emUSB

USB Device stack

CPU-independent

User & Reference Guide

Document: UM09001
Software version: 2.50

Revision: O
Date: July 25, 2014

O
/ SEGGER

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (SEGGER) assumes no responsibil-
ity for any errors or omissions. SEGGER makes and you receive no warranties or con-
ditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particu-
lar purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of SEGGER. The software described in this document is
furnished under a license and may only be used or copied in accordance with the
terms of such a license.

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany
Trademarks
Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address
SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0

Fax.+49 2103-2878-28

E-mail: support@segger.com
Internet: http://www.segger.com

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



Manual versions

This manual describes the current software version. If any error occurs, inform us
and we will try to assist you as soon as possible.
Contact us for further information on topics or routines not yet specified.

Print date: July 25, 2014

Software | Revision Date | By Description
2.50 0 140725 YR Ac_ided_the RNDIS chapter.
Minor improvements.
2.40m 2 140630 YR | Update to latest software version.
Updated the introduction chapter.
internal 2 140618 YR | Fixed the descriptions of USB_CDC_Read* and
USB_CDC_Receive* functions.
2.401 2 140606 SR | Update to latest software version.
2.40K 2 140523 YR Updatg to latest software version. _ o
Minor improvements to several function descriptions.
Update to latest software version.
. Added new drivers
2.40i 2 140515 SR Removed RNDIS chapter as the component is not released
yet.
2.40i 1 140415 SR Update to [atest software version.
Minor bugfix.
2.40h 1 140411 SR Update to Iate_st software version.
Added new driver.
2.40g 1 140410 SR Update to I_atest software version.
Minor bugfixes.
2. 40f 1 140401 SR U[_)date to I_atest software version.
Minor bugfixes.
2.40e 1 140313 SR U[_)date to I_atest software version.
Minor bugfixes.
2.40d 1 140224 SR Update_: to latest software version.
Minor improvements.
2. 40c 1 140213 SR Updatg to latest software version.
Minor improvements.
2.40b 1 140124 SR Updatg to latest software version.
Minor improvements.
2.40a 0 140110 YR Update_: to latest software version.
Minor improvements.
2.38f 1 131210 YR | Removed some typos.
2.38f 0 131031 SR | Update to latest software version.
2.38e 0 131021 SR | Update to latest software version.
2.38d 0 131015 SR | Update to latest software version.
2.38c 0 131004 YR | Update to latest software version.
2.38 0 130920 YR | Created a separate chapter for Bulk Host API V2.
internal 0 130705 MD | Added MTP chapter.
internal 0 130410 YR Added the new Bulk Host API V2.
Removed some typos.
Added Certification chapter.
Added RNDIS chapter.
236 0 130208 YR Updated available drivers.
Removed some typos.
Updated USB Core chapter:
* Added description for function:
2.34 1 111116 YR | jsg_ writeEPOFromISR()
Removed some typos.
Updated CDC chapter:
* Added new function: USB_CDC_SetOnBreak()
* Updated the functions: USB_MSD_INST_DATA_DRIVER
234 0 111111 SR Chapter Target USB driver:
* Added new drivers to the list.
Removed some typos.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



Software | Revision Date | By Description

Added new functions in USB Core chapter:

* USB_SetVendorRequestHook(), USB_SetIsSelfPowered()
Updated the Product Ids in Chapter GettingTheTar-
getUp\Configuration.

Updated MSD chapter:

* Added new picture on front page.

* Updated chapter Overview

* Added new function: USB_MSD_Connect(),
USB_MSD_Disconnect(), USB_MSD_RequestDisconnect(),
USB_MSD_UpdateWriteProtect(),
USB_MSD_WaitForDisconnection(),

* Updated the functions: USB_MSD_INST_DATA_DRIVER
Updated the CDC chapter:

* Added new Ex-Functions

* Added new serial status functions.

Added new picture to the front page of chapter HID.
Update Printer Class chapter:

* Added new picture to the front page to the chapter

* Added new information to the USB_PRINTER_API.
Chapter Target USB driver:

* Added new drivers to the list.

2.32 0 101206 SR

2.30 0 101022 SR | Added the function for remote wakeup.
2.27 0 100730 MD | Chapter "Printer Class" added.

Chapter USB core:

* Added new functions: USB_SetMaxPower(),
USB_SetOnRxEPO(), USB_SetOnSetupHook()
Chapter Bulk Communication:

* Added new functions:

USB_BULK_CancelRead()
USB_BULK_CancelWrite()
USB_BULK_ReadTimed()
USB_BULK_SetOnRXHook()
USB_BULK_WaitForTX()
USB_BULK_WaitForRX()
USB_BULK_WriteEx()
USB_BULK_WriteExTimed
USB_BULK_WriteNULLPacket()

* USB_BULK_WriteTimed().
Chapter CDC:

* Added new functions:

* USB_CDC_CancelRead()

* USB_CDC_CancelWrite()

* USB_CDC_ReadTimed()

* USB_CDC_ReceiveTimed()
Updated indexes in chapter CDC, Bulk communication,
MSD, HID.
Added new chapter Combining different USB components
(Multi-Interface)
All chapter reviewed and cleaned up.
Chapter USB core:

* Added new function USB_EnableIAD.
Chapter Bulk communication:

* Update description of USB_BULK_Receive.
Chapter MSD component:

* Updated "Final configuration".

* Updated "Class specific configuration functions.
2.22 0 080902 SR | Chapter CDC component:

* Added new functions: USB_CDC_ReadOverlapped(),
USB_CDC_WriteOverlapped(), USB_CDC_WaitForRx,
USB_CDC_WaitForTx().

Chapter Target USB driver:

* Updated available driver list.
Chapter FAQ:

* Added new

15.0 0 080403 SR | Update company’s address and legal form.

2.26 1 090127 SR

X X X X X X ¥ ¥ *

SR/

2.22 1 080917 SK

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



Software | Revision Date

By

Description

14.0 0 071204

SR

Chapter "Target USB driver":
* Updated "Writing your own driver":
- pfStallEP changed to pfSetClrStallEP.
- Added new driver ST STR91x.
- Added description for pfResetEP.
Chapter "Bulk Communication":
* Added new function: USB_BULK_Receive()
* Added new function:
USB_BULK_GetNumBytesInBuffer()

13.0 0 071005

SK

Chapter "Target USB driver":
* Section "Interrupt handling" added.

12.0 0 070706

SR

Chapter "USB core":

* Changed USB_GetStastus to USB_GetState
Chapter "MSD":

* "MSD_Start.c" changed to
"MSD_Start_StorageRAM.c"

* Added information to
"USB_MSD_INST_DATA_DRIVER"

* "Storage drivers supplied with this release" updated.

Chapter "Bulk communication":
* Changed text for USBBULK_GetMode/Ex.

11.0 0 070704

SK

Chapter "Introduction":
* HID section added.
Chapter "USB Core":
* USB_GetState() added.
Chapter "HID":
* USBHID_Init() updated.
Chapter "Target OS Interface":
* USB_OS_Restorel() removed.
* USB_0OS_DI() removed.
Chapter "Target USB Driver":
* STR750 added.

10.0 0 070618

SK

Chapter "HID" added.
Chapter "USB Core" added.
Chapter "Bulk communication":
* USB core functions removed.
Chapter "Introduction":
* Section "Development environment" added.

9.0 0 070123

SK

emUSB components renamed:
* "emUSB with bulk component" to "emUSB-Bulk"
* "emUSB with MSD component" to "emUSB-MSD"
* "emUSB with CDC component" to "emUSB-CDC"
Chapter "Introduction":
* updated and enhanced
* emUSB-CDC added

8.0 0 070121

SK

Product name changed from "USB-Stack" to "emUSB".
Various changes in layout and structure.
Chapter "About" added.
Chapter "Introduction":

* updated

* "emUSB structure" graphic added.
Chapter "Bulk communication":

* USB_SetClassRequestHook():

- Function description added.

Chapter "CDC":

* Head of description of USB_CDC_LINE_CODING
changed.

7.0 0 070109

SR

Added new chapter CDC.

6.0 0 061221

SR

Added new USBBulk HOST-API function
USBBULK_SetUSBId().
Company description added

5.0 0 061220

SR

Changed chapter 1.1.1 USB-Bulk stack:

Info reg. availability of the Host-driver source.
Updated chapter title "Getting the target up"

Updated chapter 1.1.2.3 Features

Updated chapter 1 - Information of max. data transfer
rates updated.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG




Software

Revision

Date

By

Description

4.0

061212

SR

Added chapter "Mass Storage Device"
Changed chapter Background info:

-Updated
Changed chapter title "Configuring the target" to "Getting
the target up"
Moved any related information of files provided with the
USB stack to "Getting the target up"

3.0

061120

SR

Added the extended HOST API functionality to manual

2.0

061115

SR

Updated chapter:
Target USB driver
Bulk Communication

1.0

060808

00

Initial Version

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG




About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

e The software tools used for building your application (assembler, linker, C com-
piler)

e The C programming language
The target processor
DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.
How to use this manual

This manual explains all the functions and macros that emUSB offers. It assumes you
have a working knowledge of the C language. Knowledge of assembly programming
is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keyword Text t_hat you entgr at the comm_and—pljompt or that appears on
the display (that is system functions, file- or pathnames).
Parameter Parameters in API functions.
Sample Sample code in program examples.

Sample comment Comments in program examples.

Reference to chapters, sections, tables and figures or other docu-

Reference
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections

Table 1.1: Typographic conventions

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI C
software components (middleware) for embedded sys-
tems in several industries such as telecom, medical
technology, consumer electronics, automotive industry
and industrial automation.

/ SEGGER
SEGGER'’s intention is to cut software development time

for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embQOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash micro controllers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for

debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com

EMBEDDED SOFTWARE
(Middleware)

emWin

Graphics software and GUI

emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.

embOS

Real Time Operating System

embOS is an RTOS designed to offer
# the benefits of a complete multitasking

system for hard real time applications
with minimal resources.

embOS/IP

TCP/IP stack

embOS/IP a high-performance TCP/IP
stack that has been optimized for
speed, versatility and a small memory
footprint.

emfFile

File system

emFile is an embedded file system with
F. FAT12, FAT16 and FAT32 support. Var-
ious Device drivers, e.g. for NAND and
NOR flashes, SD/MMC and Compact-
Flash cards, are available.

USB-Stack

USB device/host stack

A USB stack designed to work on any
embedded system with a USB control-
ler. Bulk communication and most stan-
dard device classes are supported.

ED

i

SEGGER TOOLS

Flasher

Flash programmer

Flash Programming tool primarily for micro con-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace

JTAG emulator with trace

USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER’s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG




Table of Contents

N 1 11 o To [ [ 1 0] o PP 15
1.1 L@ A YT L PP 16
1.2 EMUSB fEATUMES ..ttt e e 16
1.3 (<1098 157 = N elo] g 0] o o] 1=T 1 =3 P 17
1.3.1 EMUSB-BUIK e e 18
1.3.1.1 Purpose of @mMUSB-BUIK......ciiiiiiii i s 18
1.3.2 EMUS B MO D Lottt e 19
1.3.2.1 PUrpose Of @MUSB-MSD ....uiiiiiiiiii i s e e a e e areanans 19
1.3.2.2 Typical appliCatioNS .. vt 19
1.3.2.3 EMUSB-MSD fEatUMES ... vttt e e aneeaes 19
1.3.2.4 [ Lo ) e (oY | Y] o PP 19
1.3.3 EMUS B -CDC ittt i 21
1.3.3.1 Typical @appPliCationNS .. ittt e e 21
1.3.4 EMUS B -HI D ..t e 22
1.3.4.1 Typical @appliCatioNS .. vttt e 22
1.3.5 EMU S B M Pttt e e 23
1.3.5.1 Typical @appliCationNS .. it s 23
1.3.6 (=] 18 1 = Rt o= oS 24
1.3.6.1 Typical @appliCatioNS .. it s 24
1.3.7 EMUSB-RN DS L.t 25
1.3.7.1 Typical @appPliCatioNS . vt s 25
1.4 =T LU 1 =T 0 1= 1= 26
1.4.1 TArgeE SY S M Lttt e 26
1.4.2 Development environment (COMPIler) ....ccviiiiiiiiii i e 26
1.5 T o Lo B = PP 27
1.5.1 Bulk communication COMPONENT ...cviiiiiii i e e eerneas 28
1.5.2 115 20 g o1 5] o 1= o | o 28
1.5.3 LGB T @i oo 150 1= o | o 28
1.5.4 [ 1l Y ¥ oo o =T o X 28

2 Background iNfOrMELION .........oooiiiiiiii e 31
2.1 LU 32
2.1.1 1Y 1 L A @ N = V=1 PP 32
2.1.2 Important USB Standard VersionS . ...uiiii it i i i i s ciae s 32
2.1.3 USB System ArchiteCtUre . .covi i e 33
2.1.4 I LTS (=L 14 0L 35
2.1.5 Setup phase / EnNUMEration .. ...coiiiiiiii e 35
2.1.6 (4 g0 Yo 18 Lot oy AV Z=T o T [o Y gl 1 10 =S 35
2.2 Predefined deviCe ClassSes. . ouuiiiii i e e ennennens 36
2.3 US B @NalyZerS ittt e e 36
2.4 ] =] =] (oL PP 36

I 1] 1] o T3 =T (=T o PRSP 37
3.1 How to setup your target System ...coiiiii i i e 39
3.1.1 Upgrade a trial version available on the web with source code. ...................... 39
3.1.2 Upgrading an embOS Start project....cccviviiiiiiiiii i i e 40
3.1.3 Creating a project from scratCh ..o 42
3.2 Select the start application......ccoiiiiiiii i 43
3.3 Build the project and teSt if...iiiiiiiiii i 43
3.4 @] o) o 1 1= T o PP 44

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



10

3.4.1 General emUSB configuration functions ..o 45
3.4.2 Additional required configuration functions for emUSB-MSD ............ccocovvenne. 50
3.4.3 )7L of T 5] 0] = 50
] = T 0] = 51
4.1 (@ AT VAT 52
4.2 TaArgel AP .. e 53
4.2.1 USB basiC fUNCEIONS ...t e et e aaeeas 54
4.2.2 USB configuration fUNCLIONS ..o e 59
4.2.3 USB control fUNCHIONS ..o e e r e e aaeeas 68
4.2.4 L] = I Y I 20 o Tt of o 1= 70
4.2.5 USB Remote wakeup fUNCHIONS ....c.oiiiii i e 71
5 BUIK COMMUNICALION ... ...ciiiiii e e e e e s e e e e e et e e e e e e e s e e e e eeaaaaaeeaeeenes 75
5.1 GeneriC BUlK StaCK ..o i s s 76
5.2 The Kernel mode driver (PC) ... i e i e aaeeas 76
5.2.1 WHY IS @ AriVEr NECESSANY ? ittt ittt e a e a e raeeaaes 76
5.2.2 Supported platforms ... 76
5.3 INstalling the AriVer .o e 76
5.3.1 RecoOmMpPiling the AriVer ..o e e i aaeeas 79
5.3.2 The LiNf il e e 80
5.3.3 (@0 o) o 18 1= | o o P 81
5.4 Example appliCation. ..o e 82
5.4.1 Running the example applications.....coviiiiiiiiiii s 83
5.4.2 Compiling the PC example application ......c.ccooiiiiiiiiiiic e 85
5.5 L= L= = 86
5.5.1 Target interface fuNCLioN [ISt ..o e 87
5.5.2 010 = R 1011 1 U o P 88
5.5.3 (DTt T B Lol o U] =T P 108
5.6 [ 10 13 o = PP 110
5.6.1 [ 10 13 o A o = PP 111
5.6.2 USB-BuUlk BasiC fUNCEIONS . ..ttt i e e s e eaeas 113
5.6.3 USB-Bulk direct input/output functions........ccooiiiiiiiiiiiii 117
5.6.4 USB-Bulk Control fUNCHIONS. . .iiviiiii i e e nneraeans 123
B BUIK HOSE APIL V2 ..o e e e e et e e et e et e e eaan s 141
6.1 2 TUT 1 o 1= o N o Y PP 142
6.1.1 BUIK HOSE API V2 ISt ittt e e e e 143
6.1.2 USB-Bulk BasiC fUNCHIONS. ...ttt v v er e e e e e annenneans 145
6.1.3 USB-Bulk direct input/output functions.......ccooiiiiiiiiiiiii e 150
6.1.4 USB-Bulk Control fUNCHIONS....iiviii i s r e nneans 157
6.1.4.1 USBBULK_GetConfigDesCriptor() vvvveiiiiiii i i e eaea 157
6.1.5 (D F Y = T B Lol o U] =T 180
7 Mass Storage DeviCe Class (IMSD) ......uuuuuuiiiiiiieieeiee ettt e e e e e eeeeeeeeees 181
7.1 L@ T YT 182
7.2 (©70] o) 1o 18] = u o] o [P T 183
7.2.1 Initial configuration ..o 183
7.2.2 Final Configuration .. oo e 183
7.2.3 Class specific configuration functions ... 183
7.2.4 Running the example application ......ccoiiiiiiiiii e 188
7.2.4.1 MSD_Start_StorageRAM.c in detail .....ccooiiiiiiiiiii e 188
7.3 LI L= = PP 189
7.3.1 7N o I 8 o T T 1= 190
7.3.2 Extended API fUNCLIONS .oiiviiiiii i e st e e e r e s e e aneans 196
7.3.3 Data SErUCTUIES ..ttt e e r e e e 201
7.4 S o] =T [ 17 = 208
7.4.1 General INfOrmMatioN .. ..o s 208
7.4.1.1 Supported StOrage LY PES vt 208

User & reference manual for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



7.4.1.2 Storage drivers supplied with this release ..o 208
7.4.2 Interface funChion list ..o 208
7.4.3 USB_MSD_STORAGE_API in detail ....covviiiiiiiiiii i 209
8 Media Transfer Protocol Class (MTP).......coooiiiiiiiiiiiiiiiee et 217
8.1 L@ N YT L 218
8.1.1 Getting access 0 fileS .. 219
8.1.2 Additional informMation ......cviiii e 221
8.2 (@007 0] 1 Ts [UT o= w o o PP 222
8.2.1 Initial configuration . ... ..ccoiiii e 222
8.2.2 Final configuration ... 222
8.2.3 Class specific configuration ........coiieiiii e 222
8.2.4 Compile time configuration ..o 227
8.3 Running the sample application ..o e 227
8.3.1 USB_MTP_Start.C in detail .ooviviiiiiii i i s i s s r e e s rraar e reanaees 227
8.4 TargeE AP .t 229
8.4.1 APT fUNCHIONS ettt e 229
8.4.2 Data SEIUCTUIES ..t et e s e s s s s e s s rn e e rannes 232
8.5 I o] =T L I o Y= N 239
8.5.1 General iINformMation ..o i e 239
8.5.2 Interface funNCHioN liSt .iovviiii i e 239
8.5.3 USB_MTP_STORAGE_API in detail.....coviiiiiiiii e 240
9 Communication Device Class (CDC) ......cccccuuiiiiiiiiiiiiiiee e 261
9.1 L@ = YT 262
9.1.1 (@] o) o 18 T = Lo o 1P 262
9.2 The example application ....c.oiiiiiii i 263
9.3 Installing the driVer ..o e e 264
9.3.1 The LINf Il e e 267
9.3.2 Installation verifiCation ....cvii i s e 268
9.3.3 Testing communication to the USB device ...ccviviiiiiiiiiiiiiiii e 269
9.4 JLIE L LAY 2 P 272
9.4.1 Interface funNCioN liSt .oovviii e e 272
9.4.2 Y o I 11 o o 1= 273
9.4.3 1= 1= ] o B ot B == PP 290
10 Human Interface Device Class (HID) ......coouviiiiiiiiiiiiii e 295
10.1 L@ = YT 296
10.1.1 FUrther reading oo 296
10.1.2 (=1 (= Te o] o 1= T3 PP 297
O s R I 1= o 3 PP 297
10.1.2.2  "Vendor speCifiC HID S ..t i i e e 297
10.2 Background information ... ..o 298
10.2.1 L I I =TT of T 0 0] o= 298
10.2.1.1  HID deSCriplor. ettt it et e 298
3O 170 P 2T o To] g e [T o [ o) o ] 298
10.2.1.3  Physical deSCriplor. .o i i e e e e 299
10.3 CON I IGUIAEION Lt e 300
10.3.1 Initial coNfigUIatioN ... 300
10.3.2 Final configuration ..o e 300
10.4 Example application ..o 301
10.4.1 [ 10 T N (0 T == o 301
10.4.1.1 RUNNING the @Xam Pl . e e e 301
10.4.2 L 1D o o o 0 R o 302
10.4.2.1 RUNNING the @Xam Pl .o e e e e 302
10.4.2.2 Compiling the PC example application .......cccoiiiiiiiiiiiiiiiiicici e 303
10.5 JLIE L [ Y o P 304
10.5.1 Target interface function list.. ..o 304
10.5.2 USB-HID fUNCHIONS ..ttt ittt e e e s s e s e s e e e an e r e e e e e nn e eneanes 305
10.5.3 1= 1= o U ot o1 == PP 308

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller Systeme GmbH



12

10.6 0 1= Y P 309
10.6.1 Host API fUNCEION ISt .ouiiei i e 310
10.6.2 L] = Bt 1 28 W o o o o = 311
0 T o 101 =T O F= 1SR 323
11.1 L@ 1T VAT 324
11.1.1 (@foT o] 1 Ts [UT = w o o A PP 324
11.2 The example application.....ocii i e e 325
11.3 TArgel AP .. e 328
11.3.1 Interface fUNCHION liSt. ..o e e 328
11.3.2 N = I 0T T o TP 329
11.3.3 [T L o= = o B T o B =N 331
12 RemMOte NDIS (RNDIS) ...t e e e e e e e e e e e 333
12.1 L@ T VAT 1 334
12.1.1 Working With RNDIS .. .uiiii i i r e s e s r e e r s nn e rn e nneenes 334
12.1.2 Additional iINformMation......cooi i e 335
12.2 (] o) 1o 18T or=1 [0 o [Pt 336
12.2.1 Initial configUration ..o e 336
12.2.2 Final Configuration ..o e 336
12.2.3 Class specific coNfiguration ... c.iiiiiiii i e 336
12.2.4 Compile time configuration ... .o 340
12.3 Running the sample application ..o e 341
12.3.0.1 IP_Config_RNDIS.cin detail.....ccciiiiiiiiiiii i e 341
12.4 RNDIS + embOS/IP as @ "USB WebSErver" ...ttt iiiiiinaaas 343
12.5 L= L= = PP 344
12.5.1 Y o I 11 o o 1= PP 345
12.5.1.1  USB_RNDIS_AdA() strreiieinneiinineiieinnerassnserasssnerarssnesanesesansrieranssnesanssneenns 345
12.5.1.2  USB_RNDIS_TaASK() tturttuttneruemaneinernnernsnnssesanernnsanssnnsanssanssernnssnernemernns 346
12.5.2 (D F = T o B Lol U] =TS 347
12.5.2.1  USB_RNDIS _INIT DA T A ittt ittt iaerane e eane e saesreaareseaane e aanerneanneanens 347
12.5.2.2  USB_RNDIS _EVENT AP ...ttt i it aae e e rr s e rnrane e nnneanens 348
12.5.2.3  USB_RNDIS_DRIVER _API...ciiiiiiiii i i se s s e e e rneennanneaeas 349
(Gl o2 1. 11 1 PP 350

(Gl oL LT o =Tl S = T 1 =T o) T 350

(Gt oL =] o= Tol ) o) T 350
(FPFSEtPaCKEFIIEEI) () veiiirii it e e e aaeeas 351
(FPFGEtLINKSEAtUS) () tveiiiiiiii i i e e e e 351
(FPFGEELINKSPEEA ) () 1ttt it e e 351

Gl o1 £ 1= o KN e 1 o T () S PP 352

(Gt o1 CT=1 ] =1 =3 1 () IO 353

Gl 1 X C 1=, o N 1 1 U T P 354

(Gl o1 13T 0 1 O I PP 354

12.5.2.4 USB_RNDIS_DRIVER AT A .ttt ite it ae e rar e s e ane e enneanean 355
G ] O1 g=T= 1 =) 1 () PP 356

(Gl o1 151 1o T T= 1) O T PP 356

(Gl =T L aT=Te D T I PP 357

13 Combining different USB components (Multi-Interface)..........cuvvvviiiiiiiiiiinienn. 359
13.1 L@ AT VAT 1 360
13.1.1 Single interface device ClasSes ...ttt 361
13.1.2 Multiple interface deviCe ClasSeS ..oiiviiiiiiiii i i i i e aaeeas 362
13.1.3 7 D I = T3 362
13.2 @70 21 o 18 1= 1o o PSP 363
13.3 HOW £0 COMDINE .. i e e e ree e 364
13.4 emUSB component specific modification ..........ccoiiiiiiiiiiiii i 366
13.4.1 BULK communication COmMPONENt. ... ..c.uiiiiiiiii i i i e siree s rnnnee e e eans 366
G s s R I TV T T PP 366
G e A o [0 1) = o = 366
13.4.2 [\{ISY B 0] 1 215 Te] o 1=T o] oF P 368

User & reference manual for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



1 T A R B 1AV ol I =] (o [ P 368
1 T A o o 1= A= o [P 368
13.4.3 LB T @R oo 11 5] =T o | PP 368
1 T G T R B 1A ol I ] o [ TP 368
1 T G T A o o 1= A= o [ P 368
13.4.4 HID COMPONENE e e e e aes 370
B T R B 1AV ol I =] (o [ P 370
B T A o o 1= A= o [P 370
14 Target OS INTEITACE .....cooii i e et e e e e e e e eeaeas 371
14.1 General iNformMation ...ui.v i e e 372
14.1.1 Operating system support supplied with this release..........c.cccvviviiiiiiiininns 372
14.2 Interface funNCHioN liSt .ovuviiii i e e 373
14.3 =11 41 o] [T TP 383
15 Target USB DIIVET ....ccociiiiiiiiii ittt e e e e e et r e e e e e e e eaeeens 387
15.1 General iNformMation ...uoe i e 388
15.1.1 AVailable USB AriVers ..uiiri it r e aae e ra s ranerneane e annennes 388
15.2 Adding @ driver t0 @mMUSB ... .o 390
15.3 Interrupt handling ..o e 393
15.3.1 ARM7 / ARMO DASEA COMES ittt ittt it ittt eeessseesasisssssseeeeesessinns 393
15.3.1.1 ARM specific IRQ handler ..o e 394
15.3.1.2 Device specifics ATMEL ATO1CAPOX .. vttt i i e 395
15.3.1.3 Device specifics ATMEL AT91RMO200......uiiiiiiiiiii it i e r e 395
15.3.1.4 Device specifics ATMEL ATO 1S AM 7 A3 . i e e 395
15.3.1.5 Device specifics ATMEL AT91SAM7S64, AT91SAM7S128, AT91SAM7S256...... 395
15.3.1.6 Device specifics ATMEL AT91SAM7X64, AT91SAM7X128, AT91SAM7X256...... 395
15.3.1.7 Device specifics ATMEL ATO1SAM7ZSE . it e 395
15.3.1.8 Device specifics ATMEL ATO1SAMO260 .....ciiuiiiiieiinianerieranesernnssesnnsanernnans 395
15.3.1.9 Device specifics ATMEL ATOL1SAMO261 ....uviiriiiiiiniiieiinerieranesernnesernnsnnernnans 395
15.3.1.10 Device specifics ATMEL ATOL1SAMO 263 ... ittt rierane s reannenneennans 396
15.3.1.11 Device specifics ATMEL AT91SAMRL64, ATO1SAMRG4 ....ccovvviiiiiiiiiiineinnns 396
15.3.1.12 Device specCifiCs NXP LPC214X ..uiiuiiiiiii it it it et re e e iae e 397
15.3.1.13 Device SPeCifiCs NXP LPC 23X X 1t iittiiitt ittt ittt i i it reeaeeeaaeeaees 397
15.3.1.14 Device specifics NXP (formerly Sharp) LH79524/5.....ccciiiiiiiiiiiiiiiiiiiiieea, 397
15.3.1.15 Device specifics OKI 69Q62. ... uiiriiiriireiiniineiinranerareaerarsaeraeraernraaernnannens 397
15.3.1.16 Device SpeCifiCsS ST STR7 1X . iiiiuiiiiiiriieiieieianeseraeeaeranerrransrneranerneranernes 397
15.3.1.17 Device specCifics ST STR750 .. ciiuiiiiiiiiiiiiiiie e ransrnrsaneaeannernens 397
15.3.1.18 Device specCifics ST STR750 . ..uiiuiiiiiiiiieiirie s ranernrranereanneanens 397
15.4 WHEING YOUN OWN AV ottt e e e e eeaneas 398
15.4.1 USB initialization fUNCLiONS ....iiiiii i e eanes 400
15.4.2 General USB fUNCHIONS . .c.uiiiit i v re s s s e e s e s e nneanennnans 401
15.4.3 General endpoint fFUNCHIONS .. .ot e e 403
15.4.4 Endpoint 0 (control endpoint) related functions.........cccoviiiiiiiii i 406
15.4.5 OUT-endpoint fFUNCHIONS ..viii i e e e e eaea s 407
15.4.6 IN-endpoint fUNCHIONS. . it e e e re e 408
15.4.7 USB driver interrupt handling ......ccoooiiii s 410
IS U] o] oo ] o AT TR T U 411
16.1 Problems with tool chain (compiler, linker) ....c.coviiiiiiiiii e 412
16.1.1 (0] 2.0 11 1=1 gl ol o= 1= 1 1SS 412
16.1.2 (o] 0] o1 L= gl TATZ= T o 11T =3 412
16.1.3 (@] 0.0 011 LT gl =1 o of 412
16.1.4 LiNKEr ProbIEmMIS oo 412
16.2 Problems With hardWare/driVer ..o e e e 413
16.3 (@feY g w=Tot o1 To IR U] o] 010 o G PP 413
A =T 1 o= 4[] o SRR 415
17.1 What is the Windows Logo Certification and why

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller Systeme GmbH



14

do I need it?416

17.2 (O] 1 i Tor=N T oY a T 0] 1 L] 417
17.3 AVZ=Ts [o] git=1 Lo I 2d e Y 11 Lot sl 1 0 0SS 417
17.4 Certification without SEGGER MiCroCONtroller ..uuuvueiiieiiiiiiiiiiiiiiiiieeeneerenns 417
18 PerformanCe & rESOUICE USAGE ........uuuurrrrrerrittrieiaaaaaaaaaaaaaaaaaassnnnssssssssereeeeeeeaaaaaeeeees 419
18.1 MeMOrY fOOEPIINE L e e 420
18.1.1 2 11 420
18.1.2 ) 420
18.2 <Y oY /2 =1 1= 421
R T e S 423

User & reference manual for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



15

Chapter 1

Introduction

This chapter will give a short introduction to emUSB, covering generic bulk, Mass
Storage Device (MSD), Communication Device Class (CDC), Human Interface Device
(HID), Media Transfer Protocol (MTP) class, Printer Class and Remote Network Driver

Interface Specification (RNDIS) class functionality. Host and target requirements are
covered as well.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



16 CHAPTER 1 Introduction

1.1 Overview

This guide describes how to install, configure and use emUSB. It also explains the
internal structure of emUSB.

emUSB has been desighed to work on any embedded system with a USB client con-
troller. It can be used with USB 1.1. or USB 2.0 devices.

The highest possible transfer rate on USB 2.0 full speed (12 Mbit/second) devices is
approximately 1 Mbyte per second. This data rate can indeed be achieved on fast
systems, such as ARM7 and faster.

USB 2.0 high speed mode (480 MBit/second) is also fully supported and is automati-
cally handled. Using USB high speed mode with an ARM9 or faster could achieve val-
ues of approx. 18 MBytes/second and faster.

1.2 emUSB features

Key features of emUSB are:

High speed.

Can be used with or without an RTOS.

Easy to use.

Easy to port.

No custom USB host driver necessary.

Start / test application supplied.

Highly efficient, portable, and commented ANSI C source code.

Hardware abstraction layer allows rapid addition of support for new devices.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



17

1.3 emUSB components

emUSB consists of three layers: A driver for hardware access, the emUSB core and at
least a USB class driver or the bulk communication component.

HID Printer MTP

The different available hardware drivers, the USB class drivers, and the bulk commu-
nication component are additional packages, which can be combined and ordered as
they fit to the requirements of your project. Normally, emUSB consists of a driver
that fits to the used hardware, the emUSB core and at least one of the USB class

drivers.
Component Description
USB protocol layer

Bulk emUSB bulk component.
(emUSB-Bulk)

MSD emUSB Mass Storage Device class component.
(emUSB-MSD).

cDC emUSB Communication Device Class component.
(emUSB-CDC)

HID emUSB Human Interface Device Class component.
(emUSB-HID)

MTP emUSB Media Transfer Protocol component.
(emUSB-MTP)

. emUSB Printer Class component.

Printer (emUSB-Printer) P
emUSB RNDIS component.

RNDIS (emUSB-RNDIS) P

Core layer
emUSB-Core | The emUSB core is the intrinsic USB stack.
Hardware layer
Driver \ USB controller driver.

Table 1.1: emUSB components

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



18 CHAPTER 1 Introduction

1.3.1 emUSB-Bulk

The emUSB-Bulk stack consists of an embedded side, which is shipped as source
code, and a driver for the PC, which is typically shipped as an executable (.sys).
(The source of the PC driver can also be ordered.)

1.3.1.1 Purpose of emUSB-Bulk

emUSB-Bulk allows you to quickly and smoothly develop software for an embedded
device that communicates with a PC via USB. The communication is like a single,
high speed, reliable channel (very similar to a TCP connection). It basically allows the
PC to send data to the embedded target, the embedded target to receive these bytes
and reply with any number of bytes. The PC is the USB host, the target is the USB cli-
ent. The USB standard defines 4 types of communication: Control, isochronous,
interrupt, and bulk. Experience shows, that for most embedded devices the bulk
mode is the communication mode of choice. It allows usage of the full bandwidth of
the USB bus.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



19

1.3.2 emUSB-MSD
1.3.2.1 Purpose of emUSB-MSD

Access the target device like an ordinary disk drive

emUSB-MSD enables the use of an embedded target device as a USB mass storage
device. The target device can be simply plugged-in and used like an ordinary disk
drive, without the need to develop a driver for the host operating system. This is pos-
sible because the mass storage class is one of the standard device classes, defined
by the USB Implementers Forum (USB IF). Virtually, every major operating system
on the market supports these device classes out of the box.

No custom host drivers necessary

Every major OS already provides host drivers for USB mass storage devices, there is
no need to implement your own. The target device will be recognized as a mass stor-
age device and can be accessed directly.

Plug and Play

Assuming the target system is a digital camera using emUSB-MSD, videos or photos
taken by this camera can be conveniently accessed with the file system explorer of
the used operating system, if the camera is connect to the host.

1.3.2.2 Typical applications

Typical applications are:

e Digital camera

e USB stick

e MP3 player

e DVD player

Any target with USB interface: easy access to configuration and data files.

1.3.2.3 emUSB-MSD features

Key features of emUSB-MSD are:

e Can be used with RAM, parallel flash, serial flash or mechanical drives

e Support for full speed (12 Mbit/second) and high speed (480 Mbit/second) trans-
fer rates

e (OS-abstraction: Can be used with any RTOS, but no OS is required for MSD-only
devices

1.3.2.4 How does it work?
Use file system support from host OS

A device which uses emUSB-MSD will be recognized as a mass storage device and
can be used like an ordinary disk drive. If the device is unformatted when plugged-in,
the host operating system will ask you to format the device. Any file system provided
by the host can be used. Typically FAT is used, but other file systems such as NTFS
are possible too. If one of those file systems is used, the host is able to read from
and write to the device using the storage functions of the emUSB MSD component,
which define unstructured read and write operations. Thus, there is no need to
develop extra file system code if the application only accesses data on the target
from the host side. This is typically the case for simple storage applications, such as
USB memory sticks or ATA to USB bridges.

Only provide file system code on the target if necessary

Mass storage devices like USB sticks does not require its own file system implemen-
tation. File system program code is only required if the application running on target
device has to access the stored data. The development of a file system is a complex

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



20 CHAPTER 1 Introduction

and time-consuming task and enhances the time-to market. Thus we recommend the
use of a commercial file system like emFile, SEGGER’s file system for embedded
applications. emFile is a high performance library that has been optimized for mini-
mum memory consumption in RAM and ROM, high speed and versatility. It is written
in ANSI C and can be used on any CPU and on any media. Refer to www.segger.com/
emfile.htm/ for more information about emfFile.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG


www.segger.com/emfile.html
www.segger.com/emfile.html

21

1.3.3 emUSB-CDC

emUSB-CDC converts the target device into a serial communication device. A target
device running emUSB-CDC is recognized by the host as a serial interface
(USB2COM, virtual COM port), without the need to install a special host driver,
because the communication device class is one of the standard device classes and
every major operating system already provides host drivers for those device classes.
All PC software using a COM port will work without modifications with this virtual
COM port.

1.3.3.1 Typical applications

Typical applications are:

e Modem
e Telephone system
e Fax machine

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



22 CHAPTER 1 Introduction

1.3.4 emUSB-HID

The Human Interface Device class (HID) is an abstract USB class protocol defined by
the USB Implementers Forum. This protocol was defined for the handling of devices
which are used by humans to control the operation of computer systems.

An installation of a custom-host USB driver is not necessary, because the USB human
interface device class is standardized and every major OS already provides host driv-
ers for it.

1.3.4.1 Typical applications
Typical examples

Low-speed JTAG emulator
UPS (Uninterruptible power supply)

e Keyboard

e Mouse and similar pointing devices

e Game pad

e Front-panel controls - for example, switches and buttons.
e Bar-code reader

e Thermometer

e Voltmeter

[ )

[ )

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



23

1.3.5 emUSB-MTP

The Media Transfer Protocol (MTP) is a USB class protocol which can be used to trans-
fer files to and from storage devices. MTP is an alternative to MSD as it operates on a
file level rather than on a storage sector level.

The advantage of MTP is the ability to access the storage medium from the host PC
and from the device at the same time.

Because MTP works ath the file level this also eliminates the risk of damaging the file
system when the communication to the host has been canceled unexpectedly (e.g.
the cable was removed).

MTP is supported by most operating systems without the need to install third-party
drivers.

1.3.5.1 Typical applications

Typical applications are:

Digital camera
USB stick

MP3 player
DVD player
Telephone

Any target with USB interface: easy access to configuration and data files.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



24 CHAPTER 1 Introduction

1.3.6 emUSB-Printer

emUSB-Printer converts the target device into a printing device. A target device run-
ning emUSB-Printer is recognized by the host as a printer. Unless the device identi-
fies itself as a printer already recognized by the host PC, you have to install a driver
to be able to communicate with the USB device.

1.3.6.1 Typical applications

Typical applications are:

e Laser/Inkjet printer
¢ CNC machine

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



25

1.3.7 emUSB-RNDIS

emUSB-RNDIS allows to create a virtual Ethernet adapter through which the host PC
can communicate with the device using the Internet protocol suite (TCP, UDP, FTP,
HTTP, Telnet). This allows the creation of USB based devices which can host a web-
server or act as a telnet terminal or a FTP server. emUSB-RNDIS offer a unique cus-
tomer experience and allows to save development and hardware cost by e.g. using a
website as a user interface instead of creating an application for every major OS and
by eliminating the Ethernet hardware components from your device.

1.3.7.1 Typical applications

Typical applications are:

e USB-Webserver
e USB-Terminal (e.g. Telnet)
e USB-FTP-Server

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



26 CHAPTER 1 Introduction

1.4 Requirements

1.4.1 Target system

Hardware

The target system must have a USB controller. The memory requirements are
approximately 6 Kbytes ROM for the emUSB-Bulk stack or 10 Kbytes ROM for
emUSB-Bulk and emUSB-MSD and approximately 1 Kbytes of RAM (only used for
buffering). Additionally memory for data storage is required, typically either on-
board flash memory (parallel or serial) or an external flash memory card is required.
In order to have the control when the device shall be enumerated by the host, a swit-
chable attach is necessary. This is a switchable pull-up connected to the D+-Line of
USB.

Software

emUSB is optimized to be used with embOS but works with any other supported
RTOS or without an RTOS in a superloop. For information regarding the OS integra-
tion refer to Target OS Interface on page 371.

1.4.2 Development environment (compiler)

The CPU used is of no importance; only an ANSI-compliant C compiler complying with
at least one of the following international standard is required:

e ISO/IEC/ANSI 9899:1990 (C90) with support for C++ style comments (//)
e ISO/IEC 9899:1999 (C99)
e ISO/IEC 14882:1998 (C++)

If your compiler has some limitations, let us know and we will inform you if these will
be a problem when compiling the software. Any compiler for 16/32/64-bit CPUs or
DSPs that we know of can be used; most 8-bit compilers can be used as well.

A C++ compiler is not required, but can be used. The application program can there-
fore also be programmed in C++ if desired.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



27

1.5 File structure

The following table shows the contents of the emUSB root directory:

Directory Contents
Contains the application program. Depending on which stack is
Application used, several files are available for each stack. Detailed infor-
mation can be found in the corresponding chapter.
Confi Contains configuration files (USB_Conf.h, Config_xxx.h, where
ontig xxx describes the driver that is used.).
Doc Contains the emUSB documentation.
Contains a simple implementation of the required hardware
Hardwar interface routines. Full implementation of the hardware routine
arcware for several CPU and eval board can be found on the SEGGER’s
website: http://www.segger.com
Inc Contains include files.
oS Contains operating systems dependent files which allows to run
emUSB with different RTOS's.
Contains the emUSB source code.
USB

Note: Do not change the source code in this directory.

Table 1.2: Supplied directory structure of emUSB core package

Depending on the chosen emUSB component, the following additional subdirectories

are available:

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG


http://www.segger.com

28 CHAPTER 1 Introduction

1.5.1 Bulk communication component

Directory Contents

Contains the kernel mode USB driver for the PC (Win32, NT

Bulk\Windows- platform), the compiled driver (.sys). the .inf file required for
Driver installation. The source code of the Windows driver is included,

if a source code version of emUSB-Bulk has been ordered.
Bulk\Sam- Contains a PC sample project to help you bring up and test the
pleApp system.

Includes all files that are necessary for the generic bulk commu-

USB\Bulk . .
nication.

Table 1.3: Additional subdirectories for emUSB bulk communication component

1.5.2 MSD component

Directory Contents

Contains all files that handle the specific USB-MSD commands.
USB\MSD Different storage drivers, such as a RAM storage device driver or
emFile device driver are also available.

Table 1.4: Additional subdirectories for emUSB MSD component

1.5.3 CDC component

Directory Contents

The driver installation file (UsBser.inf) located in this directory
cDC can be used to install the USB-CDC device (Virtual COM-Port) on
> Windows 2000 platforms.

USB\CDC Contains all files specific for the USB-CDC communication.
Table 1.5: Additional subdirectories for emUSB CDC component

1.5.4 HID component

Directory Contents
HID\SampleApp Contains a PC sample project to help you bring up and test the
system.
USB\HID Includes all files that are necessary for the HID component.

Table 1.6: Additional subdirectories for emUSB HID communication component

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



UMO09001 User & Reference Guide for emUSB

29

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



30 CHAPTER 1 Introduction

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



31

Chapter 2

Background information

This is a short introduction to USB. The fundamentals of USB are explained and links
to additional resources are given.
Information provided in this chapter is NOT required to use the software.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



32 CHAPTER 2 Background information

2.1 USB
2.1.1 Short Overview

The Universal Serial Bus (USB) is an external bus architecture for connecting periph-
erals to a host computer. It is an industry standard — maintained by the USB Imple-
menters Forum — and because of its many advantages it enjoys a huge industry-wide
acceptance. Over the years, a number of USB-capable peripherals appeared on the
market, for example printers, keyboards, mice, digital cameras etc. Among the top
benefits of USB are:

e Excellent plug-and-play capabilities allow devices to be added to the host system
without reboots (“hot-plug”). Plugged-in devices are identified by the host and
the appropriate drivers are loaded instantly.

e USB allows easy extensions of host systems without requiring host-internal
extension cards.

e Device bandwidths may range from a few Kbytes/second to hundreds of Mbytes/
second.

A wide range of packet sizes and data transfer rates are supported.
USB provides internal error handling. Together with the already mentioned hot-
plug capability this greatly improves robustness.

e The provisions for powering connected devices dispense the need for extra power
supplies for many low power devices.

e Several transfer modes are supported which ensures the wide applicability of
USB.

These benefits did not only lead to broad market acceptance, but it also added sev-
eral advantages, such as low costs of USB cables and connectors or a wide range of
USB stack implementations. Last but not least, the major operating systems such as
Microsoft Windows XP, Mac OS X, or Linux provide excellent USB support.

2.1.2 Important USB Standard Versions
USB 1.1 (September 1998)

This standard version supports isochronous and asynchronous data transfers. It has
dual speed data transfer of 1.5 Mbytes/second for low speed and 12 Mbytes/second
for full speed devices. The maximum cable length between host and device is five
meters. Up to 500 mA of electric current may be distributed to low power devices.

USB 2.0 (April 2000)

As all previous USB standards, USB 2.0 is fully forward and backward compatible.
Existing cables and connectors may be reused. A new high speed transfer speed of
480 Mbytes/second (40 times faster than USB 1.1 at full speed) was added.

USB 3.0 (November 2008)

As all previous USB standards, USB 3.0 is fully forward and backward compatible.
Existing cables and connectors may be reused but not the new speed can only be
used with new USB 3.0 cables and devices. The new speed class is named USB
SuperSpeed, which is at a max. rate of 5 GBit/s.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



33

2.1.3 USB System Architecture

A USB system is composed of three parts - a host side, a device side and a physical
bus. The physical bus is represented by the USB cable and connects the host and the
device.

The USB system architecture is asymmetric. Every single host can be connected to
multiple devices in a tree-like fashion using special hub devices. You can connect up
to 127 devices to a single host, but the count must include the hub devices as well.

USB Host

A USB host consists of a USB host controller hardware and a layered software stack.
This host stack contains:

e A host controller driver (HCD) which provides the functionality of the host con-
troller hardware.

e The USB Driver (USBD) Layer which implements the high level functions used by
USB device drivers in terms of the functionality provided by the HCD.

e The USB Device drivers which establish connections to USB devices. The driver
classes are also located here and provide generic access to certain types of
devices such as printers or mass storage devices.

USB Device

Two types of devices exist: hubs and functions. Hubs provide for additional USB
attachment points. Functions provide capabilities to the host and are able to transmit
or receive data or control information over the USB bus. Every peripheral USB device
represents at least one function but may implement more than one function. A USB
printer for instance may provide file system like access in addition to printing.

In this guide we treat the term USB device as synonymous with functions and will not
consider hubs.

Each USB device contains configuration information which describe its capabilities
and resource requirements. Before it can be used, USB devices must be configured
by the host. When a new device is connected for the first time, the host enumerates
it, requests the configuration from the device, and performs the actual configuration.
For example, if an embedded device uses emUSB-MSD, the embedded device will
appear as a USB mass storage device, and the host OS provides the driver out of the
box. In general, there is no need to develop a custom driver to communicate with
target devices that use one of the USB class protocols.

Descriptors

A device reports its attributes via descriptors. Descriptors are data structures with a
standard defined format. A USB device has one device descriptor which contains
information applicable to the device and all of its configurations. It also contains the
number of configurations the device supports. For each configuration, a configuration
descriptor contains configuration-specific information. The configuration descriptor
also contains the number of interfaces provided by the configuration. An interface
groups the endpoints into logical units. Each interface descriptor contains information
about the number of endpoints. Each endpoint has its own endpoint descriptor which

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



34 CHAPTER 2 Background information

states the endpoint’s address, transfer types etc.

Device

descriptor

A%n configuration descriptors

Configuration

descriptor
/ 1...m interface descriptors
Interface
descriptor
/ 1...0 endpoint descriptors
Endpoint
descriptor

As can be seen, the descriptors form a tree. The root is the device descriptor with n
configuration descriptors as children, each of which has m interface descriptors which
in turn have o endpoint descriptors each.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



35

2.1.4 Transfer Types

The USB standard defines 4 transfer types: control, isochronous, interrupt, and bulk.
Control transfers are used in the setup phase. The application can basically select
one of the other 3 transfer types. For most embedded applications, bulk is the best
choice because it allows the highest possible data rates.

Control transfers

Typically used for configuring a device when attached to the host. It may also be
used for other device-specific purposes, including control of other pipes on the
device.

Isochronous transfers

Typically used for applications which need guaranteed speed. Isochronous transfer is
fast but with possible data loss. A typical use is for audio data which requires a con-
stant data rate.

Interrupt transfers
Typically used by devices that need guaranteed quick responses (bounded latency).
Bulk transfers

Typically used by devices that generate or consume data in relatively large and
bursty quantities. Bulk transfer has wide dynamic latitude in transmission con-
straints. It can use all remaining available bandwidth, but with no guarantees on
bandwidth or latency. Because the USB bus is normally not very busy, there is typi-
cally 90% or more of the bandwidth available for USB transfers.

2.1.5 Setup phase / Enumeration

The host first needs to get information from the target, before the target can start
communicating with the host. This information is gathered in the initial setup phase.
The information is contained in the descriptors, which are in the configurable section
of the USB-MSD stack. The most important part of target device identification are the
product and vendor IDs. During the setup phase, the host also assigns an address to
the client. This part of the setup is called enumeration.

2.1.6 Product/ Vendor IDs

The Product and Vendor IDs are necessary to identify the usb device. The Product ID
describes a specific device type and does not need to be unique between different
devices of the same type. USB host systems like Windows use the Product ID/Vendor
ID combination to identify which drivers are needed.

e.g:
All our J-Link v8 devices have the Vendor ID 0x1366 and Product ID 0x0101.

A Vendor and Product ID is necessary only when development of the product is fin-
ished; during the development phase, the supplied Vendor and Product IDs can be
used as samples.

Possible options to obtain a Vendor ID or Product ID are described in the chapter
Vendor and Product ID on page 417.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



36 CHAPTER 2 Background information

2.2 Predefined device classes

The USB Implementers Forum has defined device classes for different purposes. In
general, every device class defines a protocol for a particular type of application such
as a mass storage device (MSD), human interface device (HID), etc.

Device classes provide a standardized way of communication between host and
device and typically work with a class driver which comes with the host operating
system.

Using a predefined device class where applicable minimizes the amount of work to
make a device usable on different host systems.

emUSB-Device supports the following device classes:

Mass Storage Device Class (MSD)
Human Interface Device Class (HID)
Communication Device Class (CDC)
Printer Device Class (PDC)

2.3 USB analyzers

A variety of USB analyzers are on the market with different capabilities.

