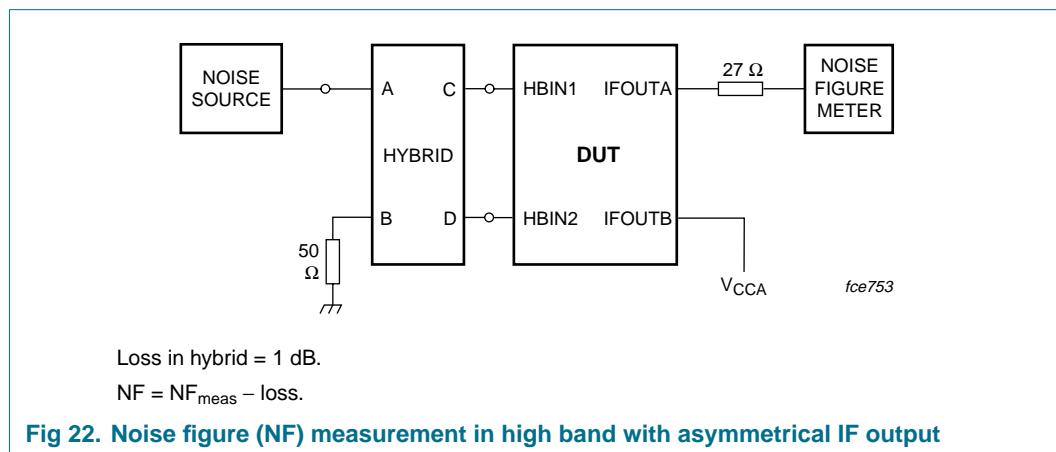
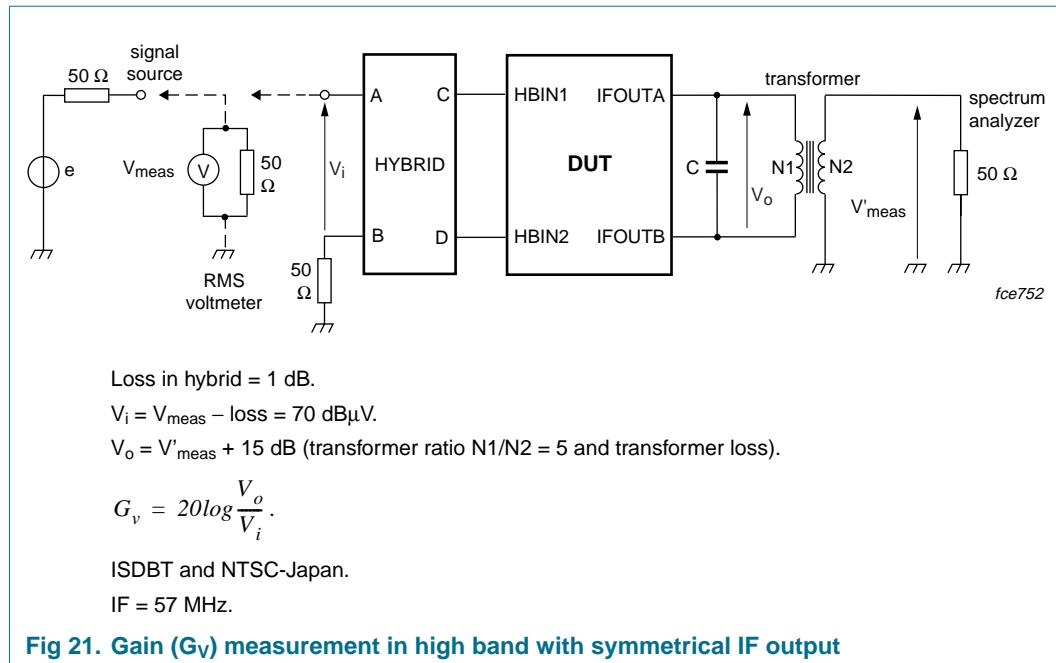
$$N_2 = 2 \text{ turns.}$$

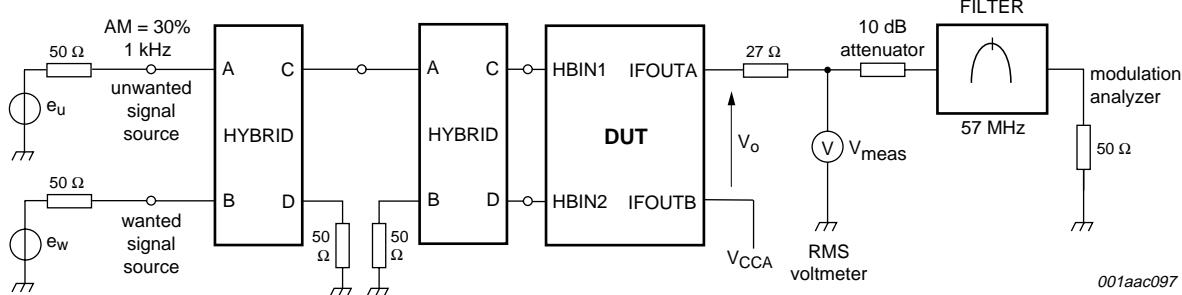
$$N_1/N_2 = 5.$$

Fig 19. Cross modulation measurement in low and mid band with symmetrical IF output

