

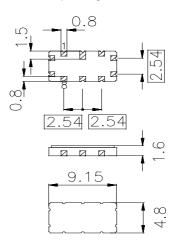
Data Sheet B4858

B4858

Low Loss Filter for Mobile Communication

85,38 MHz

Data Sheet


Features

- Low-loss IF filter for mobile telephone
- Channel selection in AMPS/D-AMPS systems
- Filter surface passivated
- High stopband attenuation
- Low insertion loss
- Balanced or unbalanced operation possible
- Package for Surface Mounted Technology (SMT)

Terminals

■ Ni, gold plated

Ceramic package QCC10B

Dimensions in mm, approx. weight 0,23 g

Pin configuration

10	Input	40 010
5	Output	
9	Balanced input or input ground	
4	Balanced output or output ground	
1,3,6,8	Case ground	507
2,7	Not connected	6
		1,3,6,8

Туре	Ordering code	Marking and Package	Packing		
		according to	according to		
B4858	B39860-B4858-Z710	C61157-A7-A49	F61064-V8035-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	- 30/+ 85	°C
Storage temperature range	$T_{\rm stg}$	- 40/+ 85	°C
DC voltage	$V_{\rm DC}$	13	V
Source power	P_{s}	10	dBm

B4858

Low Loss Filter for Mobile Communication

85,38 MHz

Data Sheet

Characteristics

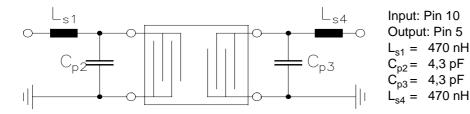
Operating temperature range: $T = -30^{\circ} \text{C} \dots 85^{\circ} \text{C}$ Terminating source impedance: $Z_{\text{S}} = 1000 \Omega \parallel 2600 \text{ nH}$ Terminating load impedance: $Z_{\text{L}} = 1000 \Omega \parallel 2600 \text{ nH}$

		min.	typ.	max.	
Nominal frequency $f_{\rm N}$		_	85,38	_	MHz
3 dB Bandwidth		+-14	_	_	kHz
Minimum insertion attenuation (including losses in the matching network)		_	3,8	5,0	dB
Amplitude ripple (p-p) $f_N - 12,0 \text{ kHz} \dots f_N + 12,0 \text{ kHz}$	Δα	_	0,3	1,5	dB
Group delay ripple (p-p) $f_N - 12,0 \text{ kHz} \dots f_N + 12,0 \text{ kHz}$	Δτ	_	3,0	10,0	μs
Relative attenuation (relative to α_{min})			0.5		
$f_N \pm 14.0 \text{ kHz}$		_	0,5	3,0	dB
$f_N \pm 60.0 \text{ kHz } \dots f_N \pm 120.0 \text{ kHz}$		25	32	_	dB
$f_N \pm 120,0 \text{ kHz } \dots f_N \pm 240,0 \text{ kHz}$		50	57	_	dB
$f_N \pm 240.0 \text{ kHz} \dots f_N \pm 330.0 \text{ kHz}$		55	65	_	dB
$f_N \pm 330,0 \text{ kHz} \dots f_N \pm 1200,0 \text{ kHz} $ $f_N \pm 1200,0 \text{ kHz} \dots f_N \pm 2,5 \text{ MHz} $		55 55	70 75	<u> </u>	dB dB
Impedance within the passband					
Input: $Z_{IN} = R_{IN} C_{IN}$		_	1000 1,4	_	Ω pF
Output: $Z_{OUT} = R_{OUT} C_{OUT}$		_	1000 1,4		Ω pF
Temperature coefficient of frequency 1)		_	- 0,036	_	ppm/K ²
Turnover temperature T_0		_	25	_	°C

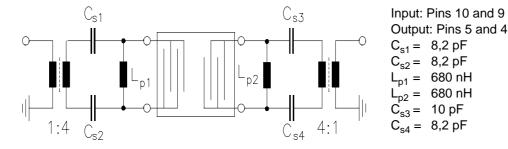
¹⁾ Temperature dependance of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

B4858

Low Loss Filter for Mobile Communication


85,38 MHz

Data Sheet



Test matching networks to 50 Ω (element values depend on pcb layout)

a) Unbalanced - unbalanced matching network

b) Balanced - balanced matching network

Note:

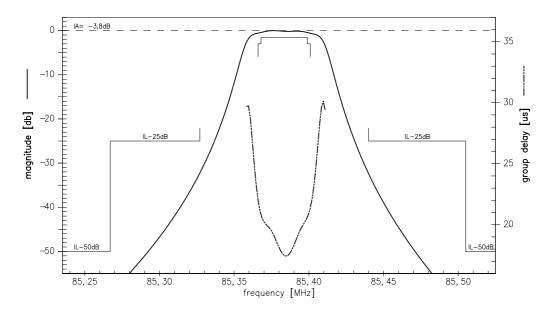
The balanced - balanced network is realized using M/A-COM 1:4 baluns TP-103. The insertion attenuation of each balun is 0,4 dB at f_N . The loss of the baluns is not included in the specified filter insertion attenuation. S-Parameters of the M/A-COM 1:4 baluns TP-103 are available on request.

The level of ultimate suppression may be limited by electromagnetic feedthrough depending on the layout of the pcb and the arrangement of the matching components.

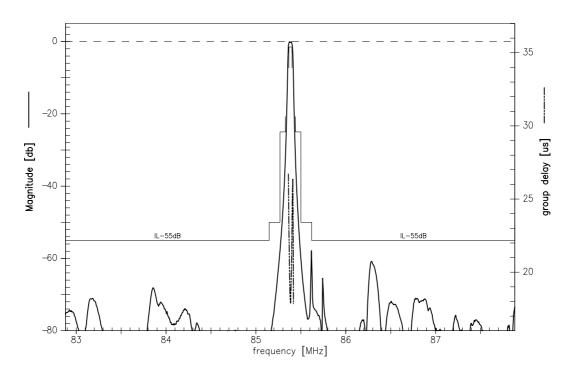
The above mentioned characteristics can be realized either in balanced or in unbalanced mode of operation.

For more details see our application note PCB Layout for Highly Selective IF Filters.

B4858


Low Loss Filter for Mobile Communication

85,38 MHz


Data Sheet

Normalized transfer function (passband, measured single ended - single ended)

Normalized transfer function (wideband, measured single ended - single ended)

Low Loss Filter for Mobile Communication

85,38 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, OFW E MF P.O. Box 80 17 09, D-81617 München

© EPCOS AG 1999. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.