If you are developing an application using USB, it should not be necessary to have a
USB analyzer, but we still recommend you do.

Simple yet powerful USB-Analyzers are available for less than $1000.

2.4 References

For additional information see the following documents:

e Universal Serial Bus Specification, Revision 2.0

e Universal Serial Bus Mass Storage Class Specification Overview, Rev 1.2

e UFI command specification: USB Mass Storage Class, UFI Command Specifica-
tion, Rev 1.0

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



37

Chapter 3
Getting started

The first step in getting emUSB up and running is typically to compile it for the target
system and to run it in the target system. This chapter explains how to do this.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



38 CHAPTER 3 Getting started

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



3.1

How to setup your target system

To get the USB up and running, 3 possible ways currently available:
Upgrade a trial version available on the web with source code.

[ )
e Upgrading an embOS Start project
e Creating a project from scratch.

3.1.1
code.

Simply download a trial package available from the SEGGER website.

39

Upgrade a trial version available on the web with source

After downloading, extract the trial project and open the workspace/project file which

is located in the start folder.

7% 1AR Embedded Workbench IDE
File Edit Wiew Project Tools Window Help

=1 E3

D@ S| 4 =R o~

A4y B 250 |BWHELS(L D

Total number of errors: 0
Total number of warnings: 0

* | ———— - x
Debug_FLASH BB 23 %0kttt j
Files [ ] ﬁ | 1ea=
B (@ start_LPC2478_EA_ARM_IAR... ¥ g ig‘; W D
Bell poicaion ||| [,

@ 5 Excluded ' e e e ) . N .
) USB_HID_Mousa.e g 122 Modify to implement the desired protocol
(] Config ! 170 void MainTask (void);
rELres ! 171void MainTask(void) {
FELGu ! 172 USB Init():
- 1ne | 173 _RddEID():
Faos | 174 USB_Start():
(] Setup | 175 while (1) {
FECJuss L 178 ue ac[3]:
— E1use.h D177
— [ use_at_tl_id_trial.a i178
|— [ usB_at_tl_ir_trial.a io179 Wait for configuration
— Fuse_coc.h i 180 /7
I [ use_coc_private.h ;181 while ((USB_GetState() & (USB_STAT CONFIGURED | USB_STAT SUSPENDED)) != USB_STAT CONFIGURED) {
L [ use_rioh | 182 BSP_TogglelED(0) ;
— F1Use_HID_Private.h § A Ut lB R SRS
— Eluse_MsD.h o1ee U R
|— [ USE_MSD_Private.h g BSE_C1rLED(D):
186 memset (ac, 0, sizeof(ac)):
|- [ usB_0s_embos.c .1 - 0: 7/ To cthe lefr !
— Buse_private.n | 188  USB HID Write(sac[0], 3): Make sure we send the number of bytes defined in REPORT
A usen i 189 USB_0S_Delay(500) ;
1 O3 il ! 180ac[1] = (U8)-20:
— BlReadMe.txt io1o1 USB_HID_Write (sac[0] Make sure we send the number of bytes defined in REPORT
—& ] output 1192 USB_05_Delay (100) ;
i193 3
194
195
P —— B LT T T —,
;197 =
Stail_LPC2478 EA ARM_IAR_VE 5ol [f _’l_l
* [ | Messages A
USB_HID_Mouse.c
Linking AIJ
»

[Errors 0, Warnings 0 |tn 163, Col 22

FRT=

The source files in the

UMO09001 User & Reference Guide for emUSB

USB folder from the

emUSB shipment shall be copied into the

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



40

CHAPTER 3 Getting started

USB folder of the trial package.
Afterwards the project needs to be updated by adding the source files into the
project.

2 1AR Embedded Workbench IDE [_[o]x]
Fle Edt View Project Toos Window Help
DR & E@|a o] Ny vl abh BRES L5
USB_HID_Mouse.c T X
Debug_FLASH - UG e e e e ek 3 0 ZI
Files B 164 =
B ([ Start_LPC2478_EA_ARM_IAR... ¥ 165 - HainTask
186
R
) USB_HID_Mouse.c i:: *  Modify to implement the desired protocol
g Config 170 void MainTask (void)
G
mFs 171 void MainTask(void) {
& Gur 172 USE_Init();
8 (Jinc 173 _AddHID():
—#=(10s 174 USB_Start();
{8 1 setup 175 while (1) {]
—Euse 176 Us ac[3]:
— Buss.n 177
USE__memcpy.c . 178 /1
[ usB_Bulk.c N 179 // Wait for configuration
USE_HID.C . 180 [/
— Buss_nio.h 181 while ((USB_GetState() & (USE_STAT CONFIGURED | USB_STAT SUSPENDED)) != USB_STAT CONFIGURED) {
|— B uss_tio_private.h 182 BSP_ToggleLED (0) ;
5 50y ;
USB_HW_NXP_LPC24xx.c i 183 USB_05_Delay(50);
Duss_1a0.c e i:; i51: C1rLED(0)
5 r 0) ;
£ usB_Main. . —
I—l _Main.c 186 memset (ac, 0, sizeof(ac)):
[} USB_0S_emb0S.c - o S srvay
f— Bl uss_Private.h 188 ID Write (sac[0], 3): f/ Make sure we send the number of bytes defined in REPORT
USB_Setup.c E 189 3 ;
& CJuseH 190 ac[1
8 util 191 f/ Make sure we send the number of bytes defined in REPORT
— B readMe.txt 132
@ (7 output 193 |
1943
135
L T ——— N = & P —————————————
197 =
Start_LPC2478_EA_ARM_IAA_YS 18] [4[ | LlJ
| Messages Al
USB_HID_Mouse.c
Linking
Total number of errors: 0
Total number of warnings: 0 =
4] | »
Ready [Errors 0, Warrings 0 |tn 175, Col 14 =)

3.1.2 Upgrading an embOS Start project

Integrating emUSB

The emUSB default configuration is preconfigured with valid values, which matches
the requirements of the most applications. emUSB is designed to be used with
embOS, SEGGER’s real-time operating system. We recommend to start with an
embOS sample project and include emUSB into this project.

We assume that you are familiar with the tools you have selected for your project
(compiler, project manager, linker, etc.). You should therefore be able to add files,
add directories to the include search path, and so on. In this document the IAR

Embedded Workbench® IDE is used for all examples and screenshots, but every
other ANSI C toolchain can also be used. It is also possible to use make files; in this
case, when we say “add to the project”, this translates into “add to the make file”.

Procedure to follow

Integration of emUSB is a relatively simple process, which consists of the following
steps:

Step 1: Open an embOS project and compile it.
e Step 2: Add emUSB to the start project
e Step 3: Compile the project

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



41

Step 1: Open an embOS start project

We recommend that you use one of the supplied embQOS start projects for your target
system. Compile the project and run it on your target hardware.

/% 1AR Embedded Workbench IDE =] 3
File Edit “iew Project Toolz ‘Window Help
D@ &S =@ o | BRI A R )
e x E | - x
[Debug_FLASH =l 33
: _ . 34 k=
Files (=B | | 35#include "RTOS.h"
o [Elstart_AT915AM7X256 ... v I Cjft inc lude VBSP.h
|21 (0 application . | 3B0S_STACKPTR int StackHP[1281, StackLP[1281; s% Tas
= CaLib : 32 0S_TASK TCBHP. TCBLF; #%* Task-contro
DSetup * E 3?
I— Bl readMe txt i 42 static void HPTask{void> {
i 43 while (1> ¢
@ (3 output L a4 BSP_ToggleLEDC@);
i 45 05_Delay (58);
46 >
47>
48
49 static void LPTask{void)> {
5@ while (1> {
51 BSP_ToggleLED(1);
52 05_Delay (208);
53 >
543>
55
56
57
L8 = main
59 x
60
61 -

62 int main{void> {

H 63  08_IncDICH; #%* Initially disable int
1 64 0S8_InitKern{); #% initialize 08
1 65 0S_InitHUW(>; #% initialize Hardware f
. 66 BSP_Init(o; /% initiali LED ts [
Start_AT315AM74256 16l (<] =n2 AR AR e S_,l—l
Ready (I

Step 2: Adding emUSB to the start project

Add all source files in the following directory to your project:

. Config
. USB
. UTIL (optional)

The config folder includes all configuration files of emUSB. The configuration files
are preconfigured with valid values, which match the requirements of most applica-
tions. Add the hardware configuration USB_Config_<TargetName>.c supplied with
the driver shipment.

If your hardware is currently not supported, use the example configuration file and
the driver template to write your own driver. The example configuration file and the
driver template is located in the sample\Driver\Template folder.

The util folder is an optional component of the emUSB shipment. It contains opti-
mized MCU and/or compiler specific files, for example a special memcopy function.

Configuring the include path

The include path is the path in which the compiler looks for include files. In cases
where the included files (typically header files, .h) do not reside in the same direc-
tory as the C file to compile, an include path needs to be set. In order to build the
project with all added files, you will need to add the following directories to your
include path:

. Config
. Inc
. USB

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



42 CHAPTER 3 Getting started

3.1.3 Creating a project from scratch

To get the target system to behave like a mass storage device or generic bulk device
on the USB bus, a few steps have to be taken:

A project or make file has to be created for the used toolchain.

The configuration may need to be adjusted.

The hardware routines for the USB controller have to be implemented.
Add the path of the required USB header files to the include path.

To get the target up and running is a lot easier if a USB chip is used for which a tar-
get hardware driver is already available. In that case, this driver can be used.

Creating the project or make file

The screenshot below gives an idea about a possible project setup.

= Stﬂrt_ATQ'l SAM75256 - MSD_Debug_Flash*
&1 Ca Application
B MSD_Start.c
&1 3 Config
L— B USB_Conth
&1 CaHardware
Lo samM?s
F— B ATIISAMIS h
[B b
F=@Inc
— B Globalh
L— B Hwh
- m0s
L5 @embos
= COARM_IAR
[:ICPU_ATQ'ISAM?SZEB
HE@lnc
FHE@LUE
[ tain.c
B 05 _Errorc
B RTOSVECT asm
B USB_0S_emhOS.c
FHRCIUsE
23 Care
— BIUSBEh
B USB__memcpy.c
B USB_Bulk.c
B USE_tain.c
— [ USE_Private.h
B USB_Setup.c
-2 Ca Driver
B USE_Hw_SAM7S.c
= LI M50
B USB_MSD.c
— B USB_MSDh
— [E USE_MSD_Private.h
B USB_MSD_STORAGE_RAM.c
1 3 Output

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



3.2 Select the start application

For quick and easy testing of your emUSB integration, start with the code found in
the folder application. Add USB_HID_ Mouse.c as your applications to your project.
=1 E3

2 1AR Embedded Workbench IDE
Fie Edt View Project Tods Window Hep

DEEA@ & s er|e

x
R -
Debug_FLASH -

Files:

R

O (J Start_LPC2478_EA_ARM_IAR... v
&1 (1 Application
B EaExcluded
USB_HID_Mouse.c
[ (1 Config
—EFs
& Gut
FEine
—#=(10s
& [ setup.

— Buss.n
USE__memcpy.c
USB_Bulk.c
USB_HID.C
|— Blusa_nio.h
|— B uss_tio_private.h
USB_HW_NXP_LPC24xx.c
USB_IAD.c
USB_Main.c
USB_0S_emb0S.c
— B uss_private.n
USB_Setup.c

& CJuseH

& L util

— B readMe.txt

@ (7 output

Start_LPC2476_EA_ARM_IARYS

Ny vl abh BRES L5

USB_HID_Mouse.c

G % R R R R R R R R R R R R R R R R R KR
164
1865 MainTask
166
167 * USB handling task.
168 Modify to implement the desired protocol
169
170 void MainTask(void):
171 void MainTask(void) {
172 USB_Init();
173 _AdAHID();
174 USB_Start():
175 while (1) {f
176 U8 ac[3]:
177
178 /1
179 // Wait for configuration
180 [/
181 while ((USB GetState() & (USB_STAT CONFIGURED | USB STAT SUSPENDED)) !'= USB STAT CCNFIGURED) {
182 BSP_ToggleLED (0) ;
183 USB_05_Delay (50) :
184 }
185 BSP_C1rLED(O) ;
186 memset (ac, 0, sizeof(ac)):
187 ac[1] = 20; // To the left !
188 USB_HID Write(&ac[0], 3);: // Make sure we send the number of bytes defined in REPORT
189 USE_05S_Delay(500):
190 ac[1] = (U8)-20; //
191 USB_HID Write(£ac[0], 3); // Make sure we send the number of bytes defined in REFORT
192 USE_0S_Delay(100):
193 |}
194}
135
LG o sk kR R R R R R nd OF File ®#%ewswswswsn s e e ou s o we v w s
197
{7 EN] |

HEN

| Messages

USB_HID_Mouse.c
Linking

Total number of errars: 0
Total number of warnings: 0

4]

Ready

[Errors 0, Warrings 0 |tn 175, Col 14

aom |

i

3.3 Build the project and test it

Build the project. It should compile without errors and warnings. If you encounter
any problem during the build process, check your include path and your project con-
figuration settings. To test the project, download the output into your target and

start the application.

43

After connecting the USB cable to the target device, the mouse pointer should hop

from left to right.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



44

3.4 Configuration

CHAPTER 3 Getting started

An application using emUSB must contain the following functions:

Function

Description

General emUSB configuration functions

USB_GetVendorId()

Should return the vendor Id of the target.

USB_GetProductId()

Should return the product Id of the target.

USB_GetVendorName ()

Should return the manufacturer name.

USB_GetProductName ()

Should return the product Id of the target.

USB_GetSerialNumber ()

Should return the manufacturer name.

Additional required configuration functions for emUSB-MSD

USB_MSD_GetVendorName ()

Should return the vendor name.

USB_MSD_GetProductVer ()

Should return the product version.

USB_MSD_GetSerialNo ()

Should return the serial number.

Table 3.1: Functions that are required in emUSB applications

These functions are included in the every example application. The functions could be

used without modifications

in the development phase of your application, but you

may not bring a product on the market without modifying the information like vendor

Id and product Id.

Ids Description
Default vendor Id for all applications
0x8765 Example vendor Id for all examples.
Used product Ids
0x1234 Example product Id for all bulk samples.
0x1000 Example product Id for all MSD samples.
0x1200 Elxeample product Id for the MSD CD-ROM sam-
Ox1111 Example product Id for all CDC samples.
0x1112 Example product Id for HID mouse sample.
Ox1114 Example product Id for the vendor specific HID
sample.
0x2114 Elxeample product Id for the Printer class sam-

Table 3.2: List of used product and vendor Ids

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



45

3.4.1 General emUSB configuration functions

3.4.1.1 USB_GetVendorid()

Description
Should return the vendor Id of the target.

Prototype
Ul6 USB_GetVendorId(void) ;

Example

Ul6 USB_GetVendorId(void) {
return 0x8765;
}

Additional information

The vendor Id is assigned by the USB Implementers forum (www.usb.org). For tests,
the default number above (or pretty much any other number) can be used. However,
you may not bring a product on the market without having been assigned your own
vendor Id.

For emUSB-Bulk and emUSB-CDC: If you change this value, do not forget to make
the same change to the .inf file as described in section The .inf file on page 80 or
The .inf file on page 267. Otherwise, the Windows host will be unable to locate the
driver.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



46 CHAPTER 3 Getting started

3.4.1.2 USB_GetProductid()

Description

Should return the product Id of the target.
Prototype

Ul6 USB_GetProductId(void),

Example

Ul6 USB_GetProductId(void) {
return 0x1111;
}

Additional information

The product Id in combination with the vendor Id creates a worldwide unique identi-
fier. For tests, you can use the default number above (or pretty much any other num-
ber).

For emUSB-Bulk and emUSB-CDC: If you change this value, do not forget to make
the same change to the .inf file as described in section The .inf file on page 80 or
The .inf file on page 267. Otherwise, the Windows host will be unable to locate the
driver.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



3.4.1.3 USB_GetVendorName()
Description
Should return the manufacturer name.
Prototype

const char * USB_GetVendorName (void) ;

Example

const char * USB_GetVendorName (void) {
return "Vendor";

)
Additional information

47

The manufacturer name is used during the enumeration phase. The product name
and the serial number should together give a detailed information about which device

is connected to the host.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



UMO09001 User & Reference Guide for emUSB

CHAPTER 3

3.4.1.4 USB_GetProductName()

Description
Should return the product name.

Prototype

const char * USB_GetProductName (void) ;

Example

const char * USB_GetProductName (void) {
return "Bulk device";

)
Additional information

Getting started

The product name is used during the enumeration phase. The manufacturer name
and the serial number should together give a detailed information about which device

is connected to the host.

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



49

3.4.1.5 USB_GetSerialNumber()

Description
Should return the serial number.

Prototype

const char * USB_GetSerialNumber (void) ;

Example

const char * USB_GetSerialNumber (void) {
return "12345678";
}

Additional information

The serial number is used during the enumeration phase. The manufacturer and the
product name should together give a detailed information to the user about which
device is connected to the host.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



50 CHAPTER 3 Getting started

3.4.2 Additional required configuration functions for emUSB-
MSD

Refer to Configuration on page 183 for more information about the required addi-
tional configuration functions for emUSB-MSD.

3.4.3 Descriptors

All configuration descriptors are automatically generated by emUSB and do not
require configuration.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



Chapter 4
USB Core

51

This chapter describes the basic functions of the USB Core.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



52 CHAPTER 4 USB Core

4.1 Overview

This chapter describes the functions of the core layer of USB Core. This functions are
required for all USB class drivers and the unclassified bulk communication compo-
nent.

Target USB components

USB class drivers

Bulk Printer MSD CDC HID

emUSB Core

Driver

General information

To communicate with the host, the example application project includes a USB-spe-
cific header use.h and one of the USB libraries (or instead of the libraries the source
files, if you have a source version of USB Core). These libraries contain API functions
to communicate with the USB host through the USB Core driver.

Every application using USB Core has to perform the following steps:

1. Initialize the USB stack. To initialize the USB stack usB_Init () has to be called.
USB_Init () performs the Ilow-level initialization of the USB stack and calls
USB_X_AddDriver () to add a driver to the USB stack.

2. Add communication endpoints. You have to add the required endpoints with the
compatible transfer type for the desired interface before you can use any of the
USB class drivers or the unclassified bulk communication component.

For the emUSB bulk component, refer to USB_BULK_INIT_DATA on page 108 for
information about the initialization structure that is required when you want to
add a bulk interface.

For the emUSB MSD component, refer to USB_MSD_INIT_DATA on page 201 and
USB_MSD_INST_DATA on page 203 for information about the initialization struc-
tures that are required when you want to add an MSD interface.

For the emUSB CDC component, refer to USB_CDC_INIT_DATA on page 290 for
information about the initialization structure that is required when you want to
add a CDC interface.

For the emUSB HID component, refer to USB_HID INIT_DATA on page 308 for
information about the initialization structure that is required when you want to
add a HID interface.

3. Start the USB stack. Call usB_start () to start the USB stack.

Example applications for every supported USB class and the unclassified bulk compo-
nent are supplied. We recommend to use one of these examples as starting point for
your own application. All examples are supplied in the \application\ directory.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



53

4.2 Target API

This section describes the functions that can be used by the target application.

Function Description

USB basic functions
Adds a USB device driver to the USB

USB_AddDriver ()

stack.
USB_GetState () Returns the state of the USB device.
USB_Init () Initializes USB Core.
USB_IsConfigured() Checks if the USB device is configured.
USB_Start () Starts the emUSB core.

USB configuration functions
Returns an endpoint “handle” that can be

USB_AAAEP () used for the desired USB interface.
Sets a callback for setting additional
USB_SetAddFuncDesc () information into the configuration
descriptor.
Sets a callback to handle class setup
USB_SetClassRequestHook ()
requests.
USB_SetVendorRequestHook () Sets a callback to handle vendor setup
requests.
USB. SetIsSelfPowered () Sets whether the device is self-powered
or not.
Sets the target device current consump-
USB_SetMaxPower () tion
Sets a callback to handle data read of
USB_SetOnRxEPO () .
endpoint 0.
USB_SetOnSetupHook () g;asts a callback to handle EPO setup pack-
USB__WriteEPOFromISR() Writes data to a USB EP.
USB_StallEP() Stalls an endpoint.
USB_WaitForEndOfTransfer () Waits for a data transfer to be ended.

USB IAD functions

Allows to combine multi-interface device
classes with single-interface classes.

USB RemoteWakeUp functions

Allows the device to publish that remote
wake is available.

USB_DoRemoteWakeup () Performs a remote wakeup to the host.
Table 4.1: Target USB Core interface function list

USB_EnableIAD()

USB_SetAllowRemoteWakeUp ()

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



54 CHAPTER 4 USB Core

4.2.1 USB basic functions

4.2.1.1 USB_AddDriver()

Description

Adds a USB device driver to the USB stack. This function should be called from within
USB_X_AddDriver () which is implemented in uss_x.c.

Prototype

void USB_AddDriver (const USB_HW_DRIVER * pDriver) ;

Additional information

To add the driver, use UsB_addDriver () with the identifier of the compatible driver.
Refer to the section Available USB drivers on page 388 for a list of supported devices
and their valid identifiers.

Example

USB_AddDriver (&USB_Driver_AtmelRM9200) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



4.2.1.2 USB_GetState()
Description
Returns the state of the USB device.
Prototype

int USB_GetState(void) ;

Return value

55

The return value is a bitwise OR combination of the following state flags.

USB state flags

USB_STAT_ATTACHED

Device is attached.

USB_STAT_ READY

Device is ready.

USB_STAT_ADDRESSED

Device is addressed.

USB_STAT_CONFIGURED

Device is configured.

USB_STAT_SUSPENDED

Device is suspended.

Additional information

A USB device has several possible states. Some of these states are visible to the USB
and the host, while others are internal to the USB device. Refer to Universal Serial
Bus Specification, Revision 2.0, Chapter 9 for detailed information.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



56 CHAPTER 4 USB Core

4.2.1.3 USB_Init()

Description
Initializes the USB device with its settings.

Prototype
void USB_Init (void) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



57

4.2.1.4 USB_IsConfigured()
Description
Checks if the USB device is initialized and ready.
Prototype
char USB_TIsConfigured(void) ;
Return value

0: USB device is not configured.
1: USB device is configured.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



58 CHAPTER 4 USB Core

4.2.1.5 USB_Start()

Description
Starts USB Core.

Prototype
void USB_Start (void) ;

Additional information

This function should be called after configuring USB Core. It initiates a hardware
attach and updates the endpoint configuration. When the USB cable is connected to
the device, the host will start enumeration of the device.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



59

4.2.2 USB configuration functions

4.2.2.1 USB_AddEP()

Description
Returns an endpoint “handle” that can be used for the desired USB interface.
Prototype
unsigned USB_AdJdJEP (U8 InDir,
us TransferType,
Ule Interval,
us * pBuffer,
unsigned BufferSize);
Parameter Description
InDir Specifies the direction of the desired endpoint.
Specifies the transfer type of the endpoint.
The following values are allowed:
TransferType |USB_TRANSFER_TYPE_BULK
USB_TRANSFER_TYPE_ISO
USB_TRANSFER_TYPE_INT
Specifies the interval in microframes [0.125 ps] for the endpoint.
Interval . .
This value can be zero for a bulk endpoint.
S e Pointer to a buffer that is used for OUT-transactions. For IN-end-
. points this parameter can be NULL.
BufferSize Size of the buffer.

Table 4.2: USB_AddEP() parameter list

Return value

On success: A valid endpoint handle is returned.
On failure: 0 is returned.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



60 CHAPTER 4 USB Core

4.2.2.2 USB_SetAddFuncDesc()

Description
Sets a callback for setting additional information into the configuration descriptor.

Prototype
void USB_SetAddFuncDesc (USB_ADD_FUNC_DESC * pfAddDescFunc) ;

Parameter Description

Pointer to a function that should be called when building the
configuration descriptor.
Table 4.3: USB_SetAddFuncDesc() parameter list

pfAddDescFunc

Additional information

USB_ADD_FUNC_DESC is defined as follows:
typedef void USB_ADD_FUNC_DESC (USB_INFO_BUFFER * pInfoBuffer);

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



61

4.2.2.3 USB_SetClassRequestHook()
Description
Sets a callback for a function that handles setup class request packets.

Prototype

void USB_SetClassRequestHook (unsigned Interface,
USB_ON_CLASS_REQUEST * pfOnClassrequest) ;

Parameter Description

Specifies the Interface number of the class on which the hook
shall be installed.

Pointer to a function that should be called when a setup class

request/packet is received.
Table 4.4: USB_SetClassRequestHook() parameter list

Interface

pfOnClassrequest

Additional information

Note that the callback will be called within an ISR.

If it is necessary to send data from the callback function through endpoint 0, use the
function USB__ WriteEPOFromISR().

USB_ON_CLASS_REQUEST is defined as follows:

typedef void USB_ON_CLASS_REQUEST (const USB_SETUP_PACKET * pSetup-
Packet) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



62 CHAPTER 4 USB Core

4.2.2.4 USB_SetVendorRequestHook()

Description
Sets a callback for a function that handles setup vendor request packets.

Prototype

void USB_SetClassRequestHook (unsigned Interface,
USB_ON_CLASS_REQUEST * pfOnClassrequest) ;

Parameter Description

Specifies the Interface number of the class on which the hook
shall be installed.

Pointer to a function that should be called when a setup ven-
dor request/packet is received.

Table 4.5: USB_SetClassRequestHook() parameter list

Interface

pfOnClassrequest

Additional information

Note that the callback will be called within an ISR.

If it is necessary to send data from the callback function through endpoint 0, use the
function USB__WriteEPOFromISR().

USB_ON_CLASS_REQUEST is defined as follows:

typedef void USB_ON_CLASS_REQUEST (const USB_SETUP_PACKET * pSetup-
Packet) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



63

4.2.2.5 USB_SetisSelfPowered()
Description
Sets whether the device is self-powered or not.

Prototype
void USB_SetIsSelfPowered (U8 IsSelfPowered) ;

Parameter Description

0 - Device is not self-powered.
1 - Device is self-powered..
Table 4.6: USB_SetClassRequestHook() parameter list

IsSelfPowered

Additional information

This function shall be called before USB_Start(), as it will specify if the device is self-
powered or not.
The default value is 0 (not self-powered).

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



64 CHAPTER 4 USB Core

4.2.2.6 USB_SetMaxPower()

Description
Sets the max power consumption that shall the target report during enumeration.

Prototype

void USB_SetMaxPower (U8 MaxPower) ;

Parameter Description

Specifies the max power consumption given in mA.
MaxPower shall be in range between OmA - 500mA.
Table 4.7: USB_SetClassRequestHook() parameter list

MaxPower

Additional information

This function shall be called before USB_Start(), as it will specify how much power
the device will consume from the host.
The default value is 100mA.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



65

4.2.2.7 USB_SetOnRxEP0()
Description

Sets a callback to handle data read of endpoint 0.

Prototype
void USB_SetOnRxEPO (USB_ON_RX_FUNC * pfOnRx) ;

Parameter Description

Pointer to a function that should be called when receiving data
other than setup packets.
Table 4.8: USB_SetOnRxEPO() parameter list

pfOnRx

Additional information

Note that the callback will be called within an ISR.

If it is necessary to send data from the callback function through endpoint 0, use the
function USB__wWriteEPOFromISR().

USB_ON_RX_FUNC is defined as follows:

typedef void USB_ON_RX_FUNC (const U8 * pData, unsigned NumBytes) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



66 CHAPTER 4 USB Core

4.2.2.8 USB_SetOnSetupHook()
Description
Sets a callback for a function that handles setup class request packets.
Prototype

void USB_SetClassRequestHook (unsigned Interface,
USB_ON_CLASS_REQUEST * pfOnClassrequest) ;

Parameter Description

Specifies the Interface number of the class on which the hook
shall be installed.

Pointer to a function that should be called when a setup class
request/packet is received.
Table 4.9: USB_SetClassRequestHook() parameter list

Interface

pfOnClassrequest

Additional information

Note that the callback will be called within an ISR.

If it is necessary to send data from the callback function through endpoint 0, use the
function USB__WriteEPOFromISR().

USB_ON_CLASS_REQUEST is defined as follows:

typedef int USB_ON_SETUP (const USB_SETUP_PACKET * pSetupPacket) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



67

4.2.2.9 USB__ WriteEPOFromISR()

Description

Writes data to a USB EP.

Prototype

void USB_ _WriteEPOFromISR(const void* pData, unsigned NumBytes,

char SendOPacketIfRequired) ;

Parameter Description
pData Data that should be written.
NumBytes Number of bytes to write.
Send0PacketIfRequ Specifies that a zero-length packet sr_\ould be sent when_ the
ired last data packet to thg host is a multiple of MaxPac_ketS|ze.
Normally MaxPacketSize for control mode transfer is 64 byte.

Table 4.10: USB_WriteEPOFromISR() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



68 CHAPTER 4 USB Core

4.2.3 USB control functions

4.2.3.1 USB_StallEP()

Description
Stalls an endpoint.
Prototype
void USB_StallEP (U8 EPIndex) ;
Parameter Description
EPIndex Endpoint handle that needs to be stalled.

Table 4.11: USB_StallEP() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



69

4.2.3.2 USB_WaitForEndOfTransfer()
Description
Waits for a data transfer to be ended.

Prototype
void USB_WaitForEndOfTransfer (U8 EPIndex) ;

Parameter Description

EPIndex Endpoint handle to wait for end of transfer.
Table 4.12: USB_WaitForEndOfTransfer() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



70 CHAPTER 4 USB Core

4.2.4 USB IAD functions
4.2.4.1 USB_EnablelAD()

Description

Allows to combine multi-interface device classes with single-interface classes or
other multi-interface classes.

Prototype
void USB_EnableIAD(void) ;

Additional information

Simple device classes such as HID and MSD or BULK use only one interface descrip-
tor to describe the class. The interface descriptor also contains the device class code.
The CDC device classes uses more than one interface descriptor to describe the
class. The device class code will then be written into the device descriptor. It may be
possible to add an interface which does not belong to the CDC class, but it may be
correctly recognized by the host.

In order to allow this, a new descriptor type was introduced:

IAD (Interface Association Descriptor), this descriptor will encapsulate the multi-
interface class into this IA descriptor, so that it will be seen as one single interface
and will then allow to add other device classes.

If you intend to use the CDC component with any other component, please call
USB_EnableIAD() before adding the CDC component through use_cbDc_add().

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



71

4.2.5 USB Remote wakeup functions

Remote wakeup is a feature that allows a device to wake up a host system from a
suspend state.

In order to do this a special resume signal is sent over the USB data lines. This signal
shall be held for at least 1ms but not more than 15 ms. typically this signaling is held
for 10ms.

Additionally the USB host controller and operating system shall be able to handle this
signaling.

Windows OS:

Currently Windows OS only supports the wakeup feature on device are based on HID
mouse/keyboard, CDC Modem and RNDIS Ethernet class. MSD, generic bulk and CDC
serial is not supported by Windows. So therefore a HID mouse class even as dummy
interface within you USB configuration is currently mandatory. A sample is provided
for adding such a dummy class.

Windows must also be told that the device shall wake the PC from the suspend state.
This is done by setting the option "Allow this device to bring the computer out of
standby.". This is done by opening the device manager, then the device properties of
the device (in most cases this device is called HID-compliant mouse) shall be opened
and within the "Power Management" the said option shall be checked.

MFIE

Bile  Action  Yiew Generall Driver I Details Fower Management |

- = | @ |F.

i HID-compliant molsze
[ =g Disk drives a]
= -é Display adz
g DIrD'fCD'RC ™ &llov the camputer bo b off this device bo save power.
Sﬁ E'I_Ills_:jnplri:: [V iisllos this device o bring the computer out of standby.

g Americe
{8 USE Hu
-2 IDE ATAMA
[+-%gp IEEE 1394 |
- E8 Junga
#-iz Keyboards
EI ) Mice and of
i -1 HID-con
1) Microsc
# Monitors
B& Metwork ac
®- S Ports (Com
ﬂ Processors
#-4E 5CsIand R
-, Sound, vide
q-n Starage wo

| - bl Swstem des K I Cancel | | LI

MAC OS X

MAC OS X supports remote wakeup for all device classes.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



72 CHAPTER 4 USB Core

4.2.5.1 USB_SetAllowRemoteWakeUp()
Description
Allows the device to publish that remote wake is available.

Prototype
void USB_SetAllowRemoteWakeUp (U8 AllowRemoteWakeup) ;

Parameter Description

1 - Allows and publish the remote wakeup is available.
0 - Publish that remote wakeup is not available.
Table 4.13: USB_SetAllowRemoteWakeUp() parameter list

AllowRemoteWakeup

Additional information

This function shall be called before the function USB_Start() is called. This make sure
that the Host is informed that USB remote wake up is available.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



73

4.2.5.2 USB_DoRemoteWakeup()

Description

Performs a remote wakeup in order to wake up the host from the standby/suspend
state.

Prototype
void USB_DoRemoteWakeUp (void) ;

Additional information

Please make sure that this function is called within a task context, since the lower
function may call function that may not allowed within an ISR context.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



74 CHAPTER 4 USB Core

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



75

Chapter 5

Bulk communication

This chapter describes how to get the emUSB-Bulk up and running.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



76 CHAPTER 5 Bulk communication

5.1 Generic bulk stack

The generic bulk stack is located in the directory usg. All C files in the directory
should be included in the project (compiled and linked as part of your project). The
files in this directory are maintained by SEGGER and should not require any modifica-
tion. All files requiring modifications have been placed in other directories.

5.2 The Kernel mode driver (PC)

In order to communicate with a target (client) running emUSB, an emUSB bulk kernel
mode driver has to be installed on Windows PC’s. Typically, this is done as soon as
emUSB runs on target hardware.

Installation of the driver as well as how to recompile it is explained in this chapter.

5.2.1 Why is a driver necessary?

In Microsoft’'s Windows operating systems, all communication with real hardware is
implemented with kernel-mode drivers. Normal applications run in user-mode. In
user-mode, hardware access is not permitted. All access to hardware is done through
the operating system. The operating system uses a kernel mode driver to access the
actual hardware. In other words: every piece of hardware requires one or more ker-
nel mode drivers to function. Windows supplies drivers for most common types of
hardware, but it does not come with a generic bulk communication driver. It comes
with drivers for certain classes of devices, such as keyboard, mouse and mass stor-
age device (for example, a USB stick). This makes it possible to connect a USB
mouse and not having to install a driver for it: Windows already has a driver for it.

Unfortunately, there is no generic kernel mode driver which allows communication to
any type of device in bulk mode. This is why a kernel mode driver needs to be sup-
plied in order to work with emUSB-Bulk.

5.2.2 Supported platforms

The kernel mode driver works on all NT-type platforms. This includes Windows 2000
and Windows XP (home and professional), Windows 2003 Server and Windows Vista.
Windows NT itself does not support USB; Win98 is not supported by the driver.

5.3 Installing the driver

When the target device is plugged on the computer's USB port, or when the com-
puter is first powered up after connecting the emUSB device, Windows will detect the
new hardware.

Found New Hardware Wizard

Welcome to the Found New

\? Hardware Wizard

Thiz wizard helpz you install a device driver for a
hardware device.

To continue, click Next.

Cancel

< Back

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



77

The wizard will complete the installation for the detected device. First select the
Search for a suitable driver for my device option and click on the Next button.

Found New Hardware Wizard

Install Hardware Device Drivers o
A device driver iz a software program that enables a hardware device to work, with
an operating system.

Thiz wizard will complete the installation for this device:

@ Bulk device

A device driver iz a software program that makes a hardware device work. “Windows
needs driver files for your new device. To locate driver files and complete the
inztallation click Mext.

‘what do you want the wizard to do?

& Eearch for a sutable driver for my device [recommendedE

" Display a list of the known drivers for this device so that | can choose a specific
driver

< Back I Mest » I Cancel |

In the next step, select the Specify a location option and click afterwards on the

Next button.

Found New Hardware Wizard

Locate Driver Files N
Wwhere do you want Windows to search for driver files?

Search for driver files for the following hardware device:

@ Bulk device

The wizard zearches for suitable drivers in itz driver databasze on your computer and in
any of the following optional search locations that you specify.

To start the gearch, click Mest. If you are searching on a floppy disk or CD-ROM drive,
inzert the floppy disk or CD before clicking Mext.

Optional search locations:
[ Floppy disk drives
" CD-ROM dives

™ Microsoft Windows Update

< Back I Mest » I Cancel |

The wizard needs the path to the correct driver files for the new device.

Found Hew Hardware Wizard [ %]

Inzert the manufacturer's installation disk into the drive oK |
selected, and then click OK.

LCopy manufacturer's files from:

|CAUSBBUKDriver

Use the directory navigator to select the usBBulk.inf file and click the Open button.

Found Hew Hardware Wizard [ %]

= Inzert the manufacturer's installation disk into the drive

selected, and then click OK.
Cancel |

LCopy manufacturer's files from:

C:\Program Filesh\AR Systemsh\Embedded Workbej Browse. .. |

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



78 CHAPTER 5 Bulk communication

The wizard confirms the choice and starts to copy, after clicking the Next button.

Found New Hardware Wizard

Driver Files Search Results o
The wizard has finished searching for driver files for your hardware device.

The wizard found a driver for the following device:

@ 1USE Device

“windows found a driver for this device. Ta install the driver Windows found, click Mest.

= c:hwuzbbulkdriveriusbbulk. inf

Cancel |

At this point, the installation is complete. Click the Finish button to dismiss the wiz-
ard.

Found New Hardware Wizard

Completing the Found New
Hardware Wizard

_\> USE Bulk driver

Windows has finizhed installing the software for thiz device.

To close this wizard, click Finizh.

< Back [Carce|

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



79

5.3.1 Recompiling the driver

To recompile the driver, the Device Developer Kit (NTDDK), as well as an installation
of Microsoft Visual C++ 6.0 or Visual Studio .net is needed.

The workspace is placed in the subdirectory priver. In order to open it, double click
the workspace file UsBDriver.dsw.

A workspace similar to the screenshot below is opened.

t. USBDriver - Microsoft Yizual C++

|| Eile Edt View Inset Project Build Tools Window Help
eS|
“wiortkspace USEDriver: 1 project(s)
El Dniver files
Ela S
3 dev.c
-] Diiverrc
% b airh
El misc. c
3 prp.c
El P C
El M.
-[#] usbc

=143 Canfig

1] | H
B gz IE] Hesu:uu...l Fileiem I_

L lx

RN

[T * s Build { Debug & Findin Files1 % Find in Files2 3| 4] |
Feady [Ln1,Coll  |REC [COL [O%F [READ 4%

Choose Build | Build USBBulk.sys (Shortcut: F7) to compile and link the driver.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



80 CHAPTER 5 Bulk communication

5.3.2 The .inf file

The .inf file is required for installation of the kernel mode driver.
It looks as follows:

; USB BULK Device driver inf

[Version]

Signature="$CHICAGOS"

Class=USB
ClassGUID={36FCO9E60-C465-11CF-8056-444553540000}
provider=%$MfgName%

DriverVer=08/07/2003

[SourceDisksNames]
1="USB BULK Installation Disk",,,

[SourceDisksFiles]
USBBulk.sys = 1
USBBulk.inf = 1

[Manufacturer]
$MfgName%=DeviceList

[Devicelist]
%USB\VID_8765&PID_1234.DeviceDesc%:USBBULK.DeV, USB\VID_8765&PID_1234

; [PreCopySection]
; HKR, ,NoSetupUI,, 1

[DestinationDirs]
USBBULK.Files.Ext = 10,System32\Drivers

[USBBULK.Dev]
CopyFiles=USBBRULK.Files.Ext
AddReg=USBBULK.AddReg

[USBBULK.Dev.NT]
CopyFiles=USBBULK.Files.Ext
AddReg=USBBULK.AddReg

[USBBULK.Dev.NT.Services]
Addservice = USBBULK, 0x00000002, USBBULK.AddService

[USBBULK.AddService]

DisplayName = %USBBULK.SvcDesc%

ServiceType =1 ; SERVICE KERNEL DRIVER
StartType =3 ; SERVICE DEMAND START
ErrorControl =1 ; SERVICE ERROR NORMAL
ServiceBinary = %10%\System32\Drivers\USBBULK.sys

LoadOrderGroup = Base
[USBBULK.AddReqg]
HKR, , DevLoader, , *ntkern

HKR, ,NTMPDriver, ,USBBULK.sys

[USBBULK.Files.Ext]
USBBulk.sys

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



81

[Strings]

MfgName="MyCompany"

USB\VID 8765&PID 1234.DeviceDesc="USB Bulk Device"
USBBULK.SvcDesc="USB Bulk device driver"

red - required modifications
green - possible modifications

You have to personalize the .inf file on the red marked positions. Changes on the
green marked positions are optional and not necessary for the correct function of the
device.

Replace the red marked positions with the personal vendor Id (VID) and product Id
(PID). These changes have to be identical with the modifications in the configuration
functions to work correct.

The required modifications of the configuration functions are described in the section
Configuration on page 44.

5.3.3 Configuration

To get emUSB up and running as well as doing an initial test, the configuration as it is
delivered should not be modified. The configuration section can later on be modified
to match your real application. The configuration must only be modified if emUSB
should be used in a final product. Refer to section Configuration on page 44 to get
detailed information about the functions which has to be adapted.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



82 CHAPTER 5 Bulk communication

5.4 Example application

Example applications for both the target (client) and the PC (host) are supplied.
These can be used for testing the correct installation and proper function of the
device running emUSB.

The application is a modified echo server (BULK_Echol.c); the application receives
data byte by byte, increments every single byte and sends it back to the host.

USB bulk
example

application.

(for example:
Echol.exe)

USB connection

Target programmed
with the example
application consistent
with the application
running on host side
(for example:
BULK_Echol.c).

To use this application, make sure to use the corresponding example files both on the
host-side as on the target side. The example applications on the PC host are named
in the same way, just without the prefix BULK_. (For example, if the host runs
Echol.exe, BULK_Echol.c has to be included into your project, compiled and down-
loaded into your target.) There are additional examples that can be used for testing
emUSB.

The following start application files are provided:

File Description

BULK_Echol.c This application was described in the upper text.

BULK_EchoFast.c This is the faster version of Bulk_Echol.c

This application can be used to test emUSB-Bulk with differ-
ent packet sizes received from and sent to the PC host.

Table 5.1: Supplied sample applications

BULK_Test.c

The example applications for the target-side are supplied in source code in the
Application directory.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



83

Depending on which application is running on the emUSB device, use one of the fol-
lowing example applications:

File Description

If the BULK_Echol.c sample application is running on the

Echol.exe emUSB-Bulk device, use this application.

If the BULK_EchoFast.c sample application is running on the

BchoFast.exe emUSB-Bulk device, use this EchoFast application.

If the BULK_Test.c application is running on the emUSB-Bulk
device, use this application to test the emUSB-Bulk stack.

Table 5.2: Supplied host applications

Test.exe

To use these examples, the application on the PC host should use the same example
file to work correctly. The example applications on the PC host are named in the
same way. The example applications for the host-side are supplied in both source
code and executable form in the Bulk\SampleApp directory. For information how to
compile the host examples refer to Compiling the PC example application on page 85.

The start application will of course later on be replaced by the real application pro-
gram. For the purpose of getting emUSB up and running as well as doing an initial
test, the start application should not be modified.

5.4.1 Running the example applications

To test the emUSB-Bulk component, build and download the application of choice for
the target-side. If you connect your target to the host via USB while the example
application is running, Windows will detect the new hardware.

To run one of the example applications, simply start the executable, for example by
double clicking it. If the USB-Bulk device is not connected to the PC or the driver is
not installed, the following message box should pop up.

USB Bulk sample application [ %]

Unable to connect to USE BULEK device

If a connection can be established, it exchanges data with the target, testing the USB
connection.

Example output of Echol.exe:

% | C:AworkAUS BB ulk Stack\S hipAS egger\S ampleAppAUSBBULK_Echol_exe

USE BULK driver version: 2.42a, compiled: Nov 38 2885 14:58:58
Starting Echo...
Enter the number of hytes to be send to the echo client:

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



84

CHAPTER 5 Bulk communication

Example output of EchoFast.exe:

\workAUSBBulkStack\ShiphSeggeri5 ampleAppAUSBBULK_E choF ast exe

USE BULK driver version: 2.42a, compiled: Nov 38 2885 14:58:58
Starting Echo...
Enter the packet size in hytes {(default: 588>: _

Example output of Test.exe:

\workAUSBBulkStack\Shiph\Seggeri5 ampleAppAUSBBULK_Test.exe

USE BULK driver version: 2.42a, compiled: Nov 38 2885 14:58:58

Writing one byte
Reading one byte

If the host example application can communicate with the emUSB device, the exam-
ple application will be in interactive mode for the Echol and the EchoFast applica-
tion. In case of an error, a message box is displayed.

Error Messages

Unable to connect
to USB BULK device

Description

The USB device is not connected to the PC or the connec-
tion is faulty.

Could not write to
device

The PC sample application was not able to write one byte.

Could not read
from device (time
out)

The PC sample application was not able to read one byte.

Wrong data read

The result of the target sample application is not correct.

Table 5.3: List of error messages

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



85

5.4.2 Compiling the PC example application

For compiling the example application you need a Microsoft compiler. The compiler is
part of Microsoft Visual C++ 6.0 or Microsoft Visual Studio .Net.

. USBBULK_Start - Microzoft Yisual C++ -

[C:\.. \ApplicationAEchol . c]

JJ File Edit “iew Insert Project Build Tools Window Help

Al

Workspace '1JSBBULK_Start’ 1 project(z]
E| a Application

Echol.c

EchoFast.c

[ Testc

USEEBLILK

*] USBBULK.c

! 1USBBULK.h

I D External Dependencies

4 |

B Classiiew | Filetview |

int main{int argc.
int =r:
char Restart:

char* argw[]) {

if (USBBULK_Openi) == HULL} {
_He=sageBox("Unable to connect
return 1;

_ShowDriverInfoi):

TSEEULE, SetTlmeDut(SEDD * 10007
Restart = 'N'
do {

char ac[10]:
printf{"Starting Echo..
r = _Echoli):

if (r) {

brealk:

sty

+

printf{"~nStart again? (y-n):

ac[0] = 6:

_cgetsiac):

Restart = toupper(ac[2])

if {{Restart I= '
Restart = 'Y';

} while (Restart ==
TSEEULE_Close():
if (r == 0} {

A

return r;

[« |

Feady

"

¥') &f (Restart |=

printf{"Communication with USE BULE dewice succesfull"):

to USE BULK device"):

WO o

.

[REC [COL[0VR [READ] 4|

[ Ln 136, Col 1

The source code of the sample application is located in the subfolder Bulk\sam-
PLEAPP. Open the file USBBULK_Start.dsw and compile the source choose Build |
Build SampleApp.exe (Shortcut: F7). To run the executable choose Build | Exe-

cute SampleApp.exe

UMO09001 User & Reference Guide for

(Shortcut: CTRL-F5).

emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



86 CHAPTER 5 Bulk communication

5.5 Target API

This chapter describes the functions that can be used with the target system.
General information

To communicate with the host, the sample application project includes USB-specific
header and source files (USB.h, USB_Main.c, USB_Setup.c,
USB_Bulk.c,USB_Private.h). These files contain API functions to communicate with
the USB host through the emUSB driver.

Purpose of the USB Device API functions

To have an easy start up when writing an application on the device side, these API
functions have a simple interface and handle all operations that need to be done to
communicate with the host emUSB kernel mode driver.

Therefore, all operations that need to write to or read from the emUSB are handled
internally by the provided API functions.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



87

5.5.1 Target interface function list

Routine

Explanation

USB-Bulk

functions

USB_BULK_Add()

Adds an USB-Bulk interface to emUSB.

USB_BULK_CancelRead()

Cancels a non-blocking read operation
that is pending.

USB_BULK_CancelWrite ()

Cancels a non-blocking write operation
that is pending.

USB_BULK_GetNumBytesInBuffer ()

Returns the number of byte in BULK-OUT
buffer.

USB_BULK_GetNumBytesRemToRead ()

Returns the number of bytes which have
to be read.

USB_BULK_GetNumBytesToWrite ()

Returns the number of bytes which have
to be written.

USB_BULK_Read ()

USB-Bulk read.

USB_BULK_ReadOverlapped()

Non-blocking version of
USB_BULK_Read().

USB_BULK_ReadTimed ()

Starts a read operation that shall be done
within a given time-out.

USB_BULK_Receive ()

Read data from host and return immedi-
ately as soon as data has been received.

USB_BULK_SetOnRXHook ()

Installs a hook that shall be called when
an USB packet is received.

USB_BULK_WaitForTX()

Waits for a non-blocking write operation
that is pending.

USB_BULK_WaitForRX()

Waits for a non-blocking write operation
that is pending.

USB_BULK_Write ()

Starts a blocking write operation.

USB_BULK_WriteEx()

Starts a blocking write operation that
allows to specify whether a NULL packet
shall be sent or not.

USB_BULK_WriteExTimed ()

Starts an USB-Bulk WriteEx operation
that shall be done within a given time-
out.

USB_BULK_WriteOverlapped()

Non-blocking version of
USB_Bulk_Write().

USB_BULK_WriteOverlappedEx ()

USB_BULK_WriteNULLPacket ()

Sends a NULL (zero-length) packet to
host.

USB_BULK_WriteTimed ()

Starts an USB-Bulk Write operation that
shall be done within a given time-out.

Data structures

USB_BULK_INIT_DATA

Initialization structure which is required
when adding a bulk interface.

USB_ON_RX_FUNC

Function called when data is received.

Table 5.4: Target interface function list

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



88 CHAPTER 5 Bulk communication

5.5.2 USB-Bulk functions
5.5.2.1 USB_BULK_Add()

Description

Adds interface for USB-Bulk communication to emUSB.

Prototype

void USB_BULK_Add( const USB_BULK_INIT DATA * pInitData );
Parameter Description

pInitData Pointer to USB_BULK_INIT_DATA structure.

Table 5.5: USB_BULK_Add() parameter list

Additional information

USB_BULK_INIT_DATA is defined as follows:
typedef struct {

U8 EPIn; // Endpoint for sending data to the host

U8 EPOut; // Endpoint for receiving data from the host
Y

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



89

5.5.2.2 USB_BULK_CancelRead()

Description

Cancels any non-blocking/blocking read operation that is pending.