Loss in hybrid = 1 dB.

$$V_i = V_{\text{meas}} - \text{loss} = 70 \text{ dB}\mu\text{V}.$$

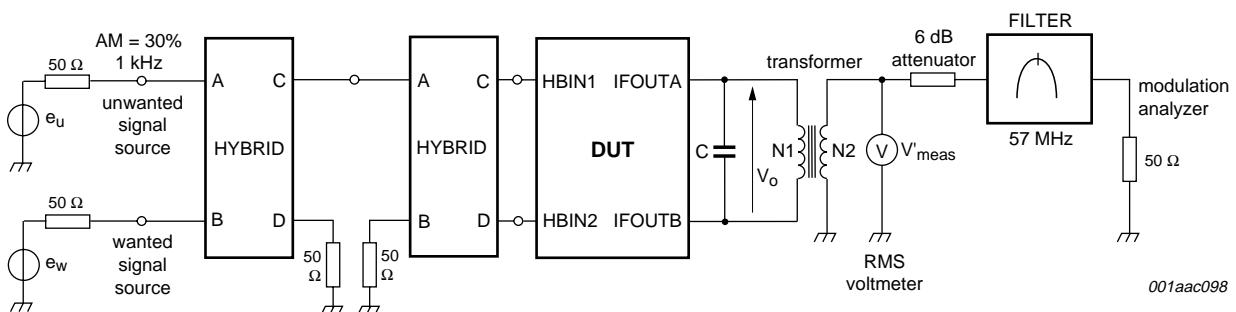


$$V_o = V'_{\text{meas}} + 3.75 \text{ dB.}$$


$$G_v = 20 \log \frac{V_o}{V_i}.$$

ISDBT and NTSC-Japan.

IF = 57 MHz.

Fig 20. Gain (G_y) measurement in high band with asymmetrical IF output


$$V_o = V_{meas} + 3.75 \text{ dB.}$$

Wanted signal source at f_{RFpix} is 70 dB μ V.

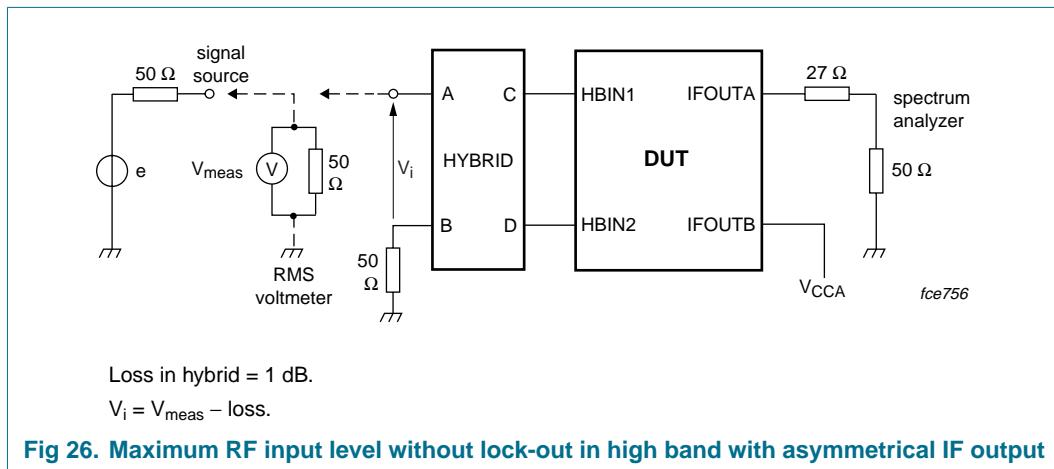
Unwanted output signal at f_{snd} .

The level of unwanted signal is measured by causing 0.3 % AM modulation in the wanted signal.

Fig 23. Cross modulation measurement in high band with asymmetrical IF output

$$V'_{meas} = V_o - (\text{transformer ratio } N1/N2 = 5 \text{ and loss}).$$

Wanted signal source at f_{RFpix} is 70 dB μ V.



The level of unwanted signal V_o at f_{snd} is measured by causing 0.3 % AM modulation in the wanted output signal.

N1 = 10 turns.

N2 = 2 turns.

N1/N2 = 5.

