

CMOS, ± 5 V/+5 V, 4 Ω , Single SPDT Switch

ADG619-EP

FEATURES

14 Ω (maximum) on resistance 1.4 Ω (maximum) on-resistance flatness 2.7 V to 5.5 V single supply ±2.7 V to ±5.5 V dual supply **Rail-to-rail operation** 8-lead SOT-23 Typical power consumption (<0.1 µW) TTL-/CMOS-compatible inputs Supports defense and aerospace applications (AQEC standard) Military temperature range: -55°C to +125°C Controlled manufacturing baseline One assembly and test site One fabrication site **Enhanced product change notification** Qualification data available on request

APPLICATIONS

Automatic test equipment Power routing Communication systems Data acquisition systems Sample-and-hold systems Avionics Relay replacement Battery-powered systems

GENERAL DESCRIPTION

The ADG619-EP is a monolithic, CMOS single-pole double-throw (SPDT) switch.

The ADG619-EP offers a low on resistance of 4 Ω , which is matched to within 0.7 Ω between channels. These switches also provide low power dissipation, yet result in high switching speeds. The ADG619-EP exhibits break-before-make switching action, thus preventing momentary shorting when switching channels.

The ADG619-EP is available in an 8-lead SOT-23 package.

Additional application and technical information can be found in the ADG619 data sheet.

FUNCTIONAL BLOCK DIAGRAM

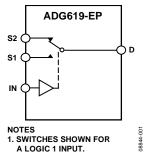


Figure 1.

PRODUCT HIGHLIGHTS

- 1. Low on resistance (R_{ON}): 4 Ω typical.
- 2. Dual ± 2.7 V to ± 5.5 V or single 2.7 V to 5.5 V supplies.
- 3. Low power dissipation.
- 4. Fast t_{ON}/t_{OFF} .
- 5. Tiny, 8-lead SOT-23 package.

TABLE OF CONTENTS

Features 1	Single Supply	4
Applications1	Absolute Maximum Ratings	5
Functional Block Diagram1	ESD Caution	5
General Description1	Pin Configurations and Function Descriptions	6
Product Highlights1	Typical Performance Characteristics	
Revision History2	Test Circuits	8
Specifications	Outline Dimensions	10
Dual Supply3	Ordering Guide	10
· · ·	e e e e e e e e e e e e e e e e e e e	

REVISION HISTORY

11/10—Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = +5 V ± 10%, V_{SS} = -5 V ± 10%, GND = 0 V. All specifications -55°C to +125°C, unless otherwise noted.

Table 1.

Parameter	+25°C	−55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V_{SS} to V_{DD}	V	$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$
On Resistance (R _{ON})	4		Ωtyp	$V_{s} = \pm 4.5 \text{ V}, I_{DS} = -10 \text{ mA}; \text{ see Figure 9}$
	6.5	10	Ωmax	
R_{ON} Match Between Channels (ΔR_{ON})	0.7		Ωtyp	$V_s = \pm 4.5 \text{ V}, I_{DS} = -10 \text{ mA}$
	1.1	1.45	Ωmax	
On-Resistance Flatness (R _{FLAT (ON)})	0.7		Ωtyp	$V_{S} = \pm 3.3 \text{ V, } I_{DS} = -10 \text{ mA}$
	1.35	1.6	Ω max	
LEAKAGE CURRENTS				$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
Source Off Leakage, I _s (Off)	±0.01		nA typ	$V_{s} = \pm 4.5 \text{ V}, V_{D} = \mp 4.5 \text{ V}; \text{ see Figure 10}$
	±0.25	±3	nA max	
Channel On Leakage, I _D , I _S (On)	±0.01		nA typ	$V_{s} = V_{D} = \pm 4.5 \text{ V}$; see Figure 11
ייין אַר ישי אַר פּ	±0.25	±25	nA max	,,
DIGITAL INPUTS		-	1	
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INI}		0.8	V max	
Input Current, I _{INI} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INI}$ or V_{INH}
I 7 INL - INTI		±0.1	μA max	IN INC - INFI
Digital Input Capacitance, C _{IN}	2		pF typ	
DYNAMIC CHARACTERISTICS ¹			' ''	
t _{on}	80		ns typ	$R_1 = 300 \Omega, C_1 = 35 pF$
ON	120	215	ns max	$V_s = 3.3 \text{ V}$; see Figure 12
t _{off}	45		ns typ	$R_1 = 300 \Omega, C_1 = 35 pF$
GIT	75	105	ns max	V _s = 3.3 V; see Figure 12
Break-Before-Make Time Delay, t _{BBM}	40		ns typ	$R_1 = 300 \Omega$, $C_1 = 35 pF$
, ppivi		10	ns min	$V_{S1} = V_{S2} = 3.3 \text{ V}$; see Figure 13
Charge Injection	110		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; \text{ see Figure 14}$
Off Isolation	-67		dB typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$, $C_2 = 1 MHz$; see Figure 15
Channel-to-Channel Crosstalk	-67		dB typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$, $f = 1 MHz$; see Figure 16
Bandwidth –3 dB	190		MHz typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$; see Figure 17
C _s (Off)	25		pF typ	f = 1 MHz
C_{D} , C_{S} (On)	95		pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
I _{DD}	0.001		μA typ	Digital inputs = 0 V or 5.5 V
		1.0	μA max	
I _{ss}	0.001		μA typ	Digital inputs = 0 V or 5.5 V
		1.0	μA max	

¹ Guaranteed by design, not subject to production test.