Prototype

void USB_BULK_CancelRead (void) ;

Additional information

This function shall be called when a pending asynchronous read operation should be
canceled. The function can be called from any task. In case of canceling a blocking
operation, this function must be called from another task.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



90 CHAPTER 5 Bulk communication

5.5.2.3 USB_BULK_CancelWrite()

Description

Cancels a non-blocking/blocking read operation that is pending.

Prototype
void USB_BULK_CancelWrite(void) ;

Additional information

This function shall be called when a pending asynchronously write operation should
be canceled. It can be called from any task. In case of canceling a blocking operation,
this function must be called from another task.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



91

5.5.2.4 USB_BULK_GetNumBytesinBuffer()

Description

Returns the number of bytes that are available in the internal BULK-OUT endpoint
buffer.

Prototype
unsigned USB_BULK_GetNumBytesInBuffer (void) ;

Additional information

If the host is sending more data than your target application has requested the
remaining data will be stored in an internal buffer.

The function USB_BULK_GetNumBytesInBuffer() shows how many bytes are avail-
able in this buffer.

Example:

Your host application sends 50 bytes.

Your target application only requests to receive 1 byte.

In this case the target application will get 1 byte and the remaining 49 bytes are
stored in an internal buffer.

When your target application would now call USB_BULK_GetNumBytesInBuffer() it
should return the number of bytes that are available in the internal buffer (49).

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



92 CHAPTER 5 Bulk communication

5.5.2.5 USB_BULK_GetNumBytesRemToRead()
Description
Returns the remaining number of bytes to read.

Prototype

unsigned USB_BULK_GetNumBytesRemToRead (void) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



93

5.5.2.6 USB_BULK_GetNumBytesToWrite()

Description

Returns the number of bytes that should be written.

Prototype

unsigned USB_BULK_GetNumBytesToWrite (void) ;

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



94 CHAPTER 5 Bulk communication

5.5.2.7 USB_BULK_Read()
Description

Reads data from the host.

Prototype

int USB_BULK_Read(void* pData, unsigned NumBytes) ;

Parameter Description
pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Table 5.6: USB_BULK_Read() parameter list

Return value

Number of bytes that have been received.
In case of an error -1 is returned.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



95

5.5.2.8 USB_BULK_ReadOverlapped()

Description

Reads data from the host asynchronously.

Prototype

int USB_BULK_ReadOverlapped(void* pData, unsigned NumBytes) ;
Parameter Description

pData Pointer to a buffer where the received data will be stored.

NumBytes Number of bytes to read.

Table 5.7: USB_BULK_ReadOverlapped() parameter list

Return value

Number of bytes that have already been received or have been copied from internal
buffer.

Additional information

This function will not block the calling task. The read transfer will be initiated and the
function returns immediately. In order to synchronize, USB_BULK_WaitForRX () needs
to be called.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



96 CHAPTER 5 Bulk communication

5.5.2.9 USB_BULK_ReadTimed()

Description

Reads data from the host with a given time-out.

Prototype

int USB_BULK_ReadOverlapped(void* pData, unsigned NumBytes, unsigned ms) ;
Parameter Description

pData Pointer to a buffer where the received data will be stored.

NumBytes Number of bytes to read.

ms Time-out given in milliseconds.

Table 5.8: USB_BULK_ReadTimed() parameter list

Return value
Number of bytes that have been read within the given time-out.
Additional information

This function blocks a task until all data have been read or a time-out occurs. This
function also returns when target is disconnected from host or when a USB reset
occurrs.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



97

5.5.2.10 USB_BULK_SetOnRXHook()

Description
Sets a callback that can be set whenever a data packet was received from the host.
Prototype
void USB_BULK_SetOnRXHook (USB_ON_RX_EP * pfOnRx) ;
Parameter Description
pfOnRx Pointer to the callback function.

Table 5.9: USB_BULK_SetOnRXHook() parameter list

Additional information

Setting up a callback function may be necessary to allow a monitoring task to sus-
pend and shall be waked up when data have been received.

The callback function will be called within a interrupt service routine, so minimal
operations shall be done within this function.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



98 CHAPTER 5 Bulk communication

5.5.2.11 USB_BULK_Receive()

Description
Reads data from host and returns as soon as data has been received.
Prototype
int USB_BULK_Receive(void * pData, unsigned NumBytes) ;

Parameter Description
pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Table 5.10: USB_BULK_Receive() parameter list

Return value
Number of bytes that have been read.
Additional information

If no error occurs, this function returns the number of bytes received.

In case of an error, -1 is returned.

Calling UsB_BULK_Receive () will return as much data as is currently available—up to
the size of the buffer specified.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



99

5.5.2.12 USB_BULK_WaitForRX()
Description
Waits for reading data transfer from the host to be ended.
Prototype

void USB_BULK_WaitForRX (void) ;

Additional information

This function shall be called in order to synchronize task with the read data transfer
that previously initiated.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



100 CHAPTER 5 Bulk communication

5.5.2.13 USB_BULK_WaitForTX()

Description
Waits for writing data transfer to the host to be ended.

Prototype
void USB_BULK_WaitForTX(void) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



101

5.5.2.14 USB_BULK_Write()

Description

Sends data to the USB host.

Prototype

int USB_BULK_Write(const void * pData, unsigned NumBytes) ;
Parameter Description

pData Data that should be written.

NumBytes Number of bytes to write.

Table 5.11: USB_BULK_Write() parameter list

Return value

Number of bytes that have been written.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



102 CHAPTER 5 Bulk communication

5.5.2.15 USB_BULK_WriteEx()
Description

Sends data to the host with the option to send a zero-length packet at the end of the
data transfer.

Prototype
int USB_BULK WriteEx(const void* pData,
unsigned NumBytes,
char SendOPacketIfRequired) ;
Parameter Description
pData Pointer to a buffer that contains the written data.
NumBytes Number of bytes to write.

Specifies that a zero-length packet shall be sent when
the last data packet to the host is a multiple of MaxPack-
etSize.

Normally MaxPacketSize for full-speed devices is 64 byte.
For high-speed devices the normal packet size is between
64-512 bytes.

Table 5.12: USB_BULK_WriteEx() parameter list

SendOPacketIfRequired

Additional information

Normally USB_BULK_Write is called to let the stack send that whole packet to the
host and send an optional zero-length packet to tell the host that this was the last
packet. This is the case when the last packet that shall be sent is MaxPacketSize
long.

When using this function, the zero-length packet handling can be controlled. This
means the function can be called when sending data shall be sent in multiple steps.
Please make sure that NumBytes is always except for the last transmission, a multi-
ple of MaxPacketSize.

Example

static U8 _aDbataBuffer[512];

static void _Send(void) {
unsigned NumBytes2Send;
unsigned NumBytesRead;

NumBytes2Send = _GetNumBytes2Send() ;

while (NumBytes2Send >= sizeof (_aDataBuffer)) {
NumBytesRead = _GetData (&_aDataBuffer([0], sizeof (_aDataBuffer));
USB_BULK_WriteEx (&_aDataBuffer[0], NumBytesRead, 0);
NumBytes2Send -= NumBytesRead;

}

USB_BULK_WriteEx (& _aDataBuffer[0], NumBytes2Send, 1);

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



103

5.5.2.16 USB_BULK_WriteExTimed()

Description

Sends data to the host with the option to send a zero-length packet at the end of the
data transfer and a time-out option.

Prototype
int USB_BULK_WriteEx(const void* pData,
unsigned NumBytes,
char SendOPacketIfRequired
unsigned ms) ;
Parameter Description
pData Pointer to a buffer that contains the written data.
NumBytes Number of bytes to write.

Specifies that a zero-length packet shall be sent when
the last data packet to the host is a multiple of MaxPack-
etSize.

Normally MaxPacketSize for full-speed devices is 64 byte.
For high-speed devices the normal packet size is between
64-512 bytes.

ms Time-out

Table 5.13: USB_BULK_ReadOverlapped() parameter list

SendOPacketIfRequired

Return value
Number of bytes that have been written within the given time-out.
Additional information

This function blocks a task until all data have been written or a time-out occurs. This
function also returns when target is disconnected from host or when a USB reset
occurred.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



104 CHAPTER 5 Bulk communication

5.5.2.17 USB_BULK_WriteOverlapped()

Description

Write data to the host asynchronously.

Prototype

int USB_BULK_WriteOverlapped(const void* pData, unsigned NumBytes) ;
Parameter Description

pData Pointer to data that should be sent to the host.

NumBytes Number of bytes to write.

Table 5.14: USB_BULK_WriteOverlapped() parameter list

Return value
Number of bytes that have already been sent to the HOST.
Additional information

This function will not block the calling task. The write transfer will be initiated and
the function returns immediately. In order to synchronize, USB_BULK_WaitForTX()
needs to be called.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



105

5.5.2.18 USB_BULK_WriteOverlappedEx()

Description
Write data to the host asynchronously.
Prototype
int USB_BULK WriteOverlappedEx (const void* pData,
unsigned NumBytes,
char SendOPacketIfRequired) ;
Parameter Description
pData Pointer to data that should be sent to the host.
NumBytes Number of bytes to write.

Specifies that a zero-length packet shall be sent when
the last data packet to the host is a multiple of MaxPack-
etSize.

Normally MaxPacketSize for full-speed devices is 64 byte.
For high-speed devices the normal packet size is between
64-512 bytes.

Table 5.15: USB_BULK_WriteOverlappedEx() parameter list

SendOPacketIfRequired

Return value
Number of bytes that have already been sent to the HOST.
Additional information

This function will not block the calling task. The write transfer will be initiated and
the function returns immediately. In order to synchronize, USB_BULK_WaitForTX ()
needs to be called.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



106 CHAPTER 5 Bulk communication

5.5.2.19 USB_BULK_WriteTimed()

Description

Writes data from the host with a given time-out.

Prototype

int USB_BULK_WriteOverlapped(const void* pData,
unsigned NumBytes,
unsigned ms) ;

Parameter Description

pData Pointer to a buffer that contains the written data.

NumBytes Number of bytes to write.

ms Time-out

Table 5.16: USB_BULK_ReadOverlapped() parameter list

Return value
Number of bytes that have been written within the given time-out.
Additional information

This function blocks a task until all data have been written or a time-out occurs. This
function also returns when target is disconnected from host or when a USB reset
occurred.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



107

5.5.2.20 USB_BULK_WriteNULLPacket()
Description

Sends a zero-length packet to the host.

Prototype
void USB_BULK_WriteNULLPacket (void) ;

Additional information

This function is useful to indicate that either no data are available or to indicate that
this is the last packet of the data stream.

In normal cases sending a zero-length packets as a termination packet is not neces-
sary since the stack handles this automatically when calling any USB_BULK write
function (except for USB_BULK_WriteEx routines).

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



108 CHAPTER 5 Bulk communication

5.5.3 Data structures

5.5.3.1 USB_BULK_INIT_DATA
Description

Initialization structure which is required when adding a bulk interface to emUSB-
Bulk.

Prototype

typedef struct {
U8 EPIn;
U8 EPOut;
} USB_BULK_INIT DATA;

Member Description
EPIn Endpoint for sending data to the host.
EPOut Endpoint for receiving data from the host

Table 5.17: USB_BULK_INIT_DATA elements

Example

Example excerpt from BULK_Echol.c:

static void _AddBULK (void) {
static U8 _abOutBuffer [USB_MAX_PACKET_SIZE];
USB_BULK_INIT DATA Init;

Init.EPIn
Init.EPOut

USB_AddEP (1, USB_TRANSFER_TYPE_BULK, USB_MAX PACKET_SIZE, NULL, O0);
USB_AddEP (0, USB_TRANSFER_TYPE_BULK, USB_MAX_ PACKET_ SIZE,
_abOutBuffer, USB_MAX PACKET_SIZE) ;

USB_BULK_Add (&Init) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



109

5.5.3.2 USB_ON_RX_FUNC

Description

Callback function prototype that is used when calling the function

Prototype

typedef void USB_ON_RX_FUNC (const U8 * pData, unsigned NumBytes) ;
Member Description

pData Pointer to the data that have been received.

NumBytes Number of bytes that have been received.

Table 5.18: USB_ON_RX_FUNC elements

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



110 CHAPTER 5 Bulk communication

5.6 Host API

This chapter describes the functions that can be used with the Windows host system.

General information

To communicate with the target USB-Bulk stack, the sample application project
includes USB-Bulk specific source and header files (USBBulk.c, USBBULK.h). These
files contain API functions to communicate with the USB-Bulk target through the
USB-Bulk driver.

Purpose of the USB Host API functions

To have an easy start-up when writing an application on the host side, these API
functions have a simple interface and handle all required operations to communicate
with the target USB-Bulk stack.

Therefore, all operations that need to open a channel, writing to or reading from the
USB-Bulk stack are handled internally by the provided API functions.

Additional information can also be retrieved from the USB driver.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



5.6.1 Host API list

111

The functions below are available on the host (Windows PC) side.

Function

Description

USB-Bulk basic functions

USBBULK_Open ()

Opens pipes to communicate with the
first USB-Bulk device.

USBBULK_OpenEx ()

Opens pipes to communicate with a spec-
ified USB-Bulk device.

USBBULK_Close()

Closes the pipes which are used for the
communication with the first USB-Bulk
device.

USBBULK_CloseEx ()

Closes the pipes which are used for the
communication to a specified USB-Bulk
device.

USB-Bulk direct input/output functions

USBBULK_Read ()

Reads data from the first USB-Bulk
device.

USBBULK_ReadEx ()

Reads data from a specified USB-Bulk
device.

USBBULK_Write ()

Writes data to the first USB-Bulk device.

USBBULK_WriteEx()

Writes data to a specified USB-Bulk
device.

USBBULK_WriteRead()

Reads and writes data from/to the first
USB-Bulk device.

USBBULK_WriteReadEx ()

Reads and writes data from/to a specified
USB-Bulk device.

USB-Bulk control functions

USBBULK_GetDriverCompileDate ()

Gets the compile date and time of the
USB-Bulk driver.

USBBULK_GetDriverVersion ()

Retrieves the version of the USB-Bulk
driver.

USBBULK_GetConfigDescriptor ()

Gets the received target USB configura-
tion descriptor of the first USB-Bulk
device.

USBBULK_GetConfigDescriptorEx ()

Gets the received target USB configura-
tion descriptor of a specified USB-Bulk
device.

USBBULK_GetMode ()

Returns the read operation mode of the
USB-Bulk device.

USBBULK_GetModeEx ()

Returns the read operation mode of the
USB-Bulk driver.

USBBULK_GetNumAvailableDevices ()

Returns the number of connected USB-
Bulk devices.

USBBULK_GetReadMaxTransferSize ()

Retrieves the maximum transfer size of a
read transaction the driver can receive
from an application.

USBBULK_GetReadMaxTransferSizeEx ()

Retrieves the maximum transfer size of a
read transaction the driver can receive
from an application.

USBBULK_GetSN()

Returns the serial number of the USB tar-
get device.

USBBULK_GetWriteMaxTransferSize ()

Retrieves the maximum transfer size of a
write transaction the driver can handle
from an application.

Table 5.19: Host API function list

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



112

CHAPTER 5

Bulk communication

Function

Description

USBBULK_GetWriteMaxTransferSizeEx ()

Retrieves the maximum transfer size of a
write transaction the driver can handle
from an application.

USBBULK_SetMode ()

Sets the read operation mode of the
USB-Bulk driver.

USBBULK_SetModeEx ()

Sets the read operation mode of the
USB-Bulk driver.

USBBULK_SetTimeout ()

Sets a read time-out for a read transac-
tion.

USBBULK_SetTimeoutEx ()

Sets a read time-out for a read transac-
tion.

USBBULK_SetUSBIA()

Sets the vendor Id and product id that
are used for connecting to the device.

Table 5.19: Host API function list

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



113

5.6.2 USB-Bulk Basic functions

5.6.2.1 USBBULK_Open()
Description

Opens a read and write connection to the first connected target device using emUSB-
Bulk.

Prototype
void * USBBULK_Open (void) ;
Return value

"I'= NULL' if a connection to the target running emUSB-Bulk could be established.
'== NULL' if a connection could not be established.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



114 CHAPTER 5 Bulk communication

5.6.2.2 USBBULK_OpenEx()

Description

Opens a read and write connection to a specified device using the emUSB-Bulk ker-
nel-mode driver.

Prototype
void * USBBULK_OpenEx (unsigned Id);

Parameter Description
Id Id number of the device [0..31].

Table 5.20: USBBULK_OpenEx() parameter list

Return value

'I'= NULL' if a connection to the target running emUSB-Bulk could be established.
'== NULL' if a connection could not be established.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



115

5.6.2.3 USBBULK_Close()

Description
Closes all connections to the first target device using emUSB-Bulk.

Prototype
void USBBULK_Close(void) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



116 CHAPTER 5 Bulk communication

5.6.2.4 USBBULK_CloseEx()

Description
Closes all connections to a specified device using emUSB-Bulk.

Prototype
void USBBULK_CloseEx (unsigned Id);

Parameter Description

Id Id number of the device [0..31].
Table 5.21: USBBULK_CloseEx() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



117

5.6.3 USB-Bulk direct input/output functions

5.6.3.1 USBBULK_Read()
Description

Reads data from the first target device running emUSB-Bulk.

Prototype
int USBBULK_Read(void * pBuffer, unsigned NumBytes) ;

Parameter Description
pBuffer Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Table 5.22: USBBULK_Read() parameter list

Return value

'== NumBytes': All bytes have successfully been read.

'< NumBytes': A time-out occurred during read, when the emUSB driver is in normal
mode, otherwise (short-read mode) the emUSB driver returns the number of bytes
that have been read from the device before a timeout occured (less than NumBytes).
‘== -1': Cannot read from the device.

Additional information

USBBULK_Read () sends the read request to the USB-Bulk driver. Because the driver
can only read a certain amount of bytes from the device - the default value is 64
Kbytes; the driver will abort the transaction.

Therefore if NumBytes exceeds this limit, USBBULK_Read () will read the desired Num-
Bytes in chunks of the maximum read size the driver can handle.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



118 CHAPTER 5 Bulk communication

5.6.3.2 USBBULK_ReadEx()

Description

Reads data from a specified target device running emUSB-Bulk.

Prototype

int USBBULK_ReadEx (unsigned Id, void * pBuffer, unsigned NumBytes) ;
Parameter Description

Id Id number of the device [0..31].

pBuffer Pointer to a buffer where the received data will be stored.

NumBytes Number of bytes to read.

Table 5.23: USBBULK_ReadEx() parameter list

Return value

'== NumBytes': All bytes have successfully been read.

'< NumBytes': A time-out occurred during read, when the emUSB driver is in normal
mode. Otherwise the emUSB driver returns the number of bytes that have been read
from the device.

'== -1": Cannot read from device.

Additional information

USBBULK_ReadEx() sends the read request to the emUSB driver. Because the driver
can only read a certain amount of bytes from the device - the default value is 64
Kbytes; the driver will abort the transaction.

Therefore, if NumBytes exceeds this limit, USBBULK_Read () will read the desired Num-
Bytes in chunks of the maximum read size the driver can handle.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



119

5.6.3.3 USBBULK_Write()

Description
Writes data to the first target device running emUSB-Bulk.

Prototype

int USBBULK Write(const void * pBuffer, unsigned NumBytes) ;
Parameter Description

pBuffer Pointer to a buffer to transfer.

NumBytes Number of bytes to write.

Table 5.24: USBBULK_Write() parameter list

Return value

'== NumBytes': All bytes have successfully been written.
'< NumBytes': A write error occurred.

Additional information

USBBULK_Write () sends the write request to the emUSB driver. Because the driver
can only write a certain amount of bytes to device - the default value is 64 Kbytes;
the driver will abort the transaction.

Therefore if NumBytes exceeds this limit, USBBULK_Write() will write the desired
NumBytes in chunks of the maximum write size the driver can handle.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



120 CHAPTER 5 Bulk communication

5.6.3.4 USBBULK_WriteEx()

Description

Writes data to a specified target device running emUSB-Bulk.

Prototype

int USBBULK_WriteEx (unsigned Id, const void * pBuffer, unsigned NumBytes) ;
Parameter Description

Id Id number of device [0..31].

pBuffer Pointer to a buffer to transfer.

NumBytes Number of bytes to write.

Table 5.25: USBBULK_WriteEx() parameter list

Return value

'== NumBytes': All bytes have successfully been written.
'<  NumBytes': A write error occurred.

Additional information

USBBULK_WriteEx () sends the write request to the emUSB driver. Since the driver
can only write a certain amount of bytes to the device - the default value is 64
Kbytes; the driver will abort the transaction.

Therefore if NumBytes exceeds this limit, USBBULK_Write() will write the desired
NumBytes in chunks of the maximum write size the driver can handle.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



121

5.6.3.5 USBBULK_WriteRead()
Description

Writes and reads data to and from the first target device running emUSB-Bulk.

Prototype

int USBBULK_WriteRead(const void * pWrBuffer, unsigned WrNumBytes
void * pRdBuffer, unsigned RdANumBytes) ;

Parameter Description
pWrBuffer Pointer to a buffer to transfer.
WrNumBytes Number of bytes to write.
pRdABuffer Pointer to a buffer where the received data will be stored.
RANumBytes Number of bytes to read.

Table 5.26: USBBULK_WriteRead() parameter list

Return value

'== NumBytes': All bytes have successfully been read after writing the data.

'< NumBytes': A time-out occurred during read, when the emUSB driver is in normal
mode. Otherwise the emUSB driver returns the number of bytes that have been read
from the device.

‘== -1": Cannot read from the device after write.

Additional information

This function cannot be used with short mode enabled.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



122 CHAPTER 5 Bulk communication

5.6.3.6 USBBULK_WriteReadEx()

Description
Writes and reads data to and from specified target device running emUSB-Bulk.

Prototype
int USBBULK_WriteReadEx (unsigned 1d,
const void * pWrBuffer,
unsigned WrNumBytes
void * pRdBuffer,
unsigned RANumBytes) ;
Parameter Description
Id Id number of device [0..31].
pWrBuffer Pointer to a buffer to transfer.
WrNumBytes Number of bytes to write.
pRABuffer Pointer to a buffer where the received data will be stored.
RANumBytes Number of bytes to read.

Table 5.27: USBBULK_WriteReadEx() parameter list

Return value

'== NumBytes': All bytes have successfully been read after writing the data.
'< NumBytes': A time-out occurred during read, when the emUSB driver is in normal
mode, otherwise the emUSB driver returns the number of bytes that have been read

from device.
'== -1’ - Cannot read from the device after write.

Additional information

This function cannot be used with short mode enabled.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



123

5.6.4 USB-Bulk Control functions
5.6.4.1 USBBULK_GetDriverCompileDate()

Description

Gets the compile date and time of the emUSB bulk communication driver.

Prototype

unsigned USBBULK_GetDriverCompileDate(char * s, unsigned Size);

Parameter Description
s Pointer to a buffer to store the compile date string.
Size Size, in bytes, of the buffer pointed to by s.

Table 5.28: USBBULK_GetDriverCompileDate() parameter list

Return value

If the function succeeds, the return value is nonzero and the buffer pointed by s con-
tains the compile date and time of the emUSB driver in the standard format:

mm dd yyyy hh:mm:ss

If the function fails, the return value is zero.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



124 CHAPTER 5 Bulk communication

5.6.4.2 USBBULK_GetDriverVersion()

Description
Retrieves the version of the emUSB bulk communication driver.

Prototype

unsigned USBBULK_GetDriverVersion (void) ;

Return value

If the function succeeds, the return value is the driver version of the driver as deci-
mal value:

<Major Version><Minor Version><Subversion>. 24201 means 2.42a
If the function fails, the return value is zero; the version could not be retrieved.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



125

5.6.4.3 USBBULK_GetConfigDescriptor()
Description

Gets the received target USB configuration descriptor of the first device running
emUSB-Bulk.

Prototype
int USBBULK_GetConfigDescriptor (void * pBuffer, int Size);

Parameter Description
pBuffer Pointer to a buffer to store the config descriptor.
Size Number of bytes to read.

Table 5.29: USBBULK_GetConfigDescriptor() parameter list

Return value

If the function succeeds, the return value is nonzero and the buffer pointed by
pBuffer contains the USB target device configuration descriptor.

If the function fails, the return value is zero.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



126

CHAPTER 5 Bulk communication

5.6.4.4 USBBULK_GetConfigDescriptorEx()

Description

Gets the received target USB configuration descriptor of a specified device running

emUSB-Bulk.
Prototype

int USBBULK_GetConfigDescriptor (unsigned Id, void * pBuffer, int Size);

Parameter Description
Id Id number of the device [0..31].
pBuffer Pointer to a buffer to store the config descriptor.
Size Number of bytes to read.

Table 5.30: USBBULK_GetConfigDescriptorEx() parameter list

Return value

If the function succeeds, the return value is nonzero and the buffer pointed by
pBuffer contains the USB target device configuration descriptor.
If the function fails, the return value is zero.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



127

5.6.4.5 USBBULK_GetMode()
Description

Returns the read operation mode of the driver for the first device running emUSB-
Bulk.

Prototype
unsigned USBBULK_GetMode (void) ;
Return value

USBBULK_MODE_BIT ALLOW_SHORT_ READ - Short read mode is enabled.
0 - Short read mode is disabled.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



128 CHAPTER 5 Bulk communication

5.6.4.6 USBBULK_GetModeEx()

Description
Returns the read operation mode of the driver for a specified device running emUSB-
Bulk.
Prototype
unsigned USBBULK_GetModeEx (unsigned Id);
Parameter Description
Id Id number of device [0..31].

Table 5.31: USBBULK_GetModeEx() parameter list

Return value

USBBULK_MODE_BIT_ALLOW_SHORT_READ - Short read mode is enabled.
0 - Short read mode is disabled.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



129

5.6.4.7 USBBULK_GetNumAvailableDevices()
Description

Returns the number of connected USB-Bulk devices.

Prototype
unsigned USBBULK_GetNumAvailableDevices (U32 * pMask) ;

Parameter Description

Pointer to a U32 variable to receive the connected device mask. This
parameter can be NULL.
Table 5.32: USBBULK_GetNumAvailableDevices() parameter list

pMask

Return value

If the function succeeds, the return value is the number of available devices running
emUSB-Bulk. For each emUSB device that is connected, a bit in pMask is set.

For example if device 0 and device 2 are connected to the host, the value pMask
points to will be 0x00000005.

If the function fails, the return value is zero.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



130 CHAPTER 5 Bulk communication

5.6.4.8 USBBULK_GetReadMaxTransferSize()

Description

Retrieves the maximum transfer size of a read transaction the driver can receive
from an application for the first device running emUSB-Bulk.

Prototype

unsigned USBBULK_GetReadMaxTransferSize(void) ;

Return value

If the function succeeds, the return value is the maximum transfer size in bytes the
driver can accept from an application.
If the function fails, the return value is zero.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



131

5.6.4.9 USBBULK_GetReadMaxTransferSizeEx()

Description

Retrieves the maximum transfer size of a read transaction the driver can receive
from an application for a specified device running emUSB-Bulk.

Prototype
unsigned USBBULK_GetReadMaxTransferSizeEx (unsigned Id);

Parameter Description

Id Id number of device [0..31].
Table 5.33: USBBULK_GetReadMaxTransferSizeEx() parameter list

Return value

If the function succeeds, the return value is the maximum transfer size in bytes the
driver can accept from an application.
If the function fails, the return value is zero.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



132 CHAPTER 5 Bulk communication

5.6.4.10 USBBULK_GetSN()
Description

Retrieves the USB serial number as a string that was returned by the device during
the enumeration.

Prototype
int USBBULK_GetSN(unsigned Id, char * pBuffer, unsigned NumBytes) ;

Parameter Description
Id Id number of device [0..31].
pBuffer Pointer to a buffer to store the serial number of the device.
NumBytes Size of the buffer in bytes.

Table 5.34: USBBULK_GetSN() parameter list

Return value

If the function succeeds, the return value is nonzero and the buffer pointed by
pBuffer contains the serial number of the device running emUSB-Bulk.
If the function fails, the return value is zero.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



133

5.6.4.11 USBBULK_GetWriteMaxTransferSize()

Description

Retrieves the maximum transfer size of a write transaction the driver can handle
from an application (for the first device running emUSB-Bulk).

Prototype

unsigned USBBULK_GetWriteMaxTransferSize(void) ;

Return value

If the function succeeds, the return value is the maximum transfer size in bytes the
driver can accept from an application to send data to the target device.
If the function fails, the return value is zero.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



134 CHAPTER 5 Bulk communication

5.6.4.12 USBBULK_GetWriteMaxTransferSizeEx()

Description

Retrieves the maximum transfer size of a write transaction the driver can handle
from an application for a specified device running emUSB-Bulk.

Prototype
unsigned USBBULK_GetWriteMaxTransferSizeEx (unsigned Id);

Parameter Description

Id Id number of device [0..31].
Table 5.35: USBBULK_GetWriteMaxtransferSizeEx() parameter list

Return value

If the function succeeds, the return value is the maximum transfer size in bytes the
driver can accept from an application to send data to the target device.
If the function fails, the return value is zero.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



135

5.6.4.13 USBBULK_SetMode()

Description

Sets the read operation mode of the driver for a device running emUSB-Bulk.

Prototype

unsigned USBBULK_SetMode (unsigned Mode) ;

Parameter Description

Read and write mode for the USB-Bulk driver.

Mode This is a combination of the following flags, combined by binary OR:
USBBULK_MODE_BIT_ ALLOW_SHORT_READ

Table 5.36: USBBULK_SetMode() parameter list

Return value

If the function succeeds, the return value is nonzero. The read and write mode for
the driver has been successfully set.
If the function fails, the return value is zero.

Additional information

USBBULK_MODE_BIT_ALLOW_SHORT_READ allows short read transfers. Short transfers
are transfers of less bytes than requested. If this bit is specified, the read function
USBBULK_Read () returns as soon as data is available, even if it is just a single byte.

Example

static void _TestMode (void) {
unsigned Mode;
char * pText;

Mode = USBBULK_GetMode() ;
if (Mode & USBBULK_MODE_BIT ALLOW_SHORT_ READ) {

pText = "USE_SHORT_MODE";
} else {
pText = "USE_NORMAL_MODE";

}

printf ("USB-Bulk driver is in %s\n", pText);

printf ("Set mode to USBBULK_MODE_BIT ALLOW_SHORT READ\n");
USBBULK_SetMode (USBBULK_MODE_BIT_ALLOW_SHORT_ READ) ;

Mode = USBBULK_GetMode () ;

if (Mode & USBBULK_MODE_BIT ALLOW_SHORT_READ) {

pText = "USE_SHORT_MODE";
} else {
pText = "USE_NORMAL_MODE";

}

printf ("USB-Bulk driver is now in %s\n", pText);

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



136 CHAPTER 5 Bulk communication

5.6.4.14 USBBULK_SetModeEXx()
Description

Sets the read operation mode of the driver for a specified device running emUSB-
Bulk.

Prototype

unsigned USBBULK_SetModeEx (unsigned Id, unsigned Mode) ;

Parameter Description
1d Id of the device.
Read and write mode for the USB-Bulk driver.
Mode This is a combination of the following flags, combined by binary or:
USBBULK_MODE_BIT_ALLOW_SHORT_READ

Table 5.37: USBBULK_SetModeEx() parameter list

Return value

If the function succeeds, the return value is nonzero. The read and write mode for
the driver has been successfully set.
If the function fails, the return value is zero.

Additional information

USBBULK_MODE_BIT_ALLOW_SHORT_READ allows short read transfers. Short transfers
are transfers of less bytes than requested. If this bit is specified, the read function
USBBULK_ReadEx () returns as soon as data is available, even if it is just a single
byte.

Example

static void _TestModeEx (unsigned DeviceId) ({
unsigned Mode;
char * pText;

Mode = USBBULK_GetModeEx (DeviceId) ;
if (Mode & USBBULK_MODE_BIT ALLOW_SHORT_ READ) {

pText = "USE_SHORT_MODE";
} else {
pText = "USE_NORMAL_MODE";

}

printf ("USB-Bulk driver is in %s for device %d\n", pText, DeviceId);
printf ("Set mode to USBBULK_MODE_BIT ALLOW_SHORT READ\n");
USBBULK_SetModeEx (DeviceId, USBBULK_MODE_BIT_ ALLOW_SHORT_ READ) ;

Mode = USBBULK_GetModeEx (DeviceId) ;

if (Mode & USBBULK_MODE_BIT_ALLOW_SHORT_READ) {

pText = "USE_SHORT_MODE";
} else {
pText = "USE_NORMAL_MODE";

}

printf ("USB-Bulk driver is now in %s for device %d\n", pText, DevicelId);

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



137

5.6.4.15 USBBULK_SetTimeout()

Description
Sets a read time-out for a read operation to the first device running emUSB-Bulk.

Prototype
void USBBULK_SetTimeout (int Timeout) ;

Parameter Description

Timeout Timeout in milliseconds set for a read operation.
Table 5.38: USBBULK_SetTimeout() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



138 CHAPTER 5 Bulk communication

5.6.4.16 USBBULK_SetTimeoutEx()

Description

Sets a read time-out for a read operation.

Prototype

void USBBULK_SetTimeout (unsigned Id, int Timeout) ;
Parameter Description

Id Id number of device [0..31].

Timeout Timeout in milliseconds set for a read operation.

Table 5.39: USBBULK_SetTimeOutEx() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



139

5.6.4.17 USBBULK_SetUSBId()

Description
Sets the Vendor id and product id that are used for connecting to the device.

Prototype

void USBBULK_SetUSBIdA(Ul6 VendorId, Ul6 ProductId);
Parameter Description

VendorId The vendor id that was assigned by USB.org.

ProductId The product id that is used for the device.

Table 5.40: USBBULK_SetUSBId() parameter list

Additional information

It is necessary to call this function first before opening any connection to the device.
The initial values for these IDs are:

VendorId = 0x8765

ProductId = 0x1234

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



140 CHAPTER 5 Bulk communication

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



141

Chapter 6
Bulk Host API V2

This chapter describes a new version of the Bulk Host API.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



142 CHAPTER 6 Bulk Host API V2

6.1 Bulk Host API V2

This chapter describes the functions that can be used with the Windows host system.
General information

The Bulk API V2 was introduced because the Bulk API V1 is not as flexible as required
by modern-day applications.

Improvements in the Bulk API V2 include but are not limited to:

e Dynamic addition of enumerated devices
e Run-time configuration of Vendor IDs and Product IDs
e Masking of multiple Product and Vendor IDs

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



6.1.1

UMO09001 User & Reference Guide for emUSB

Bulk Host API V2 list

143

The functions below are available on the host (Windows PC) side.

Function

Description

USB-Bulk basic

functions

USBBULK_Open (

Opens an existing device.

USBBULK_Close

Closes an opened device.

)
0
USBBULK_Init ()

Initializes the API module.

USBBULK_Exit ()

Called on exit.

USBBULK_SetUSBId ()

Sets the Vendor and Product IDs.

USB-Bulk direct input/output functions

USBBULK_Read()

Reads from an opened device.

USBBULK_Write ()

Writes data to the device.

USBBULK_WriteRead()

Writes and reads from the device.

USBBULK_CancelRead()

Cancels an initiated read.

USBBULK_ReadTimed ()

Reads from an opened device with a
time-out.

USBBULK_WriteTimed ()

Writes data to the device with a time-
out.

USBBULK_FlushRx()

Removes data from the receive buffer.

USB-Bulk control functions

USBBULK_GetConfigDescriptor ()

Returns the configuration descriptor of
the device.

USBBULK_GetMode ()

Returns the transfer mode of the
device.

USBBULK_GetReadMaxTransferSize ()

Returns the max size the driver can
read at once.

USBBULK_GetWriteMaxTransferSize ()

Returns the max size the driver can
write at once.

USBBULK_ResetPipe ()

Resets the pipes that are opened to
the device.

USBBULK_ResetDevice ()

Resets the device via a USB reset.

USBBULK_SetMode ()

Set the read and write mode of the
device.

USBBULK_SetReadTimeout ()

Set the read time-out for an opened
device.

USBBULK_SetWriteTimeout ()

Set the write time-out for an opened
device.

USBBULK_GetEnumTickCount ()

Returns the time when the USB device
has been enumerated.

USBBULK_GetReadMaxTransferSizeDown ()

Returns the max read transfer size of
the device.

USBBULK_GetWriteMaxTransferSizeDown ()

Returns the max write transfer size of
the device.

USBBULK_SetReadMaxTransferSizeDown ()

Set the max read transfer size of the
device.

USBBULK_SetWriteMaxTransferSizeDown ()

Set the max write transfer size of the
device.

USBBULK_GetSN ()

Gets the serial number of the device.

USBBULK_GetDevInfo()

Retrieves information about an opened
USBBULK device.

USBBULK_GetProductName ()

Returns the product name.

USBBULK_GetVendorName ()

Returns the vendor name.

Table 6.1: Bulk Host API V2 function list

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



144 CHAPTER 6 Bulk Host API V2

Function Description
USB-Bulk general GET functions
USBBULK_GetDriverCompileDate () Gets the compile date of the driver.
USBBULK_GetDriverVersion () Returns the driver version.
USBBULK_GetVersion/() Returns the USBBULK API version.
. , Returns the number of available

USBBULK_GetNumAvailableDevices () X

devices.

Returns the set Product and Vendor
USBBULK_GetUSBIA () IDs

Data structures

Device information structure (Vendor

USBBULK_DEV_INFO ID, Product ID, SN, Device Name).

Table 6.1: Bulk Host API V2 function list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



145

6.1.2 USB-Bulk Basic functions
6.1.2.1 USBBULK_Open()

Description

Opens an existing device. The id of the device can be retrieved by the function
USBBULK_CetNumAvailableDevices () via the pDeviceMask parameter. Each bit set in
the DeviceMask represents an available device. Currently 32 devices can be managed

at once.

Prototype

USBBULK_API USB_BULK_HANDLE WINAPI USBBULK_Open (unsigned DevIndex) ;

Parameter

Description

Id

0..31 Device Id to be opened.

Table 6.2: USBBULK_Open() parameter list

Return value

=0 - Handle to the opened device.
== (0 - Device cannot be opened.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



146 CHAPTER 6 Bulk Host API V2

6.1.2.2 USBBULK_Close()

Description

Closes an opened device.

Prototype

USBBULK_API void WINAPI USBBULK_Close (USB_BULK_HANDLE hDevice) ;
Parameter Description

hDevice Handle to the device that shall be closed.

Table 6.3: USBBULK_Close() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



147

6.1.2.3 USBBULK_Init()
Description

This function needs to be called first. This makes sure that all structures and threads
have been initialized. It also sets a callback in order to be notified when a device is
added or removed.

Prototype

USBBULK_API void WINAPI USBBULK_Init (USBBULK_NOTIFICATION_FUNC *
pfNotification, void * pContext) ;

Parameter Description
pfNotification Pointer to the user callback.
pContext Context data that shall be called with the callback function.
Table 6.4: USBBULK_Init() parameter list
Example:
/*********************************************************************
*
* _OnDevNotify
*
* Function description:
* Is called when a new device is found or an existing device is removed.
*
* Parameters:
* pContext - Pointer to a context given when USBBULK_Init is called
* Index - Device Index that has been added or removed.
* Event - Type of event, currently the following are available:
* USBBULK_DEVICE_EVENT_ADD
* USBBULK_DEVICE_EVENT_REMOVE
*
*/
static void __stdcall _OnDevNotify (void * pContext, unsigned Index,

USBBULK_DEVICE_EVENT Event) {
switch (Event) {
case USBBULK_DEVICE_EVENT_ADD:
printf ("The following DevIndex has been added: %d", Index) ;
NumDevices = USBBULK_GetNumAvailableDevices ((U32 *)&DeviceMask) ;
break;
case USBBULK_DEVICE_EVENT_REMOVE:
printf ("The following DevIndex has been removed: %d", Index) ;
NumDevices = USBBULK_GetNumAvailableDevices ((U32 *)&DeviceMask) ;
break;
}
}

void MainTask (void) {

<...>
USBBULK_Init (_OnDevNotify, NULL) ;
<...>

}

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



148 CHAPTER 6 Bulk Host API V2

6.1.2.4 USBBULK_Exit()
Description
This is a cleanup function, it shall be called when exiting the application.
Prototype

USBBULK_API void WINAPI USBBULK_Exit (void) ;

Additional information

We recommend to call this function before exiting the application in order to remove
all handles and ressources that have been allocated.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



149

6.1.2.5 USBBULK_SetUSBId()

Description
Set the Vendor and Product ID mask the USBBULK API should look for.

Prototype
USBBULK_API void WINAPI USBBULK_SetUSBId(Ul6 VendorId, Ul6 ProductId);
Parameter Description
The desired Vendor ID mask that shall be used with the USBBULK
VendorId API
The desired Product ID mask that shall be used with the USBBULK
ProductId API

Table 6.5: USBBULK_SetUSBId() parameter list

Additional information

It is necessary to call this function first before opening any connection to the device.
The initial values for these IDs are:

VendorId = 0x8765

ProductId = 0x1234

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



150 CHAPTER 6 Bulk Host API V2

6.1.3 USB-Bulk direct input/output functions
6.1.3.1 USBBULK_Read()

Description
Reads data from target device running emUSB-Bulk.

Prototype

USBBULK_API int WINAPI USBBULK_Read (USB_BULK_HANDLE hDevice,
void * pBuffer, int NumBytes) ;

Parameter Description
hDevice Handle to the opened device.
pBuffer Pointer to a buffer that shall store the data.
NumBytes Number of bytes to be read.

Table 6.6: USBBULK_Read() parameter list

Return value

'== NumBytes': All bytes have successfully been read.

'< NumBytes': A time-out occurred during read, when the emUSB driver is in normal
mode, otherwise the emUSB driver returns the number of bytes that have been read
from device.

‘<= -1": Cannot read from the device.

Additional information

USBBULK_Read () sends the read request to the USB-Bulk driver. Because the driver
can only read a certain amount of bytes from the device - the default value is 64
Kbytes; the driver will abort the transaction.

Therefore if NumBytes exceeds this limit, USBBULK_Read () will read the desired Num-
Bytes in chunks of the maximum read size the driver can handle.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



151

6.1.3.2 USBBULK_Write()
Description

Writes data to the device.

Prototype

USBBULK_API int WINAPI USBBULK Write (USB_BULK_HANDLE hDevice,
const void * pBuffer, int NumBytes) ;

Parameter Description
hDevice Handle to the opened device.
pBuffer Pointer to a buffer that contains the data.
NumBytes Number of bytes to be written.

Table 6.7: USBBULK_Write() parameter list

Return value

'== NumBytes': All bytes have successfully been written.
'<  NumBytes': A write error occurred.
‘<= -1": Cannot write to the device.

Additional information

USBBULK_Write () sends the write request to the emUSB driver. Because the driver
can only write a certain amount of bytes to device - the default value is 64 Kbytes;
the driver will abort the transaction.

Therefore if NumBytes exceeds this limit, USBBULK _Write () will write the desired
NumBytes in chunks of the maximum write size the driver can handle.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



152 CHAPTER 6 Bulk Host API V2

6.1.3.3 USBBULK_WriteRead()
Description

Writes and reads data to and from target device running emUSB-Bulk.

Prototype

USBRBULK_API int WINAPI USBBULK_WriteRead (USB_BULK_HANDLE hDevice,
const void * pWrBuffer, int WrNumBytes, void * pRdBuffer, int RdNumBytes) ;

Parameter Description
hDevice Handle to the opened device.
pWrBuffer Pointer to a buffer that contains the data.
WrNumBytes Number of bytes to be written.
pRABuffer Pointer to a buffer that shall store the data.
RANumBytes Number of bytes to be read.

Table 6.8: USBBULK_WriteRead() parameter list

Return value

'== NumBytes': All bytes have successfully been read after writing the data.

'< NumBytes': A time-out occurred during read, when the emUSB driver is in normal
mode. Otherwise the emUSB driver returns the number of bytes that have been read
from the device.

‘<= -1": Cannot read from the device after write.

Additional information

This function can not be used when short read mode is enabled.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



153

6.1.3.4 USBBULK_CancelRead()

Description

This function cancels an initiated read operation.

Prototype

USBBULK_API void WINAPI USBBULK_CancelRead (USB_BULK_HANDLE hDevice) ;
Parameter Description

hDevice Handle to the opened device.

Table 6.9: USBBULK_CancelRead() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



154 CHAPTER 6 Bulk Host API V2

6.1.3.5 USBBULK_ReadTimed()

Description

Reads data from target device running emUSB-Bulk within a given timeout.

Prototype

USBBULK_API int WINAPI USBBULK_Read (USB_BULK_HANDLE hDevice,
void * pBuffer,
int NumBytes
unsigned ms) ;

Parameter Description
hDevice Handle to the opened device.
pBuffer Pointer to a buffer that shall store the data.
NumBytes Number of bytes to be read.
ms Timeout in milliseconds.

Table 6.10: USBBULK_ReadTimed() parameter list

Return value

'== NumBytes': All bytes have successfully been read.

'< NumBytes': A time-out occurred during read, when the emUSB driver is in normal
mode, otherwise the emUSB driver returns the number of bytes that have been read
from device.

‘<= -1": Cannot read from the device.

Additional information

USBBULK_ReadTimed () sends the read request to the USB-Bulk driver. Because the
driver can only read a certain amount of bytes from the device - the default value is
64 Kbytes; the driver will abort the transaction.

Therefore if NumBytes exceeds this limit, USBBULK_ReadTimed () will read the desired
NumBytes in chunks of the maximum read size the driver can handle.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



155

6.1.3.6 USBBULK_WriteTimed()

Description

Writes data to the device within a given timeout.

Prototype

USBBULK_API int WINAPI USBBULK Write (USB_BULK_HANDLE hDevice,
const void * pBuffer,
int NumBytes
unsigned ms) ;

Parameter Description
hDevice Handle to the opened device.
pBuffer Pointer to a buffer that contains the data.
NumBytes Number of bytes to be written.
ms Timeout in milliseconds.

Table 6.11: USBBULK_WriteTimed() parameter list

Return value

'== NumBytes': All bytes have successfully been written.
'< NumBytes': A time-out occurred during write.
'< 0': A write error occurred.

Additional information

USBBULK_WriteTimed () sends the write request to the emUSB driver. Because the
driver can only write a certain amount of bytes to device - the default value is 64
Kbytes; the driver will abort the transaction.

Therefore if NumBytes exceeds this limit, USBBULK writeTimed () will write the
desired NumBytes in chunks of the maximum write size the driver can handle.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



156 CHAPTER 6 Bulk Host API V2

6.1.3.7 USBBULK_FlushRx()

Description

This function removes all data which was cached by the API from the internal receive

buffer.

Prototype

USBBULK_API int WINAPI USBBULK_FlushRx (USB_BULK_HANDLE hDevice) ;
Parameter Description

hDevice Handle to the opened device.

Table 6.12: USBBULK_FlushRx() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



157

6.1.4 USB-Bulk Control functions

6.1.4.1 USBBULK_GetConfigDescriptor()
Description

Gets the received target USB configuration descriptor of a specified device running
emUSB-Bulk.
Prototype

USBBULK_APTI int WINAPI USBBULK_GetConfigDescriptor (USB_BULK_HANDLE hDevice,
void* pBuffer, int Size);

Parameter Description
hDevice Handle to an opened device.
pBuffer Pointer to the buffer that shall store the descriptor.
Size Size of the buffer, given in bytes.

Table 6.13: USBBULK_GetConfigDescriptor() parameter list

Return value

== 0 - Operation failed. Either an invalid handle was used or the buffer that shall
store the config descriptor is too small.
=0 - The operation was successful.

If the function succeeds, the buffer pointed by pBuffer contains the USB target
device configuration descriptor.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



158 CHAPTER 6 Bulk Host API V2

6.1.4.2 USBBULK_GetMode()

Description

Returns the current mode of the device.

Prototype

USBBULK_API unsigned WINAPI USBBULK_GetMode (USB_BULK_HANDLE hDevice) ;
Parameter Description

hDevice Handle to an opened device.

Table 6.14: USBBULK_GetMode() parameter list

Return value

USBBULK_MODE_BIT_ALLOW_SHORT_READ - Short read mode is enabled.
USBBULK_MODE_BIT_ALLOW_SHORT_WRITE - Short write mode is enabled.
0 - Normal mode is set.

Additional information
A combination of both modes is possible.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



159

6.1.4.3 USBBULK_GetReadMaxTransferSize()

Description

Retrieves the maximum transfer size of a read transaction the driver can receive
from an application for a specified device running emUSB-Bulk.

Prototype
USBBULK_API unsigned WINAPI USBBULK_GetReadMaxTransferSize (USB_BULK_HANDLE
hDevice) ;
Parameter Description
hDevice Handle to an opened device.

Table 6.15: USBBULK_GetReadMaxTransferSize() parameter list

Return value

== 0 - Operation failed. Either an invalid handle was used or
the transfer size cannot be read.
=0 - The operation was successful.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



160 CHAPTER 6 Bulk Host API V2

6.1.4.4 USBBULK_GetWriteMaxTransferSize()

Description

Retrieves the maximum transfer size of a write transaction the driver can handle
from an application for a specified device running emUSB-Bulk.

Prototype
USBBULK_APTI unsigned WINAPI USBBULK_GetWriteMaxTransferSize (USB_BULK_HANDLE
hDevice) ;
Parameter Description
hDevice Handle to an opened device.

Table 6.16: USBBULK_GetWriteMaxTransferSize() parameter list

Return value

== 0 - Operation failed. Either an invalid handle was used or
the transfer size cannot be read.
I= 0 - The operation was successful.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



161

6.1.4.5 USBBULK_ResetPipe()

Description

Resets the pipes that are opened to the device.
It also flushes any data the USB bulk driver would cache.

Prototype

USBBULK_API int WINAPI USBBULK_ResetPipe (USB_BULK_HANDLE hDevice) ;
Parameter Description

hDevice Handle to an opened device.

Table 6.17: USBBULK_ResetPipe() parameter list

Return value

== 0 - Operation failed. Either an invalid handle was used or
the pipes cannot be flushed.
=0 - The operation was successful.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



162 CHAPTER 6 Bulk Host API V2

6.1.4.6 USBBULK_ResetDevice()

Description

Resets the device via a USB reset.
This can be used when the device does not work properly and may be reactivated via
USB reset. This will force a re-enumeration of the device.

Prototype

USBBULK_API int WINAPI USBBULK_ResetDevice (USB_BULK_HANDLE hDevice) ;
Parameter Description

hDevice Handle to an opened device.

Table 6.18: USBBULK_ResetDevice() parameter list

Return value

== 0 - Operation failed. Either an invalid handle was used or
the pipes cannot be flushed.