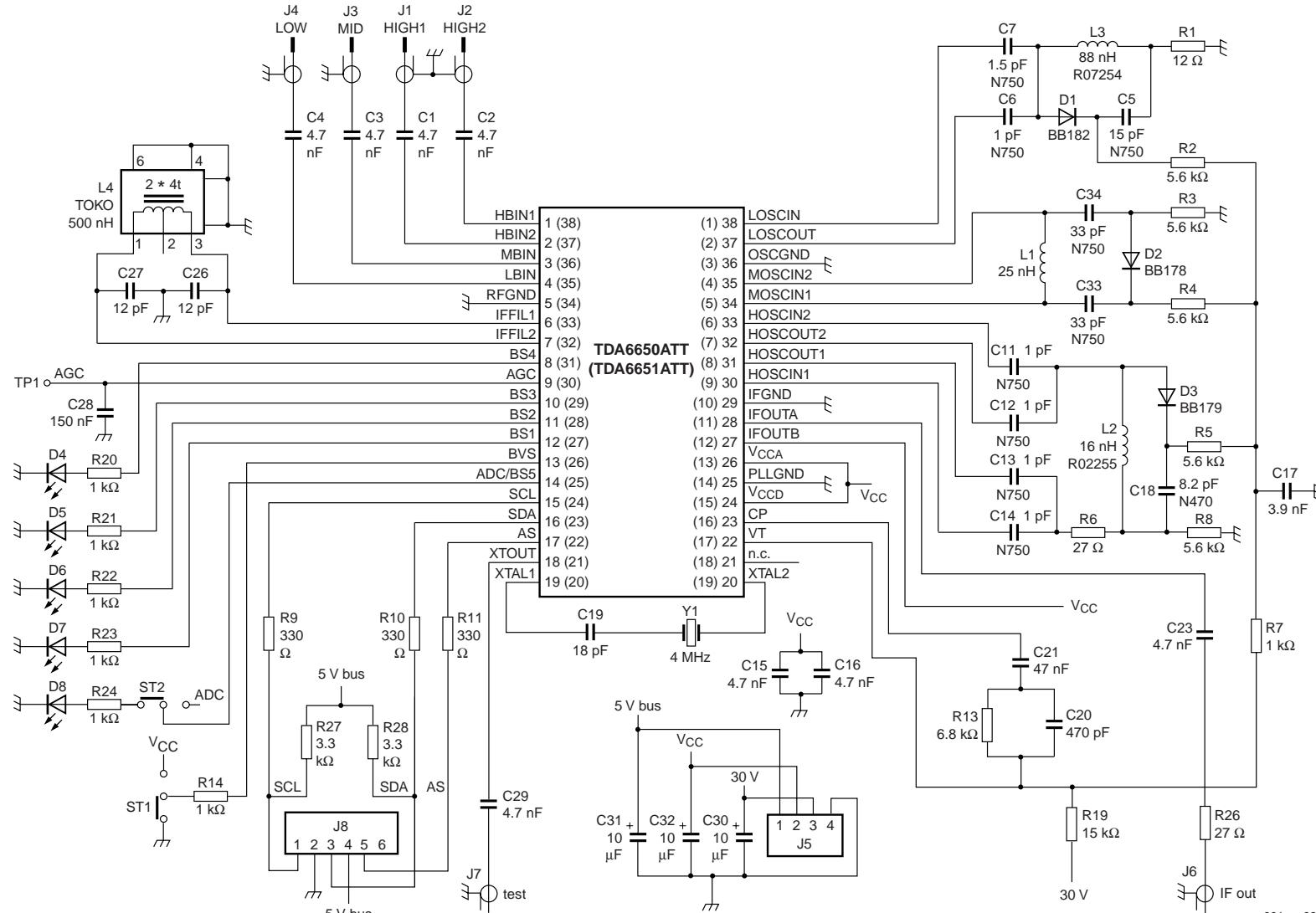
Fig 24. Cross modulation measurement in high band with symmetrical IF output

The TDA6650ATT; TDA6651ATT PLL loop stability is guaranteed in the configuration of the [Figure 27](#) to [Figure 30](#). In this configuration, the external supply source is 30 V minimum, the pull-up resistor, R19 is 15 k Ω and all of the local oscillators are aligned to operate at a maximum tuning voltage of 26 V. If the configuration is changed, there might be an impact on the loop stability.

For any other configurations, a stability analysis must be performed. The conventional PLL AC model (cf. SIMPATA Philips software) used for the stability analysis, is valid provided the external source (DC supply source or DC-to-DC converter) is able to deliver a minimum current that is equal to the charge pump current in use.