SINGLE SUPPLY

 V_{DD} = 5 V ± 10%, V_{SS} = 0 V, GND = 0 V. All specifications –55°C to +125°C, unless otherwise noted.

Table 2.

Parameter	+25°C	−55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 V to V _{DD}	٧	$V_{DD} = 4.5 \text{ V}, V_{SS} = 0 \text{ V}$
On Resistance (R _{ON})	7		Ωtyp	$V_S = 0 \text{ V to } 4.5 \text{ V, } I_{DS} = -10 \text{ mA; see Figure 9}$
	10	14	Ω max	
R_{ON} Match Between Channels (ΔR_{ON})	0.8		Ωtyp	$V_S = 0 \text{ V to } 4.5 \text{ V, } I_{DS} = -10 \text{ mA}$
5.1	1.1	1.4	Ω max	
On-Resistance Flatness (R _{FLAT (ON)})	0.5		Ωtyp	$V_S = 1.5 \text{ V to } 3.3 \text{ V, } I_{DS} = -10 \text{ mA}$
, ,		1.4	Ω max	
LEAKAGE CURRENTS				$V_{DD} = 5.5 \text{ V}$
Source Off Leakage, I _s (Off)	±0.01		nA typ	$V_s = 1 \text{ V}/4.5 \text{ V}, V_D = 4.5 \text{ V}/1 \text{ V}; \text{ see Figure } 10$
2 3	±0.25	±3	nA max	
Channel On Leakage, I _D , I _s (On)	±0.01		nA typ	$V_{s} = V_{D} = 1 \text{ V/4.5 V}$; see Figure 11
	±0.25	±25	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INI}		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
· INE INIT		±0.1	μA max	IIV IIVE IIVII
Digital Input Capacitance, C _{IN}	2		pF typ	
DYNAMIC CHARACTERISTICS ¹				
t _{on}	120		ns typ	$R_1 = 300 \Omega$, $C_1 = 35 pF$
ON	220	390	ns max	V _s = 3.3 V; see Figure 12
t _{OFF}	50		ns typ	$R_1 = 300 \Omega$, $C_1 = 35 pF$
OH	75	135	ns max	V _s = 3.3 V; see Figure 12
Break-Before-Make Time Delay, t _{BBM}	70		ns typ	$R_1 = 300 \Omega$, $C_1 = 35 pF$
> DDIM		10	ns min	$V_{S1} = V_{S2} = 3.3 \text{ V}$; see Figure 13
Charge Injection	6		pC typ	$V_s = 0 \text{ V}, R_s = 0 \Omega, C_1 = 1 \text{ nF}; \text{ see Figure 14}$
Off Isolation	-67		dB typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$, $C_2 = 1 MHz$; see Figure 15
Channel-to-Channel Crosstalk	-67		dB typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$, $C_2 = 1 MHz$; see Figure 16
Bandwidth –3 dB	190		MHz typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$; see Figure 17
C _s (OFF)	25		pF typ	f = 1 MHz
$C_{\rm D}$, $C_{\rm S}$ (ON)	95		pF typ	f = 1 MHz
POWER REQUIREMENTS			† · · · ·	$V_{DD} = 5.5 \text{ V}$
I _{DD}	0.001		μA typ	Digital inputs = 0 V or 5.5 V
		1.0	μA max	

 $^{^{\}rm 1}\,\mbox{Guaranteed}$ by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

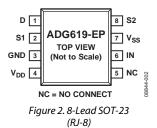
 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Table 3.	
Parameter	Rating
V_{DD} to V_{SS}	13 V
V _{DD} to GND	−0.3 V to +6.5 V
V_{SS} to GND	+0.3 V to −6.5 V
Analog Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$
Digital Inputs ¹	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V or } 30 \text{ mA}$
	(whichever occurs first)
Peak Current, S or D	100 mA (pulsed at 1 ms,
	10% duty cycle maximum)
Continuous Current, S or D	50 mA
Operating Temperature Range	−55°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
Thermal impedance	
Θ_{JA}	229.6°C/W
$\theta_{\sf JC}$	91.99°C/W
Lead Soldering	
Reflow, Peak Temperature	260(+0/-5)°C
Time at Peak Temperature	20 sec to 40 sec

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Only one absolute maximum rating may be applied at a time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device.Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 4. Pin Function Descriptions

1 WO 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W				
Pin No.	Mnemonic	Description		
1	D	Drain Terminal. Can be an input or output.		
2	S1	Source Terminal. Can be an input or output.		
3	GND	Ground (0 V) Reference.		
4	V_{DD}	Most Positive Power Supply.		
5	NC	No Connect. Not internally connected.		
6	IN	Logic Control Input.		
7	V _{SS}	Most Negative Power Supply. This pin is only used in dual-supply applications and should be tied to ground in single-supply applications.		
8	S2	Source Terminal. Can be an input or output.		