I= 0 - The operation was successful.

Additional information

After the device has been reseted it is necessary to re-open the device as the current
handle will become invalid.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



163

6.1.4.7 USBBULK_SetMode()
Description

Sets the read and write mode operation mode of the driver for a specified device run-
ning emUSB-Bulk.

Prototype

USBBULK_API unsigned WINAPI USBBULK_SetMode (USB_BULK_HANDLE hDevice,
unsigned Mode) ;

Parameter Description

hDevice Handle to an opened device.

Read and write mode for the USB-Bulk driver.

This is a combination of the following flags, combined by binary or:
USBBULK_MODE_BIT_ALLOW_SHORT_READ

USBBULK_MODE_BIT ALLOW_SHORT_WRITE

Table 6.19: USBBULK_SetMode() parameter list

Mode

Return value

If the function succeeds, the return value is nonzero. The read and write mode for
the driver has been successfully set.
If the function fails, the return value is zero.

Additional information

USBBULK_MODE_BIT_ALLOW_SHORT_READ allows short read transfers. Short transfers
are transfers of less bytes than requested. If this bit is specified, the read function
USBBULK_Read () returns as soon as data is available, even if it is just a single byte.
USBBULK_MODE_BIT_ALLOW_SHORT_WRITE allows short write transfers.
USBBULK_Write () returns after writing the minimal amount of data (either NumBytes
or the maximal write transfer size, which can be read by using the function
USBBULK_GetWriteMaxTransferSize()).

Example

static void _TestMode (unsigned DeviceId) {
unsigned Mode;
char * pText;

Mode = USBBULK_GetMode (DevicelId) ;
if (Mode & USBBULK_MODE_BIT ALLOW_SHORT_READ) {

pText = "USE_SHORT_MODE";
} else {
pText = "USE_NORMAL_MODE";

}

printf ("USB-Bulk driver is in %s for device %d\n", pText, DeviceId);
printf ("Set mode to USBBULK_MODE_BIT ALLOW_SHORT READ\n");
USBBULK_SetMode (DeviceId, USBBULK_MODE_BIT_ALLOW_SHORT_READ) ;

Mode = USBBULK_GetModeEx (DeviceId) ;

if (Mode & USBBULK_MODE_BIT ALLOW_SHORT_READ) {

pText = "USE_SHORT_MODE";
} else {
pText = "USE_NORMAL_MODE";

}

printf ("USB-Bulk driver is now in %s for device %d\n", pText, DevicelId);

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



164

6.1.4.8 USBBULK_SetReadTimeout()

Description

CHAPTER 6 Bulk Host API V2

Setups the default read timeout for an opened device.

Prototype

USBBULK_API void WINAPI USBBULK_SetReadTimeout (USB_BULK_HANDLE hDevice,

int Timeout) ;

Parameter Description
hDevice Handle to the opened device.
Timeout Timeout in milliseconds.

Table 6.20: USBBULK_SetReadTimeout() parameter list

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



6.1.4.9 USBBULK_SetWriteTimeout()

Description

165

Sets a default write time-out for a read operation.

Prototype

USBBULK_API void WINAPI USBBULK_SetWriteTimeout (USB_BULK_HANDLE hDevice,

int Timeout) ;

Parameter Description
hDevice Handle to the opened device.
Timeout Timeout in milliseconds.

Table 6.21: USBBULK_SeWritetTimeout() parameter list

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



166 CHAPTER 6 Bulk Host API V2

6.1.4.10 USBBULK_GetEnumTickCount()

Description

Returns the time when the USB device has been enumerated.

Prototype

USBBULK_API unsigned WINAPI USBBULK_SetMode (USB_BULK_HANDLE hDevice,
unsigned Mode) ;

Parameter Description

hDevice Handle to an opened device.
Table 6.22: USBBULK_GetEnumTickCount() parameter list

Return value

The time when the USB device has been enumerated by the driver given in Windows
timer ticks (normally 1 ms. ticks).

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



167

6.1.4.11 USBBULK_GetReadMaxTransferSizeDown()

Description

Returns the max transfer size the driver will read data from the device. In normal
cases the max transfer size will be 2048 bytes. As this is a multiple of a max packet
size, it is necessary that the device does not send a NULL-packet in this case. The
Windows USB stack will stop reading data from the USB Bus as soon as it read the
requested bytes.

Prototype
USBBULK_API U32 WINAPI USBBULK_GetReadMaxTransferSizeDown (USB_BULK_HANDLE
hDevice) ;
Parameter Description
hDevice Handle to an opened device.

Table 6.23: USBBULK_GetReadMaxTransferSizeDown() parameter list

Return value

I= 0 - Max transfer size the driver will read from device.
== - The transfer size cannot be read.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



168

6.1.4.12 USBBULK_GetWriteMaxTransferSizeDown()

CHAPTER 6

Bulk Host API V2

Description
Returns the max transfer size the driver will write data to the device.
Prototype
USBBULK_API U32 WINAPI USBBULK_GetWriteMaxTransferSizeDown (USB_BULK_HANDLE
hDevice) ;
Parameter Description
hDevice Handle to an opened device.

Table 6.24: USBBULK_GetWriteMaxtransferSizeDown() parameter list

Return value

== 0 - Operation failed. Either an invalid handle was used or

the transfer size cannot be read.
I= 0 - The operation was successful.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



169

6.1.4.13 USBBULK_SetReadMaxTransferSizeDown()
Description

Sets the number of bytes the driver will write down to the device at once.

Prototype

USBBULK_APT unsigned WINAPI USBBULK_SetReadMaxTransferSizeDown (
USB_BULK_HANDLE hbDevice,

U32 TransferSize);

Parameter Description

hDevice Handle to an opened device.

TransferSize | The number of bytes the driver will set as maximum.
Table 6.25: USBBULK_SetReadMaxTransferSizeDown() parameter list

Return value

== 0 - Operation failed. Either an invalid handle was used or
the mode cannot be read.
I= 0 - The operation was successful.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



170 CHAPTER 6 Bulk Host API V2

6.1.4.14 USBBULK_SetWriteMaxTransferSizeDown()
Description
Sets the number of bytes the driver will write down to the device at once.

Prototype

USBBULK_API unsigned WINAPI USBBULK_SetWriteMaxTransferSizeDown (
USB_BULK_HANDLE hDevice,

U32 TransferSize);

Parameter Description

hDevice Handle to an opened device.

TransferSize | The number of bytes the driver will set as maximum.
Table 6.26: USBBULK_SetWriteMaxTransferSizeDown() parameter list

Return value

= 0 - The transfer size cannot be read.
= 0 - Max transfer size the driver will read from device.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



171

6.1.4.15 USBBULK_GetSN()

Description

Retrieves the USB serial number as a string which was sent by the device during the
enumeration.
Prototype

USBBULK_API unsigned WINAPI USBBULK_GetSN (USB_BULK_HANDLE hDevice,
U8 * pBuffer, unsigned NumBytes) ;

Parameter Description
hDevice Handle to an opened device.
pBuffer Pointer to a buffer which shall store the serial number of the device.
NumBytes Size of the buffer given in bytes.

Table 6.27: USBBULK_GetSN() parameter list

Return value

== 0 - Operation failed. Either an invalid handle was used or
the serial number cannot be read.
=0 - The operation was successful.

If the function succeeds, the return value is nonzero and the buffer pointed by

pBuffer contains the serial number of the device running emUSB-Bulk.
If the function fails, the return value is zero.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



172 CHAPTER 6 Bulk Host API V2

6.1.4.16 USBBULK_GetDevinfo()

Description

Retrieves information about an opened USBBULK device.

Prototype

USBBULK_API void WINAPI USBBULK_GetDevInfo (USB_BULK_HANDLE hDevice,
USBBULK_DEV_INFO * pDevInfo);

Parameter Description
hDevice Handle to the opened device.
pDevInfo Pointer to a device info structure.

Table 6.28: USBBULK_GetDevInfo() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



173

6.1.4.17 USBBULK_GetProductName()
Description

Retrieves the product name of an opened USBBULK device.

Prototype

USBBULK_API void WINAPI USBBULK_GetProductName (USB_BULK_HANDLE hDevice,
char * sProductName,

unsigned BufferSize);

Parameter Description

hDevice Handle to the opened device.
sProductName | Pointer to a buffer where the product name shall be saved.

BufferSize Size of the product name buffer.
Table 6.29: USBBULK_GetProductName() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



174 CHAPTER 6 Bulk Host API V2

6.1.4.18 USBBULK_GetVendorName()
Description

Retrieves the vendor name of an opened USBBULK device.

Prototype

USBBULK_API void WINAPI USBBULK_GetProductName (USB_BULK_HANDLE hDevice,
char * sVendorName,

unsigned BufferSize);

Parameter Description
hDevice Handle to the opened device.
sVendorName Pointer to a buffer where the vendor name shall be saved.
BufferSize Size of the vendor name buffer.

Table 6.30: USBBULK_GetVendorName() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



175

6.1.5 USB-Bulk general GET functions

6.1.5.1 USBBULK_GetDriverCompileDate()
Description

Gets the compile date and time of the emUSB bulk communication driver.

Prototype

USBBULK_API unsigned WINAPI USBBULK_GetDriverCompileDate(char * s,
unsigned Size);

Parameter Description
s Pointer to a buffer to store the compile date string.
Size Size, in bytes, of the buffer pointed to by s.

Table 6.31: USBBULK_GetDriverCompileDate() parameter list

Return value

== 0 - Operation failed. The buffer that shall store the string is too small.
I= 0 - The operation was successful.

If the function succeeds, the return value is nonzero and the buffer pointed by s con-
tains the compile date and time of the emUSB driver in the standard format:
mm dd yyyy hh:mm:ss

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



176 CHAPTER 6 Bulk Host API V2

6.1.5.2 USBBULK_GetDriverVersion()

Description

Returns the driver version of the driver, if the driver is loaded. Otherwise the function
will return 0, as it can only determine the driver version when the driver is loaded.

Prototype
USBBULK_APTI unsigned WINAPI USBBULK_GetDriverVersion (void) ;

Return value

If the function succeeds, the return value is the driver version of the driver as deci-
mal value:

<Major Version><Minor Version><Subversion>. 24201 (Mmmrr) means 2.42a
If the function fails, the return value is zero; the version could not be retrieved.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



177

6.1.5.3 USBBULK_GetVersion()
Description
Returns the USBBULK API version.
Prototype

USBBULK_APT unsigned WINAPI USBBULK_GetVersion (void) ;

Return value

The version of the USBBULK API in the following format:
<Major Version><Minor Version><Subversion>. 24201 (Mmmrr) means 2.42a

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



178 CHAPTER 6 Bulk Host API V2

6.1.5.4 USBBULK_GetNumAvailableDevices()
Description

Returns the number of connected USB-Bulk devices.

Prototype
USBBULK_API unsigned WINAPI USBBULK_GetNumAvailableDevices (U32 * pMask) ;

Parameter Description

Pointer to a U32 variable to receive the connected device mask. This
parameter can be NULL.
Table 6.32: USBBULK_GetNumAvailableDevices() parameter list

pMask

Return value

The return value is the number of available devices running emUSB-Bulk. For each
emUSB device that is connected, a bit in pMask is set.

For example if device 0 and device 2 are connected to the host, the value pMask
points to will be 0x00000005.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



179

6.1.5.5 USBBULK_ GetUSBId()

Description
Returns the set Product and Vendor ID mask that is used with the USBBULK API.

Prototype

USBBULK_API void WINAPI USBBULK_GetDevInfo (USB_BULK_HANDLE hDevice,
USBBULK_DEV_INFO * pDevInfo);

Parameter Description
pVendorId Pointer to a U16 variable that will store the Vendor 1ID.

pProductId Pointer to a U16 variable that will store the Product ID.
Table 6.33: USBBULK_GetUSBId() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



180

CHAPTER 6 Bulk Host API V2

6.1.6 Data structures

6.1.6.1 USBBULK_DEV_INFO

Description

A structure which can hold the relavant information about a device.

Prototype

typedef struct _USBBULK_DEV_INFO {
Ul6 VendorId;
Ul6 ProductId;
char acSN[256];
char acDevName[256];
} USBBULK_DEV_INFO;

Member Description
VendorId An U16 which holds the device Vendor ID.
ProductId An U16 which holds the device Product ID.
acSN Array of chars which holds the serial number of the device.
acDevName Array of chars which holds the device name.

Table 6.34: USBBULK_DEV_INFO elements

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



181

Chapter 7

Mass Storage Device Class
(MSD)

This chapter gives a general overview of the MSD class and describes how to get the
MSD component running on the target.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



182 CHAPTER 7 Mass Storage Device Class (MSD)

7.1 Overview

The Mass Storage Device (MSD) is a USB class protocol defined by USB Implementers
Forum. The class itself is used to get access to one storage medium or multiple stor-
age mediums.

As the USB mass storage device class is well standardized, every major OS such as
Microsoft Windows operating systems (Window ME, Windows 2000, Windows XP, Win-
dows 2003 and Windows Vista), Apple Mac OS X, Linux and many more supports it.
So therefore an installation of a custom-host USB driver is normally not necessary.

emUSB-MSD comes as a whole packet and contains the following:

Generic USB handling

MSD device class implementation, including support for direct disk and CD-ROM
mode (CD-ROM access is separate component)

Several storage drivers for handling different devices

Example applications with different configuration storage driver

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



183

7.2 Configuration

7.2.1 Initial configuration

To get emUSB-MSD up and running as well as doing an initial test, the configuration
as it is delivered should not be modified.

7.2.2 Final configuration

The configuration must only be modified, when emUSB should be used in your final
product. Refer to section Configuration on page 44 to get detailed information about
the generic information functions which has to be adapted.

In order to comply with Mass Storage Device Bootability spec, the function
USB_GetSerialNumber () shall return a string with at least 12 characters, where as
each character shall represent a hexadecimal character.

7.2.3 Class specific configuration functions

Beside the generic emUSB-MSD configuration functions, three additional functions
can be adapted before the emUSB MSD component should be used in a final product.
Example implementations of these functions are supplied in the MSD example appli-
cation MSD_Fs_start.c, located in the Application directory of emUSB.

Function Description
emUSB-MSD configuration functions
USB_MSD_CGetVendorName () Returns the manufacturer name.
USB_MSD_GetProductName () Returns the MSD product name.
USB_MSD_CGetProductVer () Returns the product version of the MSD device.
USB_MSD_GetSerialNo () Returns the serial number of the MSD device.

Table 7.1: List of class specific configuration functions

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



184 CHAPTER 7 Mass Storage Device Class (MSD)

7.2.3.1 USB_MSD_GetVendorName()

Description
Should return the vendor name of the mass storage device.
Prototype
const char * USB_MSD GetVendorName (U8 Lun) ;
Parameter Description
Lun Specifies the logical unit number those vendor name shall be
returned.

Table 7.2: USB_MSD_GetVendorName() parameter list

Example

const char * USB_MSD GetVendorName (U8 Lun) {
return "Vendor";

}
Additional information

The manufacturer name is used during the enumeration phase. Together with the
product name and the serial number should it give a detailed information to the user
about which device is connected to the device. The string should be no longer than 8
bytes.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



185

7.2.3.2 USB_MSD_GetProductName()

Description

Should return the product name of the mass storage device.

Prototype
const char * USB_MSD_ GetProductName (U8 Lun) ;
Parameter Description
Lun Specifies the logical unit number those product name shall be
returned.

Table 7.3: USB_MSD_GetProductName() parameter list

Example

const char * USB_GetProductName (U8 Lun)

return "MSD device";

}

Additional information

The product name string should be no longer than 16 byte.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



186 CHAPTER 7 Mass Storage Device Class (MSD)

7.2.3.3 USB_MSD_GetProductVer()

Description
Should return the product version number of the mass storage device.
Prototype
const char * USB_MSD GetProductVer (U8 Lun) ;
Parameter Description
Lun Specifies the logical unit number those version shall be returned.

Table 7.4: USB_MSD_GetProductVer() parameter list

Example

const char * USB_MSD GetProductVer (U8 Lun) {
return "1.00";

}

Additional information

The product version string should be no longer than 8 bytes.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



7.2.3.4 USB_MSD_GetSerialNo()

Description

187

Should return the product serial number of the mass storage device.

Prototype
const char * USB_MSD GetSerialNo (U8 Lun) ;
Parameter Description
Lun Specifies the logical unit number those serial number shall be
returned.

Table 7.5: USB_MSD_GetSerialNo() parameter list

Example

const char * USB_MSD_GetSerialNo (U8 Lun)

return "1234657890";

}

Additional information

The product version string should be no longer than 10 bytes.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



188 CHAPTER 7 Mass Storage Device Class (MSD)

7.2.4 Running the example application

The directory Application contains example applications that can be used with
emUSB and the MSD component. To test the emUSB-MSD component, build and
download the application of choice into the target. Remove the USB connection and
reconnect the target to the host. The target will enumerate and can be accessed via
a file browser.

7.2.41 MSD_Start_StorageRAM.c in detail

The main part of the example application USB_MSD_Start_StorageRAM.c is imple-
mented in a single task called MainTask ().

/* MainTask() - excerpt from USB _MSD Start StorageRAM.c */

void MainTask (void) ;
volid MainTask (void) {
USB Init();
_AddMSD () ;
USB Start();
while (1) {
while ((USB_GetState() & (USB_STAT CONFIGURED | USB_STAT SUSPENDED))
I= USB STAT CONFIGURED) {
BSP ToggleLED(0) ;
USB_0S Delay(50);
}
BSP_SetLED(O);
USB_MSD Task () ;

}

The first step is to initialize the USB core stack using USB_Init(). The function
_AddmMsD () configures all required endpoints and assigns the used storage medium to
the MSD component.

/* _AddMSD() - excerpt from MSD Start StorageRAM.c */

static void AddMSD(void) {
static U8 abOutBuffer [USB MAX PACKET SIZE];

USB_MSD_INIT DATA InitData;
USB_MSD_INST DATA InstData;
InitData.EPIn = USB AddEP (1, USB_TRANSFER TYPE BULK,

USB_MAX PACKET SIZE, NULL, 0);

InitData.EPOut = USB_AddEP(O, USB TRANSFER TYPE BULK, USB MAX PACKET SIZE,
_abOutBuffer, USB MAX PACKET SIZE);

USB _MSD Add(&InitData);

!/

// Add logical unit O0: RAM drive

//

memset (&InstData, O, sizeof (InstData)) ;

InstData.pAPI = &USB MSD StorageRAM;

InstData.DriverData.pStart (void*)MSD RAM ADDR;
InstData.DriverData.NumSectors MSD RAM NUM SECTORS;
InstData.DriverData.SectorSize = MSD RAM SECTOR SIZE;
USB MSD AddUnit (&InstData);

}
The example application uses a RAM disk as storage medium.

The example RAM disk has a size of 23 Kbytes (46 sectors with a sector size of 512
bytes). You can increase the size of the RAM disk by modifying the macros
MSD_RAM_NUM_SECTORS and MSD_RAM_SECTOR_SIZE, but the size must be at least 23
Kbytes otherwise a Windows host cannot format the disk.

/* AddMSD() - excerpt from MSD Start StorageRAM.c */

#define MSD RAM NUM SECTORS 46
#define MSD RAM SECTOR SIZE 512

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



UMO09001 User & Reference Guide for emUSB

7.3 Target API

189

Function

Description

API functi

ons

USB_MSD_Add ()

Adds an MSD-class interface to the
USB stack.

USB_MSD_AddUnit ()

Adds a mass storage device to the
emUSB-MSD.

USB_MSD_AddCDRom ()

Adds a CD-ROM device to the emUSB-
MSD.

USB_MSD_SetPreventAllowRemovalHook ()

Sets a callback function to prevent/
allow removal of storage medium.

USB_MSD_SetReadWriteHook ()

Sets a callback function which is called
with every read or write access to the
storage medium.

USB_MSD_Task()

Handles the MSD-specific protocol.

Extended API functions

USB_MSD_Connect ()

Connects the storage medium to the
MSD.

USB_MSD_Disconnect ()

Disconnects the storage medium from
the MSD.

USB_MSD_RequestDisconnect ()

Sets the DisconnectRequest flag.

USB_MSD_UpdateWriteProtect ()

Updates the IsWriteProtected flag for a
storage medium.

USB_MSD_WaitForDisconnection|()

Waits for disconnection while time out
is not reached.

Data structures

USB_MSD_INIT_DATA

emUSB-MSD initialization structure
that is needed when adding an MSD
interface.

USB_MSD_INFO

emUSB-MSD storage information.

USB_MSD_INST_DATA

Structure that is used when adding a
device to emUSB-MSD.

PREVENT_ALLOW_REMOVAL_HOOK

Callback invoked when the storage
medium is removed.

READ_WRITE_HOOK

Callback invoked when accessing the
storage medium.

USB_MSD_INST_DATA_DRIVER

Structure that is passed to the driver.

USB_MSD_STORAGE_API

Structure that contains callbacks to
the storage driver.

Table 7.6: List of emUSB MSD interface functions and

data structures

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



190 CHAPTER 7 Mass Storage Device Class (MSD)

7.3.1 API functions

7.3.1.1 USB_MSD_Add()

Description
Adds an MSD-class interface to the USB stack.

Prototype

void USB_MSD_Add (const USB_MSD_INIT DATA * pInitData);
Parameter Description

pInitData Pointer to a usB_MSD_INIT_DATA structure.

Table 7.7: USB_MSD_Add() parameter list

Additional information

After the initialization of general emUSB, this is the first function that needs to be
called when an MSD interface is used with emUSB. The structure USB_MSD_INIT_DATA
has to be initialized before usB_MsD_add () is called. Refer to USB_MSD_INIT_DATA
on page 201 for more information.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



191

7.3.1.2 USB_MSD_AddUnit()

Description
Adds a mass storage device to emUSB-MSD.
Prototype
void USB_MSD_AddUnit (const USB_MSD_INST_DATA * pInstData);
Parameter Description
Pointer to a use_mMsD_INST_DATA structure that is used to add the
pInstData desired drive to the USB-MSD stack.

Table 7.8: USB_MSD_AddUnit() parameter list

Additional information

It is necessary to call this function right after use_MsD_add () was called.

This function will then add an R/W storage device such as a hard drive, MMC/SD
cards or NAND flash etc., to emUSB-MSD, which then will be used to exchange data
with the host. The structure usB_MSD_INST_DATA has to be initialized before
USB_MSD_Addunit () is called. Refer to USB_MSD _INST_DATA on page 203 for more
information.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



192 CHAPTER 7 Mass Storage Device Class (MSD)

7.3.1.3 USB_MSD_AddCDRom()

Description
Adds a CD-ROM device to emUSB-MSD.

Prototype
void USB_MSD_AddCDRom (const USB_MSD_INST_DATA * pInstData) ;
Parameter Description
Pointer to a usB_MSD_INST_DATA structure that is used to add the
pInstData . .
desired drive to the USB-MSD stack.

Table 7.9: USB_MSD_AddCDRom() parameter list

Additional information

Similar to UusB_MSD_Addunit (), this function should be called after use_MSD_Add()
was called. The structure uUsB_MSD_INST_DATA has to be initialized before
USB_MSD_Addunit () is called. Refer to USB_MSD_INST_DATA on page 203 for more
information.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



193

7.3.1.4 USB_MSD_SetPreventAllowRemovalHook()

Description
Sets a callback function to prevent/allow removal of storage medium.

Prototype

void USB_MSD_SetPreventAllowRemovalHook (U8 Lun,
PREVENT_ALLOW_REMOVAL_HOOK * pfOnPreventAllowRemoval)

Parameter Description

Pointer to the callback function
PREVENT_ALLOW_REMOVAL_HOOK. For detailed information
about the function pointer, refer to
PREVENT_ALLOW_REMOVAL_HOOK on page 204.

Table 7.10: USB_MSD_SetPreventAllowRemovalHook() parameter list

pfOnPreventAllowRemoval

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



194 CHAPTER 7 Mass Storage Device Class (MSD)

7.3.1.5 USB_MSD_SetReadWriteHook()

Description

Sets a callback function which gives information about the read and write blockwise
operations to the storage medium.

Prototype
void USB_MSD_SetReadWriteHook (U8 Lun, READ_WRITE_HOOK * pfOnReadWrite)
Parameter Description
Pointer to the callback function READ_WRITE_HOOK. For
pfOnReadWrite detailed information about the function pointer, refer to
READ_WRITE_HOOK on page 205.

Table 7.11: USB_MSD_SetReadWriteHook() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



195

7.3.1.6 USB_MSD_Task()

Description
Task that handles the MSD-specific protocol.

Prototype
void USB_MSD_Task (void) ;

Additional information

After the USB device has been successfully enumerated and configured, the
USB_MSD_Task () should be called. When the device is detached or is suspended,
USB_MSD_Task () will return.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



196 CHAPTER 7 Mass Storage Device Class (MSD)

7.3.2 Extended API functions
7.3.2.1 USB_MSD_Connect()

Description

Connects the storage medium to the MSD.

Prototype
void USB_MSD_Connect (U8 Lun) ;

Parameter Description

0-based index for the unit number.
Using only one storage medium, this parameter is 0.
Table 7.12: USB_MSD_Connect() parameter list

Lun

Additional information

The storage medium is initially always connected to the MSD component. This func-
tion is normally used, when the storage medium is disconnected in order to do some
internal file system operation.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



197

7.3.2.2 USB_MSD_Disconnect()
Description
Disconnects the storage medium from the MSD.

Prototype

void USB_MSD_Disconnect (U8 Lun) ;

Parameter Description

0-based index for the unit number.
Using only one storage medium, this parameter is 0.
Table 7.13: USB_MSD_Disconnect() parameter list

Lun

Additional information

This function will force the storage medium to be disconnected. The host will be
informed that the medium is not present. In order to reconnect back the device to
the host, the function UsSB_MSD_Connect () shall be used.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



198 CHAPTER 7 Mass Storage Device Class (MSD)

7.3.2.3 USB_MSD_RequestDisconnect()

Description
Sets the DisconnectRequest flag.

Prototype

void USB_MSD_RequestDisconnect (U8 Lun) ;

Parameter Description

0-based index for the unit number.
Using only one storage medium, this parameter is 0.
Table 7.14: USB_MSD_RequestDisconnect() parameter list

Lun

Additional information

This function sets the disconnect flag for the storage medium. As soon as the next
MSD command is sent to the device, the host will be informed that the device is cur-
rently not available. To reconnect the storage medium, USB_MSD_Connect () shall be
called.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



199

7.3.2.4 USB_MSD_UpdateWriteProtect()

Description

Updates the IsWriteProtected flag for a storage medium.

Prototype
void USB_MSD_UpdateWriteProtect (U8 Lun, U8 IsWriteProtected);
Parameter Description
0-based index for the unit number.
Lun K . . .
Using only one storage medium, this parameter is 0.
. 1 - Medium is write-protected.
IsWriteProtected

0 - Medium is not write-protected.
Table 7.15: USB_MSD_UpdateWriteProtect() parameter list

Additional information

This functions allows to update the write-protect status of the storage-medium.
Please make sure that this function is called when the LUN is disconnected from the
HOST, otherwise the WriteProtected flag is normally not recognized.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



200 CHAPTER 7 Mass Storage Device Class (MSD)

7.3.2.5 USB_MSD_WaitForDisconnection()
Description
Waits for disconnection while time out is not reached.

Prototype

int USB_MSD _WaitForDisconnection (U8 Lun, U32 TimeOut) ;

Parameter Description
0-based index for the unit number.
Using only one storage medium, this parameter is 0.

TimeOut Time-out given in ms (timer ticks).
Table 7.16: USB_MSD_WaitForDisconnection() parameter list

Lun

Return value

0 - Error: Time-out reached. Storage medium is not disconnected.
1 - Success: Storage medium is disconnected.

Additional information

The stack disconnects the storage medium next time when the HOST requests the
status of the storage medium. Win2k does not periodically check the status of a USB
MSD. Therefore, the time out is required to leave the loop. The return value can be
used to decide if the disconnection should be forced. In this case,
USB_MSD_Disconnect () shall be called.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



201

7.3.3 Data structures
7.3.3.1 USB_MSD_INIT _DATA

Description

emUSB-MSD initialization structure that is required when adding an MSD interface.

Prototype

typedef struct {
U8 EPIn;
U8 EPOut;
U8 InterfaceNum;
} USB_MSD_INIT_DATA;

Member Description
EPIn Endpoint for sending data to the host.
EPOut Endpoint for receiving data from the host.

Interface number. This member is normally internally used, so therefore
the value shall be set to 0.
Table 7.17: USB_MSD_INIT_DATA elements

InterfaceNum

Additional Information

This structure holds the endpoints that should be used with the MSD interface. Refer
to USB_AddEP() on page 59 for more information about how to add an endpoint.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



202 CHAPTER 7 Mass Storage Device Class (MSD)

7.3.3.2 USB_MSD_INFO

Description
emUSB-MSD storage interface.

Prototype

typedef struct {
U32 NumSectors;
Ul6 SectorSize;
} USB_MSD_INFO;

Member Description
NumSectors Number of available sectors.
SectorSize Size of one sector.

Table 7.18: USB_MSD_INFO elements

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



203

7.3.3.3 USB_MSD_INST_DATA

Description
Structure that is used when adding a device to emUSB-MSD.

Prototype

typedef struct {
const USB_MSD_STORAGE_API * pAPI;

USB_MSD_INST DATA_DRIVER DriverData;

U8 DeviceType;

U8 IsPresent;
USB_MSD_HANDLE_CMD * pfHandleCmd;

U8 IsWriteProtected;

} USB_MSD_INST_DATA;

Member Description
PAPI Pointer to a structure that holds the storage device driver API.
Driver data that are passed to the storage driver. Refer to
DriverData USB_MSD_INST_DATA_DRIVER on page 206 for detailed infor-
mation about how to initialize this structure.
DeviceType Determines the type of the device.

Determines if the medium is storage is present. For non-
removable devices always 1.

Optional pointer to a callback function which handles SCSI
pfHandleCmd commands.

typedef U8 (USB_MSD_HANDLE_CMD) (U8 Lun) ;

Specifies whether the storage medium shall be write-pro-
tected.

Table 7.19: USB_MSD_INST_DATA elements

IsPresent

IsWriteProtected

Additional Information

All non-optional members of this structure need to be initialized correctly, except
Device Type because it is done by the functions useB MSD Addunit() Or
USB_MSD_AdACDROM () .

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



204 CHAPTER 7 Mass Storage Device Class (MSD)

7.3.3.4 PREVENT_ALLOW_REMOVAL_HOOK
Description
Callback function to prevent/allow removal of storage medium.

Prototype
typedef void (PREVENT_ALLOW_REMOVAIL_HOOK) (U8 PreventRemoval) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



205

7.3.3.5 READ_WRITE_HOOK
Description
Callback function which is called with every read/write access to the storage medium.

Prototype

typedef void (READ_WRITE_HOOK) (U8 Lun,
U8 1IsRead,
U8 OnOff,
U32 StartLBA,
U32 NumBlocks) ;

Member Description
Lun Specifies the logical unit number which was accessed through
v read or write.
Specifies whether a read or a write access was used (1 for
IsRead .
read, O for write).
OnOE £ States whether the read or write request has been initialized
(1) or whether it is complete (0).
StartLBA The first Logical Block Address accessed by the transfer.
The number of blocks accessed by the transfer, starting from the
NumBlocks
StartLBA.

Table 7.20: READ_WRITE_HOOK elements

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



206 CHAPTER 7 Mass Storage Device Class (MSD)

7.3.3.6 USB_MSD_INST_DATA_DRIVER

Description
USB-MSD initialization structure that is required when adding an MSD interface.
Prototype
typedef struct {
void * pStart;
U32 StartSector;
U32 NumSectors;
u32 SectorSize;
void * pSectorBuffer;

unsigned NumBytes4Buffer;
} USB_MSD_ INST DATA_ DRIVER;

Member Description
pStart A pointer defining the start address.
StartSector The start sector that is used for the driver.
NumSectors The available number of sectors available for the driver.
SectorSize The sector size that should be used by the driver.

Pointer to a application provided buffer to be used as tempo-
rary buffer for storing the sector data

NumBytes4Buffer Size of the application provided buffer.
Table 7.21: USB_MSD_INST_DATA_DRIVER

pSectorBuffer

Additional Information

This structure is passed to the storage driver. Therefore, the member of this struc-
ture can depend on the driver that is used.

For the storage driver that are shipped with this software the member of
USB_MSD_INST_DATA_DRIVER have the following

USB_MSD_StorageRAM:

Member Description
pStart A pointer defining the start address of the RAM disk.
StartSector This member is ignored.
NumSectors The available number of sectors available for the RAM disk.
SectorSize The sector size that should be used by the driver.

USB_MSD_StorageByName:

Member Description

Pointer to a string holding the name of the volumes that shall

pStart be used, for example "nand:" "mmc:1:"

StartSector Specifies the start sector.

NumSectors Number of sector that shall be used.

SectorSize This member is ignored.

pSectorBuffer Pointer to a application provided buffer to be used as tempo-

rary buffer for storing the sector data

Size of the application provided buffer. Please make sure that
the buffer can at least 3 sectors otherwise, pSectorBuffer and
NumBytes4Buffer NumBytes4Buffer are ignored and an internal sector buffer is
used. This sector-buffer is then allocated by using the FS-Stor-
age-Layer functions.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



7.3.3.7 USB_MSD_STORAGE_API

Description

Structure that contains callbacks to the storage driver.

Prototype

typedef struct {
void (*pfInit)

void (*pfGetInfo)

U32 (*pfGetReadBuffer)

char (*pfRead)

U332 (*pfGetWriteBuffer)

char (*pfWrite)

char (*pfMediumIsPresent)
void (*pfDelInit)
} USB_MSD_ STORAGE_API;

207

const USB_MSD_INST_DATA_DRIVER * pDriverData) ;

(U8 Lun,

(U8 Lun,
USB_MSD_INFO * pInfo);

(U8 Lun,

U32 SectorIndex,
void ** ppData,

U32 NumSectors) ;
(U8 Lun,

U32 SectorIndex,
void * pDhata,

U32 NumSector) ;
(U8 Lun,

U32 SectorIndex,
void ** ppData,

U32 NumSectors) ;
(U8 Lun,

U32 SectorIndex,
const void * pData,

U32 NumSectors) ;
(U8 Lun) ;

(U8 Lun) ;

Member Description
pfInit Initializes the storage medium.
Retrieves storage medium information such as sector size
pfGetInfo .
and number of sectors available.
Prepares read function and returns a pointer to a buffer that
pfGetReadBuffer . .
is used by the storage driver.
pfRead Reads one or multiple sectors from the storage medium.
. Prepares write function and returns a pointer to a buffer
pfGetWriteBuffer . .
that is used by the storage driver.
pfWrite Writes one or more sectors to the storage medium.
pfMediumIsPresent Checks if medium is present.
pfDeInit Deinitializes the storage medium.

Table 7.22: List of callback functions of USB_MSD_STORAGE_API

Additional Information

USB_MSD_STORAGE_APT is used to retrieve information from the storage device driver
or access data that need to be read or written. Detailed information can be found in

Storage Driver on page 208.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



208 CHAPTER 7 Mass Storage Device Class (MSD)

7.4 Storage Driver

This section describes the storage interface in detail.

7.4.1 General information

The storage interface is handled through an API-table, which contains all relevant
functions necessary for read/write operations and initialization. Its implementation
handles the details of how data is actually read from or written to memory.
Additionally, MSD knows two different media types:

e Direct media access, for example RAM-Disk, NAND flash, MMC/SD cards etc.
CD-ROM emulation.

7.4.1.1 Supported storage types

The supported storage types include:

e RAM, directly connected to the processor via the address bus.

e External flash memory, e.g. SD cards.

e Mechanical drives, for example CD-ROM. This is essentially an ATA/SCSI to USB
bridge.

7.4.1.2 Storage drivers supplied with this release

This release comes with the following drivers:

USB_MSD_StorageRAM: A RAM driver which should work with almost any device.
USB_MSD_StorageByIndex: A storage driver that uses the storage layer (logical
block layer) of emFile to access the device.

e USB_MSD_StorageByName: A storage driver that uses the storage layer (logical
block layer) of emFile to access the device.

7.4.2 Interface function list

As described above, access to a storage media is realized through an API-function
table (UsB_MSD_STORAGE_API). The storage functions are declared in
USB\MSD\USB_MSD.h. The structure is described in section Data structures on
page 201.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



209

7.4.3 USB_MSD_STORAGE_API in detail

7.4.3.1 (*pfinit)()
Description

Initializes the storage medium.

Prototype

void (*pfInit) (U8 Lun, const USB_MSD_INST DATA_DRIVER * pDriverData) ;
Parameter Description

Lun Logical unit number. Specifies for which drive the function is called.

Pointer to a UsSB_MSD_INST_DATA_DRIVER structure that contains all
. information that are necessary for the driver initialization. For
pbriverData detailed information about the UsB_MSD_INST_DATA_ DRIVER struc-
ture, refer to USB_MSD_INST_DATA_DRIVER on page 206.

Table 7.23: (*pfInit)() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



210

CHAPTER 7 Mass Storage Device Class (MSD)

7.4.3.2 (*pfGetinfo)()

Description
Retrieves storage medium information such as sector size and number of sectors
available.
Prototype
void (*pfGetInfo) (U8 Lun, USB_MSD_INFO * pInfo);
Parameter Description
Lun Logical unit number. Specifies for which drive the function is called.
Inf Pointer to a usB_MsSD_INFO structure. For detailed information about
pInto the usB_mMsD_INFO structure, refer to USB_MSD_INFO on page 202.

Table 7.24: (*pfGetInfo)() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



211

7.4.3.3 (*pfGetReadBuffer)()

Description
Prepares the read function and returns a pointer to a buffer that is used by the stor-

age driver.
Prototype
U32 (*pfGetReadBuffer) (U8 Lun, U32 SectorIndex,
void ** ppData, U32 NumSectors) ;
Parameter Description
Lun Logical unit number. Specifies for which drive the function is called.
SectorIndex Specifies the start sector for the read operation.
ppData Pointer to a pointer to store the read buffer address of the driver.
NumSectors Number of sectors to read.

Table 7.25: (*pfGetReadBuffer)() parameter list

Return value

Number of sectors that can be read at once by the driver.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



212 CHAPTER 7 Mass Storage Device Class (MSD)

7.4.3.4 (*pfRead)()

Description

Reads one or multiple sectors from the storage medium.

Prototype

char (*pfRead) (U8 Lun, U32 SectorIndex, void * pData, U32 NumSector) ;
Parameter Description

Lun Logical unit number. Specifies for which drive the function is called.

SectorIndex Specifies the start sector from where the read operation is started.

pData Pointer to buffer to store the read data.

NumSectors Number of sectors to read.

Table 7.26: (*pfRead)() parameter list

Return value

0: Success

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



213

7.4.3.5 (*pfGetWriteBuffer)()

Description
Prepares the write function and returns a pointer to a buffer that is used by the stor-

age driver.
Prototype
U32 (*pfGetWriteBuffer) (U8 Lun, U32 SectorIndex,
void ** ppData, U32 NumSectors) ;
Parameter Description
Lun Logical unit number. Specifies for which drive the function is called.
SectorIndex Specifies the start sector for the write operation.
ppData Pointer to a pointer to store the write buffer address of the driver.
NumSectors Number of sectors to write.

Table 7.27: (*pfGetWriteBuffer)() parameter list

Return value
Number of sectors that can be written into the buffer.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



214 CHAPTER 7 Mass Storage Device Class (MSD)

7.4.3.6 (*pfWrite)()

Description
Writes one or more sectors to the storage medium.
Prototype
char (*pfWrite) (U8 Lun, U32 SectorIndex,
const void * pData, U32 NumSectors) ;
Parameter Description
Lun Logical unit number. Specifies for which drive the function is called.
SectorIndex Specifies the start sector for the write operation.
pData Pointer to data to be written to the storage medium.
NumSectors Number of sectors to write.

Table 7.28: (*pfWrite)() parameter list

Return value

0: Success
Any other value means error.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



215

7.4.3.7 (*pfMediumisPresent)()
Description

Checks if medium is present.

Prototype
char (*pfMediumIsPresent) (U8 Lun) ;
Parameter Description
Lun Logical unit number. Specifies for which drive the function is called.

Table 7.29: (*pfMediumIsPresent)() parameter list

Return value

1: Medium is present.
0: Medium is not present.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



216 CHAPTER 7 Mass Storage Device Class (MSD)

7.4.3.8 (*pfDelnit)()

Description
Deinitializes the storage medium.
Prototype
void (*pfDeInit) (U8 Lun);
Parameter Description
Lun Logical unit number. Specifies for which drive the function is called.

Table 7.30: (*pfDelInit)() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



217

Chapter 8

Media Transfer Protocol Class
(MTP)

This chapter gives a general overview of the MTP class and describes how to get the
MTP component running on the target.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



218

8.1

CHAPTER 8 Media Transfer Protocol Class (MTP)

Overview

The Media Transfer Protocol (MTP) is a USB class protocol which can be used to trans-
fer files to and from storage devices. MTP is an official extension of the Picture Trans-
fer Protocol (PTP) designed to allow digital cameras to exchange image files with a
computer. MTP extends this by adding support for audio and video files.

MTP is an alternative to Mass Storage Device (MSD) and it operates at the file level in
contrast to MSD which reads and writes sector data. This type of operation gives MTP
some advantages over MSD:

The cable can be safely removed during the data transfer without damaging the
file system.

The file system does not have to be FAT (can be the SEGGER EFS or any other
proprietary file system)

The application has full control as to which files are visible to the user. Selected
files or directories can be hidden.

Virtual files can be presented.

Host and target can access storage simultaneously without conflicts.

MTP is supported by most operating systems "out of the box" and the installation of
additional drivers is not required.

emUSB-MTP supports the following capabilities:

File read

File write
Format

File delete
Directory create
Directory delete

The current implementation of emUSB-MTP has the following limitations:

The device does not notify the host when the data on the storage medium
changes (file added/removed, file size change, etc.)

Get in contact with us if you need this feature to be supported.

emUSB-MTP comes as a whole packet and contains the following:

Generic USB handling

MTP device class implementation

Storage driver which uses emFile

Sample application showing how to work with MTP

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



8.1.1

219

Getting access to files

An MTP device will be displayed under the "Portable Devices" section in the "Com-
puter" window when connected to a PC running Microsoft Windows 7 operating sys-

tem:

W= [WCT 5

@Qv|“ ¢ Computer

Organize = Properties

» 3 Favorites
I |5 Libraries
- /M Computer

,E'" Metwork

- Storage device

|

v

Portable Media Player

M | + | | Search Co.. O |

il

k

|ﬂ|

> -

Systern properties

4 Hard Disk Drives (2]
&, Local Disk (C)
= Local Disk (E:)
4 Devices with Remaovable Starage (2)
L2 DVD RW Drive (D)
___Removable Disk (F:)
4 Portable Devices (1)

[, Storage device

The file and directories stored on the device can be accessed in the usual way using

the Windows Explorer:

=R O ==

@Qv|_ « Storage d

Organize =

- Favorites
il Libraries

M Computer
£, Local Disk (C2)
a Local Disk (E:)
L. Storage device

o= MTP volume

'E'ﬁy Metwork

8 items

>

evice » MTPvolume » - | *4 | | Search MT... D |

| Folder
|41 Audio.mp3
-g Doc.pdf
|5 Imagel .qif
|55 Imagel.gif
|5 Image3.qif
|55 Imaged.qgif

: || Readme,

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



220 CHAPTER 8 Media Transfer Protocol Class (MTP)

On the Ubuntu Linux operating system a connected MTP device is shown in the "Com-

puter" window:

& - o0 Computer
Devices

M Floppy Disk
® MTP device & )

21 GB Hard
Disk

B Computer

Computer
@ Home
K Desktop E
i@ Documents -
£l Downloads
[l Music
[[m| Pictures
@ Videos
Z_File System

@ Trash

MTP device

Network

[i& Browse Network

€ o Q search
I' = [ H]
CD/DVD Floppy
Drive Drive:
Floppy Disk
a3
File System

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



221

The files and directories present on the MTP device can be easily accessed via GUI:

r b |

@ - 0 MTP device

Devices = MTP device . Q search
M Floppy Disk

ErrTem a & 92X

Computer Folder Audio.mp3 Doc.pdf

= Home GIF ellz GIF

K Deskkop Image1.gif Image2.gif Image3.qgif
@ Documents

| Downloads
[l Music

|[® Pictures

B Vvideos
Z_File System

T Trash

Image4.qif Readme.txt

Network

& Browse Network

On other operating systems the data stored on MTP devices can be accessed simi-
larly.

8.1.2 Additional information

For more technical details about MTP and PTP follow these links:
MTP specification
PTP specification

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG


http://www.usb.org/developers/devclass_docs/MTPv1_1.zip
http://www.usb.org/developers/devclass_docs/usb_still_img10.pdf

222

8.2 Configuration

8.2.1 Initial configuration

CHAPTER 8 Media Transfer Protocol Class (MTP)

To get emUSB-MTP up and running as well as doing an initial test, the configuration
as it is delivered with the sample application should not be modified.

8.2.2 Final configuration

The configuration must only be modified, when emUSB is integrated in your final
product. Refer to section Configuration on page 44 to get detailed information about
the generic information functions which has to be adapted.

8.2.3 Class specific configuration

Beside the emUSB-MTP configuration functions which must be called by the applica-
tion, the callback functions described below can be adapted before the emUSB-MTP
component is used in a final product. A sample implementation of these functions can
be found in the usB_MTP_start.c application, located in the application directory

of emUSB shipment.

Function

Description

emUSB-MTP configuration functions

USB_MTP_GetManufacturer ()

Returns the device manufacturer.

USB_MTP_GetModel ()

Returns the device model.

USB_MTP_GetDeviceVersion ()

Returns the firmware version of device.

USB_MTP_GetSerialNumber ()

Returns the serial number of device.

Table 8.1: List of class specific configuration functions

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG




223

8.2.3.1 USB_MTP_GetManufacturer()
Description

Should return the name of the device manufacturer.

Prototype

const char * USB_MTP_GetManufacturer (void) ;

Example

const char * USB_MTP_GetManufacturer (void) {
return "SEGGER";
}

Additional information

It is a human-readable string identifying the manufacturer of this device. This string
is returned by the MTP device in the Manufacturer field of the Device Info dataset.
For more information, refer to MTP specification.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



224 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.2.3.2 USB_MTP_GetModel()
Description

Should return the model of MTP device.

Prototype

const char * USB_MTP_GetModel (void) ;

Example

const char * USB_MTP_GetModel (void) {
return "Storage device";

)
Additional information

It is a human-readable string identifying the model of the device. This string is
returned by the MTP device in the Model field of the Device Info dataset. For more
information, refer to MTP specification.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



225

8.2.3.3 USB_MTP_GetDeviceVersion()
Description

Should return the version of MTP device.

Prototype

const char * USB_MTP_GetDeviceVersion (void) ;

Example

const char * USB_MTP_GetDeviceVersion (void) {
return "1.0";

)
Additional information

The string identifies the version of the firmware running on the device. This string is
returned by the MTP device in the Device Version field of the Device Info dataset. For
more information, refer to MTP specification.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



226 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.2.3.4 USB_MTP_GetSerialNumber()
Description

Should return the serial number of MTP device.

Prototype

const char * USB_MTP_GetSerialNumber (void) ;

Example

const char * USB_MTP_GetSerialNumber (void) {
return "0123456789ABCDEF0123456789ABCDEF";
}

Additional information

The serial nhumber should contain exactly 32 hexadecimal characters. It must be
unique between the devices sharing the same model name and device version
strings. The MTP device returns this string in the serial Number field of the Device-
Info dataset. For more information, refer to MTP specification.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



227

8.2.4 Compile time configuration

The following macros can be added to usB_conf.h file in order to configure the
behavior of the MTP component.

The following types of configuration macros exist:
Binary switches “B”

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration
file. These switches can enable or disable a certain functionality or behavior.
Switches are the simplest form of configuration macros.

Numerical values “N”

Numerical values are used somewhere in the code in place of a numerical constant.

Type Macro Default Description

Sets the type of diagnostic messages
output at runtime. It can take one of
these values:

0 - no debug messages

1 - only error messages

2 - error and log messages

Maximum number of storage units the
storage layer can handle. 4 additional
bytes are allocated for each storage
unit.

Specifies if the object properties (file
size, write protection, creation date,
modification date and file id) should be
B MTP_SAVE_FILE_INFO 0 stored in RAM for quick access to them.
50 additional bytes of RAM are required
for each object when the switch is set
to 1.

Maximum number of characters in the

N MTP_DEBUG_LEVEL 0

N MTP_MAX_NUM_STORAGES |4

N MTP_MAX_FILE_PATH 256 . .
path to a file or directory.
Names of the files and directories
B MTP_SUPPORT UTES 1 which are exchanged between the MTP

component and the file system are
encoded in UTF-8 format.

Table 8.2: MTP configuration macros

8.3 Running the sample application

The directory aApplication contains an sample application which can be used with
emUSB and the MTP component. To test the emUSB-MTP component, the application
should be built and then downloaded to target. Remove the USB connection and
reconnect the target to the host. The target will enumerate and will be accessible via
a file browser.

8.3.1 USB_MTP_Start.c in detail

The main part of the example application usB_MTP_Start.c is implemented in a sin-
gle task called MainTask ().

// MainTask () - excerpt from USB MTP Start.c

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



228

CHAPTER 8 Media Transfer Protocol Class (MTP)

void MainTask (void) ;
void MainTask (void) {
USB Init();
_AddMTP () ;
USB Start();
while (1) {
while ((USB GetState() & (USB STAT CONFIGURED | USB STAT SUSPENDED))
!= USB_STAT CONFIGURED) { B B
BSP ToggleLED(0) ;
USB_0S Delay(50);
}
BSP SetLED(0);
USB_MTP_ Task();
}
}

The first step is to initialize the USB core stack by calling useB_1Init (). The function
_AddamTp () configures all required endpoints, adds the MTP component to emUSB and
assigns a storage medium to it. More than one storage medium can be added. The
access to storage medium is done using a storage driver. emUSB comes with a stor-
age driver for the SEGGER emfFile file system.