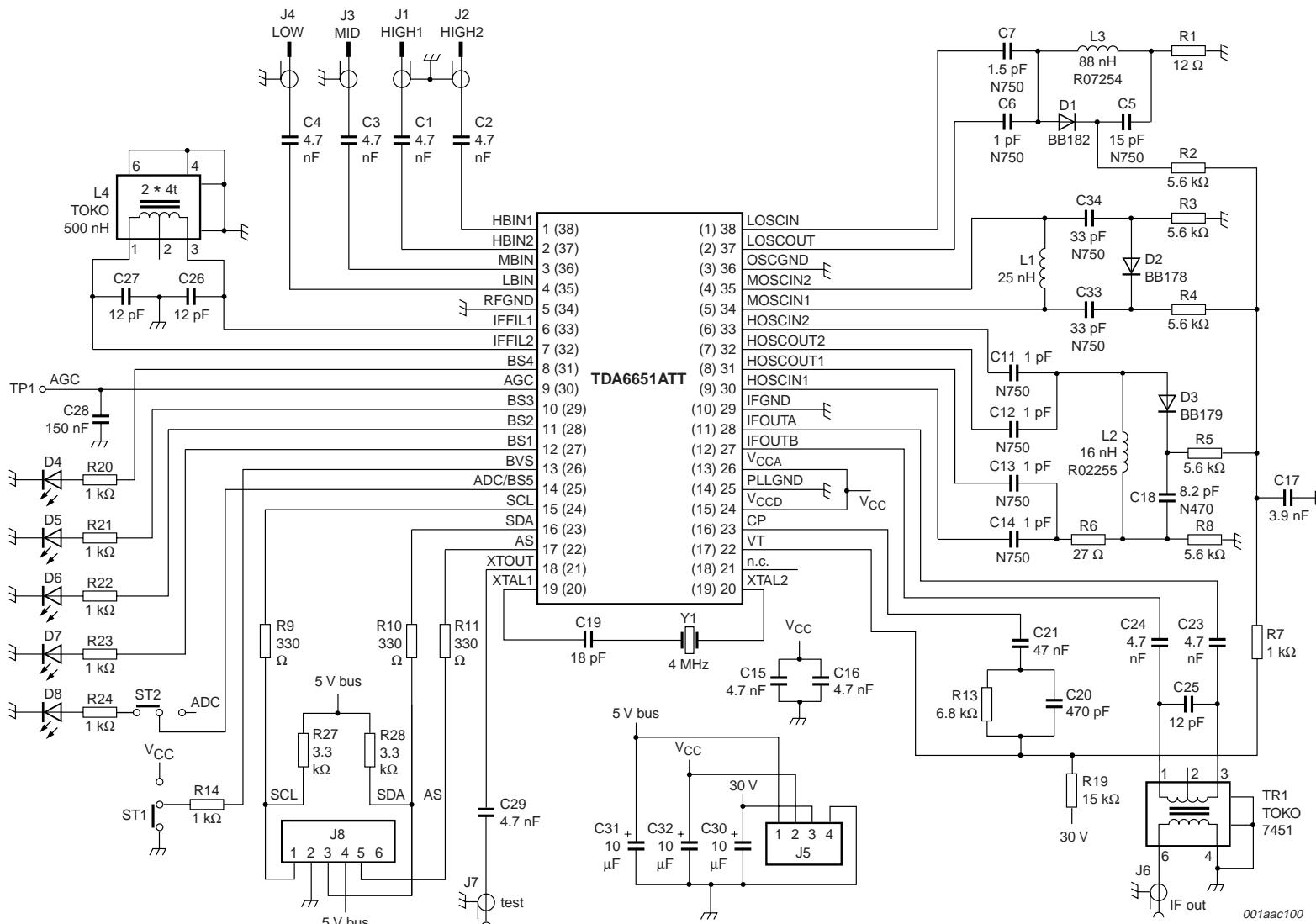
The delivered current can be simply calculated with the following formula:

$$I_{delivered} = \left(\frac{V_{DC} - V_T}{R_{pu}} \right) > I_{CP} \text{ where:}$$


$I_{delivered}$ is the delivered current.

V_{DC} is the supply source voltage or DC-to-DC converter output voltage.

V_T is the tuning voltage.


R_{pu} is the pull-up resistor between the DC supply source (or the DC-to-DC converter output) and the tuning line (R19 in [Figure 27](#) to [Figure 30](#)).

I_{CP} is the charge pump current in use.

