

HiRel L- and S-Band GaAs General Purpose Amplifier

- HiRel Discrete and Microwave Semiconductor
- Single- stage monolithic microwave IC (MMIC- amplifier)
- Application range: 100 MHZ to 3 GHz
- Gain: 9.5 dB typ. @ 1.8 GHz
- Low noise figure: 2.7 dB typ. @ 1.8 GHz
- Bandwidth: 3 GHz typ. @ -3 dB, VSWR < 2:1*
- Operating voltage range: 3 to 5.5 V
- Input and output matched to 50 Ω
- Individual current control with neg. gate bias
- Hermetically sealed ceramic package micro-x

CGY41

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Type	Marking	Pin Configuration				Package
CGY41	-	1=inVG	2=Vs	3=Out	4=Vs	MICRO-X

(ql) Testing level: P: Professional testing

H: High Rel quality

S: Space quality

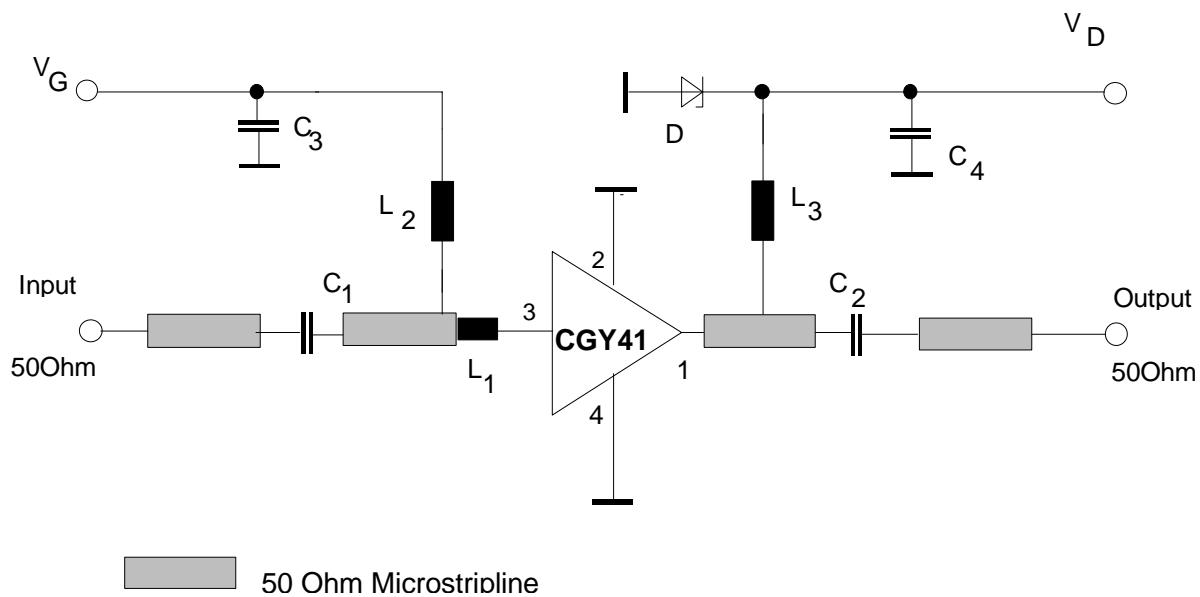
ES: ESA qualified

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-voltage	V_D	5.5	V
Drain-gate voltage	V_{DG}	9.5	
Gate-voltage	V_G	-4...0	
RF input power ¹⁾	$P_{RF,in}$	16	dBm
Channel temperature	T_{CH}	175	°C
Storage temperature	T_{stg}	-55...175	
Total power dissipation($T_S \leq 82^\circ\text{C}$) ²⁾	P_{tot}	440	mW