// _AddMTP() - excerpt from USB MTP Start.c

static void AddMTP (void) {
USB MTP INIT DATA InitData;
USB_MTP_INST DATA InstData;

//
// Add the MTP component to USB stack.
//
InitData.EPIn = USB AddEP (1, USB TRANSFER TYPE BULK,
USB MAX PACKET SIZE, NULL, O0);
InitData.EPOut = USBiAddEP(O, USB TRANSFER TYPE BULK,

USB_MAX PACKET SIZE, _acReceiveBuffer,
sizeof ( acReceiveBuffer));

InitData.EPInt USB AddEP (1, USB_TRANSFER_TYPE_INT, 10, NULL, O);

InitData.pObjectList = aObjectList;
InitData.NumBytesObjectList = sizeof( aObjectList);
InitData.pDataBuffer = aDataBuffer;

InitData.NumBytesDataBuffer
USB MTP Add(&InitData);

//

// Add a storage driver to MTP component.
//

InstData.pAPI
InstData.sDescription
InstData.sVolumeId
InstData.DriverData.pRootDir
USB_MTP AddStorage (&InstData);

sizeof (_aDataBuffer);

&USB MTP StorageFsS;
"MTP volume";
"0123456789";

wn o,
’

}

The size of _acReceiveBuffer and _aDataBuffer buffers must be a multiple of USB
max packet size. The sample uses the usB_MAX_PACKET_SIZE define which is set to
the correct max packet size value. The size of the buffer allocated for the object list,
_aObjectList must be chosen according to the number of files on the storage
medium. emUSB-MTP assigns an internal object to each file or directory requested by
the USB host. The USB host can request all the files and directories present at once
or it can request files and directories as user browses them. An object requires a
minimum of 54 bytes. The actual number of bytes allocated depends on the length of
the full path to file/directory.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



229

8.4 Target API

Function Description
API functions
USB_MTP_Add () Adds an MTP interface to the USB stack.
USB_MTP_AddStorage () Adds a storage device to the emUSB-MTP.
USB_MTP_Task () Handles the MTP communication.
Data structures
USB_MTP_FILE_INFO Stores information about a file or directory.
USB_MTP_INIT_DATA Stores the MTP initialization parameters.
Stores the initialization parameters of storage
USB_MTP_INST_DATA .
driver.
Stores parameters that are passed to storage
USB_MTP_INST_DATA_DRIVER .
driver.
USB_MTP_STORAGE_API Stores callbacks to the functions of storage driver.
USB_MTP_STORAGE_INFO Stores information about the storage medium.

Table 8.3: List of emUSB MTP interface functions and data structures

8.4.1 API functions

8.4.1.1 USB_MTP_Add()
Description
Adds an MTP-class interface to the USB stack.

Prototype
void USB_MTP_Add(const USB_MTP_INIT_DATA * pInitData);

Parameter Description

pInitData Pointer to a usB_MTP_INIT_DATA structure.
Table 8.4: USB_MTP_Add() parameter list

Additional information

After the initialization of USB core, this is the first function that needs to be called
when an MTP interface is used with emUSB. The structure usB_MTP_INIT_DATA has to
be initialized before usB_MTP_add() is called. Refer to USB_MTP_INIT_DATA on
page 233 for more information.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



230 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.4.1.2 USB_MTP_AddStorage()

Description
Adds a storage device to emUSB-MTP.

Prototype
void USB_MTP_AddStorage (const USB_MTP_INST_DATA * pInstData);
Parameter Description
Pointer to a use_MTP_INST_DATA structure which contains the
pInstData ;
parameters of the added storage driver.

Table 8.5: USB_MTP_AddStorage() parameter list

Additional information

It is necessary to call this function right after usB_MTP_aAdd () was called.

This function adds a storage device such as a hard drive, MMC/SD card or NAND flash
etc., to emUSB-MTP, which will be used as source/destination of data exchange with
the host. The structure UsSB_MTP_INST_DATA has to be initialized before
USB_MTP_AddStorage () is called. Refer to USB_MTP_INST_DATA on page 234 for
more information.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



231

8.4.1.3 USB_MTP_Task()
Description

Task which handles the MTP communication.

Prototype

void USB_MTP_Task (void) ;

Additional information

The UsB_MTP_Task () should be called after the USB device has been successfully
enumerated and configured. The function returns when the USB device is detached or
suspended.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



232 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.4.2 Data structures

8.4.2.1 USB_MTP_FILE_INFO
Description

Structure which stores information about a file or directory.

Prototype

typedef struct {
char * pFilePath;
char * pFileName;

U32 FileSize;

U32 CreationTime;

u32 LastWriteTime;

U8 IsDirectory;

U8 Attributes;

us acId[MTP_NUM_BYTES_FILE_ID];

} USB_MTP_FILE_INFO;

Member Description
pFilePath Pointer to full path to file.
pFileName Pointer to beginning of file/directory name in pFilePath
FileSize Size of the file in bytes.
CreationTime Time and date when the file was created.
LastWriteTime Time and data when the file was last modified.
IsDirectory Set to 1 if the path points to a directory.
Attributes Bitmask containing the file or directory attributes.
acId Unique file/directory identifier.

Table 8.6: USB_MTP_FILE_INFO elements

Additional Information

The date and time is formatted as follows:

Bit Value -
range range Description
0-4 0-29 2-second count
5-10 0-59 Minutes
11-15 0-23 Hours
16-20 1-31 Day of month
21-24 1-12 Month of year
25-31 0-127 Number of years since 1980

acId should unique for each file and directory on the file system and it should be per-
sistent between MTP sessions.

The following attributes are supported:

Bitmask Description

MTP_FILE_ATTR_WP File/directory can not be modified
File/directory is required for the correct
functioning of the system.
File/directory should not be shown to
user.

MTP_FILE_ATTR_SYSTEM

MTP_FILE_ATTR_HIDDEN

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



233

8.4.2.2 USB_MTP_INIT_DATA

Description
Structure which stores the parameters of the MTP interface.
Prototype
typedef struct {
us EPIn;
us EPOut;
us EPInt;
void * pObjectList;
U32 NumBytesObjectList;
void * pDataBuffer;
U332 NumBytesDataBuffer;
//
// The following fields are used internally by the MTP component.
//
U8 InterfaceNum;
Uu32 NumBytesAllocated;
U32 NumObjects;

} USB_MTP_INIT_DATA;

Member Description
EPIn Endpoint for receiving data from host.
EPOut Endpoint for sending data to host.
EPInt Endpoint for sending events to host.

. . Pointer to a memory region where the list of MTP objects is

pObjectList e
NumBytesObjectList | Number of bytes allocated for the object list.
pDataBuffer Pointer to a memory region to be used as communication buffer.
NumBytesDataBuffer |Number of bytes allocated for the data buffer.

Table 8.7: USB_MTP_INIT_DATA elements

Additional Information

This structure holds the endpoints that should be used with the MTP interface. Refer
to USB_AddEP() on page 59 for more information about how to add an endpoint.

The number of bytes in the pbataBuffer should be a multiple of USB max packet
size. The number of bytes in the object list depends on the number of files/directo-
ries on the storage medium. An object is assigned to each file/directory when the
USB host requests the object information for the first time.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



234

8.4.2.3 USB_MTP_IN
Description

CHAPTER 8 Media Transfer Protocol Class (MTP)

ST_DATA

Structure which stores the parameters of storage driver.

Prototype
typedef struct {

const USB_MTP_STORAGE_API * pAPI;

const char
const char

* gDescription;
* sVolumeId;

USB_MTP_INST_ DATA_DRIVER DriverData;

} USB_MTP_INST_ DATA;

Member

Description

pAPT
sDescription

sVolumeId

DriverData

Pointer to a structure that holds the storage device driver API.
Human-readable string which identifies the storage. This string is
displayed in Windows Explorer.

Unigue volume identifier.

Driver data that are passed to the storage driver. Refer to
USB_MTP_INST_DATA_DRIVER on page 235 for detailed infor-
mation about how to initialize this structure. This field must be
up to 256 characters long but only the first 128 are significant
and these must be unique for all storages of an MTP device.

Table 8.8: USB_MTP_INST_DATA elements

Additional Information

The MTP device returns the sDescription string in the Storage Description param-
eter and the svolumeId in the Volume Identifier of the StorageInfo dataset. For
more information, refer to MTP specification.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



235

8.4.2.4 USB_MTP_INST_DATA_DRIVER

Description
Structure which stores the parameters passed to storage driver.

Prototype

typedef struct {
const char * pRootDir;
} USB_MTP_INST_DATA_ DRIVER;

Member Description

pRootDir Path to directory to be used as the root of the storage.
Table 8.9: USB_MTP_INST_DATA_DRIVER

Additional Information

pRootDir can point to the root of the file system or any other subdirectory.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



236

CHAPTER 8

8.4.2.5 USB_MTP_STORAGE_API

Description

Structure that contains callbacks to the storage driver.

Prototype

typedef struct {
void (*pfInit)

void (*pfGetInfo)

int (*pfFindFirstFile)

int (*pfFindNextFile)
int (*pfOpenFile)

int (*pfCreateFile)

int (*pfReadFromFile)

int (*pfWriteToFile)

int (*pfCloseFile)

int (*pfRemoveFile)
int (*pfCreateDir)
int (*pfRemoveDir)

int (*pfFormat)
int (*pfRenameFile)

void (*pfDelInit)

int (*pfGetFileAttributes)

Media Transfer Protocol Class (MTP)

(us Unit,

const USB_MTP_INST_ DATA_ DRIVER * pDriverData) ;
(us Unit,
USB_MTP_STORAGE_INFO * pStorageInfo);
(us Unit,

const char * pDirPath,
USB_MTP_FILE_INFO pFileInfo);

(U8 Unit,
USB_MTP_FILE_INFO pFileInfo);
(us Unit,

const char pFilePath) ;
(U8 Unit,

const char pDirPath,

USB_MTP_FILE_INFO

* pFileInfo);

(U8 Unit,

u32 Off,

void pData,

U32 NumBytes) ;
(U8 Unit,

u32 Off,

const void pData,

U32 NumBytes) ;
(U8 Unit) ;

(U8 Unit,
const char pFilePath) ;
(U8 Unit,
const char pDirPath,

USB_MTP_FILE_INFO

int (*pfModifyFileAttributes) (U8

int (*pfGetFileCreationTime)

* pFileInfo);

(U8 Unit,
const char pDirPath) ;
(U8 Unit) ;
(U8 Unit,
USB_MTP_FILE_INFO pFileInfo) ;
(U8 Unit) ;
(U8 Unit
const char * pFilePath,
U8 pMask) ;
Unit,
const char pFilePath,
U8 SetMask,
U8 ClrMask) ;
(U8 Unit,
const char pFilePath,
U32 * pTime) ;
Unit,

int (*pfGetFilelLastWriteTime) (U8

int (*pfGetFileId)

int (*pfGetFileSize)

} USB_MTP_STORAGE_API;

const char

* pFilePath,

U32 pTime) ;

(U8 Unit,

const char pFilePath,
U8 * pId);

(U8 Unit,

const char * pFilePath,
U32 pFileSize) ;

Member Description
(*pfInit) () Initializes the storage medium.
Returns information about the storage medium
(*pfGetInfo) () such as storage capacity and the available free
space.
(*pEFindFirstFile) () Rgturns information about the first file in a given
directory.
. . Moves to next file and returns information about
(*pfFindNextFile) () it

Table 8.10: List of callback functions of USB_MTP_STORAGE_API

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



237

Member Description
(*pfOpenFile) () Opens an existing file.
(*pfCreateFile) () Creates a new file.
(*pfReadFromFile) () Reads data from the current file.
(*pfWriteToFile) () Writes data to current file.
(*pfCloseFile) () Closes the current file.
(*pfRemoveFile) () Removes a file from storage medium.
(*pfCreateDir) () Creates a new directory.
(*pfRemoveDir) () Removes a directory from storage medium.
(*pfFormat) () Formats the storage.
(*pfRenameFile) () Changes the name of a file or directory
(*pfDeInit) () Deinitializes the storage medium.
(*pfGetFileAttributes) () Reads the attributes of a file or directory.
(*pfModifyFileAttributes) () | Changes the attributes of a file or directory.
(*pfGetFileCreationTime) () Returns the creation time of a file or directory.
. . . Returns the time of the last modification made to
(*pfGetFileLastWriteTime) () . .
a file or directory.
(*pfGetFileId) () Returns the unique id of a file or directory.
(*pfGetFileSize) () Returns the size of a file in bytes.

Table 8.10: List of callback functions of USB_MTP_STORAGE_API

Additional Information

USB_MTP_STORAGE_API is used to retrieve information from the storage driver or to
access data that needs to be read or written. Detailed information can be found in

Storage Driver on page 239.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



238 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.4.2.6 USB_MTP_STORAGE_INFO
Description

Structure which stores information about the storage medium.

Prototype

typedef struct {
U32 NumKbytesTotal;
U32 NumKbytesFreeSpace;
Ul6 FSType;
U8 IsWriteProtected;
U8 1IsRemovable;

} USB_MTP_STORAGE_INFO;

Member Description
NumKbytesTotal Capacity of storage medium in Kbytes.
NumKbytesFreeSpace |Available free space on storage medium in Kbytes.
FSType Type of file system as specified in MTP.
IsWriteProtected Set to 1 if the storage medium can not be modified.
IsRemovable Set to 1 if the storage medium can be removed from device.

Table 8.11: USB_MTP_STORAGE_INFO

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



239

8.5 Storage Driver

This section describes the storage interface in detail.

8.5.1 General information

The storage interface is handled through an API-table, which contains all relevant
functions necessary for read/write operations and initialization. Its implementation
handles the details of how data is actually read from or written to memory.

This release comes with USB_MTP_StorageFS driver which uses emFile to access the
storage medium.

8.5.2 Interface function list

As described above, access to a storage media is realized through an API-function
table of type USB_MTP_STORAGE_API. The structure is declared in usB_MTP.h and it is
described in section Data structures on page 232.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



240 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.5.3 USB_MTP_STORAGE_API in detail

8.5.3.1 (*pfInit)()
Description
Initializes the storage medium.

Prototype
void (*pfInit) (U8 Unit, const USB_MTP_INST_DATA_DRIVER * pDriverData) ;

Parameter Description

Logical unit number. Specifies for which storage medium the func-
tion is called.

Pointer to a USB_MTP_INST_DATA_DRIVER structure that contains all
. information that are necessary for the driver initialization. For
pbriverData detailed information about the UsB_MTP_INST_DATA_ DRIVER Struc-
ture, refer to USB_MTP_INST_DATA_DRIVER on page 235.

Table 8.12: (*pfInit)() parameter list

Unit

Additional information

This function is called when the storage driver is added to emUSB-MTP. It is the first
function of the storage driver to be called.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



241

8.5.3.2 (*pfGetinfo)()
Description
Returns information about storage medium such as capacity and available free space.

Prototype
void (*pfGetInfo) (U8 Unit, USB_MTP_STORAGE_INFO * pStoragelInfo);

Parameter Description

Logical unit number. Specifies for which storage medium the func-
tion is called.

Pointer to a USB_MTP_STORAGE_INFO structure. For detailed infor-
pStorageInfo | mation about the USB_MTP_STORAGE_INFO structure, refer to
USB_MTP_STORAGE_INFO on page 238.

Table 8.13: (*pfGetInfo)() parameter list

Unit

Additional information

Typically, this function is called right after the device is connected to USB host when
the USB host requests information about the available storage mediums.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



242 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.5.3.3 (*pfFindFirstFile)()

Description
Returns information about the first file in a specified directory.
Prototype
int (*pfFindFirstFile) (U8 Unit,
const char * pDirPath,
USB_MTP_FILE_INFO * pFileInfo);
Parameter Description
Unit Logical unit number. Specifies for which storage medium the func-
* tion is called.
pDirPath Full path to the directory to be searched.
FileInf IN: ---
pri-einto OUT: Information about the file/directory found.

Table 8.14: (*pfFindFirstFile)() parameter list

Return value

== File/directory found
== No more files/directories found
<0 An error occurred

Additional information

The "." and ".." directory entries which are relevant only for the file system should
be skipped.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



243

8.5.3.4 (*pfFindNextFile)()

Description

Moves to next file and returns information about it.

Prototype
int (*pfFindNextFile) (U8 Unit, USB_MTP_FILE_INFO * pFileInfo);
Parameter Description
Unit Logical unit number. Specifies for which storage medium the func-
* tion is called.
FileInfo s ===
p¥L OUT: Information about the file/directory found.

Table 8.15: (*pfFindNextFile)() parameter list

Return value

== File/directory found
== No more files/directories found
<0 An error occurred

Additional information

The "." and ..

be skipped.

" directory entries which are relevant only for the file system should

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



244 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.5.3.5 (*pfOpenFile)()

Description
Opens a file for reading.
Prototype
int (*pfOpenFile) (U8 Unit,
const char * pFilePath) ;
Parameter Description
Unit Logical unit number. Specifies for which storage medium the func-
* tion is called.
. IN: Full path to file.
pFilePath ouT ---.

Table 8.16: (*pfOpenFile)() parameter list

Return value

==0 File opened
=0 An error occurred

Additional information

This function is called at the beginning of a file read operation. It is followed by one
or more calls to (*pfReadFromFile) (). At the end of data transfer the MTP module
closes the file by calling (*pfCcloseFile) (). If the file does not exists an error should
be returned. The MTP module opens only one file at a time.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



245

8.5.3.6 (*pfCreateFile)()

Description
Opens a file for writing.
Prototype
int (*pfCreateFile) (U8 Unit,
const char * pDirPath,
USB_MTP_FILE_INFO * pFileInfo);
Parameter Description
Unit Logical unit number. Specifies for which storage medium the func-
B tion is called.
. IN: Full path to directory where the file should be created.
pDirPath .
OUT: ---
IN: Information about the file to be created. pFileName points to
FileInf the name of the file.
pri-einto OUT: pFilePath points to full path of created file, prFileName points
to the beginning of file name in prilePath.

Table 8.17: (*pfCreateFile)() parameter list

Return value

==0 File created and opened
1=0 An error occurred

Additional information

This function is called at the beginning of a file write operation. The name of the file
is specified in the prFileName filed of pFileInfo. If the file exists it should be trun-
cated to 0. When a file is created, the call to (*pfcreateFile)() is followed by one or

more calls to (*pfwriteToFile) (). If CreationTime and LastWriteTime in
pFileInfo are not 0 should be used instead of the time stamps generated by the file
system.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



246 CHAPTER 8 Media Transfer Protocol Class (MTP)
8.5.3.7 (*pfReadFromFile)()
Description
Reads data from the current file.
Prototype
int (*pfReadFromFile) (U8 Unit,
U32 Ooff,
void * pData,
U32 NumBytes) ;
Parameter Description
. Logical unit number. Specifies for which storage medium the func-
Unit . .
tion is called.
Off Byte offset where to read from.
Dat IN: ---
pbata OUT: Data read from file.
NumBytes Number of bytes to read from file.

Table 8.18: (*pfReadFromFile)() parameter list

Return value

==0 Data read from file
1=0 An error occurred

Additional information

The function reads data from the file opened by (*pfOpenFile) ().

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



247

8.5.3.8 (*pfWriteToFile)()
Description

Writes data to current file.

Prototype
int (*pfWriteToFile) (U8 Unit,
U32 Off,
const void * pbDhata,
Uu32 NumBytes) ;
Parameter Description
Unit Logical unit number. Specifies for which storage medium the func-
* tion is called.
Off Byte offset where to write to.
Dat IN: Data to write to file
phata OuT: ---
NumBytes Number of bytes to write to file.

Table 8.19: (*pfWriteToFile)() parameter list

Return value

==0 Data written to file
1=0 An error occurred

Additional information

The function writes data to file opened by (*pfCreateFile) ().

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



248 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.5.3.9 (*pfCloseFile)()
Description

Closes the current file.

Prototype
int (*pfCloseFile) (U8 Unit);

Parameter Description

Logical unit number. Specifies for which storage medium the func-
tion is called.
Table 8.20: (*pfCloseFile)() parameter list

Lun

Return value

==0 File closed
1=0 An error occurred

Additional information

The function closes the file opened by (*pfCreateFile) () or (*pfOpenFile) ().

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



249

8.5.3.10 (*pfRemoveFile)()
Description

Removes a file/directory from the storage medium.

Prototype
int (*pfRemoveFile) (U8 Unit,
const char * pFilePath) ;
Parameter Description
Unit Logical unit number. Specifies for which drive the function is called.
pFilePath E)NU:TI-:u_I_I_path to file/directory to be removed

Table 8.21: (*pfRemoveFile)() parameter list

Return value

==0 File removed
1=0 An error occurred

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



250 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.5.3.11 (*pfCreateDir)()

Description
Creates a directory on the storage medium.
Prototype
int (*pfCreateDir) (U8 Unit,
const char * pDirPath,
USB_MTP_FILE_INFO * pFileInfo);
Parameter Description
Unit Logical unit number. Specifies for which storage medium the func-
* tion is called.
. IN: Full path to directory where the directory should be created.
pDirPath .
OuUT: ---
IN: Information about the directory to be created. prFileName points
FileTInf to the directory name.
priieinto OUT: prilepath points to full path of directory, pFileName points to
the beginning of directory name in pFilepPath

Table 8.22: (*pfCreateDir)() parameter list

Return value

=0 Directory created
1=0 An error occurred

Additional information

If CreationTime and LastWriteTime in pFileInfo are not 0 should be used instead
of the time stamps generated by the file system.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



251

8.5.3.12 (*pfRemoveDir)()

Description

Removes a directory and its contents from the storage medium.

Prototype
int (*pfRemoveDir) (U8 Unit,
const char * pDirPath);
Parameter Description
Unit Logical unit number. Specifies for which storage medium the func-
* tion is called.
. IN: Full path to directory to be removed.
pDirPath OUT: ---

Table 8.23: (*pfRemoveDir)() parameter list

Return value

=0 Directory removed
=0 An error occurred

Additional information

The function should remove the directory and the entire file tree under it.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



252 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.5.3.13 (*pfFormat)()
Description
Initializes the storage medium.

Prototype
int (*pfFormat) (U8 Unit) ;

Parameter Description

Logical unit number. Specifies for which storage medium the func-
tion is called.
Table 8.24: (*pfFormat)() parameter list

Unit

Return value
==0 Storage medium initialized

=0 An error occurred
Additional information

If prootDir configured in the call to (*pfInit) () points to a subdirectory of the file
system, the storage medium should not be formatted. Instead, all the files and direc-
tories from prRootDir should be removed.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



253

8.5.3.14 (*pfRenameFile)()
Description
Changes the name of a file or directory.

Prototype
int (*pfRenameFile) (U8 Unit, USB_MTP_FILE_INFO * pFileInfo);

Parameter Description

Logical unit number. Specifies for which storage medium the func-
tion is called.

IN: Information about the file/directory to be renamed. pFilePath
points to the full path and prileName points to the new name.
pFileInfo OUT: pFilepath points to full path of file/directory with the new
name, pFileName points to the beginning of file/directory name in
pFilePath. The other structure fields should also be filled.

Unit

Table 8.25: (*pfRenameFile)() parameter list

Return value

==0 File/directory renamed
1=0 An error occurred

Additional information

Only the name of the file/directory should be changed. The path to parent directory
should remain the same.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



254 CHAPTER 8

8.5.3.15 (*pfDelnit)()

Media Transfer Protocol Class (MTP)

Description
Deinitializes the storage medium.
Prototype
void (*pfDeInit) (U8 Unit);

Parameter Description

. Logical unit number. Specifies for which storage medium the func-
Unit . .

tion is called.

Table 8.26: (*pfDelInit)() parameter list

Additional information

Typically called when the application calls UsB_stop () to de-initialize emUSB.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG




255

8.5.3.16 (*pfGetFileAttributes)()

Description

Returns the attributes of a file or directory.

Prototype
int (*pfGetFileAttributes) (U8 Unit, const char * pFilePath, U8 * pMask) ;
Parameter Description

Unit Logical unit number. Specifies for which storage medium the func-
B tion is called.

pFilePath Full path to file or directory (0-terminated string).
Mask IN: ---

pras OUT: The bitmask of the attributes.

Table 8.27: (*pfGetFileAttributes)() parameter list

Return value

=0 Information returned
1=0 An error occurred

Additional information

This function is called only when the compile time switch MTP_SAVE_FILE_INFO is set
to 0. For the list of supported attributes refer to USB_MTP_FILE _INFO on page 232.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



256 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.5.3.17 (*pfModifyFileAttributes)()

Description
Sets and clears file attributes.
Prototype
int (*pfModifyFileAttributes) (U8 Unit,
const char * pFilePath,
us SetMask,
U8 ClrMask) ; ;
Parameter Description
Unit Logical unit number. Specifies for which storage medium the func-
* tion is called.
pFilePath Full path to file or directory (0-terminated string).
SetMask The bitmask of the attributes which should be set.
ClrMask The bitmask of the attributes which should be cleared.

Table 8.28: (*pfModifyFileAttributes)() parameter list

Return value

==0 Attributes modified
1=0 An error occurred

Additional information

This function is called only when the compile time switch MTP_SAVE_FILE_INFO is set
to 0. For the list of supported attributes refer to USB_MTP_FILE INFO on page 232.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



257

8.5.3.18 (*pfGetFileCreationTime)()
Description

Returns the creation time of file or directory.

Prototype

int (*pfGetFileCreationTime) (U8 Unit, const char * pFilePath, U32 * pTime) ;
Parameter Description

Unit Logical unit number. Specifies for which storage medium the func-

tion is called.

pFilePath Full path to file or directory (0-terminated string).
. IN: ---

pTime

OUT: The creation time.
Table 8.29: (*pfGetFileCreationTime)() parameter list

Return value

==0 Creation time returned
1=0 An error occurred

Additional information

This function is called only when the compile time switch MTP_SAVE_FILE_INFO is set
to 0. For the encoding of the time value refer to USB_MTP_FILE _INFO on page 232.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



258 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.5.3.19 (*pfGetFileLastWriteTime)()

Description
Returns the time when the file or directory was last modified.

Prototype
int (*pfGetFilelastWriteTime) (U8 Unit,
const char * pFilePath,
U32 * pTime) ;;
Parameter Description
Unit Logical unit number. Specifies for which storage medium the func-
tion is called.
pFilePath Full path to file or directory (0-terminated string).
o IN: ---
prime OUT: The modification time.

Table 8.30: (*pfGetFileLastWriteTime)() parameter list

Return value

=0 Modification time returned
1=0 An error occurred

Additional information

This function is called only when the compile time switch MTP_SAVE_FILE_INFO is set
to 0. For the encoding of the time value refer to USB_MTP_FILE_INFO on page 232.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



259

8.5.3.20 (*pfGetFileld)()
Description

Returns an id which uniquely identifies the file or directory.

Prototype
int (*pfGetFileId) (U8 Unit, const char * pFilePath, U8 * pId);
Parameter Description
Unit Logical unit number. Specifies for which storage medium the func-
* tion is called.
pFilePath Full path to file or directory (0-terminated string).
IN: ---
pId OUT: The unique id of file or directory. Should point to a byte array

MTP_NUM_BYTES_FILE_ID large.
Table 8.31: (*pfGetFileId)() parameter list

Return value

=0 Id returned
1=0 An error occurred

Additional information

This function is called only when the compile time switch MTP_SAVE_FILE_INFO is set
to 0.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



260 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.5.3.21 (*pfGetFileSize)()

Description

Returns the size of a file in bytes.

Prototype

int (*pfGetFileSize) (U8 Unit, const char * pFilePath, U32 * pFileSize);
Parameter Description

Unit Logical unit number. Specifies for which storage medium the func-

tion is called.

pFilePath Full path to file or directory (0-terminated string).
. . IN: ---

pFileSize

OUT: The size of file in bytes.
Table 8.32: (*pfGetFileSize)() parameter list

Return value

==0 Size of file returned
1=0 An error occurred

Additional information

This function is called only when the compile time switch MTP_SAVE_FILE_INFO is set
to O.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



261

Chapter 9

Communication Device Class
(CDC)

This chapter describes how to get emUSB up and running as a CDC device.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



262 CHAPTER 9 Communication Device Class (CDC)

9.1 Overview

The Communication Device Class (CDC) is an abstract USB class protocol defined by
the USB Implementers Forum. This protocol covers the handling of the following
communication flows:

e VirtualCOM/Serial interface

e Universal modem device

e ISDN communication

e Ethernet communication

This implementation of CDC currently supports the virtual COM/Serial interface, thus
the USB device will behave like a serial interface.

Normally, a custom USB driver is not necessary, because a kernel mode driver for
USB-CDC serial communication is delivered by major Microsoft Windows operating
systems. For installing the USB-CDC serial device an .inf file is needed, which is
also delivered. Linux handles USB 2 virtual COM ports since Kernel Ver. 2.4. Further
information can be found in the Linux Kernel documentation.

9.1.1 Configuration

The configuration section will later on be modified to match the real application. For
the purpose of getting emUSB up and running as well as doing an initial test, the
configuration as delivered should not be modified.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



263

9.2 The example application

The start application (in the Application subfolder) is a simple echo server, which
can be used to test emUSB. The application receives data byte by byte and sends it
back to the host.

Source code excerpt from USB_CDC_Start.c:
/*********************************************************************
MainTask

USB handling task.
Modify to implement the desired protocol

* % X X X X

/

void MainTask (void) ;
void MainTask (void) {
U32 i = 0;

USB_Init () ;
_AddCDC () ;
USB_Start () ;
while (1) {
char acl[64];
char acOut[30];
int NumBytesReceived;
int NumBytesToSend;

//

// Wait for configuration

//

while ((USB_GetState() & (USB_STAT CONFIGURED | USB_STAT_ SUSPENDED)) !=

USB_STAT_CONFIGURED) ({

BSP_ToggleLED(O0) ;
USB_0S_Delay (50) ;

}

BSP_SetLED(O0) ;

//

// Receive at maximum of 64 Bytes

// If less data has been received,

// this should be OK.

//

NumBytesReceived = USB_CDC_Receive(&ac[0], sizeof(ac));

1++;

NumBytesToSend = sprintf (acOut, "%$.31u: Received %d byte(s) - \"", i,
NumBytesReceived) ;

if (NumBytesReceived > 0) {
USB_CDC_Write(&acOut[0], NumBytesToSend) ;
USB_CDC_Write(&ac[0], NumBytesReceived) ;
USB_CDC_Write ("\"\n\r", 3);
}
}
}

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



264 CHAPTER 9 Communication Device Class (CDC)

9.3 Installing the driver

When the emUSB-CDC sample application is up and running and the target device is
plugged into the computer's USB port Windows will detect the new hardware.

Found New Hardware Wizard

Welcome to the Found New
Hardware Wizard

5

Thiz wizard helpz you install a device driver for a
hardware device.

To continue, click Next.

< Back

Cancel |

The wizard will ask you to help it find the correct driver files for the new device. First
select the Search for a suitable driver for my device (recommended) option,
then click the Next button.

Found New Hardware Wizard

Welcome to the Found New
Hardware Wizard

5

Thiz wizard helpz you install a device driver for a
hardware device.

To continue, click Next.

< Back

Cancel

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



265

In the next step, you need to select the Specify a location option and click the
Next button.

Found New Hardware Wizard

Locate Driver Files o
Wwhere do you want Windows to search for driver files?

Search for driver files for the following hardware device:

@ Product

The wizard zearches for suitable drivers in itz driver databasze on your computer and in
any of the following optional search locations that you specify.

To start the gearch, click Mest. If you are searching on a floppy disk or CD-ROM drive,
inzert the floppy disk or CD before clicking Mext.

Optional search locations:
= | Fitpmy disk dfives
U
V' Specify a lacation
™ Microsoft Windows Update

< Back I Mest » I Cancel |

Click Browse to open the directory navigator.

Found New Hardware Wizard

Cancel

[ ]
Inzert the manufacturer's installation disk into the drive
== selected, and then click OK.

LCopy manufacturer's files from:

|CusBstackiCoC x| | Browse. |

Use the directory navigator to select c:\usBstack\cDc (or your chosen location) and
click the Open button to select usbser.inf.

Locate File 21=]
Lack jr: | =3 CDC = - ® ok E-
A a uzhszer.inf
File name: izl i j DOpen I
Files of type: ISetup Infarmatiar [*.inf) j Cancel |

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



266 CHAPTER 9 Communication Device Class (CDC)

The wizard confirms your choice and starts to copy, when you click the Next button.

Found New Hardware Wizard

Driver Files Search Results o
The wizard has finished searching for driver files for your hardware device.

The wizard found a driver for the following device:

@ Product

“windows found a driver for this device. Ta install the driver Windows found, click Mest.

= c:hwuzbstackhedohusbserinf

Cancel |

At this point, the installation is complete. Click the Finish button to dismiss the wiz-
ard.

Found New Hardware Wizard

Completing the Found New
Hardware Wizard

_\> USE COC zerial port emulation

Windows has finizhed installing the software for thiz device.

To close this wizard, click Finizh.

< Back [Carce|

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



267

9.3.1 The .inf file

The .inf file is required for installation.

It looks as follows:

; Device installation file for
; USB 2 COM port emulation

[Version]

Signature="$CHICAGOS"

Class=Ports
ClassGuid={4D36E978-E325-11CE-BFC1-08002BE10318}
Provider=%MFGNAMES%

DriverVer=01/08/2007,2.2.0.0
LayoutFile=Layout.inf

[Manufacturer]
$MFGNAME%=USB2SerialDevicelist

[USB2SerialDevicelist]
%USB2SERIAL%=USB2Seriallnstall, USB\VID 8765&PID 0234

[DestinationDirs]
USB2SerialCopyFiles=12
DefaultDestDir=12

[USB2SeriallInstall]
CopyFiles=USB2SerialCopyFiles
AddReg=USB2SerialAddReg

[USB2SerialCopyFiles]
usbser.sys,,,0x20

[USB2SerialAddReq]

HKR, , DevLoader, , *ntkern

HKR, ,NTMPDriver, ,usbser.sys

HKR, , EnumPropPages32,, "MsPorts.dll,SerialPortPropPageProvider"

[USB2SerialInstall.Services]
AddService = usbser,0x0002,USB2SerialService

[USB2SerialService]
DisplayName = %USBZSERIAL_DISPLAY_NAME%

ServiceType = 1 ; SERVICE KERNEL DRIVER
StartType = 3 ; SERVICE_DEMAND_START
ErrorControl = 1 ; SERVICE ERROR NORMAL
ServiceBinary = %12%\usbser.sys

LoadOrderGroup = Base

[Strings]

MEFGNAME= "Manufacturer"

USB2SERIAL = "USB CDC serial port emulation"

USB2SERIAL DISPLAY NAME = "USB CDC serial port emulation"
red - required modifications

green - possible modifications

You have to personalize the .inf file on the red marked positions. Changes on the
green marked positions are optional and not necessary for the correct function of the
device.

Replace the red marked positions with your personal vendor Id (VID) and product Id
(PID). These changes have to be identical with the modifications in the configuration
file UsB_config.h to work correctly.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



268 CHAPTER 9 Communication Device Class (CDC)

The required modifications of the file UsB_conf.h is described in the configuration
chapter.

9.3.2 Installation verification

After the device has been installed, it can verify that the installation of the USB

device was successful. Hence, take a look in the device manager to check that the
USB device displayed.

The following steps perform:

e Open the Run dialog box from the start menu.
Type devicemgmt.msc and click OK:

Run 21=]

Type the name of a program, folder, document, or
Internet resource, and Windows will open it For you,

Qpen: I devmgmk, msc j

OF I Cancel | Browse. .. |

The Device Manager window is displayed and may look like this:

L, Device Manager

J Action  View |J = = |

[ [0 x]

EIE

J

D Digk drives
Dizplay adapters

4} DVD/CD-ROM drives
2 IDE ATASATAPI controllers
&2 Kepboards
™y Mice and ather pointing devices
W Moritors
B3 Metwork adapters
Rt (COM & LPT)

= SCS1 and RAID controllers

= Sound, video and game controllers

W System devices
-8 Universal Serial Bus controllers

| | |
Click on the Ports (COM & LPT) branch to open the branch:

L, Device Manager

J Action  View |J = = |

[ [0 x]

EIE

[

D Digk drives
Dizplay adapters
4} DVD/CD-ROM drives
2 IDE ATASATAPI controllers
&2 Kepboards
™y Mice and ather pointing devices
W Moritors
B3 Metwork adapters
[COM & LPT)
Communications Port [COM1)
Communications Port [COMZ2)
ELCP Printer Port [LPT1]
USE COC zerial port emulation [COk4]
= SCS1 and RAID controllers
= Sound, video and game controllers
System devices

Universal Serial Bus controllers

| | |
You should see the USB CDC serial port emulation (COMx), where x gives the

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



269

COM port number has Windows has assigned to the device.

9.3.3 Testing communication to the USB device

The start application is a simple echo server. This means each character that is
entered and sent through the virtual serial port will be sent back by the USB device
and will be shown by a terminal program. To test the communication to the device, a
terminal program such as HyperTerminal, should be used.
This section shows how to check the communication between host and USB host
using the HyperTerminal program.
e Open the Run dialog box from the start menu.
Type hypertrm.exe and press Enter key to open the HyperTerminal.
HyperTerminal displays the Connection Description dialog.
Give this new connection a name as shown below and click OK.

Tz New Connection - HyperT erminal

File Edit ‘iew Call Transfer Help

Connection Description EHE

Enter a name and choose an icon for the connection:

Mame:

INew 1ISB 25 erial Cornectior]
=T
=
o "

(] 3 I Cancel |
Dizconnected Auta detect Auta detect SCROLL |CAF'S |NUM |Eapture Frint echo 7

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



270 CHAPTER 9 Communication Device Class (CDC)

e After creating the new connection, the Connect To dialog box is displayed and
will ask which COM port you want to use. Click on the arrow for the Connect
Using drop down box. Select COMx, where x is the port number that is assigned
to your device by Windows. To confirm your choice click OK.

“g New USB2Serial Connection - HyperT erminal

File Edit “iew Call Transfer Help
Connect To EHE
" Mew USB2Serial Cannection
Enter details for the phone number that you want to dial:
LCountry/region: IGermany (49] j
Area code: |21 03
Phone number: I
o ka
(] 3 I Cancel |
Dizconnected |Aut0 detect |Aut0 detect |SCF|DLL |CAF'S |NUM |Eapture |F'rint echa 7

e The COMx Property dialog box is displayed to setup the connection properties.
Setup the values as shown below:

“g New USB2Serial Connection - HyperT erminal

File Edit “iew Call Transfer Help
COM4 Properties EHE
Port Settings |
Bits per second: |192DD 'l
Doata bits: IS 'l
Parity: INone 'l
Stop bits: I‘I 'l
FElowy contral: IHardware 'l
Bestore Defaults |
Cancel | Lol |
Dizconnected |Aut0 detect |Aut0 detect |SCF|DLL |CAF'S |NUM |Eapture Frint echo 7

e To confirm your selection, click OK.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



271

Now everything is configured and an empty terminal window is shown.

“& New USB2Serial Connection - HyperT erminal

File Edit “iew Call Transfer Help

=
I
Connected 0:00:06 |Aut0 detect |Aut0 detect |SCF|DLL |CAF'S |NUM |Eapture |F'rint echa 7

Type any characters, these characters will be send to target. The echo of the tar-
get is shown in the terminal window:

“& New USB2Serial Connection - HyperT erminal

File Edit “iew Call Transfer Help

=
Hello world
I
Connected 0:00:11 Auta detect 19200 8-N-1 SCROLL |CAF'S |NUM |Eapture Frint echo 7

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



272 CHAPTER 9

9.4 Target API

This chapter describes the functions and data structures that can be used with the
target application.

9.4.1

Communication Device Class (CDC)

Interface function list

Name

Description

API functions

USB_CDC_Add ()

Adds CDC-class to the emUSB interface.

USB_CDC_CancelRead ()
USB_CDC_CancelReadEx ()

Cancels an asynchronous read operation that
is pending

USB_CDC_CancelWrite ()
USB_CDC_CancelWriteEx ()

Cancels an asynchronous read operation that
is pending

USB_CDC_Read ()
USB_CDC_ReadEx ()

Reads data from host.

USB_CDC_ReadOverlapped/()
USB_CDC_ReadOverlappedEx ()

Reads data from host asynchronously.

USB_CDC_ReadTimed ()
USB_CDC_ReadTimedEx ()

Reads data from host with a given time-out.

USB_CDC_Receive ()
USB_CDC_ReceiveEx ()

Reads data from host.

USB_CDC_ReceiveTimed ()
USB_CDC_ReceiveTimedEx ()

Read data from host with a given time-out.
This function returns immediately as soon as
data has been received or a time-out occurs.

USB_CDC_SetOnBreak ()
USB_CDC_SetOnBreakEx ()

Sets a callback for receiving a SEND_BREAK
by the host.

USB_CDC_SetOnLineCoding ()
USB_CDC_SetOnLineCodingEx ()

Sets a callback for registering changing of the
“line-coding” by the host.

USB_CDC_UpdateSerialState ()
USB_CDC_UpdateSerialStateEx ()

Changes the current serial state.

USB_CDC_Write()
USB_CDC_WriteEx()

Writes data to host.

USB_CDC_WriteOverlapped/ ()
USB_CDC_WriteOverlappedEx ()

Write data to host asynchronously.

USB_CDC_WriteTimed ()
USB_CDC_WriteTimedEx ()

Writes data to the host with a given time-out.

USB_CDC_WaitForRX ()
USB_CDC_WaitForRXEx ()

Waits for reading data transfer from the Host
to be ended.

USB_CDC_WaitForTX ()
USB_CDC_WailtForTXEx ()

Waits for writing data transfer to the Host to
be ended.

USB_CDC_WriteSerialState()
USB_CDC_WriteSerialStateEx()

Sends the current serial state to the Host.

Data structures

USB_CDC_INIT_DATA

Initialization structure that is needed when
adding an CDC interface.

USB_CDC_ON_SET_BREAK

Callback function to receive a break condition
sent by the host.

USB_CDC_ON_SET_LINE_CODING

Callback registering line-coding changes.

USB_CDC_LINE_CODING

Structure that contains the new line-coding
sent by the host.

Table 9.1: USB-CDC API overview

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG




273

9.4.2 API functions

9.4.2.1 USB_CDC_Add()
Description
Adds CDC class to the USB interface.

Prototype
USB_CDC_HANDLE USB_CDC_Add (const USB_CDC_INIT DATA * pInitData) ;

Parameter Description

Pointer to a usB_cDC_INIT DATA structure. For detailed information
pInitData about the usB_cpc_INIT_DATA structure, refer to
USB_CDC_INIT_DATA on page 290.

Table 9.2: USB_CDC_Add() parameter list

Return value

== OxFFFFFFFF - New CDC Instance can not be created.
= OXFFFFFFFF - Handle to a valid CDC instance.

Additional information

After the initialization of general emUSB, this is the first function that needs to be
called when the USB-CDC interface is used with emUSB. The returned value can be
used with the CDC Ex-Function in order to talk to the right CDC instance.

For creating more more than one CDC-Instance please make sure the
USB_EnableIAD() is called before, otherwise the CDC instances other than the first
instance will work correctly.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



274 CHAPTER 9 Communication Device Class (CDC)

9.4.2.2 USB_CDC_CancelRead()
USB_CDC_CancelReadEXx()
Description
Cancels a non-blocking read operation that is pending.

Prototype

void USB_CDC_CancelRead(void) ;
vold USB_CDC_CancelReadEx (USB_CDC_HANDLE hInst) ;

Additional information

This function shall be called when a pending asynchronous read operation should be
canceled. The function can be called from any task.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



275

9.4.2.3 USB_CDC_CancelWrite()
USB_CDC_CancelWriteEx()
Description
Cancels a non-blocking read operation that is pending.

Prototype

void USB_CDC_CancelWrite (void) ;
volid USB_CDC_CancelWriteEx (USB_CDC_HANDLE hInst);;

Parameter Description

hInst Handle to a valid CDC instance, returned by USB_CDC_Add().
Table 9.3: USB_CDC_CancelWriteEx() parameter list

Additional information

This function shall be called when a pending asynchronously write operation should
be canceled. It can be called from any task.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



276 CHAPTER 9 Communication Device Class (CDC)

9.4.2.4 USB_CDC_Read()
USB_CDC_ReadEXx()
Description
Reads data from the host.

Prototype

int USB_CDC_Read(void * pData, unsigned NumBytes) ;
int USB_CDC_ReadEx (USB_CDC_HANDLE hInst, void* pData, unsigned NumBytes) ;

Parameter Description
hInst Handle to a valid CDC instance, returned by USB_CDC_Add().
pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Table 9.4: USB_CDC_Read()/USB_CDC_ReadEx()parameter list

Return value

== NumBytes - Number of bytes that have been read.
I= NumBytes - Returns a USB_STATUS_ERROR.

Additional information

This function blocks a task until all data have been read. In case of a reset or a dis-
connect USB_STATUS_ERROR is returned.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



277

9.4.2.5 USB_CDC_ReadOverlapped()
USB_CDC_ReadOverlappedEx()

Description
Reads data from the host asynchronously.

Prototype

int USB_CDC_ReadOverlapped(void* pData, unsigned NumBytes) ;
int USB_CDC_ReadOverlappedEx (USB_CDC_HANDLE hInst,

void* pData,

unsigned NumBytes) ;

Parameter Description
hInst Handle to a valid CDC instance, returned by USB_CDC_Add().
pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Table 9.5: USB_CDC_ReadOverlapped()/USB_CDC_ReadOverlappedEx() parameter list

Return value

Number of bytes that have already been received or have been copied from internal
buffer.

Additional information

This function will not block the calling task. The read transfer will be initiated and the
function returns immediately. In order to synchronize, USB_CDC_WaitForRX () needs
to be called.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



278 CHAPTER 9 Communication Device Class (CDC)

9.4.2.6 USB_CDC_ReadTimed()
USB_CDC_ReadTimedEX()

Description

Reads data from the host with a given time-out.

Prototype

int USB_CDC_ReadTimed (void* pData, unsigned NumBytes, unsigned ms) ;
int USB_CDC_ReadTimedEx (USB_CDC_HANDLE hInst, void* pData, unsigned
NumBytes, unsigned ms) ;

Parameter Description
hInst Handle to a valid CDC instance, returned by USB_CDC_Add().
pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.
e Time-out given in milliseconds. A zero value results in an infinite
timeout.

Table 9.6: USB_CDC_ReadTimed()/USB_CDC_ReadTimedEx() parameter list

Return value

== NumBytes - Number of bytes that have been read within the given time-out.
I= NumBytes - Returns a USB_STATUS_ERROR or USB_STATUS_TIMEOUT.

Additional information

This function blocks a task until all data have been read or a time-out occurs. In case
of a reset or a disconnect USB_STATUS_ERROR is returned.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



279

9.4.2.7 USB_CDC_Receive()
USB_CDC_ReceiveEXx()

Description

Reads data from host. In contrast to the USB_CDC_Read() function this function
returns immediately after any amount of data has been read from the buffer.
Prototype

int USB_CDC_Receive(void * pBuffer, unsigned NumBytes) ;
int USB_CDC_ReceiveEx (USB_CDC_HANDLE hInst, void * pBuffer, unsigned

NumBytes) ;

Parameter Description
hInst Handle to a valid CDC instance, returned by USB_CDC_Add().
pBuffer Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Table 9.7: USB_CDC_Receive()/USB_CDC_ReceiveEx() parameter list

Return value

> 0 - Number of bytes that have been read.

== 0 - Zero packet received (not every controller supports this!) or the target was
disconnected during the function call.

< 0 - Returns a USB_STATUS_ERROR.

Additional information

If no error occurs, this function returns the number of bytes received. Calling
USB_CDC_Receive () will return as much data as is currently available up to the size
of the buffer specified. This function also returns when target is disconnected from
host or when a USB reset occurred, but it will still return the number of bytes read.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



280 CHAPTER 9 Communication Device Class (CDC)

9.4.2.8 USB_CDC_ReceiveTimed()
USB_CDC_ReceiveTimedEXx()

Description

Reads data from host with a given time-out. In contrast to the
USB_CDC_ReadTimed() function this function returns immediately after any amount
of data has been read from the buffer.

Prototype

int USB_CDC_ReceiveTimed (void * pBuffer, unsigned NumBytes, unsigned ms) ;
int USB_CDC_ReceiveTimedEx (USB_CDC_HANDLE hInst, void * pBuffer, unsigned

NumBytes, unsigned ms) ;

Parameter Description
hInst Handle to a valid CDC instance, returned by USB_CDC_Add().
pBuffer Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.
e Time-out given in milliseconds. A zero value results in an infinite
timeout.

Table 9.8: USB_CDC_ReceiveTimed()/USB_CDC_ReceiveTimedEx() parameter list

Return value

> 0 - Number of bytes that have been read within the given time-out.

== (0 - Zero packet received (not every controller supports this!) or the target was
disconnected during the function call.

< 0 - Returns a USB_STATUS_ERROR or USB_STATUS_TIMEOQOUT.

Additional information

If no error occurs, this function returns the number of bytes received.

Calling usB_CDC_ReceiveTimed () will return as much data as is currently available
up to the size of the buffer specified within the specified time-out. This function also
returns when target is disconnected from host or when a USB reset occurred, but it
will still return the number of bytes read.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



281

9.4.2.9 USB_CDC_SetOnBreak()
USB_CDC_SetOnBreakEXx()

Description
Sets a callback for receiving a SEND_BREAK by the host.

Prototype

void USB_CDC_SetOnBreak (USB_CDC_ON_SET_BREAK * pfOnBreak) ;

void USB_CDC_SetOnBreakEx (USB_CDC_HANDLE hInst,

USB_CDC_ON_SET_BREAK * pfOnBreak) ;
Parameter Description

hInst Handle to a valid CDC instance, returned by USB_CDC_Add().
Pointer to the callback function USB_CDC_ON_SET_BREAK. For

pf detailed information about the usB_cbc_ON_SET BREAZK function
pointer, refer to USB_CDC_ON_SET_BREAK on page 291.

Table 9.9: USB_CDC_SeOnBreak()/USB_CDC_SeOnBreakEx() parameter list

Additional information

This function is used to register a user callback which should notify the application
when a break condition was sent by the host. Refer to USB_CDC_ON_SET_BREAK on
page 291 for detailed information.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



282 CHAPTER 9 Communication Device Class (CDC)

9.4.2.10 USB_CDC_SetOnLineCoding()
USB_CDC_SetOnLineCodingEx()

Description
Sets a callback for registering changing of the “line-coding” by the host.