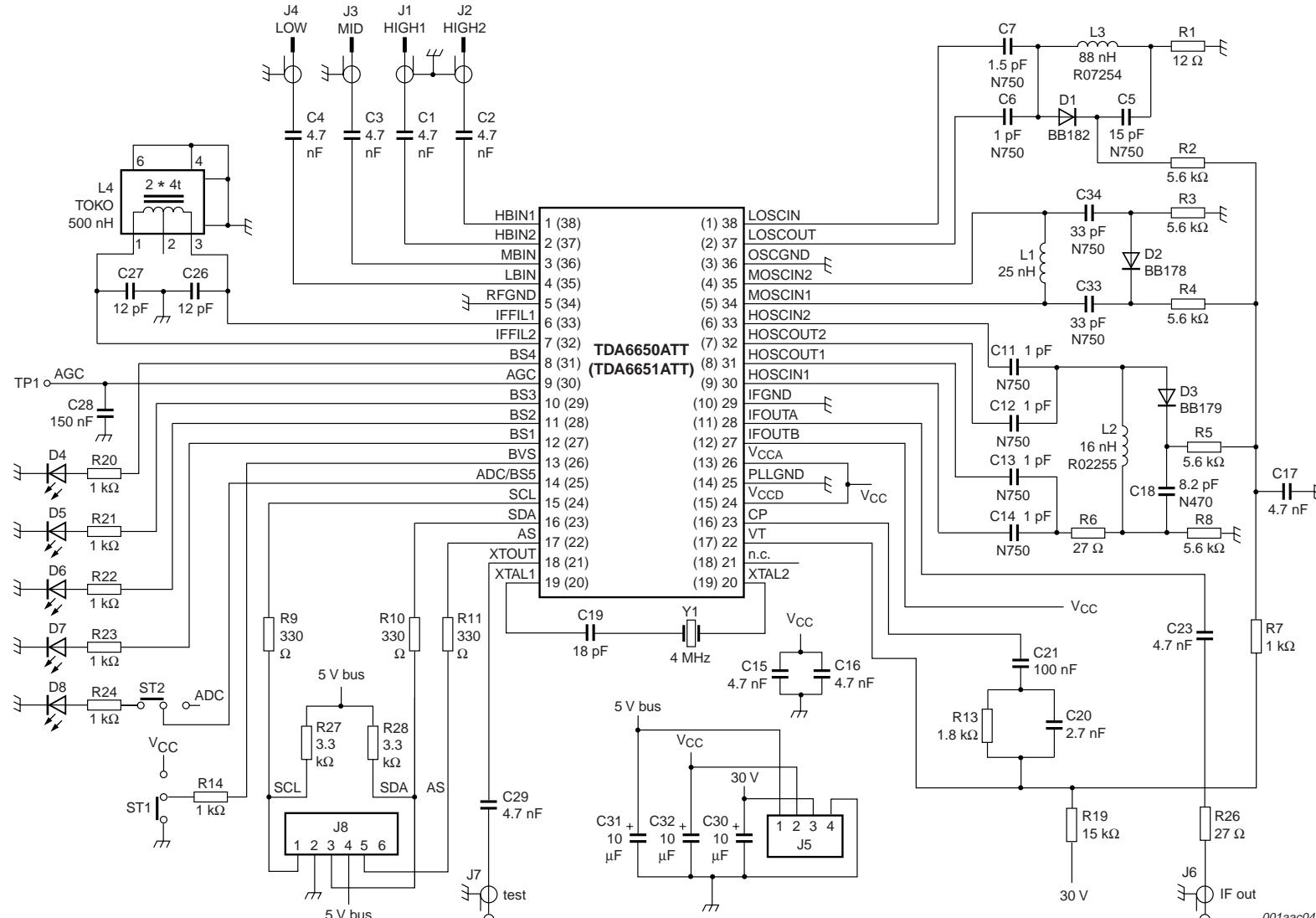

The pin numbers in parenthesis represent the TDA6651ATT.

Fig 27. Measurement circuit for digital application, with asymmetrical IF output and ISDB-T compliant loop filter

