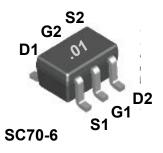


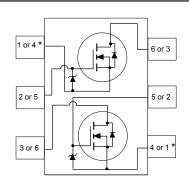
March 2009

FDG6301N_F085 Dual N-Channel, Digital FET

General Description

These dual N-Channel logic level enhancement mode field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. This device has been designed especially for low voltage applications as a replacement for bipolar digital transistors and small signal MOSFETs.


Features


25 V, 0.22 A continuous, 0.65 A peak.

$$\begin{aligned} \mathsf{R}_{\mathrm{DS(ON)}} &= 4~\Omega~@~\mathsf{V}_{\mathrm{GS}} = 4.5~\mathsf{V}, \\ \mathsf{R}_{\mathrm{DS(ON)}} &= 5~\Omega~@~\mathsf{V}_{\mathrm{GS}} = 2.7~\mathsf{V}. \end{aligned}$$

- Very low level gate drive requirements allowing direct operation in 3 V circuits (V_{GS(th)} < 1.5 V).
- Gate-Source Zener for ESD ruggedness (>6kV Human Body Model).
- Compact industry standard SC70-6 surface mount package.
- Qualified to AEC Q101
- RoHS Compliant

^{*}The pinouts are symmetrical; pin 1 and 4 are interchangeable.

Units inside the carrier can be of either orientation and will not affect the functionality of the device.

Absolute Maximum Ratings T. = 25°C unless otherwise noted

Symbol	Parameter	FDG6301N_F085	Units
V _{DSS}	Drain-Source Voltage	25	V
V_{GSS}	Gate-Source Voltage	8	V
I _D	Drain/Output Current - Continuous	0.22	A
	- Pulsed	0.65	
P_{D}	Maximum Power Dissipation (Note 1)	0.3	W
T_J, T_{STG}	Operating and Storage Temperature Range	-55 to 150	°C
ESD	Electrostatic Discharge Rating MIL-STD-883D Human Body Model(100 pF / 1500 Ω)	6.0	kV
THERMA	CHARACTERISTICS		·
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	415	°C/W

Symbol	Parameter	Conditions	Min	Тур	Max	Units
OFF CHAR	ACTERISTICS					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	25			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	I _D = 250 μA, Referenced to 25 °C		25		mV /°C
DSS	Zero Gate Voltage Drain Current	V _{DS} = 20 V, V _{GS} = 0 V			1	μA
		T _J = 55°C			10	μA
GSS	Gate - Body Leakage Current	V _{GS} = 8 V, V _{DS} = 0 V			100	nA
ON CHARAC	CTERISTICS (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	0.65	0.85	1.5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Temp.Coefficient	I _D = 250 μA, Referenced to 25 °C		-2.1		mV /°C
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 4.5 \text{ V}, I_D = 0.22 \text{ A}$		2.6	4	Ω
		T _J =125°C		5.3	7	
		$V_{GS} = 2.7 \text{ V}, I_D = 0.19 \text{ A}$		3.7	5	
D(ON)	On-State Drain Current	$V_{GS} = 4.5 \text{ V}, \ V_{DS} = 5 \text{ V}$	0.22			Α
9 _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_{D} = 0.22 \text{ A}$		0.2		S
DYNAMIC C	HARACTERISTICS					
Ciss	Input Capacitance	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz		9.5		pF
Coss	Output Capacitance			6		pF
C _{rss}	Reverse Transfer Capacitance			1.3		pF
SWITCHING	CHARACTERISTICS (Note 2)			_		
D(on)	Tum - On Delay Time	$V_{DD} = 5 \text{ V}, I_{D} = 0.5 \text{ A},$		5	10	ns
r	Turn - On Rise Time	$V_{GS} = 4.5 \text{ V}, R_{GEN} = 50 \Omega$		4.5	10	ns
D(off)	Turn - Off Delay Time			4	8	ns
f	Turn - Off Fall Time			3.2	7	ns
Q_g	Total Gate Charge	$V_{DS} = 5 \text{ V}, I_{D} = 0.22 \text{ A}, V_{GS} = 4.5 \text{ V}$		0.29	0.4	nC
Q_{gs}	Gate-Source Charge			0.12		nC
Q_{gd}	Gate-Drain Charge			0.03		nC
DRAIN-SOU	RCE DIODE CHARACTERISTICS AND MAXIM	UM RATINGS	1	T	1	
s	Maximum Continuous Source Current				0.25	Α
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 0.25 \text{ A} \text{ (Note 2)}$		8.0	1.2	V

^{1.} $R_{\rm p,h}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\rm p,c}$ is guaranteed by design while R_{gcA} is determined by the user's board design. $R_{gcA} = 415^{\circ}$ C/W on minimum pad mounting on FR-4 board in still air. 2. Pulse Test: Pulse Width $\leq 300 \mu$ s, Duty Cycle $\leq 2.0\%$.