Prototype

void USB_CDC_SetOnLineCoding (USB_CDC_ON_SET LINE_CODING * pf);
void USB_CDC_SetOnLineCodingEx (USB_CDC_HANDLE hInst,
USB_CDC_ON_SET_LINE_CODING * pf);

Parameter Description
hinst Handle to a valid CDC instance, returned by USB_CDC_Add().
Pointer to the callback function USB_CDC_ON_SET_LINE_CODING. For
E detailed information about the UsB_cDC_ON_SET_LINE_CODING func-
19 tion pointer, refer to USB_CDC_ON_SET_LINE CODING on
page 292.
Table 9.10: USB_CDC_SetLineCoding()/USB_CDC_SetLineCodingEx() parameter list

Additional information

This function is used to register a user callback which should notify the application
that the host has changed the line coding Refer to USB_CDC_ON_SET_LINE _CODING

on page 292 for detailed information.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



283

9.4.2.11 USB_CDC_UpdateSerialState()
USB_CDC_UpdateSerialStateEx()

Description
Updates the control line state of the.

Prototype

void USB_CDC_UpdateSerialState (USB_CDC_SERIAL_STATE * pSerialState);
void USB_CDC_UpdateSerialStateEx (USB_CDC_HANDLE hInst, USB_CDC_SERIAL_STATE
* pSerialState) ;

Parameter Description

hInst Handle to a valid CDC instance, returned by USB_CDC_Add().

S Pointer to the USB_CDC_SERIAL_STATE structure, refer to
E USB_CDC_SERIAL_STATE on page 294.
Table 9.11: USB_CDC_UpdateSerialState() /USB_CDC_UpdateSerialStateEx() parameter list

Additional information

This function updates the control line state internally. In order to inform the host
about the serial state change, refer to the function USB_CDC_WriteSerialState()
USB_CDC_WriteSerialStateEx() on page 289.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



284 CHAPTER 9 Communication Device Class (CDC)

9.4.2.12 USB_CDC_Write()
USB_CDC_WriteEx()
Description
Write data to the host.

Prototype

void USB_CDC_Write(const void* pData, unsigned NumBytes) ;
void USB_CDC_WriteEx (USB_CDC_HANDLE hInst, const void* pData, unsigned

NumBytes) ;
Parameter Description
hInst Handle to a valid CDC instance, returned by USB_CDC_Add().
pData Pointer to data that should be sent to the host.
NumBytes Number of bytes to write.

Table 9.12: USB_CDC_Write()/USB_CDC_WriteEx() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



285

9.4.2.13 USB_CDC_WriteOverlapped()
USB_CDC_WriteOverlappedEx()

Description
Write data to the host asynchronously.

Prototype

void USB_CDC_WriteOverlapped (const void* pData, unsigned NumBytes) ;
void USB_CDC_WriteOverlappedEx (USB_CDC_HANDLE hInst, const void* pData,
unsigned NumBytes) ;

Parameter Description
hInst Handle to a valid CDC instance, returned by USB_CDC_Add().
pData Pointer to data that should be sent to the host.
NumBytes Number of bytes to write.

Table 9.13: USB_CDC_WriteOverlapped()/USB_CDC_WriteOverlappedEx() parameter list

Return value
Number of bytes that have already been sent to the HOST.
Additional information

This function will not block the calling task. The write transfer will be initiated and
the function returns immediately. In order to synchronize, USB_CDC_WaitForTX ()
needs to be called.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



286

CHAPTER 9 Communication Device Class (CDC)

9.4.2.14 USB_CDC_WriteTimed()

USB_CDC_WriteTimedEXx()

Description
Writes data to the host with a given time-out.

Prototype

int USB_CDC_WriteTimed (const void * pData, unsigned NumBytes, unsigned ms)
int USB_CDC_WriteTimedEx (USB_CDC_HANDLE hInst, const void * pData, unsigned
NumBytes, unsigned ms) ;

Parameter Description
hInst Handle to a valid CDC instance, returned by USB_CDC_Add().
pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.
e Time-out given in milliseconds. A zero value results in an infinite
timeout.

Table 9.14: USB_CDC_ReadTimed()/USB_CDC_ReadTimedEx() parameter list

Return value

>= 0 - Number of bytes that have been written within the given time-out.
< 0 - Returns a USB_STATUS_ERROR or USB_STATUS_TIMEQUT.

Additional information

This function blocks a task until all data have been read or a time-out occurs. This
function also returns when target is disconnected from host or when a USB reset
occurred.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



287

9.4.2.15 USB_CDC_WaitForRX()
USB_CDC_WaitForRXEXx()
Description
Waits for reading data transfer from the host to be ended.

Prototype

void USB_CDC_WaitForRX (void) ;
volid USB_CDC_ WailtForRXEx (USB_CDC_HANDLE hInst) ;

Parameter Description

hInst Handle to a valid CDC instance, returned by USB_CDC_Add().
Table 9.15: USB_CDC_WaitForRX()/USB_CDC_WaitForRXEx() parameter list

Additional information

This function shall be called in order to synchronize task with the read data transfer
that previously initiated.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



288 CHAPTER 9 Communication Device Class (CDC)

9.4.2.16 USB_CDC_WaitForTX()
USB_CDC_WaitForTXEXx()
Description
Waits for writing data transfer to the host to be ended.

Prototype

void USB_CDC_WaitForTX (void) ;
vold USB_CDC_WaltForTXEx (USB_CDC_HANDLE hInst);

Parameter Description

hInst Handle to a valid CDC instance, returned by USB_CDC_Add().
Table 9.16: USB_CDC_WaitForTX()/USB_CDC_WaitForTXEx() parameter list

Additional information

This function shall be called in order to synchronize task with the write data transfer
that previously initiated.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



289

9.4.2.17 USB_CDC_WriteSerialState()
USB_CDC_WriteSerialStateEx()
Description
Sends the current control line serial state to the host.

Prototype

void USB_CDC_WriteSerialState (void) ;
volid USB_CDC WriteSerialStateEx(USB_CDC_HANDLE hInst) ;

Parameter Description

hInst Handle to a valid CDC instance, returned by USB_CDC_Add().
Table 9.17: USB_CDC_WaitForTX()/USB_CDC_WaitForTXEx parameter list

Additional information

This function shall be called in order to inform the host about the control serial state
of the CDC instance. It may be called within the same function or in another task
dedicated for sending the serial state.

Please note the function is a blocking function, which means the function will return
host has received the serial state.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



290 CHAPTER 9 Communication Device Class (CDC)

9.4.3 Data structures

9.4.3.1 USB_CDC_INIT_DATA
Description

Initialization structure that is needed when adding an CDC interface to emUSB.

Prototype

typedef struct {
U8 EPIn;
U8 EPOut;
U8 EPInt;
} USB_CDC_INIT_DATA;

Member Description
EPIn Endpoint for sending data to the host
EPOut Endpoint for receiving data from the host
EPInt Endpoint for sending status information.

Table 9.18: USB_CDC_INIT_DATA elements

Additional Information

This structure is used when the CDC interface is added to emUSB. EpInt is in this
version of the emUSB CDC component not used, status information are not sent to
the host.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



201

9.4.3.2 USB_CDC_ON_SET_BREAK

Description
Callback function to receive a break condition sent by the host.
Prototype
typedef void USB_CDC_ON_SET_BREAK (unsigned BreakDuration) ;
Member Description
BreakDura- The BreakDuration gives the length of time, in milliseconds, of the break
tion signal.

Table 9.19: USB_CDC_ON_SET_LINE_CODING elements

Additional Information

This type of callback is used to notify the application that the host has sent a break
condition. If BreakDuration is 0xFFFF, then the host will send a break until another
SendBreak request is received with BreakDuration of 0x0000.

Note: Since the callback is mostly called within an interrupt service routine, this
callback should set any variables/events that signals any events that need to be
done.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



292

CHAPTER 9 Communication Device Class (CDC)

9.4.3.3 USB_CDC_ON_SET_LINE_CODING

Description

Callback function to register line-coding changes.

Prototype

typedef void USB_CDC_ON_SET_LINE_CODING (USB_CDC_LINE_CODING * pLineCoding) ;
Member Description

pLineCoding Pointer to USB_CDC_LINE_CODING structure

Table 9.20: USB_CDC_ON_SET_LINE_CODING elements

Additional Information

This type of callback is used to notify the application that the host has change the
line coding. For example the baud rate has been changed. The new "“line-coding” are
passed through the structure use cp rLINE copIng. Refer to USB_CDC_LINE_CODING
on page 293 for more information about the elements of these structure.

Note: Since the callback is mostly called within an interrupt service routine, this
callback should set any variables/events that signals any events that need to be

done.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



293

9.4.3.4 USB_CDC_LINE_CODING
Description

Structure that contains the new line-coding sent by the host.

Prototype

typedef struct {
U32 DTERate;
U8 CharFormat;
U8 ParityType;
U8 DataBits;
} USB_CDC_LINE_CODING;

Member Description
DTERate The data transfer rate for the device in bits per second.
Contain the stop bits:
0 - 1 Stop bit
CharFormat

1 - 1.5 Stop bits
2 - 2 Stop bits
Specifies the parity type:

0 - None
ParityType 1-0dd
2 - Even
3 - Mark
4 - Space
DataBits Specifies the bits per byte: (5, 6, 7, 8, 16)

Table 9.21: USB_CDC_LINE_CODING elements

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



294 CHAPTER 9 Communication Device Class (CDC)

9.4.3.5 USB_CDC_SERIAL_STATE

Description
Structure that contains the new line-coding sent by the host.

Prototype

typedef struct {
U8 DCD;
U8 DSR;
U8 Break;
U8 Ring;
U8 FramingError;
U8 ParityError;
U8 OverRunError;
U8 CTS;
} USB_CDC_SERIAL_STATE;

Member Description
beD Data Carrier Detect: Tells that the device is connected to the telephone
line.
DSR Data Set Read: Device is ready to receive data.
Break

Device indicates that it has detected a ring signal on the telephone
line.

FramingError | When set to 1, the device indicates a framing error.
ParityError When set to 1, the device indicates a parity error.
OoverRunError | When set to 1, the device indicates an over-run error.

CTS Clear to send: Acknowledges RTS and allows the host to transmit.
Table 9.22: USB_CDC_LINE_CODING elements

Ring

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



295

Chapter 10

Human Interface Device Class
(HID)

This chapter gives a general overview of the HID class and describes how to get the
HID component running on the target.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



296 CHAPTER 10 Human Interface Device Class (HID)

10.1 Overview

The Human Interface Device class (HID) is an abstract USB class protocol defined by
the USB Implementers Forum. This protocol was defined for the handling of devices
which are used by humans to control the operation of computer systems.

An installation of a custom-host USB driver is not necessary, because the USB human
interface device class is standardized and every major OS already provides host driv-
ers for it.

Method of communication

HID always uses interrupt end points. Since interrupt endpoints are limited to at
most one packet of at most 64 bytes per frame (on full speed devices), the transfer
rate is limited to 64000 bytes/sec, in reality much less than that.

10.1.1 Further reading

The following documents define the HID class and have been used to implement and
verify the HID component:

e [HID1]
Device Class Definition for Human Interface Devices (HID), Firmware Specifica-
tion—6/27/01 Version 1.11

e [HID2]
HID Usage Tables, 1/21/2005 Version 1.12

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



297

10.1.2 Categories

Devices which are in the HID class basically fall into one of 2 categories:

“True HIDs” and “vendor specific HIDs”, explained in the following. One ore more
examples for both categories are provided.

10.1.2.1 “True HIDs”

HID devices communicating with the host operating system. Devices which are used
by a human being to input / output data, but do not directly exchange data with an
application program running on the host.

Typical examples

e Keyboard

e Mouse and similar pointing devices

e Joystick

e Game pad

e Front-panel controls - for example, switches and buttons.

10.1.2.2 “Vendor specific HIDs”

These are HID devices communicating with an application program. The host OS
loads the same driver it loads for any “true HID” and will automatically enumerate
the device, but it can not communicate with the device. When analyzing the report
descriptor, the host finds out that it can not exchange information with the device;
the device uses a protocol which is meaningless to the HID driver of the host. The
Host will therefore not exchange information with the device. A host recognizes a
vendor specific HID by its vendor defined usage page in the report descriptor: The
numerical value of the usage page is between 0xFFO0 and OxFFFF.

An application has the chance to communicate with the particular device using API
functions offered by the host. This allows an application program to communicate
with the device without having to load a driver. HID does not take advantage of the
full USB bus bandwidth; bulk communication can be much faster, but requires a
driver. Therefore it can be a good choice to select HID as device class, especially if
easy-of use is important and high communication speed is not a requirement.

Typical examples

Bar-code reader

Thermometer

Voltmeter

Low-speed JTAG emulator

UPS (Uninterruptible power supply)

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



298 CHAPTER 10 Human Interface Device Class (HID)

10.2 Background information
10.2.1 HID descriptors

This section gives an overview about the HID class specific descriptors. The HID
descriptors are defined in the Device Class Definition for Human Interface Devices
(HID) of the USB Implementers Forum. Refer to the USB Implementers Forum web-
site, www.usb.org, for detailed information about the USB HID standard.

Device

descriptor

v

Configuration

descriptor

v

Interface

descriptor v
v HID

Endpoint descriptor

descriptor /\

Report Physical

descriptor descriptor

10.2.1.1 HID descriptor

A HID descriptor contains the report and optional the physical descriptors. It speci-
fies the number, type, and size of report and physical descriptors.

10.2.1.2 Report descriptor

The data exchanged between host and device is exchanged in so called “reports”. The
report descriptor defines the format of a report. In general, HIDs require a Report
descriptor as defined in the Device Class Definition for Human Interface Devices
(HID). The only exception to this are very basic HIDs such as mouse or keyboards.
This implementation of HID always requires a report descriptor.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



299

The USB Implementers Forum provides an application which helps to build and mod-
ify HID report descriptors. The HID Descriptor Tool can be downloaded from:
http://www.usb.org/developers/hidpage/

EHID Descriptor Tool (DT] - Descl_hid M= 3
File Edit Parze Descriptor  About

HID ltems Report Descriptar

=
&
g
3

UsAGE_PAGE f—
USAGE_MINIMUM
USAGE_MAXTIMUM
DESTGHATOR_IHDEX
DESTGHATOR_MINIMUM
DESTGHATOR_MAIMUM
STRING_IHDEX
STRING_MINIMUM
STRING_MAXTIMUM
COLLECTION
END_COLLECTION

INPUT

QUTPUT

FEATURE

LOGICAL_MINIMUM
LOGICAL_MAXIMUM
PH¥YSTCAL_MINIMUM
PHYSTCAL_MAXTIMUM
UNIT_EXPONENT

UNIT b
REPORT_SIZE

REPORT_ID

REPORT_COUNT 4

Manual Entry
Clear Descriptor

10.2.1.3 Physical descriptor

Physical descriptor sets are optional descriptors which provide information about the
part or parts of the human body used to activate the controls on a device. Physical
descriptors are not currently supported.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



300 CHAPTER 10 Human Interface Device Class (HID)

10.3 Configuration

10.3.1 Initial configuration

To get emUSB up and running as well as doing an initial test, the configuration as it is
delivered should not be modified. The configuration must only be modified, if emUSB
should be used in your final product. Refer to the section Configuration on page 44 to
get detailed information about the functions which has to be adapted before you can
release a final product version.

10.3.2 Final configuration

Generating a report descriptor

This step is only required if your product is a vendor specific human interface device.
The report descriptor provided in the example application can typically be used with-
out any modification. The vendor defined usage page should be adapted in a final
product. Vendor defined usage pages can be in the range from OxFFOO - OxFFFF. The
low byte can be selected by the application programmer. It needs to be identical on
both target and host and should be unique (as unique as an 8-bit value can be). The
example(s) use the value 0x12; this value is defined at the top of the application pro-
gram with the macro USB_HID_DEFAULT_VENDOR_PAGE.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



301

10.4 Example application

Example applications are supplied. These can be used for testing the correct installa-
tion and proper function of the device running emUSB.

The following start application files are provided:

File Description
HID_Mouse.cC Simple mouse example. ("True HID” example)
HID_Echol.c Modified echo server. (“vendor specific” example)

Table 10.1: Supplied example HID applications

10.4.1 HID Mouse.c

HID_Mouse.c iS a typical example for a “true HID” implementation. The host identi-
fies the device which is programmed with this example as a mouse. After the device
is enumerated moves the mouse cursor in an endless loop to the left and after a
short delay back to the right.

10.4.1.1 Running the example

1. Add HID_Mouse.c to your project and build and download the application into the tar-
get.

2. When you connect your target to the host via USB, Windows will detect the new
HID device.

3. If a connection can be established moves the mouse cursor in an endless loop to
the left and after a short delay back to the right as long as you do not disconnect
your target.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



302 CHAPTER 10 Human Interface Device Class (HID)

10.4.2 HID_Echol.c

HID_Echol.c is a typical example for a “vendor specific HID” implementation. The
HID start application (HID_Echol.c located in the application subfolder) is a modi-
fied echo server; the application receives data byte by byte, increments every single
byte and sends it back to the host.

uUSB HID

example
application

USB connection

Target programmed
with the example
application consistent
with the application
running on host side:
HID_Echol.c

To use this application, include the source code file HID_Echol.c into your project
and compile and download it into your target. Run HIDEchol.exe after target is con-
nected to host and the enumeration process has been completed. The PC application
is supplied as executable in the HID\ SampleApp\Exe directory. The source code of the
PC example is also supplied. Refer to section Compiling the PC example application
on page 303 for more information to the PC example project.

10.4.2.1 Running the example

1. Add HID_Echol.c to your project and build and download the application into the tar-
get.

2. Connect your target to the host via USB while the example application is running,
Windows will detect the new HID device.

3. If a connection can be established, it exchanges data with the target, testing the
USB connection. If the host example application can communicate with the
emUSB device, the example application outputs the product name, vendor and
product id and the report size which will be used to communicate with the target.
The target will be in interactive mode.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



303

Example output of HID_Echol.exe:

HID generic sample
: Bx8765
@ Bx1114

; 64 hytes
: b4 hytes

Enter the number of echoes to be sent to the echo

4. Enter the number of reports that should be transmitted, when the device is con-
nect. Every dot in the terminal window indicates a transmission.

HID generic sample
Bx8765
x1114

: b4 hytes
Output : b4 hytes
Starting Echo...
Enter the number of echoes to be sent to the echo client: 5888

10.4.2.2 Compiling the PC example application

To compile the example application you need a Microsoft compiler. The compiler is
part of Microsoft Visual C++ 6.0 or Microsoft Visual Studio .Net. The source code of
the example application is located in the subfolder HID\SampleApp. Open the file
USBHID_Start.dsw and compile the source choose Build | Build SampleApp.exe
(Shortcut: F7). To run the executable choose Build | Execute SampleApp.exe
(Shortcut: CTRL-F5).

Note: The Microsoft Windows Driver Development Kit (DDK) is required to com-
pile the HID host example application. Refer to http://www.microsoft.com/whdc/dev-
tools/ddk/default.mspx for more information.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



304 CHAPTER 10 Human Interface Device Class (HID)

10.5 Target API

This section describes the functions that can be used on the target system.
General information

To communicate with the host, the example application project includes USB-specific
header and source files (UsSB.h, USB_Main.c, USB_Private.c, USB_Read.c,
USB_Setup.c, USB_Write.c). These files contain API functions to communicate with
the USB host.

Purpose of the USB Device API functions

To have an easy start up when writing an application on the device side, these API
functions have a simple interface and handle all operations that need to be done to
communicate with the host.

Therefore, all operations that need to write to or read from the emUSB are handled
internally by the provided API functions.

10.5.1 Target interface function list

Function Description
API functions
USB_HID_Add() Adds HID-class to the emUSB interface.
USB_HID_Read () Reads data from host.
USB_HID Write() Write data to host.

Data structures

Initialization structure that is required
when adding an HID interface.

USB_HID_INIT_DATA

Table 10.2: USB-HID target interface function list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



305

10.5.2 USB-HID functions
10.5.2.1 USB_HID_Add()

Description
Adds HID class device to the USB interface.

Prototype
void USB_HID_Add(const USB_HID_ INIT_DATA * pInitData);
Parameter Description
Pointer to a USB_HID_INIT DATA structure. For detailed information
pInitData about the usB_HID_INIT_DATA structure, refer to
USB_HID_INIT_DATA on page 308.

Table 10.3: USB_HID_Add() parameter list

Additional information

After the initialization of general emUSB, this is the first function that needs to be
called when the USB-HID interface is used with emUSB.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



306 CHAPTER 10 Human Interface Device Class (HID)

10.5.2.2 USB_HID_Read()
Description

Reads data from the host.

Prototype

int USB_HID_Read(void* pData, unsigned NumBytes) ;

Parameter Description
pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Table 10.4: USB_HID_Read() parameter list

Return value

Number of bytes that have been received.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



307

10.5.2.3 USB_HID_Write()

Description
Writes data to the host.

Prototype

void USB_HID Write(const void* pData, unsigned NumBytes) ;
Parameter Description

pData Pointer to data that should be sent to the host.

NumBytes Number of bytes to write.

Table 10.5: USB_HID_Write() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



308 CHAPTER 10 Human Interface Device Class (HID)

10.5.3 Data structures
10.5.3.1 USB_HID_INIT _DATA

Description
Initialization structure that is needed when adding a CDC interface to emUSB.
Prototype
typedef struct {
U8 EPIn;
U8 EPOut;
const U8 * pReport;
Uuleé NumBytesReport;

} USB_HID_INIT_DATA;

Member Description
EPIn Endpoint for sending data to the host.
EPOut Endpoint for receiving data from the host.
pPReport Pointer to a report descriptor.
NumBytesReport Size of the HID report.

Table 10.6: USB_HID_INIT_DATA elements

Additional Information

This structure is used when the HID interface is added to emUSB. EPOut is not
required.

pReport points to a report descriptor. A report descriptor is a structure which is used
to transmit HID control data to and from a human interface device. A report descrip-
tor defines the format of a report. It is composed of report items that define one or
more top-level collections. Each collection defines one or more HID reports.

Refer to Universal Serial Bus Specification, 1.0 Version and the latest version of the
HID Usage Tables guide to get detailed information about the HID input, output and
feature reports.

The USB Implementers Forum provide an application that helps to build and modify
HID report descriptors. The HID Descriptor Tool can be downloaded from:
http://www.usb.org/developers/hidpage/.

The report descriptor used in the supplied example application HID_Echol.c should
match to the requirements of most “vendor specific HID” applications. The report size
is defined to 64 bytes. As mentioned before, interrupt endpoints are limited to at
most one packet of at most 64 bytes per frame (on full speed devices), so that the
defined report size is exhausted.

Example

Example excerpt from HID_ Mouse.c:

static void AddHID(void) {
USB_HID INIT DATA InitData;
U8 Interval = 10;
static U8 acBuffer([64];

memset (&InitData, 0, sizeof(InitData)):;

InitData.EPIn = USB AddEP (USB_DIR IN, USB_TRANSFER TYPE INT, Interval, NULL, 0);

// Note: Next line is optional. EPOut is not required!

InitData.EPOut = USB AddEP (USB DIR OUT, USB TRANSFER TYPE INT, Interval, /
&acBuffer[0], sizeof (acBuffer));

InitData.pReport = aHIDReport;

InitData.NumBytesReport = sizeof ( aHIDReport);

USB _HID Add(&InitData);

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG


http://www.usb.org/developers/hidpage/

309

10.6 Host API

This chapter describes the functions that can be used with the Windows host system.
This functions are only required if use the emUSB-HID component to design a vendor
specific HID.

General information

To communicate with the target USB-HID stack, the example application project
includes a USB-HID specific source and header file (USBHID.c, USBHID.h). These files
contain API functions to communicate with the USB-HID target through the USB-Bulk
driver.

Purpose of the USB Host API functions

To have an easy start-up when writing an application on the host side, these API
functions have simple interfaces and handle all operations that need to be done to
communicate with the target USB-HID stack.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



310

CHAPTER 10

10.6.1 Host API function list

Human Interface Device Class (HID)

Function

Description

API functions

USBHID_Close()

Closes the connection an open device.

USBHID_Open ()

Opens a handle to the device.

USBHID_TInit ()

Initializes the USB human interface
device.

USBHID_Exit ()

Closes the connection an open device.

USBHID_GetNumAvailableDevices ()

Returns the number of available devices.

USBHID_GetProductName ()

Returns the product name.

USBHID_GetInputReportSize ()

Returns the input report size of the
device.

USBHID_GetOutputReportSize ()

Returns the output report size of the
device.

USBHID_ GetProductId()

Returns the product Id of the device.

(
USBHID_GetVendorId()

Returns the vendor id of the device.

USBHID_RefreshList ()

Refreshes connection info list.

USBHID_SetVendorPage ()

Sets the vendor page.

Table 10.7: USB-HID host interface function list

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



311

10.6.2 USB-HID functions
10.6.2.1 USBHID_Close()

Description

Closes the connection an open device.

Prototype
void USBHID_Close (unsigned Id);

Parameter Description

Index of the HID device. This is the bit number of the mask
returned by USBHID_GetNumDevices ()
Table 10.8: USBHID_Close() parameter list

DeviceIndex

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



312 CHAPTER 10 Human Interface Device Class (HID)

10.6.2.2 USBHID_Open()

Description
Opens a handle to the device that shall be opened.

Prototype
int USBHID_Open (unsigned Id)

Parameter Description

Index of the HID device. This is the bit number of the mask
returned by USBHID_GetNumDevices ().
Table 10.9: USBHID_Open() parameter list

DeviceIndex

Return value

== 0: Opening was successful or already opened.
== 1: Error. Handle to the device could not opened.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



313

10.6.2.3 USBHID_Init()

Description

Sets the specific vendor page, initialize the USB HID User API and retrieve the infor-
mation of the HID device.

Prototype
void USBHID_Init (U8 VendorPage) ;

Parameter Description

This parameter specifies the lower 8 bits of the vendor specific
usage page number. It must be identical on both device and host.
Table 10.10: USBHID_Init() parameter list

VendorPage

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



314 CHAPTER 10 Human Interface Device Class (HID)

10.6.2.4 USBHID_EXxit()

Description
Closes the connection an open device.

Prototype
void USBHID_Exit (void) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



315

10.6.2.5 USBHID_GetNumAuvailableDevices()
Description

Returns the number of the available devices.

Prototype
unsigned USBHID_GetNumAvailableDevices (U32 * pMask) ;
Parameter Description
Pointer to unsigned integer value which is used to store the bit
pMask . . .
mask of available devices. This parameter may be NULL.

Table 10.11: USBHID_GetNumAvailableDevices() parameter list

Return value
Returns the number of available devices.
Additional information

pMask will be filled by this routine. It shall be interpreted as bit mask where a bit set
means this device is available. For example, Device 0 and device 2 are available, if
pMask has the value 0x00000005.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



316 CHAPTER 10 Human Interface Device Class (HID)

10.6.2.6 USBHID_GetProductName()
Description

Stores the name of the device into pBuffer.

Prototype

int USBHID_GetProductName (unsigned Id, char * pBuffer, unsigned NumBytes) ;

Parameter Description
. Index of the HID device. This is the bit number of the mask
DeviceIndex .
returned by USBHID_GetNumDevices ().
pBuffer Pointer to a buffer for the product name.
NumBytes Size of the pBuffer in bytes.

Table 10.12: USBHID_GetProductName() parameter list

Return value

0: On error.
1: On success.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



317

10.6.2.7 USBHID_GetinputReportSize()
Description

Returns the input report size of the device.

Prototype
int USBHID_GetInputReportSize (unsigned Id);
Parameter Description
. Index of the HID device. This is the bit number of the mask
DeviceIndex .
returned by USBHID_GetNumDevices ().

Table 10.13: USBHID_GetInputReportSize() parameter list

Return value

== 0: On error.
<> 1: Size of the report in bytes.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



318 CHAPTER 10 Human Interface Device Class (HID)

10.6.2.8 USBHID_GetOutputReportSize()
Description

Returns the output report size of the device.

Prototype
int USBHID_GetOutputReportSize (unsigned Id);

Parameter Description

Index of the HID device. This is the bit number of the mask
returned by USBHID_GetNumDevices ().
Table 10.14: USBHID_GetOutputReportSize() parameter list

DeviceIndex

Return value

== 0: On error.
<> 1: Size of the report in bytes.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



319

10.6.2.9 USBHID_GetProductid()
Description

Returns the product Id of the device.

Prototype
Ul6 USBHID_GetProductId(unsigned Id);
Parameter Description
. Index of the HID device. This is the bit number of the mask
DeviceIndex .
returned by USBHID_GetNumDevices ().

Table 10.15: USBHID_GetProductId() parameter list

Return value

== 0: On error.
<> 1: Product Id.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



320 CHAPTER 10 Human Interface Device Class (HID)

10.6.2.10USBHID_GetVendorid()
Description

Returns the vendor Id of the device.

Prototype
Ul6 USBHID_GetVendorId(unsigned Id);

Parameter Description

Index of the HID device. This is the bit number of the mask
returned by USBHID_GetNumDevices ().
Table 10.16: USBHID_GetVendorId() parameter list

DeviceIndex

Return value

== 0: On error.
<> 1: Vendor Id.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



321

10.6.2.11USBHID_RefreshList()

Description

Refreshes the connection info list.

Prototype

void USBHID_RefreshList (void) ;

Additional information

Note, that any open handle to the device will be closed while refreshing the connec-
tion info list.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



322 CHAPTER 10 Human Interface Device Class (HID)

10.6.2.12USBHID_SetVendorPage()

Description
Sets the vendor page so that all HID device with the specified page will be found.

Prototype
void USBHID_SetVendorPage (U8 VendorPage) ;
Parameter Description
Vendorpade This parameter specifies the lower 8 bits of the vendor specific
g usage page number. It must be identical on both device and host.

Table 10.17: USBHID_SetVendorPage() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



323

Chapter 11

Printer Class

This chapter describes how to get emUSB up and running as a printer device.

(&)

-

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



324 CHAPTER 11 Printer Class

11.1 Overview

The Printer Class is an abstract USB class protocol defined by the USB Implementers
Forum. This protocol delivers the existing printing command-sets to a printer over
USB.

11.1.1 Configuration

The configuration section will later on be modified to match the real application. For
the purpose of getting emUSB up and running as well as doing an initial test, the
configuration as delivered should not be modified.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



325

11.2 The example application

The start application (in the application subfolder) is a simple data sink, which can
be used to test emUSB. The application receives data bytes from the host which it
displays in the terminal I/O window of the debugger.

Source code of USB_Printer.c:

/********‘k‘k‘k‘k‘k*‘k*‘k‘k*******‘k‘k‘k‘k‘k*‘k**‘k*****‘k‘k‘k‘k‘k*‘k*‘k‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k‘k*‘k

* SEGGER MICROCONTROLLER GmbH & Co. KG *

* Solutions for real time microcontroller applications *
R R S R I R I R I R I I I R R R I i R I I R I R S I I R S I I I

* *

(c) 2003-2011 SEGGER Microcontroller GmbH & Co KG

*
*
Internet: www.segger.com Support: support@segger.com *
*
*

USB device stack for embedded applications *

*
*
*
*
Rk Sk i I I Sk I I I I S S R I R S S Rk I R A R I i I S R i S I
*
*
* *
*

R i I S R I I S S S S R R I I I kI I Sk S I I S I

File : USB_Printer.c
Purpose : Sample implementation of USB printer device class
—————————— Literature-—-————-——————————

Universal Serial Bus Device Class Definition for Printing Devices
Version 1.1 January 2000
———————— END-OF-HEADER = === === == e o e e e e e e e

#include <stdio.h>

#include <string.h>

#include "USB_PrinterClass.h"
#include "BSP.h"

/*****************‘k*‘k*‘k*‘k**********‘k*****‘k********‘k*******‘k********‘k**
*

* static data

*

ER IR I b I I I I I I I I b b b I b I S b I S I S b b I S b b I S b I I b b I I b b I b I S b I b 2 b b b b b b
*/

static U8 _acbhatal[512];

/*****************‘k*‘k*‘k*‘k**********‘k*****‘k********‘k*******‘k********‘k**
*

* static code

*

BRI IR S S I S S I S I S b b I I I I S S I I I I S b S R I S I I b S I S S I b b S I b S I I b S I I 3
*/

/********************k**k**k***************k******************************
*

* _GetDeviceIdString
*
*/
static const char * _GetDeviceIdString(void) {
const char * s = "CLASS:PRINTER;MODEL:HP LaserJet 6MP;"

"MANUFACTURER:Hewlett-Packard; "
"DESCRIPTION:Hewlett-Packard LaserJet 6MP Printer;"
"COMMAND SET:PJL,MLC, PCLXL, PCL, POSTSCRIPT; ";

return s;
/*****************‘k*‘k*‘k*‘k**********‘k*****‘k********‘k*******‘k********‘k**
*

* _GetHasNoError
*
*/

static U8 _GetHasNoError (void) {
return 1;

}

/********************k**k**k***************k******************************
*

* _GetIsSelected

*

*/

static U8 _GetIsSelected(void) {
return 1;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



326 CHAPTER 11 Printer Class

}

/‘k‘k‘k*‘k*‘k*‘k‘k*******‘k*‘k*‘k*‘k**‘k*******‘k*‘k*‘k*‘k**‘k****************‘k*‘k*‘k****
*
* _GetIsPaperEmpty
*
*/
static U8 _GetIsPaperEmpty(void) {
return 0;

}

/*********************************************************************
*
* _OnDataReceived
*
*/
static int _OnDataReceived(const U8 * pData, unsigned NumBytes) {
USB_MEMCPY (_acData, pData, NumBytes);
_acDhata[NumBytes] = 0;
printf (_acData) ;
return O;

}

/*********************************************************************
*

* _OnReset

*

*/

static void _OnReset (void) {

}

static USB_PRINTER_API _PrinterAPI = {
_GetDeviceIdString,
_OnDataReceived,
_GetHasNoError,
_GetIsSelected,
_GetIsPaperEmpty,
_OnReset

Y

/*********************************************************************
*

* Public code
*

LRI S I S I S S R S e S S S I R R I S I I S S I R R I I S I I I S S
*/

/‘k********‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k**********‘k*‘k***‘k*******************

USB_GetVendorId

* % X X

Function description

* Returns vendor Id

*/

Ul6 USB_GetVendorId(void) {
return 0x8765;

}

/*********************************************************************

USB_GetProductId

* X X X

Function description
* Returns product Id
*/
Ul6 USB_GetProductId(void) {
return 0x2114; // Should be unique for this sample
}

/‘k********‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k**********‘k*‘k***‘k*******************

USB_GetVendorName

* % X X

Function description

* Returns vendor name

*/

const char * USB_GetVendorName (void) {
return "Vendor";

}

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



327

/********‘k‘k‘k‘k‘k*‘k*‘k‘k*******‘k‘k‘k‘k‘k*‘k**‘k*****‘k‘k‘k‘k‘k*‘k*‘k‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k‘k*‘k

*

* USB_GetProductName
*

* Function description

* Returns product name
*/

const char * USB_GetProductName (void) {
return "Printer";

}

/*********************************************************************

USB_GetSerialNumber

* X X X

Function description

* Returns serial number

*/

const char * USB_GetSerialNumber (void) {
return "12345678901234567890";

}

/*********************************************************************

MainTask

Function description

USB handling task.
* Modify to implement the desired protocol
*/
void MainTask (void) ;
void MainTask (void) {
USB_TInit () ;
USB_PRINTER_Init (& PrinterAPI);
USB_Start () ;
//
// Loop: Receive data byte by byte, send back (data + 1)
//
while (1) {

//

// Wait for configuration

//

while ((USB_GetState() & (USB_STAT_ CONFIGURED | USB_STAT_SUSPENDED) )

= USB_STAT CONFIGURED) {
BSP_ToggleLED(O) ;
USB_0S_Delay (50) ;
}
USB_PRINTER_Task() ;

* % X X %

}

/**************************** end Of file ***************************/

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



328 CHAPTER 11 Printer Class

11.3 Target API

This chapter describes the functions and data structures that can be used with the
target application.

11.3.1 Interface function list

Function Description
API functions
USB_PRINTER_Init () Initializes the printer class.
USB_PRINTER_Task () Processes the request from USB Host.

Data structures

List of callback functions the library
USB_PRINTER_API should invoke when processing a request
from the USB Host.

Table 11.1: USB-Printer interface API

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



329

11.3.2 API functions
11.3.2.1 USB_PRINTER_Init()

Description
Initializes the printer class.

Prototype
void USB_PRINTER_TInit (USB_PRINTER_API * pAPT);;

Parameter Description

Pointer to an API table that contains all callback functions that are
necessary for handling the functionality of a printer.
Table 11.2: USB_PRINTER_Init() parameter list

pPAPI

Additional information

After the initialization of general emUSB, this is the first function that needs to be
called when the printer class is used with emUSB.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



330 CHAPTER 11 Printer Class

11.3.2.2 USB_PRINTER_Task()

Description

Processes the request received from the USB Host.

Prototype
void USB_PRINTER_Task (void) ;

Additional information

This function blocks as long as the USB device is connected to USB host. It handles
the requests by calling the function registered in the call to USB_PRINTER_Init ().

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



11.3.3 Data structures

11.3.3.1 USB_PRINTER_API

Description

331

Initialization structure that is needed when adding an printer interface to emUSB. It
holds pointer to callback functions the interface invokes when it processes request

from USB host.

Prototype
typedef struct {

const char * (*pfGetDeviceIdString) (void) ;
int (*pfOnDataReceived) (const U8 * pData, unsigned NumBytes) ;
us (*pfGetHasNoError) (void) ;
U8 (*pfGetIsSelected) (void) ;
us (*pfGetIsPaperEmpty) (void) ;
void (*pfOnReset) (void) ;
} USB_PRINTER_API;
Member Description
The library calls this function when the USB host
requests the printer’s identification string.
This string shall confirm to the IEE1284 Device Id Syn-
tax:
pfGetDeviceIdString | Example:
"CLASS:PRINTER;MODEL:HP Laserlet 6MP; MANUFAC-
TURER:Hewlett-Packard; DESCRIPTION:Hewlett-Pack-
ard LaserJet 6MP Printer; COMMAND
SET:PJL,MLC,PCLXL,PCL,POSTSCRIPT;"
. This function is called when data arrives from USB
pfOnDataReceived b
This function should return a non-zero value if the
pfGetHasNoError .
printer has no error.
This function should return a non-zero value if the
pfGetIsSelected . .
printer is selected.
This function should return a non-zero value if the
pfGetIsPaperEmpty . .
printer is out of paper.
The library calls this function if the USB host sends
pfOnReset
a soft reset command.

Table 11.3: USB_PRINTER_API elements

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



332 CHAPTER 11 Printer Class

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



333

Chapter 12
Remote NDIS (RNDIS)

This chapter gives a general overview of the Remote Network Driver Interface Speci-
fication class and describes how to get the RNDIS component running on the target.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



334

CHAPTER 12 Remote NDIS (RNDIS)

12.1 Overview

The Remote Network Driver Interface Specification (RNDIS) is a Microsoft proprietary
USB class protocol which can be used to create a virtual Ethernet connection between
a USB device and a host PC. A TCP/IP stack like embOS/IP is required on the USB
device side to handle the actual IP communication. Any available IP protocol (UDP,
TPC, FTP, HTTP, etc.) can be used to exchange data. On a typical Cortex-M CPU run-
ning at 120MHz a transfer speed of about 5 MByte/sec can be achieved when using a
high-speed USB connection.

USB RNDIS is supported by all Windows operating systems starting with Windows XP,
as well as by Linux with kernel versions newer than 2.6.34. An .inf file is required for
the installation on Microsoft Windows systems older than Windows 7. The emUSB-
RNDIS package includes .inf files for Windows versions older than Windows 7. 0OS X
will require a third-party driver to work with RNDIS, which can be downloaded from
here: http://joshuawise.com/horndis

emUSB-RNDIS contains the following components:

Generic USB handling

RNDIS device class implementation

Network interface driver which uses embQOS/IP as TCP/IP stack.
A sample application demonstrating how to work with RNDIS.

12.1.1 Working with RNDIS

UMO09001 User & Reference Guide for emUSB

Any USB RNDIS device connected to a PC running the Windows operating system is
listed as a separate network interface in the "Network Connections" window as shown
in this screenshot:

| -E S|
@1\:}‘;4 ".-' <« Metwork and Internet » Metwork Connections » v|+f| Search Net.. 0 |
Eile Edit Miew Tools Advanced Help
Organize Disable this network device 2 [ @

Local Area Connection
Metwork
Intel(R) Ethernet Connection I217-V

VMware Network Adapter Vivinetl —~

Disabled l.‘-'

e o

YMware Virtual Ethernet Adapter ... i

&  LUnidentified network

=

= SEGGER USB Remote NDIS Netwo...

Whdware Metwork Adapter ViMnet2
Disabled
YMware Virtual Ethernet Adapter ...
YMware Metwork Adapter YMnetd
Disabled
YWiware Virtual Ethernet Adapter ...

‘:. Local Area Connection 1
“.l

-

YMware Metwork Adapter VMnet3 L
Disabled I

= mE
i

YMware Virtual Ethernet Adapter ... i

The ping command line utility can be used to test the connection to target as shown
below. If the connection is correctly established the number of the lost packets
should be 0.

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG


http://joshuawise.com/horndis

335

c s Windows~Systemd2>ping SEGGER.RNDIS

Pinging SEGGER.RNDIS [18.8.8.18]1 with 32 hvtes of data:
Reply from 18.8.8.18: bhytes=32 time{imz TTL=G64
Reply from 18.8.8.18: hytez=32 time{imz TTL=64
Reply from 18.8.8.18: bhytes=32 time{imz TTL=G64
Reply from 18.8.8.18: hytez=32 time{imz TTL=64

Ping statistics for 18.8.08.18:

Packetz: Sent = 4. Received = 4, Lost = B (@x lossz>.
Approximate round trip times in milli-—seconds:

Minimum = Bmz,. Maximum = Bmz,. Average = Bms

c s Windowss\Systemd2 >

BN Administrator: CYWindows)System32\cmd. exe E'@

Microzoft Windows [Uersion 6.1.76811
Copyright <c?» 2807 Microsoft Corporation. A1l rights reserved.

12.1.2 Additional information

More technical details about RNDIS can be found here:

http://msdn.microsoft.com/en-us/library/windows/hardware/
ff570660%28v=vs.85%29.aspx

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG


http://msdn.microsoft.com/en-us/library/windows/hardware/ff570660%28v=vs.85%29.aspx

336 CHAPTER 12 Remote NDIS (RNDIS)

12.2 Configuration

12.2.1 Initial configuration

To get emUSB-RNDIS up and running as well as doing an initial test, the configura-
tion as it is delivered should not be modified.

12.2.2 Final configuration

The configuration must only be modified, when emUSB should be used in your final
product. Refer to section Configuration on page 44 to get detailed information about
the general emUSB-Device configuration functions which have to be adapted.

12.2.3 Class specific configuration

emUSB-RNDIS calls the functions below to get the information required at initializa-
tion. The functions should be implemented in the application. A sample implementa-
tion of these functions can be found in the 7P _config RNDIS.c. The file is located in
the sample\RNDIS directory of the emUSB shipment. The IP_Config RNDIS.c pro-
vides a ready to use layer and configuration file to be used with embOS
and embOS/IP..

Function Description
emUSB-RNDIS configuration functions
USB_RNDIS_GetVendorId() Returns IEEE-registered vendor code.
USB_RNDIS_GetDescription () Returns the device description.
USB_RNDIS_GetDriverVersion/() Returns the firmware version.

Table 12.1: List of class specific configuration functions

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



337

12.2.3.1 USB_RNDIS_GetVendorld()

Description
Returns the IEEE-registered vendor code.

Prototype
U32 USB_RNDIS_GetVendorId(void) ;

Example

U32 USB_RNDIS_GetVendorId(void) {
return 0x0022C7;
}

Additional information

The function is called when the RDNIS device is initialized. It returns a 24-bit Organi-
zationally Unique Identifier (OUI) of the vendor. This is the same value as the one
stored in the first 3 bytes of a HW (MAC) address. Only the least significant 24 bits of
the retuned value are used.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



338 CHAPTER 12 Remote NDIS (RNDIS)

12.2.3.2 USB_RNDIS_GetDescription()

Description
Returns the device description.

Prototype

const char * USB_RNDIS_GetDescription(void) ;

Example

const char * USB_RNDIS_GetDescription(void) {
return "SEGGER RNDIS device";
}

Additional information

Called when the RNDIS device is initialized. Returns a 0O-terminated ASCII string
describing the device. The string is then sent to the host system.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



339

12.2.3.3 USB_RNDIS_GetDriverVersion()

Description
Returns the firmware version.

Prototype
Ul6 USB_RNDIS_GetDriverVersion (void) ;

Example

Ul6 USB_RNDIS_GetDriverVersion (void) {
return 0x0100;
}

Additional information

Called when the RNDIS device is initialized. Returns a 16-bit value representing the
firmware version. The high-order byte specifies the major version and the low-order
byte the minor version.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



340

12.2.4 Compile time configuration

CHAPTER 12

Remote NDIS (RNDIS)

The following macros can be added to usB_conf.h file in order to configure the

behavior of the RNDIS component.

The following types of configuration macros exist:

Binary switches “B”

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration
file. These switches can enable or disable a certain functionality or behavior.
Switches are the simplest form of configuration macros.

Numerical values “N”

Numerical values are used somewhere in the code in place of a humerical constant.

Type Macro

Default

Description

N RNDIS_DEBUG_LEVEL

Sets the type of diagnostic messages
output at runtime. It can take one of
these values:

0 - no debug messages

1 - only error messages

2 - error and log messages

Table 12.2: RNDIS configuration macros

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



341

12.3 Running the sample application

The sample application can be found in the sample\RNDIS\IP_Config_ RNDIS.c file of
the emUSB shipment. In order to use the sample application the SEGGER embOS/IP
middleware component is required. To test the emUSB-RNDIS component any of the
embOS/IP sample applications can be used in combination with 1p_config RNDIS.c.
After the sample application is started the USB cable should be connected to the PC
and the choosen embOS/IP sample can be tested using the appropriate methods.

12.3.0.1 IP_Config_RNDIS.c in detail

The main part of the sample application is implemented in the function MainTask ()
which runs as an independent task.

// _Connect() - excerpt from IP Config RNDIS.c
static int _Connect(unsigned IFaceId) {
U32 Server = IP_BYTES2ADDR( ’ ’ ’ ):
IP_DHCPS_ConfigPool (IFaceId, IP_BYTES2ADDR( ’ ’ ’ ), ’ );
IP_DHCPS_ConfigDNSAddr (IFaceId, &Server, 1);
IP_DHCPS_Init(IFaceId);
IP_DHCPS_Start(IFaceId);
USB_Init();
_AddRNDIS() ;
OS_CREATETASK (&_RNDISTCB, "USB RNDISTask",
_RndisTask, TASK_PRIO_RNDIS_TASK, _aRNDISStack);
USB_Start();
return 0; // Successfully connected.

The first step is to initialize the DHCP server component which assigns the IP address
for the PC side. The target is configured with the IP address 10.0.0.10. The DHCP
server is configured to distribute IP addresses starting from 10.0.0.11, therefore the
PC will receive the IP address 10.0.0.11. Then the USB stack is initialized and the
RNDIS interface is added to it. The function _aAddrnDIS () configures all required end-
points and configures the HW address of the PC network interface.

// _AddRNDIS() - excerpt from IP_Config RNDIS.c
static void _AddRNDIS(void) { USB_RNDIS_INIT DATA InitDataj;
InitData.EPOut = USB_AdJdEP(USB_DIR_OUT,
USB_TRANSFER_TYPE_BULK,

I
_abReceiveBuffer,
USB_MAX_ PACKET_SIZE);
USB_AdJddJdEP(USB_DIR_IN, USB_TRANSFER_TYPE_BULK, , NULL,

InitData.EPIn )i
USB_AJJEP (USB_DIR_IN, USB_TRANSFER_TYPE_INT, , NULL, 0);

InitData.EPInt
InitData.pEventAPI &_EventAPI;
InitData.pDriverAPT &USB_RNDIS Driver_ IP NI;
InitData.DriverData.pHWAddr = "\x00\x22\xC7\xFF\xFF\xF3";
InitData.DriverData.NumBytesHWAddr = 6;
USB_RNDIS_Add(&InitData):

The size of _acReceiveBuffer buffer must be a multiple of USB max packet size. The
USB_MAX_PACKET_SIZE define is set to the correct max packet size value for the cor-
responding speed (full or high) and is used in the samples to declare buffer sizes.
_EventAPI is a table with functions which manipulate OS events. The events are used
by the RNDIS component to synchronize with the USB interrupt.
USB_RNDIS_Driver_IP_NI is the network interface driver which implements the con-
nection to the IP stack. The HW address configured here is assigned to the PC net-
work interface. The HW address of the IP stack is configured in the IP_X_Config()
function of embQOS/IP as described below.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



342

CHAPTER 12 Remote NDIS (RNDIS)

// Excerpt from IP_Config.c
static OS_EVENT _Event;

static void * _cbCreateEvent(void) {
OS_EVENT_Create(&_Event);
return &_FEvent;

}

static void _cbSignalEvent(void * pEvent) {
OS_EVENT_Pulse((OS_EVENT * )pEvent);
}

static int _cbWaitEventTimed(void * pEvent, unsigned ms) {
return OS_EVENT WaitTimed((OS_EVENT *)pEvent, ms);

}

static USB_RNDIS_EVENT API _EventAPI = {
_cbCreateEvent,
_cbSignalEvent,
_cbWaitEventTimed

};

The IP stack is configured to use the network interface driver of emUSB-RNDIS. For
more information about the configuration of the IP stack refer to embOS/IP manual.

// IP_X_Config() - excerpt from IP_Config.c
#include "USB_RNDIS_Driver_IP_NI.h"

void IP_X Config(void) {
<...>
//
// Add and configure the RNDIS driver.
// The local IP address is 10.0.0.10/8.
//
IP_AddEtherInterface(&USB_RNDIS_IP Driver);
IP_SetHWAddr ("\x00\x22\xC7\xFF\xFF\xFF") ;
IP_SetAddrMask( ' )i
IP_SetIFaceConnectHook (IFaceId, _Connect);
IP_SetIFaceDisconnectHook (IFaceId, _Disconnect);
<...>

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



343

12.4 RNDIS + embOS/IP as a "USB Webserver"

This method of using RNDIS provides a unique customer experience where a USB
device can provide a custom web page or any other service through which a cus-

tomer can interact with the device.
LSB-Device

USB stack: TCP/IP stack: Applications:

emuU5B-Device embOs/IP DHCP server

+RNDIS Web server®
Telnet server®

Physical connection via USB
L App. specific server®

App. specific client®

USB-Host

*QOptional

Initially the PC recognizes a RNDIS device. In case of Windows XP and Vista a driver
will be necessary, Windows 7 and above as well as Linux recognize RNDIS automati-
cally. RNDIS from the viewpoint of the PC is a normal Network Interface Controller
(NIC) and the PC handles it as such. The default behavior is to request an IP address
from a DHCP server. The PC retrieves an IP address from the DHCP-Server in the
device. In our standard sample code the device has the local IP 10.0.0.10 and the PC
will get 10.0.0.11 from the DHCP server. With this the configuration is complete and
the user can access the web-interface located on the USB device via 10.0.0.10. To
improve the ease-of-use NetBIOS can be used to give the device an easily readable
name.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



344 CHAPTER 12 Remote NDIS (RNDIS)

12.5 Target API

Function Description

API functions
USB_RNDIS_AddA() Adds a RNDIS-class interface to the USB stack.
USB_RNDIS_Task () Handles the RNDIS protocol.