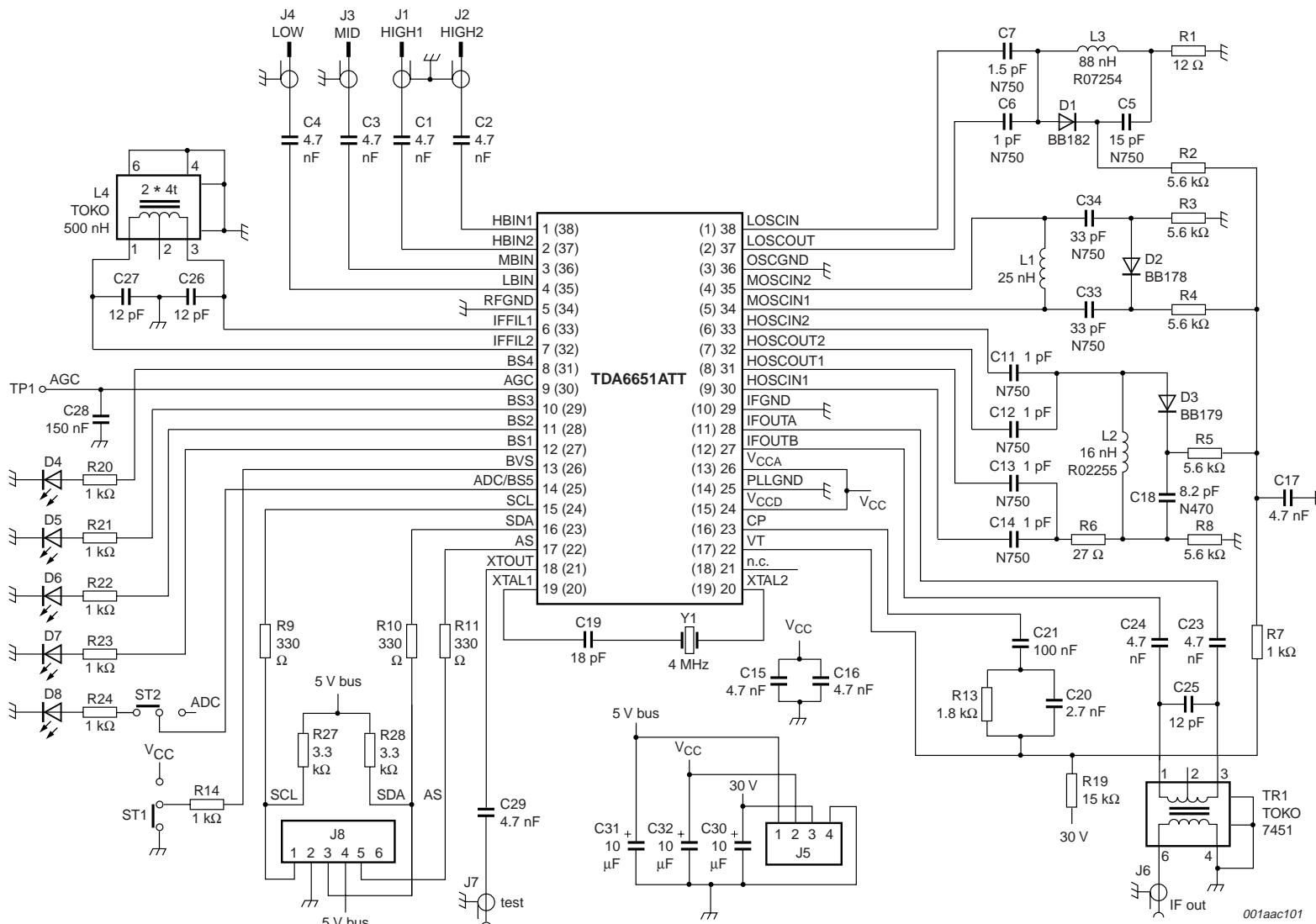

The pin numbers in parenthesis represent the TDA6651ATT.

Fig 28. Measurement circuit for digital application, with symmetrical IF output and ISDB-T compliant loop filter

The pin numbers in parenthesis represent the TDA6651ATT.

Fig 29. Measurement circuit for hybrid application, with asymmetrical IF output and loop filter for NTSC-Japan and ISDB-T standards

The pin numbers in parenthesis represent the TDA6651ATT.

Fig 30. Measurement circuit for hybrid application, with symmetrical IF output and loop filter for NTSC-Japan and ISDB-T standards

13. Application information

13.1 Tuning amplifier

The tuning amplifier is capable of driving the varicap voltage without an external transistor. The tuning voltage output must be connected to an external load of $15\text{ k}\Omega$ which is connected to the tuning voltage supply rail. The loop filter design depends on the oscillator characteristics and the selected reference frequency as well as the required PLL loop bandwidth.

Applications with the TDA6650ATT; TDA6651ATT have a large loop bandwidth, in the order of a few tens of kHz. The calculation of the loop filter elements has to be done for each application, it depends on the reference frequency and charge pump current. A simulation of the loop can easily be done using the SIMPATA software from Philips.

13.2 Crystal oscillator

The TDA6650ATT; TDA6651ATT needs to be used with a 4 MHz crystal in series with a capacitor with a typical value of 18 pF, connected between pin XTAL1 and pin XTAL2. Philips crystal 4322 143 04093 is recommended. When choosing a crystal, take care to select a crystal able to withstand the drive level of the TDA6650ATT; TDA6651ATT without suffering from accelerated ageing. For optimum performances, it is highly recommended to connect the 4 MHz crystal without any serial resistance.

The crystal oscillator of the TDA6650ATT; TDA6651ATT should not be driven (forced) from an external signal. Do not use the signal on pins XTAL1 or XTAL2, or the signal present on the crystal, to drive an external IC or for any other use as this may dramatically degrade the phase noise performance of the TDA6650ATT; TDA6651ATT.

13.3 Examples of I²C-bus program sequences

[Table 20](#) to [Table 25](#) show various sequences where:

S = START

A = acknowledge

P = STOP.

The following conditions apply:

LO frequency is 800 MHz

$f_{\text{comp}} = 142.86\text{ kHz}$

N = 5600

BS3 output port is on and all other ports are off: thus the high band is selected

Charge pump current $I_{\text{CP}} = 600\text{ }\mu\text{A}$

Normal mode, with XTOUT buffer on

$I_{\text{AGC}} = 220\text{ nA}$

AGC take-over point is set to 112 dB μ V (p-p)

Address selection is adjusted to make address C2 valid.

To fully program the device, either sequence of [Table 20](#) or [Table 21](#) can be used, while other arrangements of the bytes are also possible.

Table 20: Complete sequence 1

Start	Address byte	Divider byte 1	Divider byte 2	Control byte 1 [1]	Control byte 2	Control byte 1 [2]	Stop
S	C2	A	15	A	E0	A	C9 A E4 A 84 A P

[1] Control byte 1 with bit T/A = 1, to program test bits T2, T1 and T0 and reference divider ratio bits R2, R1 and R0.

[2] Control byte 1 with bit T/A = 0, to program AGC time constant bit ATC and AGC take-over point bits AL2, AL1 and AL0.

Table 21: Complete sequence 2

Start	Address byte	Control byte 1 [1]	Control byte 2	Divider byte 1	Divider byte 2	Control byte 1 [2]	Stop
S	C2	A	C9 A E4 A	15	A	E0 A	84 A P

[1] Control byte 1 with bit T/A = 1, to program test bits T2, T1 and T0 and reference divider ratio bits R2, R1 and R0.

[2] Control byte 1 with bit T/A = 0, to program AGC time constant bit ATC and AGC take-over point bits AL2, AL1 and AL0.

Table 22: Sequence to program only the main divider ratio

Start	Address byte	Divider byte 1	Divider byte 2	Stop
S	C2	A	15	A E0 A P

Table 23: Sequence to change the charge pump current, the ports and the test mode. If the reference divider ratio is changed, it is necessary to send the DB1 and DB2 bytes

Start	Address byte	Control byte 1 [1]	Control byte 2	Stop
S	C2	A	C9 A E4 A	P

[1] Control byte 1 with bit T/A = 1, to program test bits T2, T1 and T0 and reference divider ratio bits R2, R1 and R0.

