Video signal switcher, 1×3-channel with clamped-input

BA7653AF/BA7653AFV

The BA7653AF/AFV is a video-signal switching IC that contains a three-channel clamped-input multiplexer. The inputs are sync-tip clamped (synchronous edge of the video input signals are aligned to the same voltage), and as the input impedance is extremely large, it is possible to use a small value for the clamp capacitor (the recommended capacitor is $0.01\mu F$ (FZ) ceramic).

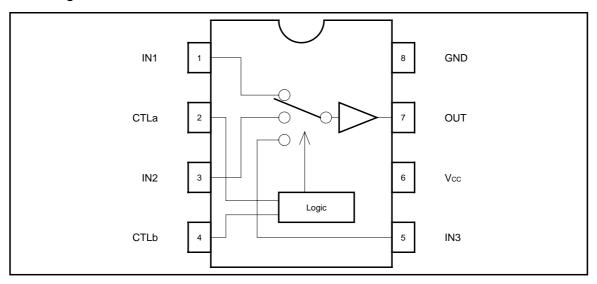
Applications

Video cassette recorders, television and camcorders

Features

- 1) Small clamp capacitors can be used (ceramic, 3000pF (Min.), $0.01\mu F$ (FS) (recommended)).
- 2) Low supply voltage operation possible. Supply voltage range is 3.7V to 7.7V.
- 3) Superimposition used for fast switching speed with low switching noise (70nsec.Typ.).
- 4) Low power consumption (when $V_{CC}=5V$, 25mW Typ.).
- 5) Wide dynamic range (3.1V_{P-P} Typ. for V_{CC}=5V).
- 6) Excellent frequency characteristics (10MHz, 0dB Typ.).
- 7) Low interchannel crosstalk (-70dB Typ.).
- 8) Voltage can be applied to the control pins even when V_{CC} is not applied.

● Absolute maximum ratings (Ta=25°C)


Parameter	Symbol	Limits	Unit
Applied voltage	Vcc	9	V
Power dissipation	Pd	500 ^{*1} / 350 ^{*2}	mW
Operating temperature	Topr	-25 to +75	°C
Storage temperature	Tstg	-55 to +125	°C

^{*1} When mounted on a 50mm × 50mm board, reduced by 5mW for each increase in Ta of 1°C over 25°C. (BA7653AF) *2 When mounted on a 50mm × 50mm board, reduced by 3.5mW for each increase in Ta of 1°C over 25°C. (BA7653AFV)

●Recommended operating conditions (Ta=25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	4.0 to 7.0	V

●Block diagram

●Pin descriptions

	-		
Pin No.	Pin name	Function	
1	IN1	Input 1	
2	CTLa	Control input a	
3	IN2	Input 2	
4	CTLb	Control input b	
5	IN3	Input 3	
6	Vcc	Supply voltage	
7	OUT	Output	
8	GND	GND	

●Control pin truth table

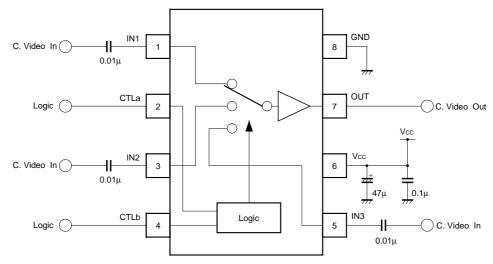
CTLa	CTLb	OUT
L	L	IN1
Н	L	IN2
L	Н	IN3
Н	Н	IN3

●Electrical characteristics (Unless otherwise noted, Ta=25°C, V_{CC}=5.0V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Operating voltage	Vcc	3.7	_	7.7	V	_
Supply current	Icc	2.7	5.0	8.2	mA	-
Maximum output level	Vom	2.6	3.1	_	V _{P-P}	f = 1kHz, THD = 1.0%
Voltage gain	G∨	-0.5	0	0.5	dB	f = 1MHz, V _{IN} = 1.0V _{P-P}
Interchannel crosstalk	Cta	_	-70	_	dB	f = 4.43MHz, Vin = 1.0V _{P-P}
Frequency characteristic	Gf	-3.0	0	1.0	dB	f = 10MHz / 1MHz, VIN = 1.0VP-P
CTL switching voltage	V _{TH} L	_	_	1.0		Vcc - CTL Threshold Level
	V _{TH} н	2.5	_	_	V	$V_{TH} = \frac{V_{CC} - V_F}{45} \times 20 \text{ (V)}$

●Guaranteed design parameters (Unless otherwise noted, Ta=25°C, Vcc=5.0V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Differential gain	DG	-	0	0.5	%	V _{IN} = 1.0V _{P-P} , standard staircase signal
Differential phase	DP	-	0.5	1.0	deg	V _{IN} = 1.0V _{P-P} , standard staircase signal



●Input / output circuit

Pin No.	Pin name	DC voltage (Vcc = 5V)	Input / output impedance	Equivalent circuit
1	IN 1	1.65V	10MΩ or more	Vcc > 100 50µА
2	CTLa	_		Vcc >
3	IN 2	1.65V	10MΩ or more	Vcc > 100 50μA
4	CTLb	_	_	Vcc >

Pin No.	Pin name	DC voltage (Vcc = 5V)	Input / output impedance	Equivalent circuit
5	IN 3	1.65V	10MΩ or more	Vcc > 100 50μA
6	Vcc	5.0V	_	Vcc O
7	OUT	0.95V	26Ω	Vcc > OUT
8	GND	0V		Vcc > GND O

Application examples

When superimposition is used

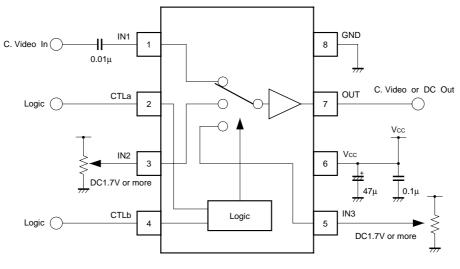
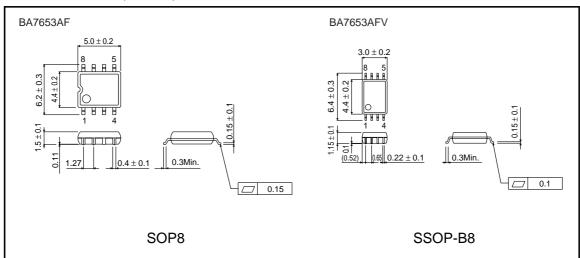



Fig. 1

Operation note

- (1) To ensure stable clamp operation, the output impedance of the previous stage connected to the inputs should be $1k\Omega$ or lower.
- (2) If large input clamp capacitors are used, the time constant of the circuit will mean that some time will be required until stable operation after power is applied. The value for the input clamp capacitors is $0.1\mu F$ Max.
- $(0.01\mu F(FZ)$ ceramic capacitor recommended).
- (3) The BA7653AF/BA7653AFV is a three-channel
- multiplexer, but two-channel operation is also possible. In this case, if the unused input is left open it will oscillate, but this will not effect the other inputs and cause problems. If this is a concern, ground the unused input via a capacitor, or connect it directly to $V_{\rm CC}$.
- (4) If control inputs are left open they will be unstable, set to H or L.
- (5) When using superimposition, the DC voltage directly applied to the inputs should be at least 1.7V.

●External dimensions (Unit : mm)

ROHM

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