Data structures
USB_RNDIS_INIT_DATA Initialization data for RNDIS interface.
USB_RNDIS_EVENT_APT API functions for OS event handling.
USB_RNDIS_DRIVER_API Network interface driver API functions.
USB_RNDIS_DRIVER_DATA Configuration data for the network interface driver.

Table 12.3: List of emUSB RNDIS module functions and data structures

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



345

12.5.1 API functions

12.5.1.1 USB_RNDIS_Add()
Description
Adds an RNDIS-class interface to the USB stack.

Prototype
void USB_RNDIS_Add(const USB_RNDIS_INIT DATA * pInitData) ;

Parameter Description

IN: Pointer to a USB_RNDIS_INIT_DATA structure.
OuT: ---
Table 12.4: USB_RNDIS_Add() parameter list

pInitData

Additional information

This function should be called after the initialization of the USB core to add an RNDIS
interface to emUSB. The initialization data is passed to the function in the structure
pointed to by pInitData. Refer to USB_RNDIS_ INIT_DATA on page 347 for more
information.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



346 CHAPTER 12 Remote NDIS (RNDIS)

12.5.1.2 USB_RNDIS_Task()

Description
Handles the RNDIS protocol.

Prototype
volid USB_RNDIS_Task (void) ;

Additional information

The function should be called periodically after the USB device has been successfully
enumerated and configured. The function returns when the USB device is detached or
suspended. For a sample usage refer to IP_Config_RNDIS.c in detail on page 341.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



347

12.5.2 Data structures
12.5.2.1 USB_RNDIS_INIT _DATA

Description
Initialization data for RNDIS interface.

Prototype

typedef struct USB_RNDIS_INIT_DATA ({
U8 EPIn;
U8 EPOut;
U8 EPInt;
const USB_RNDIS_EVENT_API * pEventAPI;
const USB_RNDIS_DRIVER_API * pDriverAPI;
USB_RNDIS_DRIVER_DATA DriverData;
} USB_RNDIS_INIT_DATA;

Member Description
EPIn Endpoint for sending data to the host.
EPOut Endpoint for receiving data from the host.
EPInt Endpoint for sending status information.
Pointer to the API for OS event handling.
pEventAPT

(See USB_RNDIS _EVENT_API on page 348)
Pointer to the Network interface driver API.

pDriverAPl (See USB_RNDIS_DRIVER_API on page 349)
Dri Dat Configuration data for the network interface driver.
rrverbata (See USB_RNDIS_DRIVER_DATA on page 355)

Table 12.5: USB_RNDIS_INIT_DATA elements

Additional information

This structure holds the endpoints that should be used by the RNDIS interface (EPin,
EPOut and EPInt). Refer to USB_AddEP() on page 59 for more information about how
to add an endpoint.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



348 CHAPTER 12 Remote NDIS (RNDIS)
12.5.2.2 USB_RNDIS_EVENT_API
Description
API for OS event handling.
Prototype
typedef struct USB_RNDIS_EVENT_API {
void * (*pfCreate) (void) ;
void (*pfSignal) (void * pEvent) ;

int (*pfwWaitTimed) (void * pEvent, unsigned Timeout) ;
} USB_RNDIS_EVENT_ API;

Member Description
(*pfCreate) () Creates an OS event.
(*pfSignal) () Signals an OS event.
(*pfwaitTimed) () | Wait for an OS event to be signaled.

Table 12.6: USB_RNDIS_E

VENT_API elements

Additional information

The functions of this API are used by the emUSB-RNDIS component to wait efficiently

in USB_RNDIS_Task ()
description of the A
page 356.

UMO09001 User & Reference Guide fo

for events generated in the USB interrupt. For a detailed
PI functions refer to USB_RNDIS_EVENT_API in detail on

remUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



349

12.5.2.3 USB_RNDIS_DRIVER_API

Description

This structure contains the callback functions for the network interface driver.

Prototype

typedef struct USB_RNDIS_DRIVER_API {

void (
void *
void
void
int
U32
void
U32
U32
void (

(
(
(
(
(
(
(
(

} USB_RNDIS_DRIVER_APTI;

*pfInit) (const USB_RNDIS_DRIVER_DATA * pDriverData) ;
*pfGetPacketBuffer) (unsigned NumBytes) ;

*pfWritePacket) (const void * pDhata, unsigned NumBytes) ;
*pfSetPacketFilter) (U332 Mask) ;

*pfGetLinkStatus) (void) ;

*pfGetLinkSpeed) (void) ;

*pfGetHWAddr) (U8 * pAddr, unsigned NumBytes) ;
*pfGetStats) (int Type) ;

*pfGetMTU) (void) ;

*pfReset) (void) ;

Member Description
(*pfInit) () Initializes the driver.
(*pfGetPacketBuffer) () Returns a buffer for a data packet.
(*pfWritePacket) () Delivers a data packet to target IP stack.
(*pfSetPacketFilter) () | Configures the type of accepted data packets.
(*pfGetLinkStatus) () Returns the status of the connection to target IP stack.
(*pfGetLinkSpeed) () Returns the connection speed.
(*pfGetHWAddr) () Returns the HW address of the PC.
(*pfGetStats) () Returns statistical counters.
(*pEGetMTU) () Returns the size of the largest data packet which can

be transferred.

(*pfReset) () Resets the driver.

Table 12.7: USB_RNDIS_DRIVER_API elements

Additional information

The emUSB-RNDIS component calls the functions of this API to exchange data and
status information with the IP stack running on the target.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



350 CHAPTER 12 Remote NDIS (RNDIS)

(*pfinit)()
Description

Initializes the driver.

Prototype
void (*pfInit) (const USB_RNDIS_DRIVER_DATA * pDriverData) ;

Parameter Description

. IN: Pointer to driver configuration data.
pDriverData OUT: ---

Table 12.8: (*pfInit)() parameter list

Additional information

This function is called when the RNDIS interface is added to USB stack. Typically the
function makes a local copy of the HW address passed in the pbriverData structure.
For more information this structure refer to USB_RNDIS_DRIVER_DATA on page 355.

(*pfGetPacketBuffer)()

Description

Returns a buffer for a data packet.

Prototype

void * (*pfGetPacketBuffer) (unsigned NumBytes) ;
Parameter Description

NumBytes Size of the requested buffer in bytes.

Table 12.9: (*pfGetPacketBuffer)() parameter list

Return value

I=NULL Pointer to allocated buffer
==NULL No buffer available

Additional information

The function should allocate a buffer of the requested size. If the buffer can not be
allocated a NULL pointer should be returned. The function is called when a data
packet is received from PC. The packet data is stored in the returned buffer.

(*pfWritePacket)()
Description
Delivers a data packet to target IP stack
Prototype
void (*pfWritePacket) (const void * pData, unsigned NumBytes) ;
Parameter Description
IN: Data of the received packet.
pData OUT: ---
NumBytes Number of bytes stored in the buffer.

Table 12.10: (*pfWriteBuffer)() parameter list

Additional information

The function is called after a data packet has been received from USB. pbData points
to the buffer returned by the (*pfGetPacketBuffer) () function.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



351

(*pfSetPacketFilter)()

Description
Configures the type of accepted data packets

Prototype
void (*pfSetPacketFilter) (U32 Mask) ;

Parameter Description
Mask Type of accepted data packets

Table 12.11: (*pfSetPacketFilter)() parameter list

Additional information

The Mask parameter should be interpreted as a boolean value. A value different than
0 indicates that the connection to target IP stack should be established. When the
function is called with the Mask parameter set to 0 the connection to target IP stack
should be interrupted.

(*pfGetLinkStatus)()
Description

Returns the status of the connection to target IP stack.

Prototype
int (*pfGetLinkStatus) (void) ;

Return value

==USB_RNDIS_LINK_STATUS_CONNECTED Connected to target IP stack
==USB_RNDIS_LINK_STATUS_DISCONNECTED Not connected to target IP stack
(*pfGetLinkSpeed)()

Description
Returns the connection speed.

Prototype
U332 (*pfGetLinkSpeed) (void) ;

Return value

The connection speed in units of 100 bits/sec or 0 if not connected.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



352 CHAPTER 12 Remote NDIS (RNDIS)

(*pfGetHWAddr)()
Description
Returns the HW address of PC
Prototype
void (*pfGetHWAddr) (U8 * pAddr, unsigned NumBytes) ;
Parameter Description
rad IN: ---
pAcar OUT: The HW address
NumBytes Maximum number of bytes to store to paddr

Table 12.12: (*pfGetHWAddr)() parameter list

Additional information

The returned HW address is the one passed to the driver in the call to (*pfInit) ().
Typically the HW address is 6 bytes large.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



353

(*pfGetStats)()
Description
Returns statistical counters.
Prototype
U332 (*pfGetStats) (int Type) ;
Parameter Description
Type The type of information requested. Can be one of these defines:

Table 12.13: (*pfGetStats)() parameter list

Permitted values for parameter Type

Number of packets sent
USB_RNDIS_STATS_WRITE_PACKET_OK without errors to target
IP stack

Number of packets sent
USB_RNDIS_STATS_WRITE_PACKET_ERROR with errors to target IP
stack

Number of packets
USB_RNDIS_STATS_READ PACKET_OK received without errors
from target IP stack

Number of packets
USB_RNDIS_STATS_READ_PACKET_ERROR received with errors
from target IP stack

Number of packets
USB_RNDIS_STATS_READ_NO_BUFFER received from target IP
stack but dropped.

Number of packets
received from target IP
stack with alignment
errors.

Number of packets
which were not sent to
USB_RNDIS_STATS_WRITE_ONE_COLLISION target IP stack due to
the occurrence of one
collision.

Number of packets
which were not sent to
USB_RNDIS_STATS_WRITE_MORE_COLLISIONS |target IP stack due to
the occurrence of one or
more collisions.

USB_RNDIS_STATS_READ_ALIGN_ERROR

Return value
Value of requested statistical counter.
Additional information

The counters should be set to 0 when the (*pfReset) () function is called.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



354 CHAPTER 12 Remote NDIS (RNDIS)

(*pfGetMTU)()

Description
Returns the size of the largest data packet which can be transferred.
Prototype

U332 (*pfGetMTU) (void) ;

Return value
The MTU size in bytes. Typically 1500 bytes.

(*pfReset)()
Description

Resets the driver.

Prototype

void (*pfReset) (void) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



355

12.5.2.4 USB_RNDIS_DRIVER_DATA

Description

Configuration data passed to network interface driver at initialization.

Prototype

typedef struct USB_RNDIS_DRIVER_DATA {
const U8 * pHWAddr;
unsigned NumBytesHWAddr ;

} USB_RNDIS_DRIVER_DATA;

Member Description
PHWAAdr HW address (or MAC address) of the host network interface.
NumBytesHWAddr Number of bytes in the HW address. Typically 6 bytes.

Table 12.14: USB_RNDIS_DRIVER_DATA elements

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



356 CHAPTER 12 Remote NDIS (RNDIS)

12.5.2.5 USB_RNDIS_EVENT_API in detail

This section describes the functions of the API which are used to handle OS events.

Description

This structure contains function pointers which are required by the RNDIS module to
handle events, this can be used to map the functions to any RTOS.

Prototype
typedef struct USB_RNDIS_EVENT_API ({
void * (*pfCreate) (void) ;
void (*pfSignal) (void * pEvent) ;
int (*pfwWaitTimed) (void * pEvent, unsigned Timeout) ;

} USB_RNDIS_EVENT APT;

Member Description
(*pfCreate) Initializes the driver.
(*pfSignal) Returns a buffer for a data packet.
(*pfWaitTimed) Delivers a data packet to target IP stack.
Table 12.15: USB_RNDIS_EVENT_API elements
(*pfCreate)()
Description

Creates a new OS event.
Prototype

void * (*pfCreate) (void);
Return value

=0 Event has been created, the return value is the pointer to the event.
== An error occurred

Example
For a sample implementation refer to IP_Config_RNDIS.c in detail on page 341.

(*pfSignal)()
Description

Indicates that the event occurred.

Prototype

void (*pfSignal) (void * pEvent) ;

Parameter Description

IN: Pointer to the OS event to be signaled.
OouT: ---

Table 12.16: (*pfSignal)() parameter list

pEvent

Example
For a sample implementation refer to IP_Config_RNDIS.c in detail on page 341.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



357

(*pfWaitTimed)()
Description

Waits for the event to occur with a timeout.

Prototype
int (*pfWaitTimed) (void * pEvent, unsigned Timeout) ;
Parameter Description
IN: Pointer to the OS event to wait for.
pEvent ouT: ---
Timeout Number of milliseconds to wait for the event to be signaled.

Table 12.17: (*pfWaitTimed)() parameter list

Return value

=0 Success, the event was signaled within the specified time.
1=0 The event was not signaled within the specified timeout.

Additional information

The function blocks the execution of the calling task until the event is signaled or the
timeout expired.

Example

For a sample implementation refer to IP_Config _RNDIS.c in detail on page 341.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



358 CHAPTER 12 Remote NDIS (RNDIS)

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



359

Chapter 13

Combining different USB compo-
nents (Multi-Interface)

In some cases, it is necessary to combine different USB components in one device.
This chapter will show how to do this and which steps are necessary.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



360 CHAPTER 13  Combining different USB components (Multi-Inter-
face)

13.1 Overview

The USB specification allows to implement more than one component (function) in a
single device. This is done by combining two or more components. These devices will
be recognized by the USB host as composite device and each component will be rec-
ognized as an independent device.

One device for example, a data logger can have two components:

This device can show log data files that were stored on a NAND flash through the
MSD component. The configuration of the data logger can be changed by using a
BULK component, CDC component or even HID component.

Endpoint IN
» Endpoint OUT
Rz 22
2

N NNNNNNNNNNANNNNNNNNNNNNNNNNNNNWN
Endpoint IN

§

& Endpoint OUT

Interface 0 Interface 1
MSD HID

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



361

13.1.1 Single interface device classes

Components can be combined because most USB device classes are based on one
interface. This means that those components describe themselves on interface
descriptor level and thus makes it easy to combine different or even same device
classes into one device. Such devices classes are MSD, HID and generic bulk class.

Device descriptor

v
Config descriptor

v v
Interface descriptor 0: Interface descriptor 1:
© BULK MSD <
c >
i) aQ
0 =t
g A 4 A 4 A 4 A 4 >
L =
EP EP EP EP

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



362
face)

CHAPTER 13  Combining different USB components (Multi-Inter-

13.1.2 Multiple interface device classes

In contrast to the single interfaces classes there are classes with multiple interfaces
such as CDC and AUDIO or VIDEO class. These classes define their class identifier in
the device descriptor. All interface descriptors are recognized as part of the compo-
nent that is defined in the device descriptor. This prevents the combination of multi-
ple interface device classes (for example, CDC) any other component.

13.1.3 IAD class

To remove this limitation the USB organization has defined a new descriptor type that
allows the combination of single interface device classes with multiple interface
device classes. This descriptor is called Interface Association Descriptor (IAD). It

decouples the multi interface class from other interfaces.

Device descriptor:

IAD flass
Config descriptor
v
IA descriptor (IAD):
CDC
|
P } ,
2 | Interface Interface _
S| desc0: desc. 1: Interfal\c/IeScDIesc. 2:
2 |__Control Data
v P—— ——
EP EP EP EP EP

T uolpung

Since IAD is an extension to the original USB specification, it is not supported by all
hosts, especially older host software. If IAD is not supported, the device may not be

enumerated correctly.

Supported HOST

At the time of writing, IAD is

Windows XP + Service pa
Windows 2003 + Service
Windows Vista

Windows 7

UMO09001 User & Reference Guide for emUSB

supported by:

ck 2
pack 1

Linux Kernel 2.6.22 and higher

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG




13.2 Configuration

In general, no configuration is required. By default, emUSB supports up to 4 inter-
faces. If more interfaces are needed the following macro needs to be modified:

363

Type Macro Default Description
Numeric |USB MAX NUM IF 4 !Defines the maximum number of
- = interfaces emUSB shall handle.
Defines the maximum number of
Numeric |USB_MAX NUM_TIAD 1 Interface Association Descriptors
emUSB shall handle.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



364 CHAPTER 13  Combining different USB components (Multi-Inter-
face)

13.3 How to combine

Combining different single interface emUSB components (Bulk, HID, MSD) is an easy
step, all that needs to be done is calling appropriate UsB_xxx_add() function. For
adding the CDC component additional steps needs to be done. For detailed informa-
tion, refer to emUSB component specific modification on page 366 and check the fol-
lowing sample.

Requirements

e RTOS, every component requires a separate task.

e Sufficient endpoints all used device classes. Make sure that your USB device con-
troller has enough endpoints available to handle all the interfaces that shall be
integrated.

Sample application

The following sample application uses embOS as operating system. This listing is
excerpt from USB_CompositeDevice_MSD_CDC.c.

#include "RTOS.H"
#include "USB.h"
#include "USB_MSD.h"
#include "USB_CDC.h"

static OS_STACKPTR int Stack0[512]; /* Task stacks for MSD task */
static OS_STACKPTR int Stackl[512]; /* Task stacks for CDC task */
static OS_TASK TCBO; /* Task-control-block for MSD task*/
static OS_TASK TCB1; /* Task-control-block for CDC task*/

/*******************************************‘k*************************
*

* _CDCTask
*/
static void _CDCTask (void) {
while (1) {
char ac[64];
int NumBytesReceived;
//
// Wait for configuration
//
while ((USB_GetState() & (USB_STAT CONFIGURED | USB_STAT_SUSPENDED) )
= USB_STAT_ CONFIGURED) {
USB_0OS_Delay (50* Task stacks for MSD task */
static OS_STACKPTR int Stackl[512]; /* Task stacks for);
}
NumBytesReceived = USB_CDC_Receive (&ac[0], sizeof(ac));
if (NumBytesReceived > 0) {
USB_CDC_Write(&ac[0], NumBytesReceived) ;
}
}
}

/*‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k********‘k*‘k*‘k*‘k**********‘k*
*

* _MSDTask
*/
static void _MSDTask (void) {
while (1) {
while ((USB_GetState() & (USB_STAT_ CONFIGURED | USB_STAT_SUSPENDED) )
= USB_STAT_ CONFIGURED) {
USB_0S_Delay(50) ;
}
USB_MSD_Task () ;
}
}

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



/***********************‘k****
*
*
*/
static void _AddCDC (void) {
static U8 _abOutBuffer [USB_]
USB_CDC_INIT DATA InitD

_AddcCDC

InitData.EPIn
InitData.EPOut

USB_AJdJEP (
USB_AJJEP (

InitData.EPInt USB_AdJEP (
USB_CDC_Add (&InitData) ;
}

/****************************

*
*
*/
static void _AddMSD (void) {
static U8 _abOutBuffer [USB_]
USB_MSD_INIT DATA InitD
USB_MSD_INST DATA InstD

_AddMSD

InitData.EPIn USB_AddEP (

InitData.EPOut USB_AddEP (

USB_MSD_Add (&InitData) ;

memset (&InstData, 0, sizeo

InstData.pAPI

InstData.DriverData.pStart

USB_MSD_AddUnit (&InstData) ;
}

/~k***************************
*
*
*/
void main (void)
0S_IncDI();
0S_InitKern() ;
OS_InitHW() ;
USB_Init () ;
USB_EnableIAD() ;
_AddMSD() ;
_AddCDC () ;
USB_Start () ;
OS_CREATETASK (&TCBO,
OS_CREATETASK (&TCB1,
0S_Start ()

main

{

"MSDTa
"CDCTa

UMO09001 User & Reference Guide for emUSB

365

R IR IR b b I I b S I S S I b S I I I 2 b I I S I I Ik S I I

MAX_PACKET SIZE];

ata;

USB_DIR_IN, USB_TRANSFER_TYPE_ BULK, 0, NULL, 0);
USB_DIR_OUT, USB_TRANSFER_TYPE_BULK, O,
_abOutBuffer, USB_MAX_ PACKET_SIZE) ;

USB_DIR_IN, USB_TRANSFER_TYPE_INT, 8, NULL, 0);

R I S S S I Sk kI S

MAX_ PACKET_SIZE];

ata;

ata;

1, USB_TRANSFER_TYPE_BULK, USB_MAX_ PACKET_SIZE,
NULL, O0);

0, USB_TRANSFER_TYPE_BULK, USB_MAX_PACKET_SIZE,

_abOutBuffer, USB_MAX PACKET_SIZE) ;

f (InstData)) ;
= &USB_MSD_StorageByName;

[T
7

R I I I I S I I S S I I S S

sk",
sk",

_MSDTask,
_CDCTask,

100,

StackO) ;
50, ;

Stackl) ;

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



366 CHAPTER 13  Combining different USB components (Multi-Inter-
face)

13.4 emUSB component specific modification

There are different steps to do for each emUSB component. The next section shows
what needs to be done on both sides: Device and host-side.

13.4.1 BULK communication component

13.4.1.1 Device side

No modification on device side needs to be made.

13.4.1.2 Host side

Windows will recognize the device as a composite device. It will load the drivers for
each interface.

In order to recognize the bulk interface in the composite device, the .inf file of the
device needs to be modified.

Windows will extend the device identification string with the interface number. This
has to be added to the device identification string in the .inf file.

The provided .inf file:

Generic USBBulk driver setup information file
Copyright (c) 2006-2008 by SEGGER Microcontroller GmbH & Co. KG

This file supports:
Windows 2000
Windows XP
Windows Server 2003 x86
Windows Vista x86
Windows Server 2008 x86

[Version]

Signature="SWindows NTS"

Provider=%MfgName$%

Class=USB
ClassGUID={36FC9E60-C465-11CF-8056-444553540000}
DriverVer=03/19/2008,2.6.6.0
CatalogFile=USBBulk.cat

[Manufacturer]
$MfgName%=DevicelList

[DeviceList]
SUSB\VID_8765&PID_1234.DeviceDesc%$=USBBulkInstall, USB\VID_8765&PID_1234&Mi_xx

[USBBulkInstall .ntx86]
CopyFiles=USBBulkCopyFiles

[USBBulkInstall .ntx86.Services]
Addservice = usbbulk, 0x00000002, USBBulkAddService, USBBulkEventLog

[USBBulkAddServicel

DisplayName = %USBBulk.SvcDesc$%

ServiceType =1 ; SERVICE_KERNEL_DRIVER
StartType =3 ; SERVICE_DEMAND_START
ErrorControl =1 ; SERVICE_ERROR_NORMAL
ServiceBinary = %10%\System32\Drivers\USBBulk.sys
[USBBulkEventLog]

AddReg=USBBulkEventLogAddReg

[USBBulkEventLogAddReg]

HKR, , EventMessageFile, $REG_EXPAND_SZ%, "$%SystemRoot%%\System32\IoLogMsg.dll; %%System
Root%%\System32\drivers\USBBulk.sys"

HKR, , TypesSupported, $REG_DWORDS%, 7

[USBBulkCopyFiles]
USBBulk. sys
[DestinationDirs]

DefaultDestDir = 10, System32\Drivers
USBBulkCopyFiles = 10,System32\Drivers

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



367

[SourceDisksNames.x86]
1=%USBBulk.DiskName%, ,

[SourceDisksFiles.x86]
USBBulk.sys =1

[Strings]

MfgName="Segger"
USB\VID_8765&PID_1234.DeviceDesc="USB Bulk driver"
USBBulk.SvcDesc="USBBulk driver"
USBBulk.DiskName="USBBulk Installation Disk"

; Non-Localizable Strings, DO NOT MODIFY!

REG_S7Z = 0x00000000
REG_MULTI_SZ = 0x00010000
REG_EXPAND_SZ = 0x00020000
REG_BINARY = 0x00000001
REG_DWORD = 0x00010001

* Kk x EOF * Kk Kk

Please add the red colored text to your .inf file and change xx with the interface
number of the bulk component.

The interface number is a zero based index and is assigned by the emUSB stack
when calling usB_BULK_Add () function. If you have called usB_BULK_Add() prior any
other UsB_xxx_add () functions then the interface number will be 00.

Please note that when uss_cpc_add () is called prior UsB_BULK_Add (), the interface
number for the BULK component will be 02 since the CDC component uses two inter-
faces (in the example, 00 and 01).

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



368 CHAPTER 13  Combining different USB components (Multi-Inter-
face)

13.4.2 MSD component
13.4.2.1 Device side

No modification on device side needs to be made.

13.4.2.2 Host side

No modification on host side needs to be made.

13.4.3 CDC component
13.4.3.1 Device side

In order to combine the CDC component with other components, the function
USB_EnableIAD() needs to be called, otherwise the device will not enumerate correctly.
Refer to section How to combine on page 364 and check the listing of the sample
application.

13.4.3.2 Host side

Due to a limitation of the internal CDC serial driver of Windows, a composite device
with CDC component and another device component(s) is properly recognized by
Windows XP SP3 and Windows Vista and above. Linux kernel supports IAD with ver-
sion 2.6.22.

For Windows Operation system the .inf file needs to be modified.

As in the Bulk communication component, Windows will extends the device identifica-
tion strings. Therefore the device identification string has to be modified.

The provided .inf file:

Device installation file for
USB 2 COM port emulation

[Version]

Signature="s$Windows NTS$"

Class=Ports
ClassGuid={4D36E978-E325-11CE-BFC1-08002BE10318}
Provider=%$MFGNAME%

LayoutFile=layout.inf
DriverVer=03/26/2007,6.0.2600.1
CatalogFile=usbser.cat

[Manufacturer]
SMFGNAME%=CDCDevice, NT, NTamd64

[DestinationDirs]
DefaultDestDir = 12

[CDCDevice.NT]
$DESCRIPTION%=DriverInstall,USB\VID_8765&PID_1111&Mi_xx

[CDCDevice.NTamd64]
$DESCRIPTION%=DriverInstall,USB\VID_8765&PID_0234&Mi_xx
$DESCRIPTION%=DriverInstall,USB\VID_8765&PID_1111&Mi_xx

[DriverInstall .NT]

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



369

Include=mdmcpqg.inf
CopyFiles=FakeModemCopyFileSection
AddReg=DriverInstall .NT.AddReg

[DriverInstall.NT.AddReqg]

HKR, ,DevLoader, , *ntkern

HKR, ,NTMPDriver, ,usbser.sys

HKR, , EnumPropPages32,, "MsPorts.dll, SerialPortPropPageProvider"

[DriverInstall .NT.Services]
AddService=usbser, 0x00000002, DriverServicelInst

[DriverServiceInst]
DisplayName=%$SERVICES
ServiceType=1

StartType=3

ErrorControl=1
ServiceBinary=%12%\usbser.sys

[Strings]

MFGNAME = "Manufacturer"

DESCRIPTION = "USB CDC serial port emulation"
SERVICE = "USB CDC serial port emulation"

Please add the red colored text to your .inf file and change xx with the interface

number of the CDC component.
The interface number is a zero based index and is assigned by the emUSB stack

when calling use_cbpc_adad () function.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



370 CHAPTER 13  Combining different USB components (Multi-Inter-
face)

13.4.4 HID component
13.4.4.1 Device side

No modification on device side needs to be made.

13.4.4.2 Host side

No modification on host device side needs to be made.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



371

Chapter 14
Target OS Interface

This chapter describes the functions of the operating system abstraction layer.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



372 CHAPTER 14 Target OS Interface

14.1 General information

emUSB includes an OS abstraction layer which should make it possible to use an
arbitrary operating system together with emUSB. To adapt emUSB to a new OS one
has only to map the functions listed below in section Interface function list on
page 373 to the native OS functions.

SEGGER took great care when designing this abstraction layer, to make it easy to
understand and to adapt to different operating systems.

14.1.1 Operating system support supplied with this release

In the current version, abstraction layers for embOS and pC/0S-II are available.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



373

14.2 Interface function list

Routine Explanation

USB_0S_Delay () Delays for a given number of ms.

Decrement interrupt disable count and enable interrupts if
counter reaches 0.

USB_0S_GetTickCnt () | Returns the current system time in ticks.

USB_0OS_DecRI()

USB_0S_IncDI () Increment interrupt disable count and disable interrupts.
USB_0S_TInit () Initializes OS.
USB_0S_Panic () Called if fatal error is detected.
USB_0S_Signal () Wake the task waiting for signal.
USB_0OS_Wait () Block the task until usB_0S_signal () is called.
Block the task until usB_0s_Signal () is called or a time-out

USB_0OS_WaitTimed ()

OCCuUrs.
Table 14.1: Target OS interface function list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



374

CHAPTER 14 Target OS Interface

14.2.1 USB_OS_Delay()

Description

Delays for a given number of ms.

Prototype
void USB_0S_Delay (int ms) ;

Parameter

Description

ms

Number of ms.

Table 14.2: USB_OS_Delay() parameter list

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



375

14.2.2 USB_OS_DecRI()

Description
Decrements interrupt disable count and enable interrupts if counter reaches 0.

Prototype
void USB_O0S_DecRI (void) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



376 CHAPTER 14 Target OS Interface

14.2.3 USB_OS_GetTickCnt()

Description
Returns the current system time in ticks.

Prototype
U32 USB_0S_GetTickCnt (void) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



377

14.2.4 USB_OS_IncDI()

Description
Increments interrupt disable count and disables interrupts.

Prototype
void USB_0OS_IncDI (void) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



CHAPTER 14 Target OS Interface

378
14.2.5 USB_OS_lInit()
Description
Initializes OS.
Prototype

void USB_0S_Init (void) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



379

14.2.6 USB_OS_Panic()

Description
Halts emUSB.
Prototype

void USB_OS_Panic (unsigned ErrCode) ;

Parameter Description

ErrCode Error code.

Table 14.3: USB_OS_Panic() parameter list

Add. information

Errorcode Explanation

USB_ERROR_RX_OVERFLOW
USB_ERROR_ILLEGAL_MAX_ PACKET_SIZE

USB_ERROR_ILLEGAL_EPADDR

USB_ERROR_IBUFFER_SIZE_TOO_SMALL
USB_ERROR_DRIVER_ERROR

O U [ W I[N |-

USB_ERROR_IAD_DESCRIPTORS_EXCEED

7 USB_ERROR_INVALID_INTERFACE_NO
Table 14.4: USB_OS_Panic(): Errorcodes

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



380 CHAPTER 14 Target OS Interface

14.2.7 USB_OS_Signal()

Description
Wakes the task waiting for signal.

Prototype
void USB_0S_Signal (unsigned EPIndex) ;
Parameter Description
EPIndex Endpoint index.

Table 14.5: USB_OS_Signal() parameter list

Add. information
This routine is typically called from within an interrupt service routine.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



14.2.8 USB_OS_Wait()

Description

381

Blocks the task until usB_0S_sSignal () is called.

Prototype

void USB_OS_Wait (unsigned EPIndex) ;

Parameter

Description

EPIndex

Endpoint index.

Table 14.6: USB_O0S_Wait() parameter list

Add. information

This routine is called from a task.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



382 CHAPTER 14 Target OS Interface

14.2.9 USB_OS_WaitTimed()

Description

Blocks the task until usB_0S_Signal () is called or a time-out occurs.

Prototype

int USB_OS_WaitTimed(unsigned EPIndex, unsigned ms) ;
Parameter Description

EPIndex Endpoint index.

ms Time-out time given in ms.

Table 14.7: USB_OS_WaitTimed() parameter list

Return value

== 0: Task was signaled within the given time-out.
== 1: Time-out occurred.

Add. information

USB_OS_WaitTimed is also called from a task. This function is used by all available
timed routines.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



383

14.3 Example

A configuration to use USB with embOS might look like the sample below. This exam-
ple is also supplied in the subdirectory 0s\embos\.

/*********************************************************************

* SEGGER MICROCONTROLLER GmbH & Co. KG *

* Solutions for real time microcontroller applications *
ER R I SR I S R I R b b b I b I b b S b e b b b e b e b e I I b b S R S b e b e b e b I b e b b b b b b b b I b I b I b b b A b b S

* *

(c) 2003-2010 SEGGER Microcontroller GmbH & Co KG

Internet: www.segger.com Support: support@segger.com

* % X

*

USB device stack for embedded applications *

*
*
*
*
PR R R R R R R R R R R R I R R I I I I I I R I
*
*
* *
*

R R R R R R R R R R R R R R I R I I I I I I I

File : USB_0S_emb0S.c
Purpose : Kernel abstraction for embOS
Do not modify to allow easy updates !
———————— END-OF-HEADER ———————————————— e

#include "USB_Private.h"
#include "RTOS.h"

/*********************************************************************
*

* Static data

*

PR R R R R R R R R R R R R R R R R IR I I O I

*/

#if OS_VERSION < 33200

static OS_TASK * _apTask[USB_NUM_EPS];
#else

static OS_EVENT _aEvent [USB_NUM_EPS];
#endif

/*~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k***************************‘k‘k**********************
*

* Public code

*

ER I b SR b I b I IR I b b b b b b b S b b P b b e b I b I I I b b b b I b e b e b I b I b I b b b b b b b b I b I b I b 2 b b b b b b
*/

/*~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k************************~k~k~k************************

*
* Depending on the version of embOS, either event objects or
* task events. Event object were in version V3.32 introduced.
*

R I b b I S I S I S S I S S e b S S I Sk S S S SR R S S I S S R SRR S b I S S S S S S S S

*/

#if OS_VERSION < 33200

/*~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k************************~k~k~k************************

*

* USB_OS_TInit
*

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



384

UMO09001 User & Reference Guide for emUSB

CHAPTER 14

* Function description:

Target OS Interface

* This function shall initialize all event objects that are necessary.

*

*/

void USB_O0S_Init (void) {
}

/**********************************************************

USB_0OS_Signal

Function description
Wake the task waiting for reception
This routine is typically called from within an interrupt
service routine

0% % ok % X 3 kX

~

void USB_O0S_Signal (unsigned EPIndex) {
if (_apTask[EPIndex] != NULL) {
0S_SignalEvent (1 << EPIndex, _apTask[EPIndex]) ;
_apTask[EPIndex] = NULL;

/**********************************************************

USB_OS_Wait

Function description
Block the task until USB_OS_SignalRx is called
This routine is called from a task.

0% % ok X X %

~

void USB_0S_Wait (unsigned EPIndex) {
_apTask[EPIndex] = 0OS_pCurrentTask;
0S_WaitEvent (1 << EPIndex) ;

/**********************************************************

USB_0S_WaitTimed

Function description
Block the task until USB_OS_Signal is called
or a time out occurs
This routine is called from a task.

L S R

/

int USB_OS_WaitTimed (unsigned EPIndex, unsigned ms) {
int r;

_apTask[EPIndex] = 0OS_pCurrentTask;

r = (int)0S_WaitEventTimed(l << EPIndex, ms + 1);
return r;

#else

/******************************************~k~k~k************************

*
* USB_OS_Init
*
*

Function description:

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



UMO09001 User & Reference Guide for emUSB

* This function shall initialize all event objects that are necessary.

*

*/

void USB_0OS_Init (void) {
unsigned 1i;

for (i = 0; i < COUNTOF (_aEvent); i++) {
OS_EVENT_Create (&_aEvent[i]) ;

}
}
/**********************************************************
*
* USB_0S_Signal
*
* Function description
* Wake the task waiting for reception
* This routine is typically called from within an interrupt
* service routine
*
*/

void USB_O0S_Signal (unsigned EPIndex) {
OS_EVENT_ Pulse (&_aEvent [EPIndex]) ;

/**********************************************************

USB_OS_Wait

Function description
Block the task until USB_OS_SignalRx is called
This routine is called from a task.

% % ok X X % %

/
void USB_OS_Wait (unsigned EPIndex) {
OS_EVENT_Wait (& aEvent [EPIndex]) ;

}
/**********************************************************
*
* USB_OS_WaitTimed
*
* Function description
* Block the task until USB_0S_Signal is called
* or a time out occurs
* This routine is called from a task.
*
*/
int USB_OS_WaitTimed (unsigned EPIndex, unsigned ms) {
int r;
r = (int)OS_EVENT_WaitTimed (&_aEvent [EPIndex], ms + 1);
return r;
}
#endif

/**********************************************************

*

USB_0OS_Delay

Function description
Delays for a given number of ms.

L T T

385

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



386 CHAPTER 14 Target OS Interface

*/
void USB_0OS_Delay (int ms) {
0S_Delay (ms) ;

}
/**********************************************************
*
* USB_0S_DecRI
*
* Function description
* Decrement interrupt disable count and enable interrupts
* if counter reaches 0.
*
*/
void USB_0S_DecRI (void) {
0OS_DecRI();
}
/**********************************************************
*
* USB_0OS_IncDI
*
* Function description
* Increment interrupt disable count and disable interrupts
*
*/
void USB_0OS_IncDI (void) {
O0S_IncDI();
}
/**********************************************************
*
* USB_0S_Panic
*
* Function description
* Called if fatal error is detected.
*
* Add. info
* Error codes:
* 1  USB_ERROR_RX_OVERFLOW
* 2  USB_ERROR_ILLEGAL_MAX_ PACKET_ SIZE
* 3 USB_ERROR_ILLEGAL_EPADDR
* 4  USB_ERROR_IBUFFER_SIZE_TOO_SMALL
*/

void USB_O0S_Panic (unsigned ErrCode) {
while (ErrCode) ;

/**********************************************************

USB_0S_GetTickCnt

Function description
Returns the current system time in ticks.

L T T

/
U32 USB_0OS_GetTickCnt (void) {
return OS_Time;

/*************************** End Of file ****************************/

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



387

Chapter 15
Target USB Driver

This chapter describes emUSB hardware interface functions in detail.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



388 CHAPTER 15 Target USB Driver

15.1 General information

Purpose of the USB hardware interface

emUSB does not contain any hardware dependencies. These are encapsulated
through a hardware abstraction layer, which consists of the interface functions
described in this chapter. All of these functions for a particular USB controller are
typically located in a single file, the USB driver. Drivers for hardware which has
already been tested with emUSB are available.

Range of supported USB hardware

The interface has been designed in such a way that it should be possible to use the
most common USB device controllers. This includes USB 1.1 (full speed) controllers,
USB 2.0 (high speed) controllers, both as external chips and as part of microcontrol-
lers.

15.1.1 Available USB drivers

An always up to date list can be found at:

http://www.segger.com/pricelist-emusb.html

The following device drivers are available for emUSB:

Driver (Device)

Identifier

ATMEL AV32 UC3x
ATMEL AT91CAP9x
ATMEL AT91SAM3S/AT91SAMA4S
ATMEL AT91SAM3Uxx
ATMEL AT91SAM3x8
ATMEL AT91RM9200
ATMEL AT91SAM7A3
ATMEL AT91SAM7S64
ATMEL AT91SAM7S5128
ATMEL AT91SAM7S256
ATMEL AT91SAM7SE
ATMEL AT91SAM7X128
ATMEL AT91SAM7X256
ATMEL AT91SAM9260
ATMEL AT91SAM9261
ATMEL AT91SAM9263

ATMEL AT91SAM9R64
ATMEL AT91SAMORL64

ATMEL AT91SAM9G20
ATMEL AT91SAM9G45
ATMEL AT91SAM9XE
EnergyMicro EFM32GG
Freescale iMX25x
Freescale iMX28x
Freescale Kinetis K40
Freescale Kinetis K60
Freescale MCF227x
Freescale MCF225x
Freescale MCF51]IMx
Freescale Vybrid
Fujitsu MBO9BF50x

USB_Driver_Atmel_ AT32UC3x
USB_Driver_Atmel_ CAP9
USB_Driver_Atmel_ SAM3S
USB_Driver_ Atmel SAM3US
USB_Driver_ Atmel AT91SAM3X
USB_Driver_Atmel_ RM9200
USB_Driver_ Atmel SAM7A3
USB_Driver_ Atmel_SAM7S
USB_Driver_Atmel_SAM7S
USB_Driver_ Atmel SAM7S
USB_Driver_ Atmel SAM7SE
USB_Driver_ Atmel_ SAM7X
USB_Driver_Atmel_SAM7X
USB_Driver_Atmel_ SAM9260
USB_Driver_Atmel_ SAM9261
USB_Driver_ Atmel SAM9263

USB_Driver_Atmel_SAMRx64

USB_Driver_Atmel_ SAM9G20
USB_Driver_ Atmel SAM9G45
USB_Driver_ Atmel_ SAMIXE
USB_Driver_EM_ EFM32GG990
USB_Driver_ Freescale iMX25x
USB_Driver_Freescale_iMX28x
USB_Driver_Freescale_K40
USB_Driver_Freescale_ K60
USB_Driver_ Freescale MCF227x
USB_Driver_Freescale MCF225x
USB_Driver_ Freescale MCF51JMx
USB_Driver_Freescale_Vybrid
USB_Driver_ Fujitsu_ MB9BF50x

Table 15.1: List of included USB device drivers

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



http://www.segger.com/pricelist-emusb.html
http://www.segger.com/pricelist-emusb.html

389

Driver (Device)

Identifier

NXP LPC13xx

NXP LPC17xx

NXP LPC18xx

NXP LPC214x

NXP LPC23xx

NXP LPC24xx

NXP LPC313x

NXP LPC318x

NXP LPC43xx

NXP (formerly Sharp) LH79524/5
NXP (formerly Sharp) LH7A40x
OKI 69Q62

Renesas H852472

Renesas H8SX1668R

Renesas RX62N

Renesas RX63N/RX631
Renesas SH7203

Renesas SH7216

Renesas SH7286

Renesas (NEC) 78KOR-KE3L
Renesas (NEC) uPD720150
Renesas (NEC) VB50ESIG3H
ST STM32

ST STM32F105/107

ST STR71x

ST STR750

ST STR912

Toshiba TMPA900

Toshiba TMPA910

Texas Intruments MSP430X5529
Texas Intruments (Luminary) LM3S9B9x

USB_Driver_ NXP_LPC13xx
USB_Driver NXP_LPCl7xx
USB_Driver NXP_LPC1l8xx
USB_Driver NXP_LPC214x
USB_Driver_ NXP_LPC23xx
USB_Driver NXP_LPC24xx
USB_Driver_ NXP_LPC313x
USB_Driver_ NXP_LPC318x
USB_Driver NXP_LPC43xx
USB_Driver_Sharp_ LH79524
USB_Driver_Sharp_ LH7A40x
USB_Driver OKI_69062
USB_Driver_Renesas_H8S2472

USB_Driver_Renesas_H8SX1668R

USB_Driver_Renesas_RX62N
USB_Driver_Renesas_RX62N
USB_Driver_Renesas_SH7203
USB_Driver_ Renesas_SH7216
USB_Driver_Renesas_SH7286
USB_Driver_ NEC_78F102x
USB_Driver_ NEC_uPD720150
USB_Driver_ NEC_70F376x
USB_Driver_ST STM32
USB_Driver ST STM32F107
USB_Driver_ST STR71x
USB_Driver_ST STR750
USB_Driver_ ST STR91x
USB_Driver_Toshiba_ TMPA900
USB_Driver_Toshiba_ TMPA910
USB_Driver TI MSP430
USB_Driver_ TI_LM3S9B9x

Table 15.1: List of included USB device drivers

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



390 CHAPTER 15 Target USB Driver

15.2 Adding a driver to emUSB

You have to specify the USB device driver which should be used with emUSB. To
specify the driver USB_X_AddDriver () is called from usB_Init (). This function
should be used to add a USB driver to your project.

USB_Init () initializes the internal of the USB stack and is always the first function
which that USB application has to call. usB_x_HwaAttach() should be used to perform
hardware-specific actions which are not part of the USB controller logic (for example,
enabling the peripheral clock for USB port).

This function is called from every device driver, but can be empty if your hardware
does not need to perform such actions. Modify USB_X_AddDriver () and if required,
USB_X_HWAttach(). In USB_X_AddDriver (), USB_AddDriver () should be called with
the identifier of the driver which is compatible to your hardware as parameter. Refer
to the section Available USB drivers on page 388 for a list of all supported devices
and their valid identifiers.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



391

15.2.1 USB_X_HWAttach()

Description

Should be used to perform hardware specific actions which are not part of the USB
controller logic.

Prototype
void USB_X_HWAttach (void)

Additional Information

This function can be empty, if no hardware-specific actions are required.

Example

/* Example excerpt from USB Config SAM7A3.c */#

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

_AT91C PIOA BASE (OxFFFFF400)

_AT91C PIOB_BASE (OxFFFFF600)

_AT91C PMC_BASE  (OxFFFFFC00)

_PIO PER OFFS (0x00)

_PIO OER _OFFS (0x10)

_PIO _CODR_OFFS (0x34) /* Clear output data register */

_PMC (*(volatile unsigned int*) AT91C PMC BASE)

_USB_ID (_PIOB_ID)

_USB_OER (* (volatile unsigned int*) ( AT91C PIOB BASE + PIO OER OFFS))
~USB_CODR (*(volatile unsigned int*) ( AT91C PIOB BASE + PIO CODR OFFS))

_USB_DP_PUP BIT (1)

void USB_ X HWAttach (void) {

PMC

_USB_OER
_USB_CODR

}

UMO09001 User & Reference Guide for emUSB

(1 << _USB_ID); /* Enable peripheral clock for USB-Port */
(1 << _USB_DP_PUP BIT); /* set USB DP_PUP to output */
(1 << _USB_DP_PUP_BIT); /* set _USB DP PUP BIT to low state */

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



392 CHAPTER 15 Target USB Driver

15.2.2 USB_X_AddDriver()

Description
Adds a USB hardware driver to the USB stack.

Prototype

void USB_X_ AddDriver (void)

Additional information

This function is always called from USB_Init ().
Example

/* Example excerpt from USB Config SAM7A3.c */

void USB X AddDriver (void) {
USB AddDriver (&USB Driver AtmelSAMTA3);

}

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



393

15.3 Interrupt handling

emUSB is interrupt driven and optimized to be used with a real-time operating sys-
tem. If you use embOS in combination with emUSB, you can skip the following sec-
tions.

If you are not using embQOS, you have to be familiar with how interrupts are handled
on your target system. This includes knowledge about how the CPU handles inter-
rupts, how and which registers are saved, the interrupt vector table, how the inter-
rupt controller works and how it is reset.

15.3.1 ARM7 / ARM9 based cores

ARM7 and ARM9 cores will jump to IRQ vector address 0x18, where a jump to an ARM
specific IRQ handler should be located. This ARM specific IRQ handler calls a device
specific interrupt handler which handles the interrupt controller.

The ARM specific interrupt handler is typically coded in assembly language. It has to
ensure that no context information will be lost if an interrupt occurs. The environ-
ment of the interrupted function has to be restored after processing the interrupt.
The environment of the interrupted function includes the value of the processor reg-
isters and the processor status register. The ARM specific interrupt handler calls a
high-level interrupt handler which manages the call of the interrupt source specific
service routine.

Purpose: Saves registers &

IRQ_HandlerASM()
Unified ARM specific
interrupt handler

calls C-Handler
This handler is activated for
all interrupts.

UMO09001 User & Reference Guide for emUSB

Responsibility of application
programmer / OS.
Typically coded in assembly
language.

v
IRQ_Handler()

Unified device specific
interrupt handler

Purpose: Resets the
interrupt controller and
calls interrupt specific
handler (depending on
cause). This handler is
activated for all interrupts.
Responsibility of application
programmer / OS.
Typically coded in C.

Interrupt
specific handler

Interrupt
specific handler

Purpose: Handles
USB data transfer.
Part of emUSB driver.
Coded in C.

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



394

15.3.1.1 ARM specific IRQ handler

CHAPTER 15 Target USB Driver

The ARM specific interrupt handler saves the context of the function which is inter-
rupted, calls the high-level interrupt handler and restores the context. Sample imple-
mentations of the high-level handler are supplied in the following device specific
sections.

Sample implementation interrupt handler

EXTERN IRQ Handler

IRQ_HandlerASM:

7
i
7
7
i

7

Save temp. registers

stmdb SP!, {RO-R3,R12,LR}

; push

push SPSR (req. if we allow nested interrupts)

mrs RO, SPSR
stmdb SP!, {RO}

Call "C" interrupt handler

ldr RO, =IRQ_Handler
mov LR, PC
bx RO

pop SPSR

ldmia sp!, {R1}
msr SPSR_cxfs, R1

Restore temp registers

ldmia sp!, {RO-R3,R12,LR}
subs PC, LR, #4

UMO09001 User & Reference Guide for emUSB

; load SPSR
; push SPSR_irg on IRQ stack

; pop SPSR_irg from IRQ stack

i POop
; RETI

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



395

15.3.1.2 Device specifics ATMEL AT91CAP9x

The interrupt handler needs to read the address of the interrupt source specific han-
dler function.

Sample implementation interrupt handler

#define _AIC_BASE_ADDR (Oxf££££000UL)

#define _AIC_IVR (* (volatile unsigned int*) (_AIC_BASE_ADDR + 0x100))
#define _AIC_EOICR (*(volatile unsigned int*) (_AIC_BASE_ADDR + 0x130))
typedef void ISR_HANDLER (void) ;

void IRQ_Handler (void) {
ISR_HANDLER* pISR;

pISR = (ISR_HANDLER*) _AIC_TIVR; // Read interrupt vector to release

// NIRQ to CPU core
PISR(); // Call interrupt service routine
_ATC_EOICR = 0; // Reset interrupt controller => Restore

// previous priority

}

Additional information

This example can also be used with an ATMEL AT91RM9200, AT91SAM7A3,
AT91SAM7S64, AT91SAM7S128, AT91SAM7S256, AT91SAM7SE, AT91SAM7X64,
AT91SAM7X128, AT91SAM7X256, and AT91SAM9261.

15.3.1.3 Device specifics ATMEL AT91RM9200

For an example implementation of an interrupt handler function refer to Device spe-
cifics ATMEL AT91CAP9x on page 395.

15.3.1.4 Device specifics ATMEL AT91SAM7A3

For an example implementation of an interrupt handler function refer to Device spe-
cifics ATMEL AT91CAP9x on page 395.

15.3.1.5 Device specifics ATMEL AT91SAM7S64, AT91SAM7S128,
AT91SAM7S256

For an example implementation of an interrupt handler function refer to Device spe-
cifics ATMEL AT91CAP9x on page 395.