Table 24: Sequence to change the test mode. If the reference divider ratio is changed, it is necessary to send the DB1 and DB2 bytes

Start	Address byte	Control byte 1 [1]	Stop
S	C2	A	C9 A P

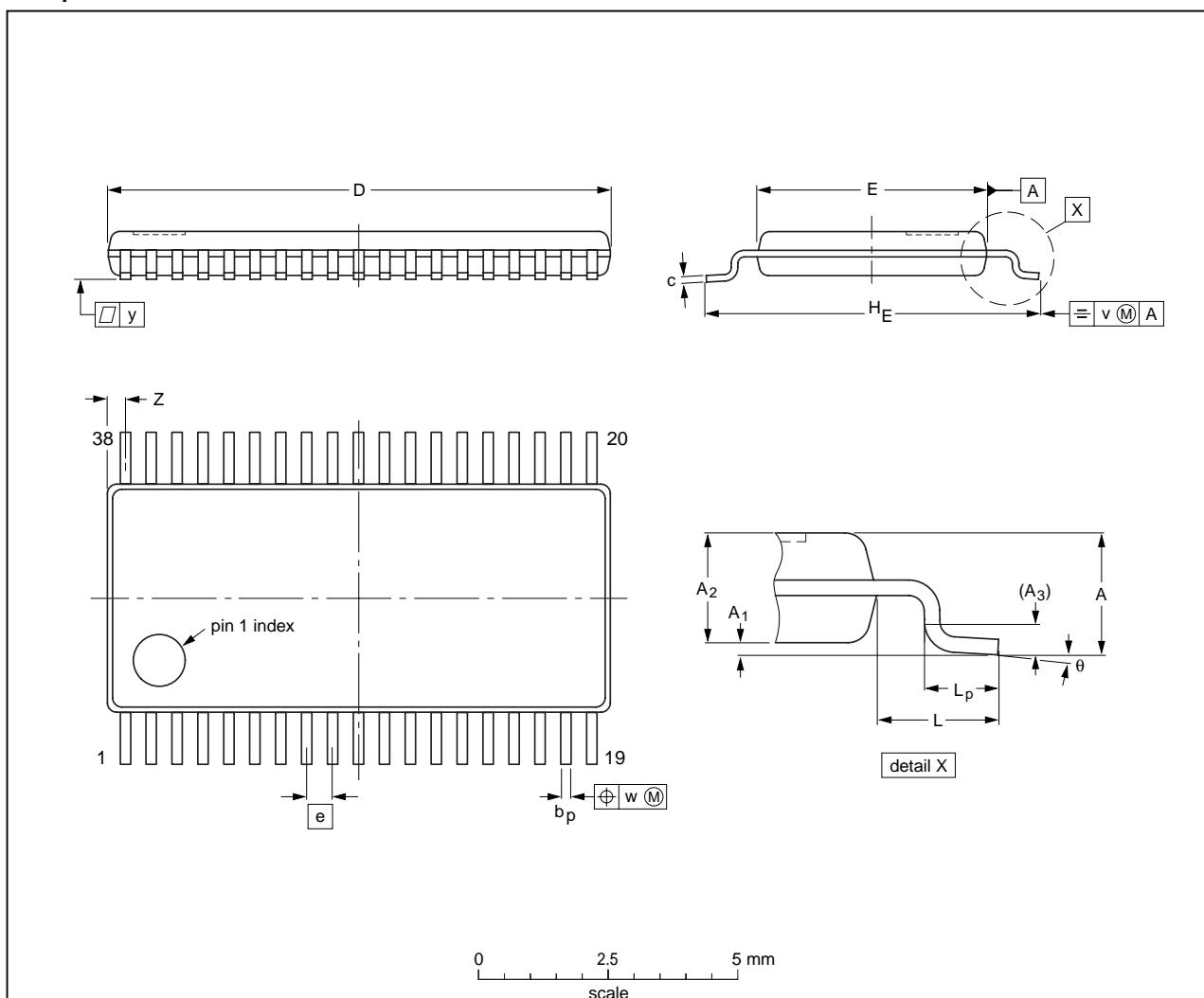
[1] Control byte 1 with bit T/A = 1, to program test bits T2, T1 and T0 and reference divider ratio bits R2, R1 and R0.

Table 25: Sequence to change the charge pump current, the ports and the AGC data

Start	Address byte	Control byte 1 [1]	Control byte 2	Stop
S	C2	A	82 A E4 A	P

[1] Control byte 1 with bit T/A = 0, to program AGC time constant bit ATC and AGC take-over point bits AL2, AL1 and AL0.

Table 26: Sequence to change only the AGC data


Start	Address byte	Control byte 1 [1]	Stop
S	C2	A	84

[1] Control byte 1 with bit T/A = 0, to program AGC time constant bit ATC and AGC take-over point bits AL2, AL1 and AL0.

14. Package outline

TSSOP38: plastic thin shrink small outline package; 38 leads; body width 4.4 mm; lead pitch 0.5 mm

SOT510-1

DIMENSIONS (mm are the original dimensions).