Table 5. Truth Table for the ADG619-EP

IN	Switch S1	Switch S2
0	On	Off
1	Off	On

TYPICAL PERFORMANCE CHARACTERISTICS

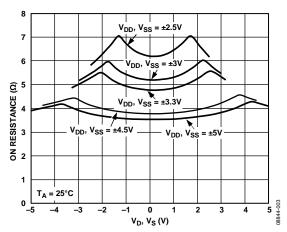


Figure 3. On Resistance vs. V_D , V_S (Dual Supply)

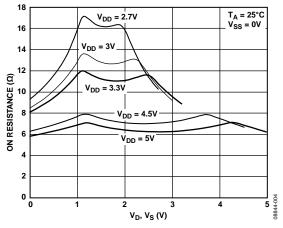


Figure 4. On Resistance vs. V_D , V_S (Single Supply)

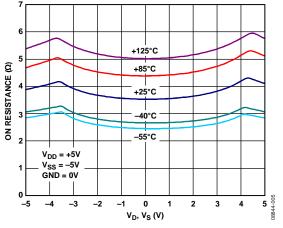


Figure 5. On Resistance vs. V_D , V_S for Different Temperatures (Dual Supply)

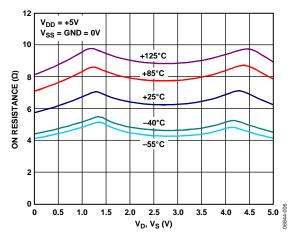


Figure 6. On Resistance vs. V_D , V_S for Different Temperatures (Single Supply)

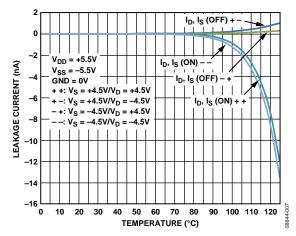


Figure 7. Leakage Currents vs. Temperature (Dual Supply)

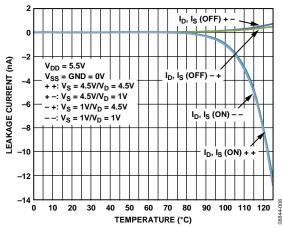


Figure 8. Leakage Currents vs. Temperature (Single Supply)

TEST CIRCUITS

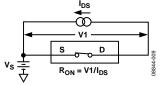


Figure 9. On Resistance

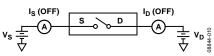


Figure 10. Off Leakage

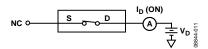


Figure 11. On Leakage

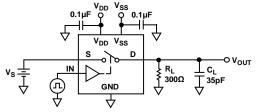
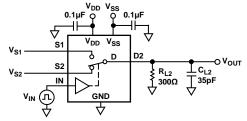



Figure 12. Switching Times

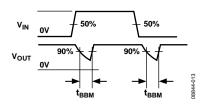


Figure 13. Break-Before-Make Time Delay, t_{BBM}

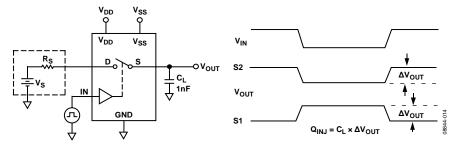


Figure 14. Charge Injection

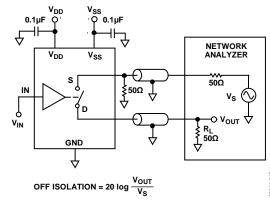


Figure 15. Off Isolation

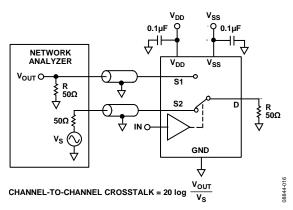


Figure 16. Channel-to-Channel Crosstalk

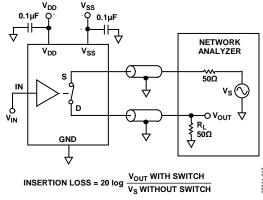


Figure 17. Bandwidth

OUTLINE DIMENSIONS

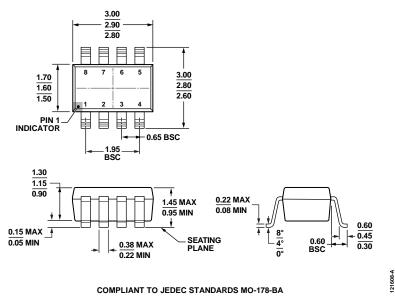


Figure 18. 8-Lead Small Outline Transistor Package [SOT-23] (RJ-8) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding ²
ADG619SRJZ-EP-RL7	−55°C to +125°C	8-Lead Small Outline Transistor Package [SOT-23]	RJ-8	S3V

¹ Z =RoHS Compliant Part.

 $^{^{\}rm 2}$ Branding on SOT-23 packages is limited to three characters due to space constraints

NOTES

ADG619-EP

NOTES