Typical Electrical Characteristics

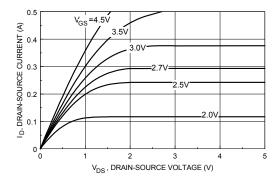


Figure 1. On-Region Characteristics.

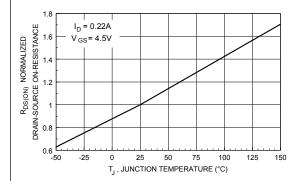


Figure 3. On-Resistance Variation with Temperature.

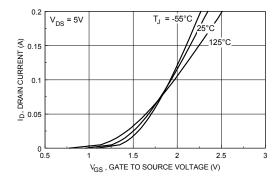


Figure 5. Transfer Characteristics.

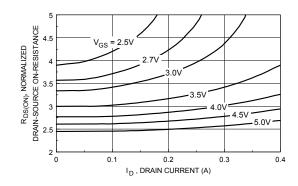


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

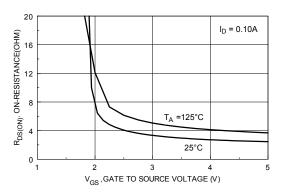


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

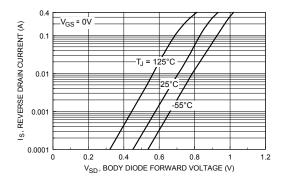


Figure 6. Body Diode Forward Voltage
Variation with Source Current
and Temperature.

Typical Electrical Characteristics (continued)

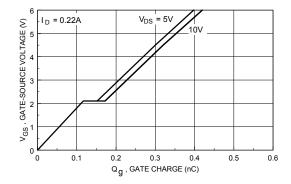


Figure 7. Gate Charge Characteristics.

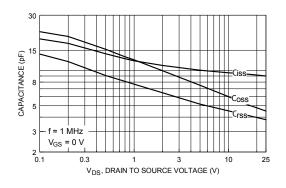


Figure 8. Capacitance Characteristics.

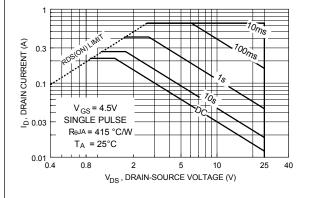


Figure 9. Maximum Safe Operating Area.

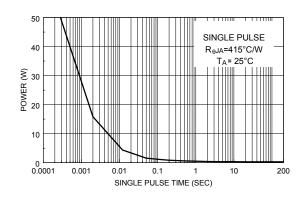


Figure 10. Single Pulse Maximum Power Dissipation.

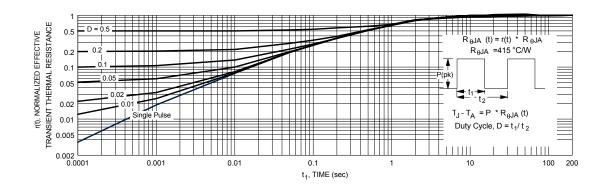


Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in note 1. Transient thermal response will change depending on the circuit board design.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it NowTM
CorePLUSTM
CorePOWERTM
CROSSVOLTTM
CTLTM

Current Transfer Logic™ EcoSPARK[®] EfficentMax™ EZSWITCH™ *

Fairchild®

Fairchild Semiconductor[®]
FACT Quiet Series[™]
FACT[®]

FACT®
FAST®
FastvCore™
FlashWriter® *
FPS™
F-PFS™

FRFET[®]
Global Power ResourceSM
Green FPS™

Green FPS™ e-Series™ GTO™

IntelliMAXTM
ISOPLANARTM
MEGABUCKTM
MICROCOUPLERTM
MicroFETTM
MicroPakTM
MillerDriveTM
MotionMaxTM
Motion-SPMTM
OPTOLOGIC®

PDP SPMTM
Power-SPMTM
PowerTrench[®]
PowerXSTM

OPTOPLANAR®

Programmable Active Droop™

QFET[®]
QS[™]
Quiet Series[™]
RapidConfigure[™]

™
Saving our world, 1mW /W /kW at a time™
SmartMax™
SMART START™

SPM®
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS™
SyncFET™

SYSTEM ®
GENERAL

The Power Franchise®

TinyBuckTM
TinyBuckTM
TinyBuckTM
TinyLogic[®]
TinyPOPTOTM
TinyPOWerTM
TinyPWMTM
TinyPWireTM
TriFault DetectTM
TRUECURRENT^{TM*}
µSerDesTM

SerDes*
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain life,
 and (c) whose failure to perform when properly used in accordance with
 instructions for use provided in the labeling, can be reasonably
 expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I39