UNIT	A max.	A ₁	A ₂	A ₃	b _p	c	D ⁽¹⁾	E ⁽²⁾	e	H _E	L	L _p	v	w	y	z ⁽¹⁾	θ
mm	1.1 0.05	0.15 0.85	0.95 0.25	0.25 0.17	0.27 0.17	0.20 0.09	9.8 9.6	4.5 4.3	0.5	6.4	1	0.7 0.5	0.2	0.08	0.08	0.49 0.21	8° 0°

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT510-1						-98-09-16 03-02-18

Fig 31. Package outline SOT510-1 (TSSOP38)

15. Handling information

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be completely safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

16. Soldering

16.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *Data Handbook IC26; Integrated Circuit Packages* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

16.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 seconds and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste material. The top-surface temperature of the packages should preferably be kept:

- below 225 °C (SnPb process) or below 245 °C (Pb-free process)
 - for all BGA, HTSSON..T and SSOP..T packages
 - for packages with a thickness ≥ 2.5 mm
 - for packages with a thickness < 2.5 mm and a volume ≥ 350 mm³ so called thick/large packages.
- below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a thickness < 2.5 mm and a volume < 350 mm³ so called small/thin packages.

Moisture sensitivity precautions, as indicated on packing, must be respected at all times.

16.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is **preferred** to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis **must** be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

16.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 seconds to 5 seconds between 270 °C and 320 °C.

16.5 Package related soldering information

Table 27: Suitability of surface mount IC packages for wave and reflow soldering methods

Package [1]	Soldering method	
	Wave	Reflow [2]
BGA, HTSSON..T [3], LBGA, LFBGA, SQFP, SSOP..T [3], TFBGA, VFBGA, XSON	not suitable	suitable
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, HSQFP, HSSON, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable [4]	suitable
PLCC [5], SO, SOJ	suitable	suitable
LQFP, QFP, TQFP	not recommended [5] [6]	suitable
SSOP, TSSOP, VSO, VSSOP	not recommended [7]	suitable
CWQCCN..L [8], PMFP [9], WQCCN..L [8]	not suitable	not suitable

[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026); order a copy from your Philips Semiconductors sales office.

- [2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the *Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods*.
- [3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature exceeding $217\text{ }^{\circ}\text{C} \pm 10\text{ }^{\circ}\text{C}$ measured in the atmosphere of the reflow oven. The package body peak temperature must be kept as low as possible.
- [4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
- [5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- [6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- [7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
- [8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by using a hot bar soldering process. The appropriate soldering profile can be provided on request.
- [9] Hot bar soldering or manual soldering is suitable for PMFP packages.

17. Revision history

Table 28: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
TDA6650ATT_6651ATT_1	20041214	Product data sheet	-	9397 750 14179	-

18. Data sheet status

Level	Data sheet status ^[1]	Product status ^{[2][3]}	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL <http://www.semiconductors.philips.com>.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

19. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

20. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors

21. Licenses

Purchase of Philips I²C-bus components

Purchase of Philips I²C-bus components conveys a license under the Philips' I²C-bus patent to use the components in the I²C-bus system provided the system conforms to the I²C-bus specification defined by Koninklijke Philips Electronics N.V. This specification can be ordered using the code 9398 393 40011.

22. Contact information

For additional information, please visit: <http://www.semiconductors.philips.com>

For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

23. Contents

1	General description	1	22	Contact information	52
2	Features	2			
3	Applications	3			
3.1	Application summary	3			
4	Ordering information	3			
5	Block diagram	4			
6	Pinning information	5			
6.1	Pin description	5			
6.2	Pinning	6			
7	Functional description	6			
7.1	Mixer, oscillator and PLL (MOPLL) functions	6			
7.2	I ² C-bus voltage	7			
7.3	Phase noise, I ² C-bus traffic and crosstalk	7			
8	I²C-bus protocol	8			
8.1	Write mode; R/W = 0	8			
8.1.1	I ² C-bus address selection	10			
8.1.2	XTOUT output buffer and mode setting	10			
8.1.3	Step frequency setting	10			
8.1.4	AGC detector setting	11			
8.1.5	Charge pump current setting	11			
8.2	Read mode; R/W = 1	12			
8.3	Status at power-on reset	13			
9	Internal circuitry	14			
10	Limiting values	18			
11	Thermal characteristics	19			
12	Characteristics	20			
13	Application information	44			
13.1	Tuning amplifier	44			
13.2	Crystal oscillator	44			
13.3	Examples of I ² C-bus program sequences	44			
14	Package outline	47			
15	Handling information	48			
16	Soldering	48			
16.1	Introduction to soldering surface mount packages	48			
16.2	Reflow soldering	48			
16.3	Wave soldering	48			
16.4	Manual soldering	49			
16.5	Package related soldering information	49			
17	Revision history	51			
18	Data sheet status	52			
19	Definitions	52			
20	Disclaimers	52			
21	Licenses	52			

© Koninklijke Philips Electronics N.V. 2004

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 14 December 2004
Document number: 9397 750 14179

Published in The Netherlands