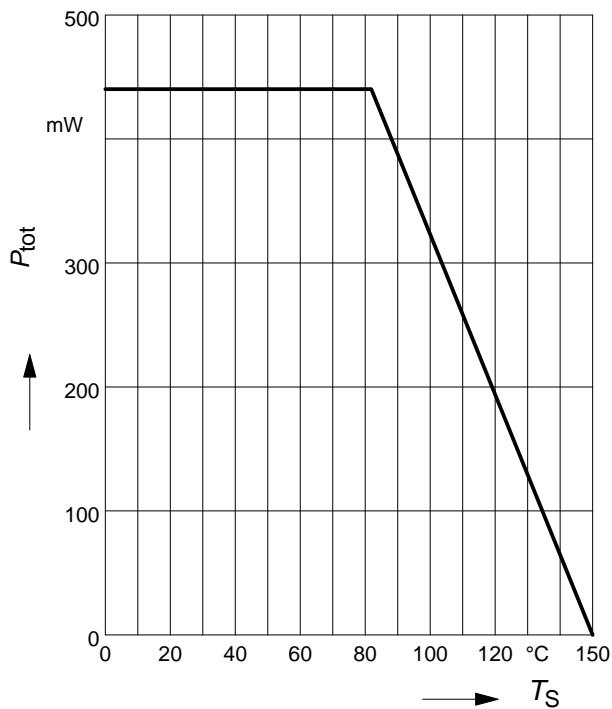
Thermal Resistance

Parameter	Symbol	Value	Unit
Channel- soldering point ²⁾	R_{thChs}	155	K/W

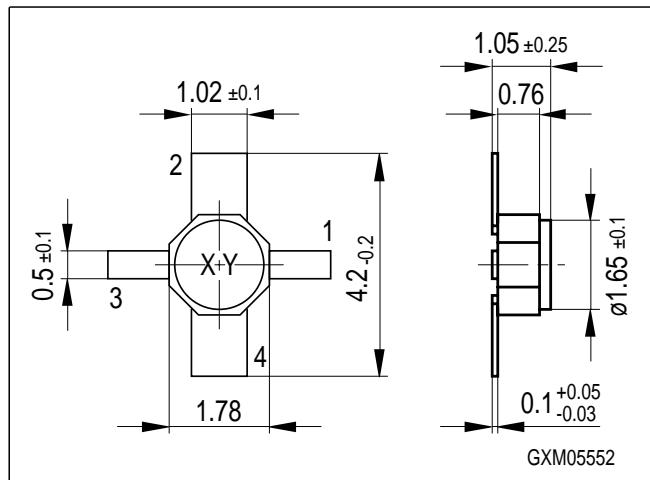

¹⁾ @ $V_D > 4.5\text{V}$ derating required.

²⁾ T_S is measured on the source lead at the soldering point to the PCB.

Notes: Exceeding any of the max. ratings may cause permanent damage to the device. Appropriate handling is required to protect the electrostatic sensitive MMIC against degradation due to excess voltage or current spikes. Proper ground connection of leads 2 and 4 (with min. inductance) is required to achieve the guaranteed RF performance, stable operating conditions and adequate cooling.


Electrical Characteristics

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Characteristics					
Drain current	I_D	40	60	80	mA
Power Gain $f = 200$ MHz	G	9.5	10.5	12	dB
$f = 1800$ MHz		8.5	9.5	11	
Gain flatness $f = 200$ to 1000 MHz	ΔG	-	0.4	-	
$f = 800$ to 1800 MHz		-	1.1	2	
Noise figure $f = 200$ to 1000 MHz	F	-	2.5	-	
$f = 800$ to 1800 MHz		-	2.7	4	
Input return loss $f = 200$ to 1000 MHz	RL_{IN}	-	13	-	
$f = 800$ to 1800 MHz		-	12	9.5	
Output return loss $f = 200$ to 1000 MHz	RL_{OUT}	-	12	-	
$f = 800$ to 1800 MHz		-	12	9.5	
Third order intercept point Two tone intermodulation test $f_1 = 806$ MHz, $f_2 = 810$ MHz, $P_0 = 10$ dbm	$IP3$	31	32	-	dBm
1dB gain compression $f = 200$ to 1800 MHz	P_{1dB}	-	18	-	
Gain control dynamic range, (per gate control voltage) $f = 200$ to 1000 MHz	G_{DYN}	-	30	-	
$f = 800$ to 1800 MHz		-	20	-	


Application Circuit (f= 800 to 1800 MHz)

C_1, C_2	Chip capacitors 100 pF
C_3, C_4	Chip capacitors 1 nF
L_1	For optimized input matching - discrete inductor: approx. 3nH, or - printed microstripline inductor: Z approx. 100 W, l_e approx. 5 mm
L_2, L_3	- discrete inductor: approx. 40 nH, as e.g. 5 turns 0.25 mm copper wire on nylon rod with M3-thread, or - printed microstripline inductor
D	Z diode 5.6 V (type BZW 22 C5 V 6)

Total power dissipation $P_{\text{tot}} = f(T_S)$

Mirco-X Package

Edition 2006-02-01

Published by

Infineon Technologies AG

81726 München, Germany

© Infineon Technologies AG 2007.

All Rights Reserved.

Attention please!

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.