15.3.1.6 Device specifics ATMEL AT91SAM7X64, AT91SAM7X128,
AT91SAM7X256

For an example implementation of an interrupt handler function refer to Device spe-
cifics ATMEL AT91CAP9x on page 395.

15.3.1.7 Device specifics ATMEL AT91SAM7SE

For an example implementation of an interrupt handler function refer to Device spe-
cifics ATMEL AT91CAP9x on page 395.

15.3.1.8 Device specifics ATMEL AT91SAM9260

For an example implementation of an interrupt handler function refer to Device spe-
cifics ATMEL AT91CAP9x on page 395.

15.3.1.9 Device specifics ATMEL AT91SAM9261

For an example implementation of an interrupt handler function refer to Device spe-
cifics ATMEL AT91CAP9x on page 395.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



396 CHAPTER 15 Target USB Driver

15.3.1.10Device specifics ATMEL AT91SAM9263

For an example implementation of an interrupt handler function refer to Device spe-
cifics ATMEL AT91CAP9x on page 395.

15.3.1.11Device specifics ATMEL AT91SAMRL64, AT91SAMRG64

For an example implementation of an interrupt handler function refer to Device spe-
cifics ATMEL AT91CAP9x on page 395.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



397

15.3.1.12Device specifics NXP LPC214x

The interrupt handler needs to read the address of the interrupt source specific han-
dler function.

Sample implementation interrupt handler

#define _VIC_BASE_ADDR (0OXFFFFF000)
#define _VIC_VECTORADDR * (volatile unsigned int*) (_VIC_BASE_ADDR + 0x0030)

typedef void ISR_HANDLER (void) ;

void IRQ_Handler (void) {
ISR_HANDLER* pISR;

PISR = (ISR_HANDLER*) _VIC_VECTORADDR; // Get current interrupt handler
PISR(); // Call interrupt service routine
_VIC_VECTORADDR = 0; // Clear current interrupt pending

// condition, reset VIC

}
15.3.1.13Device specifics NXP LPC23xx

For an example implementation of an interrupt handler function refer to Device spe-
cifics NXP LPC214x on page 397.

15.3.1.14Device specifics NXP (formerly Sharp) LH79524/5

For an example implementation of an interrupt handler function, please contact SEG-
GER, www.segger.com.

15.3.1.15Device specifics OKI 69Q62

For an example implementation of an interrupt handler function, please contact SEG-
GER, www.segger.com.

15.3.1.16Device specifics ST STR71x

For an example implementation of an interrupt handler function, please contact SEG-
GER, www.segger.com.

15.3.1.17Device specifics ST STR750

For an example implementation of an interrupt handler function, please contact SEG-
GER, www.segger.com.

15.3.1.18Device specifics ST STR750

For an example implementation of an interrupt handler function, please contact SEG-
GER, www.segger.com.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



398

CHAPTER 15

15.4 Writing your own driver

This section is only relevant if you plan to develop a driver for an unsupported
device. Refer to Available USB drivers on page 388 for a list of currently supported

devices.

Target USB Driver

Access to the USB hardware is realized through an API-function table. The structure
USB_HW_DRIVER is declared in USB\USB.h.

15.4.1 Structure USB_HW_DRIVER

Description
Structure that contains callback function which manage the hardware access.
Prototype
typedef struct USB_HW_DRIVER {
void (*pfInit) (void) ;
us (*pfAllocEP) (U8 InDir, U8 TransferType) ;
void (*pfUpdateEP) (EP_STAT * pEPStat) ;
void (*pfEnable) (void) ;
void (*pfAttach) (void) ;
unsigned (*pfGetMaxPacketSize) (U8 EPIndex) ;
int (*pfIsInHighSpeedMode) (void) ;
void (*pfSetAddress) (U8 Addr) ;
void (*pfSetClrStallEP) (U8 EPIndex, int OnOff);
void (*pfStallEPO) (void) ;
void (*pfDisableRxInterruptEP) (U8 EpOut) ;
void (*pfEnableRxInterruptEP) (U8 EpOut) ;
void (*pfStartTx) (U8 EPIndex) ;
void (*pfSendEP) (U8 EPIndex, const U8 * p,
unsigned NumBytes) ;
void (*pfDisableTx) (U8 EPIndex) ;
void (*pfResetEP) (U8 EPIndex) ;
int (*pfControl) (U8 Cmd, void * p);

} USB_HW_DRIVER;

Member Description
USB initialization functions
pfInit () Initializes the USB controller.
General USB functions

pfAttach() Indicates device attachment.
pfEnable () Enables endpoint.

Used to support additional driver functionality.
ptControl This functigr? is optional. Y

Notifies the USB controller of the new address
pfSetaddress () assigned by the host for it.

General endpoints functions
pfAllocEP Allocates an endpoint to be used with emUSB.
. Returns the maximum packet size of an end-

pfGetMaxPacketSize point.

Set or cleats the stall condition of the end-
pfSetClrStallEP () .

point.
pfUpdateEP () Configures the USB controller’s endpoint.

Resets an endpoint including resetting the
PEIResetER () data toggle of the endpoint.

Endpoint O (Control endpoint) related functions

Table 15.2: List of callback functions of USB_HW_DRIVER

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



399

Member

Description

pfStallEPO ()

Stalls endpoint 0.

OUT-endpoints functions

pfDisableRxInterruptEP ()

Disables OUT-endpoint interrupt.

pfEnableRxInterruptEP ()

Enables OUT-endpoint interrupt.

IN-endpoints functions

pfDisableTx Disables IN endpoint transfers.
pfSendEP () Sends data on the given IN-endpoint.
pfStartTx () Starts data transfer on the given IN-endpoint.

Table 15.2: List of callback functions of USB_HW_DRIVER

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



400 CHAPTER 15 Target USB Driver

15.4.2 USB initialization functions

15.4.2.1 (*pfinit)()
Description

Performs any necessary initializations on the USB controller.

Prototype
void (*pfInit) (void);

Additional information

The initializations performed in this routine should include what is needed to prepare
the device for enumeration. Such initializations might include setting up endpoint 0
and enabling interrupts. It sets default values for EPO and enables the various inter-
rupts needed for USB operations.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



401

15.4.3 General USB functions

15.4.3.1 (*pfAttach)()

Description

For USB controllers that have a USB Attach/Detach register (such as the OKI
ML69Q6203), this routine sets the register to indicate that the device is attached.

Prototype
void (*pfAttach) (void);

15.4.3.2 (*pfEnable)()
Description
This function is used for enabling the USB controller after it was initialized.
Prototype

void (*pfEnable) (void) ;

Additional information

For most USB controllers this function can be empty. This function is only necessary
for USB devices that reset their configuration data after an USB-RESET.

15.4.3.3 (*pfControl)()
Description

This function is used to support additional driver functionality. This function is

optional.
Prototype
int (*pfControl) (U8 Cmd, void * p);
Parameter Description
Cmd Command that shall be executed.
o) Pointer to data, necessary for the command.

Table 15.3: (*pfControl)() parameter list

Return value

0 - Command operation was successful.
1 - Command operation was not successful.
-1 - Command was unknown.

Additional information

This control function is only called when available. This function will check or changes
state of a device driver. Currently the following commands are available:

Command Description
0 USB_DRIVER_CMD_SET_CONFIGURATION
1 USB_DRIVER_CMD_GET_TX_BEHAVIOR

Table 15.4: (*pfControl): Commands

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



402 CHAPTER 15 Target USB Driver

15.4.3.4 (*pfSetAddress)()
Description

This function is used for notifying the USB controller of the new address that the host
has assigned to it during enumeration.

Prototype
void (*pfSetAddress) (U8 Addr) ;

Parameter Description
Addr New address assigned by the USB host.

Table 15.5: (*pfSetAddress)() parameter list

Additional information

If the USB controller does not automatically send a 0-byte acknowledgment in the
status stage of the control transfer phase, make sure to set a state variable to addr
and defer setting the controller's Address register until after the status stage. This is
necessary because the host sends the token packet for the status stage to the default
address (0x00), which means the device must still be using this address when the
packet is sent.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



403

15.4.4 General endpoint functions

15.4.4.1 (*pfAllocEP)()
Description

Allocates a physical endpoint to be used with emUSB.

Prototype
U8 (*pfAllocEP) (U8 InDir, U8 TransferType);
Parameter Description
Indicates the direction of the endpoint.
InDir 0 indicates an OUT-endpoint.

1 indicates an IN-endpoint.

Specifies the transfer type for the desired endpoint.
The following transfer types are available:
TransferType | USB_TRANSFER_TYPE_BULK
USB_TRANSFER_TYPE_ISO

USB_TRANSFER_TYPE_INT

Table 15.6: (*pfAllocEP)() parameter list

Return value
Index number of the logical endpoint. Allowed values are 1..15.
Additional information

This function is typically called after stack initialization, in order to have the right
endpoint settings for building the descriptors correctly.

It is the responsibility of the driver engineer to give a valid logical endpoint number.
If there is no valid endpoint for the desired configuration available, 0 should be
returned.

15.4.4.2 (*pfGetMaxPacketSize)()

Description

Returns the maximum packet size of an endpoint.

Prototype

unsigned (*pfGetMaxPacketSize) (U8 EPIndex) ;
Parameter Description

EPIndex Endpoint index.

Table 15.7: (*pfGetMaxPacketSize)() parameter list

Return value

The maximum packet size in bytes.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



404 CHAPTER 15 Target USB Driver

15.4.4.3 (*pfSetCirStallEP)()

Description
Sets or clears the stall condition of an endpoint.
Prototype
void (*pfSetClrStallEP) (U8 EPIndex, int OnOff);
Parameter Description
EPIndex Endpoint that shall be stalled.
Specifies if the stall condition shall be set or cleared.
- Whereas:
n 0 - Clears the stall condition.
1 - Set the stall condition.

Table 15.8: (*pfSetCirStallEP)() parameter list

Additional information

Typically, this function is called whenever a protocol/transfer error occurs.

15.4.4.4 (*pfUpdateEP)()

Description
Configures the USB controller’s endpoint.
Prototype
void (*pfUpdateEP) (EP_STAT * pEPStat);
Parameter Description
Pointer to EP_sTAT structure that holds the information for the end-
pEPStat point

Table 15.9: (*pfUpdateEP)() parameter list

Additional information

EP_STAT is defined as follows:

typedef struct {

Ule6 NumAvailBuffers;
Uleé6 MaxPacketSize;
Ule Interval;
U8 EPType;
BUFFER Buffer;
U8 * pData;
volatile U32 NumBytesRem;
U8 EPAddr; // bl[6:0]: EPAddr b7: Direction, 1l: Device to Host (IN)
U8 SendOPacketIfRequired;
} EP_STAT;

Before a hardware attach is done, this function is called to configure the desired end-
points, so that the additional endpoints are ready for use after the enumeration
phase.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



405

15.4.4.5 (*pfResetEP)()
Description

Resets an endpoint including resetting the data toggle of the endpoint.

Prototype
void (*pfResetEP) (U8 EPIndex) ;

Parameter Description
EPIndex Endpoint that shall be reset.

Table 15.10: (*pfResetEP)() parameter list

Additional information

Resets the endpoint which includes setting data toggle to DATAO.

It is useful after removing a HALT condition on a BULK endpoint.

Refer to Chapter 5.8.5 in the USB Serial Bus Specification, Rev.2.0.

Note: Configuration of the endpoint needs to be unchanged. If the USB controller
loses the EP configuration the pfupdateEP of the driver shall be called.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



406 CHAPTER 15 Target USB Driver

15.4.5 Endpoint 0 (control endpoint) related functions

15.4.5.1 (*pfStallEPO)()

Description
This function is used for stalling endpoint 0 (by setting the appropriate bit in a con-
trol register).

Prototype
void (*pfStallEPO) (void) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



407

15.4.6 OUT-endpoint functions
15.4.6.1 (*pfDisableRxInterruptEP)()

Description
Disables the OUT-endpoint interrupt.

Prototype
void (*pfDisableRxInterruptEP) (U8 EPIndex) ;
Parameter Description
EPIndex OUT-endpoint whose interrupt needs to be disabled.

Table 15.11: (*pfDisableRXInterruptEP)() parameter list

15.4.6.2 (*pfEnableRxInterruptEP)()

Description
Disables the OUT-endpoint interrupt.

Prototype
void (*pfEnableRxInterruptEP) (U8 EPIndex) ;
Parameter Description
EPIndex OUT-endpoint whose interrupt needs to be enabled.

Table 15.12: (*pfEnableRXInterruptEP)() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



408 CHAPTER 15 Target USB Driver

15.4.7 IN-endpoint functions
15.4.7.1 (*pfStartTx)()

Description
Starts data transfer on the given IN-endpoint.
Prototype
void (*pfStartTx) (U8 EPIndex) ;

Parameter Description
EPIndex IN-endpoint that needs to be enabled.

Table 15.13: (*pfStartTX)() parameter list

Additional information
This function is called to start sending data to the host.

Depending on the design of the USB controller, one of the following steps needs to be
done:

If the USB controller sends a packet and waits for acceptance by the host, your appli-
cation must:

e Enable IN-endpoint interrupt.
e Send a packet using USB__Send (EPIndex).

If the USB controller waits for an IN-token, your application must:
e Enable the IN-endpoint interrupt.

15.4.7.2 (*pfSendEP)()

Description

Sends data on the given IN-endpoint.

Prototype

void (*pfSendEP) (U8 EPIndex, const U8 * p, unsigned NumBytes) ;
Parameter Description

EPIndex IN-endpoint that is used to send the data.

o) Pointer to a buffer that needs to be sent.

NumBytes Number of bytes that needs to be sent.

Table 15.14: (*pfSendEP)() parameter list

Additional information

This function is called whenever data should be transferred to the host. Because p
might not be aligned, it is the responsibility of the developer to care about the align-
ment of the USB controller buffer/FIFO.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



409

15.4.7.3 (*pfDisableTx)()

Description
Disables IN-endpoint transfers.
Prototype
void (*pfDisableTx) (U8 EPIndex) ;
Parameter Description
EPIndex IN-endpoint that needs to be disabled.

Table 15.15: (*pfDisableTx)() parameter list

Additional information

Normally, this function should disable the IN-endpoint interrupt. Some USB control-
lers do not work correctly after the IN interrupt is disabled, therefore this should be
done by the software.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



410 CHAPTER 15 Target USB Driver

15.4.8 USB driver interrupt handling

emUSB is interrupt driven. Therefore, it is necessary to have an interrupt handler for
the used USB controller. For the drivers that are available this is already done. If you
are writing your own USB driver the following schematic shows which functions need
to be called when an USB interrupt occurs:

uUsB
interrupt
occured

Yes

No Yes Setup packet?

Yes
No
Read data |[¢——No Res;ii::up
Yes
No
i A
Call Call Call
USB_OnTx() USB__OnRX() USB_HandleSetup()
USB reset

occurred

Y

Call [ USB interrupt

USB__OnReset() end

Function
USB__HandleSetup ()

Description

Determines request type.

Flushes the input buffer and set the
USB___OnBusReset () “ IsInReset” flag

USB__OnTx ()

Handles a Tx transfer.

USB__OnRx ()

Handles a Rx transfer.

USB___OnResume ()

Resumes the device.

USB__OnSuspend ()

Suspends the device.

Table 15.16: emUSB interrupt handling functions

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG




411

Chapter 16
Support

This chapter can help you if any problem occurs; this could be a problem with the
tool chain, with the hardware, the use of the functions, or with the performance and
it describes how to contact the support.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



412 CHAPTER 16 Support

16.1 Problems with tool chain (compiler, linker)

The following shows some of the problems that can occur with the use of your tool
chain. The chapter tries to show what to do in case of a problem and how to contact
the support if needed.

16.1.1 Compiler crash

You ran into a tool chain (compiler) problem, not a problem with the software. If one
of the tools of your tool chain crashes, you should contact your compiler support:

"Tool internal error, please contact support"

16.1.2 Compiler warnings

The code of the software has been tested with different compilers. We spend a lot of
time on improving the quality of the code and we do our best to avoid compiler warn-
ings. But the sensitivity of each compiler regarding warnings is different. So we can
not avoid compiler warnings for unknown tools.

Warnings you should not see

This kind of warnings should not occur:

"Function has no prototype"

"Incompatible pointer types"

"Variable used without having been initialized"
'Illegal redefinition of macro’

Warnings you may see

Warnings such as the ones below should be ignored:
"Integer conversion, may lose significant bits"
'Statement not reached"

"Meaningless statements were deleted during optimization"

Most compilers offers a way to suppress selected warnings.

16.1.3 Compiler errors

We assume that the used compiler is ANSI C compatible. If it is compatible there
should be no problem to translate the code.

16.1.4 Linker problems

Undefined externals

If your linker shows the error message “Undefined external symbols...” check if all
required files have been included to the project.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



413

16.2 Problems with hardware/driver

If your tools are working fine but your USB-Bulk device does not work may be one of
the following helps to find the problem.

Stack size to low?

Make sure there have been configured enough stack. We can not estimate exactly
how much stack will be used by your configuration and with your compiler.

16.3 Contacting support

If you need to contact the support, send the following information

to support@segger.com:

e A detailed description of the problem
e The configuration file UsB_Conf.h
e The error messages of the compiler

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



414 CHAPTER 16 Support

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



415

Chapter 17

Certification

This chapter describes the process of USB driver certification with
Microsoft Windows.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



416 CHAPTER 17 Certification

17.1 What is the Windows Logo Certification and why
do | need it?

The Windows Logo Certification process will sign the driver with a Microsoft certificate
which signifies that the device is compatible and safe to use with Microsoft Windows
operating systems.

If the driver is not signed the user will be confronted with messages saying that the
driver is not signed and may not be safe to use with Microsoft Windows. Depending on
which Windows version you are using a different message will be shown.

Users of Windows Server 2008, Windows Vista x64 and Windows 7 x64 will be warned
about the missing signature and the driver will show up as installed, but the driver will
not be loaded. The user can override this security measure by hitting F8 on Windows
start-up and selecting "Disable Driver Signature Enforcement"” or editing the registry.

Microsoft Windows XP:

Hardware Installation

I 5 The software you are installing far this hardware:
USE device

has not passed Windows Logo testing to werify its compatibility with
‘Windows XP. (Tell me why this testing is important.)

Continuing your installation of this software may impair or
destabilize the correct operation of your system either
immediately or in the future. Microsoft strongly recommends
that you stop this installation now and contact the hardware
vendor for software that has passed Windows Logo testing.

Continue Anyway H STOPR Installation

Microsoft Windows Vista/7:

I )

i Windows Security @

@ Windows can't verify the publisher of this driver software

< Don't install this driver software
You should check your manufacturer's website for updated driver software
for your device,

< Install this driver software anyway
Only install driver software chtained from your manufacturer's website or
disc, Unsigned scftware from other sources may harm your computer or steal
informaticn,

The driver software you're attempting to install does not have a valid digital signature that
verifies who published it, and could potentially be malicious software. You should cnly
install driver software from publishers you trust. How can I decide which device software is
safe to install?

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



417

17.2 Certification offer

Customers can complete the certification by themselves. But SEGGER also offers cer-
tification for our customers. To certify a device a customer needs a valid vendor ID,
registered at www.usb.org and a free product ID. Using the Microsoft Windows Logo
Kit a certification package is created. The package is sent to Microsoft for confirma-
tion. After the confirmation is received from Microsoft the customer receives a .cat
file which allows the drivers to be installed without problems.

17.3 Vendor and Product ID

A detailed description of the Vendor and Product ID can be found in chapter Product /
Vendor IDs on page 35

The customer can acquire a Vendor ID from the USB Implementers Forum, Inc.
(www.usb.org). This allows to freely decide which Product ID is used for which prod-
uct.

17.4 Certification without SEGGER Microcontroller

Certification can be completed by the customer themselves. To complete the certifi-
cation the Windows Logo Kit software is needed. It has to be installed on a Windows
2008 Server x64. A Code Signing certificate from Microsoft, two target devices and
two client computers will also be needed, Windows 7 x86 and Windows 7 x64 respec-
tively. After installing and setting up the WLK, the client software has to be down-
loaded via a Windows share from the Windows 2008 Server. The target devices will
have to be connected to the client computer.

Using the WLK the target devices can be selected and the appropriate tests can be
scheduled. A few of the tests need human intermission and a few tests only run with
one device, while others only run with two. The tests can take up to 15 hours. The
tests have to be done separately for x86 and x64. Two separate submission packages
have to be created for both architectures. The submission packages has to be consol-
idated using the Winqual Submission Tool and signed with the Code Sign certificate.

Further information, as well as the required software can be found at:
http://msdn.microsoft.com/en-us/library/windows/hardware/gg487530.aspx

Please refer to Microsoft's WLK documentation for a detailed description of the certi-
fication process.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



418 CHAPTER 17 Certification

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



419

Chapter 18

Performance & resource usage

This chapter covers the performance and resource usage of emUSB. It contains infor-
mation about the memory requirements in typical systems which can be used to
obtain sufficient estimates for most target systems.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



420 CHAPTER 18 Performance & resource usage

18.1 Memory footprint

emUSB is designed to fit many kinds of embedded design requirements. Several fea-
tures can be excluded from a build to get a minimal system. Note that the values are
only valid for the given configuration.

The tests were run on a 32-bit CPU running at 48MHz. The test program was com-
piled for size optimization.

18.1.1 ROM

The following table shows the ROM requirement of emUSB:

Description ROM
emUSB core app. 5.5 Kbytes
Bulk component app. 400 Bytes
MSD component Egeérli*Kbytes + sizeof(Storage-
HID component app. 400 Bytes
CDC component app. 1.1 Kbytes
PrinterClass component app. 400 Bytes
USB target driver app. 1.2 - 3 Kbytes
MTP component app. 8 kBytes

* ROM size of emFile Storage app. 4 Kbytes.

18.1.2 RAM

The following table shows the RAM requirement of emUSB:

Description RAM

emUSB core app. 800 Bytes

Bulk component app. 4 Bytes
app. 200 Bytes

MSD component + configurable sector buffer
of minimum 512 bytes

HID component app. 30 Bytes

CDC component app. 70 Bytes

PrinterClass component app. 2 Kbytes

USB target driver < 1 Kbytes
app. 200 bytes
+ configurable file data buffer

MTP component of minimum 512 bytes
+ configurable object buffer
(typically 4 kBytes).

Additionally 64 or 512 bytes (64 for Full Speed and 512 for High Speed devices) are
necessary for each OUT-endpoint as a data buffer. This buffer is assigned within the
application.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



421

18.2 Performance

The tests were run on a 32-bit CPU running at 48MHz with an Atmel SAM7S device
driver using the USB Bulk component.

The following table shows the send and receive speed of emUSB:

Description Speed
Bulk
Send speed 800 KByte/sec
Receive speed 760 KByte/sec

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



422 CHAPTER 18 Performance & resource usage

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



423

Chapter 19
FAQ

This chapter answers some frequently asked questions.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



424

zQ

=ZQ

0o

0o

CHAPTER 19 FAQ

Which CPUs can I use emUSB with?
It can be used with any CPU (or MPU) for which a C compiler exists. Of course, it
will work faster on 16/32-bit CPUs than on 8-bit CPUs.

Do I need a real-time operating system (RTOS) to use the USB-MSD?

No, if your target application is a pure storage application. You do not need an
RTOS if all you want to do is running the USB-MSD stack as the only task on the
target device. If your target application is more than just a storage device and
needs to perform other tasks simultaneously, you need an RTOS which handles the
multi-tasking.

We recommend using our embOS Real-time OS, since all example and trial
projects are based on it.

Do I need extra file system code to use the USB-MSD stack?

No, if you access the target data only from the host.

Yes, if you want to access the target data from within the target itself.

There is no extra file system code needed if you only want to access the data on
the target from the host side. The host OS already provides several file systems.
You have to provide file system program code on the target only if you want to
access the data from within the target application itself.

Can I combine different USB components together?

In general this is possible, by simply calling the appropriate add function of the
USB component. See more information in Combining different USB components
(Multi-Interface) on page 359.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



IndeXx

Bulk Communication
USB_BULK_Add() .ccovviiiiiiiiiiiiieeaens 88
USB_BULK_CancelRead() .....cccvvvvvnnnnn. 89
USB_BULK_CancelWrite() ....ccocvvvvvnnnn. 90

USB_BULK_GetNumBytesInBuffer() ..... 91
USB_BULK_GetNumBytesRemToRead() 92

USB_BULK_GetNumBytesToWrite() ...... 93
USB_BULK_INIT_DATA ....ccvviviiniinennen 108
USB_BULK_Read() ....cieevvvvvrviinnnnninnnns 94
USB_BULK_ReadOverlapped() ............. 95
USB_BULK_ReadTimed() ......c.cevvvvvnenns 96
USB_BULK_Receive() ...ccvvvvvieeiinennnnnn. 98
USB_BULK_SetOnRXHook .................. 97
USB_BULK_WaitFOrRX() .....covvvvvvnvinnnns 99
USB_BULK_WaitForTX() ...ccvvvvievnnnnnen 100
USB_BULK_Write() ...oovviviviieiininnenns, 101
USB_BULK_WriteEX() ...covvvviiiininnnnnn. 102
USB_BULK_WriteExTimed() .............. 103
USB_BULK_WriteNULLPacket() .......... 107
USB_BULK_WriteOverlapped() ...104-105
USB_BULK_WriteTimed() ......c.covvuennn. 105
USB_ON_RX_FUNC .....cciiiiiiiiinnenne 109
Bulk Communication(Host)
USBBULK_Close() ..ivevvvvviniinnnnns 115, 146
USBBULK_CI0oSeEX() ..ovvvviiviiiiiiinnnnnnn 116
USBBULK_GetConfigDescriptor() ....... 125

USBBULK_GetConfigDescriptorEx() ...126,
157
USBBULK_GetDriverCompileDate() ...123,
175
USBBULK_GetDriverVersion() ...124, 176-
177
USBBULK_GetMode() .....covvvvvivinennnn. 127
USBBULK_GetModeEX() ............. 128, 158
USBBULK_GetNumAvailableDevices() 129,
178
USBBULK_GetReadMaxTransferSize() .130
USBBULK_GetReadMaxTransferSizeEx() ...
131, 159
USBBULK_GetSN() ....covvvvvvinnnens 132, 171
USBBULK_GetWriteMaxTransferSize() .133
USBBULK_GetWriteMaxTransferSizeEx() ..

134, 160
USBBULK_Open() ....covvvvvnvrnnnnnns 113, 145
USBBULK_OpenEX() .vvvvvvvvirevininnennss 114
USBBULK_Read() ....cocevvvvvvinnnens 117, 150
USBBULK_ReadEX() .....covvvvvnnnns 118, 151
USBBULK_SetMode() ....covvvvvvieiiennnnn. 135
USBBULK_SetModeEx() ............. 136, 163
USBBULK_SetTimeout() ............cee..e. 137
USBBULK_SetTimeoutEX() ................ 138
USBBULK_SetUSBId() .......eceuuens 139, 149
USBBULK_Write() ..covvvvnviniinnnns 119, 151
USBBULK_WriteEX() .ivvvvvviiiiiiniiennns, 120
USBBULK_WriteRead ................ 121, 152
USBBULK_WriteReadEx() ........... 122, 157

UMO09001 User & Reference Guide for emUSB

Index 425

C

"C" compiler oo 26

CDC
USB_CDC_Add() ..ievvvrviiiiiiiiieiinennenn, 273
USB_CDC_CancelRead() ......cevvvvnennn. 274
USB_CDC_CancelReadEX .......ccevvvnnnn. 274
USB_CDC_CancelWrite() ...ccvvevvveennnn. 275
USB_CDC_CancelWriteEX() ..........e.... 275
USB_CDC_INIT_DATA ..., 290
USB_CDC_LINE_CODING ..........ccvvvee. 293
USB_CDC_ON_SET_LINE_CODING ..... 292
USB_CDC_Read() ..cvvevvrrrirvrnernnnnnennes 276
USB_CDC_ReadEX() .covvvvvirvrnerinnnnnnnes 276
USB_CDC_ReadOverlapped() ............ 277
USB_CDC_ReadOverlappedEx() ......... 277
USB_CDC_ReadTimed() .......covvvvnnnnnnn 278
USB_CDC_ReadTimedEX() ......covvvenne. 278
USB_CDC_Receive() .cvivevrrvrernnnrnennss 279
USB_CDC_ReceiveEX() ..c.ovvvvvvinvinenne. 279
USB_CDC_ReceiveTimed() ........ccevune. 280
USB_CDC_ReceiveTimedEX() ............. 280
USB_CDC_SetLineCoding() ........ 282-283
USB_CDC_SetOnBreak .........c.cvveenne. 281
USB_CDC_SetOnBreakEx .................. 281
USB_CDC_UpdateSerialState() .......... 283
USB_CDC_UpdateSerialStateEx() ....... 283
USB_CDC_WaitForRX() .....covvvvinvinnnnn. 287
USB_CDC_WaitFOrRXEX() ...vvvvvvnvvnnnn. 287
USB_CDC_WaitForTX() ..ccoovvieviinnnnnnn. 288
USB_CDC_WaitFOrTXEX() ..cvvvvveevnnennen 288
USB_CDC_Write() .ovvvrvririiniineiiennnennes 284
USB_CDC_WriteEX() .vvvvviviiniiinnnnennen 284
USB_CDC_WriteOverlapped() ............ 285
USB_CDC_WriteSerialState() ............. 289
USB_CDC_WriteSerialStateEx() ......... 289
USB_CDC_WriteTimed() ......oevvvvvnenne. 286
USB_CDC_WriteTimedEX() ....c.cevveennn. 286

E

embOS/IP
Integrating into your system .............. 40

F

FAQ ot 423

H

HID
USB_HID_Add() ..ioviiiiiiiniiieiieennenes 305
USB_HID_INIT_DATA ..., 308
USB_HID_Read() ....covvivviiiiniinnnnnnne, 306
USB_HID_Write() ..covvvviiiiiiiiiiinenen 307

M

MSD
USB_MSD_Add() ....oovvvvvinennnnnn. 190, 229
USB_MSD_AddCDROM() ..covvvvvninennn. 192
USB_MSD_AddUnit() ................ 191, 230
USB_MSD_Connect() ..........c.... 196, 199
USB_MSD_Disconnect() .......covvvnennnn. 197
USB_MSD_INFO ...cciviviiiiiiiiiiiiiien, 202
USB_MSD_INIT_DATA ....... 201, 232-233
USB_MSD_INST_DATA ............. 203, 234
USB_MSD_RequestDisconnect() ......... 198
USB_MSD_SetPreventAllowRemovalHook()

193

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



426
USB_MSD_SetReadWriteHook() ........ 194
USB_MSD_Task() ..ccovvvvrvvinnnnnnns 195, 231
USB_MSD_WaitForDisconnection() .... 200
o
oS
USB_OS_DeCRI() .ioovvrviiriiiiiiniinennnns 375
USB_OS_Delay() .ioovvrvvievinerieninennnnns 374
USB_OS_GetTickCnt() ..covvvvvivvinvnnnnns 376
USB_OS_INCDI() .vivvviriiiniiiiieiinennnnns 377
USB_OS_INit() .iovvvrviiiiiiiiiiiiiiieinns 378
USB_OS_Panic() .ivevviviiiiiieiiiinennnns 379
USB_OS_Signal() ..covvvvviviiiiiiiininnnns 380
USB_OS_Wait() .cvvvvriviiriineiinnnneinnns 381
USB_OS_WaitTimed() ....covevvvvvinernnnns 382
S
SUPPOIt e 411-424
Syntax, conventions used ..........c.iievvnnnn. 7
U
USB Core
USB_AddDriver() ...cccovviviiriiiiiieninnnnens 54
USB_AdAEP() .eiiiiiiiiriiiiienivieenneenens 59
USB_DoRemoteWakeup ........cccceuvnnee. 73
USB_EnableIAD() ..ccvvovviiiiniiiiiieinnenens 70
USB_GetState() ....covvvviiiiiiiiiiiinienens 55
USB_IsConfigured() ......ccovvvvinviennennn. 57
USB_SetAddFuncDesc() ....cvvvvvvnnnnnens 60
USB_SetAllowRemoteWakeUp() .......... 72
USB_SetClassRequestHook() .............. 61
USB_SetlIsSelfPowered() .......covvvvennnen. 63
USB_SetMaxPower() .....ccccoviviievnnnnnens 64
USB_SetOnRXEPO() ..covvvvviiiiiiiiiiinnnnnnn 65
USB_SetOnSetupHook() .......cccevvuvnnnn. 66
USB_StallEP() .ivvviiriiiiiiieii e 68
USB_Start() ..ccvvivviiieiiiiieniiieennenaens 58
USB_WaitForEndOfTransfer() .............. 69
USB_GetProductId() .....ccoviviiiiiiiiininnnnns 46
USB_GetProductName() ........covvvvininnenns 48
USB_GetSerialNumber() ........covvvvinvinnnns 49
USB_GetVendorId() ....ccoiovviiiiiiiiiiinnnnnn. 45
USB_GetVendorName() .....ccoevvivviinennnnn. 47
USB_HW_DRIVER
(*pfAIIOCEP)() vvvriiiiii i 403
(*pfAttach)() «ooevieiiiiieeeeees 401
(*pfDisableRxInterruptEP)() ............. 407
(*pfDisableTX)() vvvevviviiiieiiiineinens 408
(*pfEnable)() ..oooviii 401
(*pfEnableRxInterruptEP)() .............. 407
(*pfGetMaxPacketSize)() .....coevvvvennns 403
(C*pfINIE)() voreiii 400
(*pfSendEP)() +ivvviiviiiiiiiiie e 408
(*pfSetAddress)() ..covvvvievinvinnnns 401-402
(*pfSetCIrStallEP)() ..cvvvvvivvnnenns 404-405
(*pfSEallEPO)() vovvvieiiiiiiiiiiiienieas 406
(*pfUpdateEP)() ..ccovvviiiiiiiiiiiieens 404
USB_HW_StartTx() «oovvvieiieiieiiieenennes 409
USB_INIt() viiviiiiiiiiii i vieene e 56
USB_MSD_INST_DATA_DRIVER ... 206, 235,
238
USB_MSD_STORAGE_API ............ 207, 236
(*pfDelnit)() .oovvvviiiiiiiiiiiiens 216, 254
(*pfGetInfo)() .evvvvrvieiiiiiieiennes 210, 241
(*pfGetReadBuffer)() ..........oueus 211, 242

UMO09001 User & Reference Guide for emUSB

Index

(*pfGetWriteBuffer)() ............... 213, 244
CpfINIE)() v 209, 240
(*pfMediumIsPresent)() ....215,246-249,
22— 253
(*pfRead)() +vvvvvvirviiiieiiiiniieienn, 212, 243
(*pfWrite)() .ooovvevnnnnnn 214, 245, 250-251
USB_SetAllowRemoteWakeUp ............... 72
USBHID_CIoS€() +ivvvvrviieiiniiniiiniinennnnnss 311
USBHID_EXit() .ovvvvriiiiiiiiiiiiiiiieeene, 314
USBHID_GetInputReportSize() ............ 317
USBHID_GetNumAvailableDevices() ..... 315
USBHID_GetOutputReportSize() .......... 318
USBHID_GetProductId() .....c.ccvvvvvvnnnnn. 319
USBHID_GetProductName() ................ 316
USBHID_GetVendorId() ......covvvvevnennnn. 320
USBHID_Open() ..civevveviiiniiiiieiniieninnne, 312
USBHID_RefreshList() ......ccovvvvvvinnnnnnn. 321
USBHID_SetVendorPage() ........c.c....... 322

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG



Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Segger Microcontroller:
9.50.04 9.50.02



http://www.mouser.com/segger
http://www.mouser.com/access/?pn=9.50.04
http://www.mouser.com/access/?pn=9.50.02

	About this document
	Table of Contents
	Introduction
	1.1 Overview
	1.2 emUSB features
	1.3 emUSB components
	1.3.1 emUSB-Bulk
	1.3.1.1 Purpose of emUSB-Bulk

	1.3.2 emUSB-MSD
	1.3.2.1 Purpose of emUSB-MSD
	1.3.2.2 Typical applications
	1.3.2.3 emUSB-MSD features
	1.3.2.4 How does it work?

	1.3.3 emUSB-CDC
	1.3.3.1 Typical applications

	1.3.4 emUSB-HID
	1.3.4.1 Typical applications

	1.3.5 emUSB-MTP
	1.3.5.1 Typical applications

	1.3.6 emUSB-Printer
	1.3.6.1 Typical applications

	1.3.7 emUSB-RNDIS
	1.3.7.1 Typical applications


	1.4 Requirements
	1.4.1 Target system
	1.4.2 Development environment (compiler)

	1.5 File structure
	1.5.1 Bulk communication component
	1.5.2 MSD component
	1.5.3 CDC component
	1.5.4 HID component


	Background information
	2.1 USB
	2.1.1 Short Overview
	2.1.2 Important USB Standard Versions
	2.1.3 USB System Architecture
	2.1.4 Transfer Types
	2.1.5 Setup phase / Enumeration
	2.1.6 Product / Vendor IDs

	2.2 Predefined device classes
	2.3 USB analyzers
	2.4 References

	Getting started
	3.1 How to setup your target system
	3.1.1 Upgrade a trial version available on the web with source code.
	3.1.2 Upgrading an embOS Start project
	3.1.3 Creating a project from scratch

	3.2 Select the start application
	3.3 Build the project and test it
	3.4 Configuration
	3.4.1 General emUSB configuration functions
	3.4.1.1 USB_GetVendorId()
	3.4.1.2 USB_GetProductId()
	3.4.1.3 USB_GetVendorName()
	3.4.1.4 USB_GetProductName()
	3.4.1.5 USB_GetSerialNumber()

	3.4.2 Additional required configuration functions for emUSB- MSD
	3.4.3 Descriptors


	USB Core
	4.1 Overview
	4.2 Target API
	4.2.1 USB basic functions
	4.2.1.1 USB_AddDriver()
	4.2.1.2 USB_GetState()
	4.2.1.3 USB_Init()
	4.2.1.4 USB_IsConfigured()
	4.2.1.5 USB_Start()

	4.2.2 USB configuration functions
	4.2.2.1 USB_AddEP()
	4.2.2.2 USB_SetAddFuncDesc()
	4.2.2.3 USB_SetClassRequestHook()
	4.2.2.4 USB_SetVendorRequestHook()
	4.2.2.5 USB_SetIsSelfPowered()
	4.2.2.6 USB_SetMaxPower()
	4.2.2.7 USB_SetOnRxEP0()
	4.2.2.8 USB_SetOnSetupHook()
	4.2.2.9 USB__WriteEP0FromISR()

	4.2.3 USB control functions
	4.2.3.1 USB_StallEP()
	4.2.3.2 USB_WaitForEndOfTransfer()

	4.2.4 USB IAD functions
	4.2.4.1 USB_EnableIAD()

	4.2.5 USB Remote wakeup functions
	4.2.5.1 USB_SetAllowRemoteWakeUp()
	4.2.5.2 USB_DoRemoteWakeup()



	Bulk communication
	5.1 Generic bulk stack
	5.2 The Kernel mode driver (PC)
	5.2.1 Why is a driver necessary?
	5.2.2 Supported platforms

	5.3 Installing the driver
	5.3.1 Recompiling the driver
	5.3.2 The .inf file
	5.3.3 Configuration

	5.4 Example application
	5.4.1 Running the example applications
	5.4.2 Compiling the PC example application

	5.5 Target API
	5.5.1 Target interface function list
	5.5.2 USB-Bulk functions
	5.5.2.1 USB_BULK_Add()
	5.5.2.2 USB_BULK_CancelRead()
	5.5.2.3 USB_BULK_CancelWrite()
	5.5.2.4 USB_BULK_GetNumBytesInBuffer()
	5.5.2.5 USB_BULK_GetNumBytesRemToRead()
	5.5.2.6 USB_BULK_GetNumBytesToWrite()
	5.5.2.7 USB_BULK_Read()
	5.5.2.8 USB_BULK_ReadOverlapped()
	5.5.2.9 USB_BULK_ReadTimed()
	5.5.2.10 USB_BULK_SetOnRXHook()
	5.5.2.11 USB_BULK_Receive()
	5.5.2.12 USB_BULK_WaitForRX()
	5.5.2.13 USB_BULK_WaitForTX()
	5.5.2.14 USB_BULK_Write()
	5.5.2.15 USB_BULK_WriteEx()
	5.5.2.16 USB_BULK_WriteExTimed()
	5.5.2.17 USB_BULK_WriteOverlapped()
	5.5.2.18 USB_BULK_WriteOverlappedEx()
	5.5.2.19 USB_BULK_WriteTimed()
	5.5.2.20 USB_BULK_WriteNULLPacket()

	5.5.3 Data structures
	5.5.3.1 USB_BULK_INIT_DATA
	5.5.3.2 USB_ON_RX_FUNC


	5.6 Host API
	5.6.1 Host API list
	5.6.2 USB-Bulk Basic functions
	5.6.2.1 USBBULK_Open()
	5.6.2.2 USBBULK_OpenEx()
	5.6.2.3 USBBULK_Close()
	5.6.2.4 USBBULK_CloseEx()

	5.6.3 USB-Bulk direct input/output functions
	5.6.3.1 USBBULK_Read()
	5.6.3.2 USBBULK_ReadEx()
	5.6.3.3 USBBULK_Write()
	5.6.3.4 USBBULK_WriteEx()
	5.6.3.5 USBBULK_WriteRead()
	5.6.3.6 USBBULK_WriteReadEx()

	5.6.4 USB-Bulk Control functions
	5.6.4.1 USBBULK_GetDriverCompileDate()
	5.6.4.2 USBBULK_GetDriverVersion()
	5.6.4.3 USBBULK_GetConfigDescriptor()
	5.6.4.4 USBBULK_GetConfigDescriptorEx()
	5.6.4.5 USBBULK_GetMode()
	5.6.4.6 USBBULK_GetModeEx()
	5.6.4.7 USBBULK_GetNumAvailableDevices()
	5.6.4.8 USBBULK_GetReadMaxTransferSize()
	5.6.4.9 USBBULK_GetReadMaxTransferSizeEx()
	5.6.4.10 USBBULK_GetSN()
	5.6.4.11 USBBULK_GetWriteMaxTransferSize()
	5.6.4.12 USBBULK_GetWriteMaxTransferSizeEx()
	5.6.4.13 USBBULK_SetMode()
	5.6.4.14 USBBULK_SetModeEx()
	5.6.4.15 USBBULK_SetTimeout()
	5.6.4.16 USBBULK_SetTimeoutEx()
	5.6.4.17 USBBULK_SetUSBId()



	Bulk Host API V2
	6.1 Bulk Host API V2
	6.1.1 Bulk Host API V2 list
	6.1.2 USB-Bulk Basic functions
	6.1.2.1 USBBULK_Open()
	6.1.2.2 USBBULK_Close()
	6.1.2.3 USBBULK_Init()
	6.1.2.4 USBBULK_Exit()
	6.1.2.5 USBBULK_SetUSBId()

	6.1.3 USB-Bulk direct input/output functions
	6.1.3.1 USBBULK_Read()
	6.1.3.2 USBBULK_Write()
	6.1.3.3 USBBULK_WriteRead()
	6.1.3.4 USBBULK_CancelRead()
	6.1.3.5 USBBULK_ReadTimed()
	6.1.3.6 USBBULK_WriteTimed()
	6.1.3.7 USBBULK_FlushRx()

	6.1.4 USB-Bulk Control functions
	6.1.4.1 USBBULK_GetConfigDescriptor()
	6.1.4.2 USBBULK_GetMode()
	6.1.4.3 USBBULK_GetReadMaxTransferSize()
	6.1.4.4 USBBULK_GetWriteMaxTransferSize()
	6.1.4.5 USBBULK_ResetPipe()
	6.1.4.6 USBBULK_ResetDevice()
	6.1.4.7 USBBULK_SetMode()
	6.1.4.8 USBBULK_SetReadTimeout()
	6.1.4.9 USBBULK_SetWriteTimeout()
	6.1.4.10 USBBULK_GetEnumTickCount()
	6.1.4.11 USBBULK_GetReadMaxTransferSizeDown()
	6.1.4.12 USBBULK_GetWriteMaxTransferSizeDown()
	6.1.4.13 USBBULK_SetReadMaxTransferSizeDown()
	6.1.4.14 USBBULK_SetWriteMaxTransferSizeDown()
	6.1.4.15 USBBULK_GetSN()
	6.1.4.16 USBBULK_GetDevInfo()
	6.1.4.17 USBBULK_GetProductName()
	6.1.4.18 USBBULK_GetVendorName()

	6.1.5 USB-Bulk general GET functions
	6.1.5.1 USBBULK_GetDriverCompileDate()
	6.1.5.2 USBBULK_GetDriverVersion()
	6.1.5.3 USBBULK_GetVersion()
	6.1.5.4 USBBULK_GetNumAvailableDevices()
	6.1.5.5 USBBULK_GetUSBId()

	6.1.6 Data structures
	6.1.6.1 USBBULK_DEV_INFO



	Mass Storage Device Class (MSD)
	7.1 Overview
	7.2 Configuration
	7.2.1 Initial configuration
	7.2.2 Final configuration
	7.2.3 Class specific configuration functions
	7.2.3.1 USB_MSD_GetVendorName()
	7.2.3.2 USB_MSD_GetProductName()
	7.2.3.3 USB_MSD_GetProductVer()
	7.2.3.4 USB_MSD_GetSerialNo()

	7.2.4 Running the example application
	7.2.4.1 MSD_Start_StorageRAM.c in detail


	7.3 Target API
	7.3.1 API functions
	7.3.1.1 USB_MSD_Add()
	7.3.1.2 USB_MSD_AddUnit()
	7.3.1.3 USB_MSD_AddCDRom()
	7.3.1.4 USB_MSD_SetPreventAllowRemovalHook()
	7.3.1.5 USB_MSD_SetReadWriteHook()
	7.3.1.6 USB_MSD_Task()

	7.3.2 Extended API functions
	7.3.2.1 USB_MSD_Connect()
	7.3.2.2 USB_MSD_Disconnect()
	7.3.2.3 USB_MSD_RequestDisconnect()
	7.3.2.4 USB_MSD_UpdateWriteProtect()
	7.3.2.5 USB_MSD_WaitForDisconnection()

	7.3.3 Data structures
	7.3.3.1 USB_MSD_INIT_DATA
	7.3.3.2 USB_MSD_INFO
	7.3.3.3 USB_MSD_INST_DATA
	7.3.3.4 PREVENT_ALLOW_REMOVAL_HOOK
	7.3.3.5 READ_WRITE_HOOK
	7.3.3.6 USB_MSD_INST_DATA_DRIVER
	7.3.3.7 USB_MSD_STORAGE_API


	7.4 Storage Driver
	7.4.1 General information
	7.4.1.1 Supported storage types
	7.4.1.2 Storage drivers supplied with this release

	7.4.2 Interface function list
	7.4.3 USB_MSD_STORAGE_API in detail
	7.4.3.1 (*pfInit)()
	7.4.3.2 (*pfGetInfo)()
	7.4.3.3 (*pfGetReadBuffer)()
	7.4.3.4 (*pfRead)()
	7.4.3.5 (*pfGetWriteBuffer)()
	7.4.3.6 (*pfWrite)()
	7.4.3.7 (*pfMediumIsPresent)()
	7.4.3.8 (*pfDeInit)()



	Media Transfer Protocol Class (MTP)
	8.1 Overview
	8.1.1 Getting access to files
	8.1.2 Additional information

	8.2 Configuration
	8.2.1 Initial configuration
	8.2.2 Final configuration
	8.2.3 Class specific configuration
	8.2.3.1 USB_MTP_GetManufacturer()
	8.2.3.2 USB_MTP_GetModel()
	8.2.3.3 USB_MTP_GetDeviceVersion()
	8.2.3.4 USB_MTP_GetSerialNumber()

	8.2.4 Compile time configuration

	8.3 Running the sample application
	8.3.1 USB_MTP_Start.c in detail

	8.4 Target API
	8.4.1 API functions
	8.4.1.1 USB_MTP_Add()
	8.4.1.2 USB_MTP_AddStorage()
	8.4.1.3 USB_MTP_Task()

	8.4.2 Data structures
	8.4.2.1 USB_MTP_FILE_INFO
	8.4.2.2 USB_MTP_INIT_DATA
	8.4.2.3 USB_MTP_INST_DATA
	8.4.2.4 USB_MTP_INST_DATA_DRIVER
	8.4.2.5 USB_MTP_STORAGE_API
	8.4.2.6 USB_MTP_STORAGE_INFO


	8.5 Storage Driver
	8.5.1 General information
	8.5.2 Interface function list
	8.5.3 USB_MTP_STORAGE_API in detail
	8.5.3.1 (*pfInit)()
	8.5.3.2 (*pfGetInfo)()
	8.5.3.3 (*pfFindFirstFile)()
	8.5.3.4 (*pfFindNextFile)()
	8.5.3.5 (*pfOpenFile)()
	8.5.3.6 (*pfCreateFile)()
	8.5.3.7 (*pfReadFromFile)()
	8.5.3.8 (*pfWriteToFile)()
	8.5.3.9 (*pfCloseFile)()
	8.5.3.10 (*pfRemoveFile)()
	8.5.3.11 (*pfCreateDir)()
	8.5.3.12 (*pfRemoveDir)()
	8.5.3.13 (*pfFormat)()
	8.5.3.14 (*pfRenameFile)()
	8.5.3.15 (*pfDeInit)()
	8.5.3.16 (*pfGetFileAttributes)()
	8.5.3.17 (*pfModifyFileAttributes)()
	8.5.3.18 (*pfGetFileCreationTime)()
	8.5.3.19 (*pfGetFileLastWriteTime)()
	8.5.3.20 (*pfGetFileId)()
	8.5.3.21 (*pfGetFileSize)()



	Communication Device Class (CDC)
	9.1 Overview
	9.1.1 Configuration

	9.2 The example application
	9.3 Installing the driver
	9.3.1 The .inf file
	9.3.2 Installation verification
	9.3.3 Testing communication to the USB device

	9.4 Target API
	9.4.1 Interface function list
	9.4.2 API functions
	9.4.2.1 USB_CDC_Add()
	9.4.2.2 USB_CDC_CancelRead() USB_CDC_CancelReadEx()
	9.4.2.3 USB_CDC_CancelWrite() USB_CDC_CancelWriteEx()
	9.4.2.4 USB_CDC_Read() USB_CDC_ReadEx()
	9.4.2.5 USB_CDC_ReadOverlapped() USB_CDC_ReadOverlappedEx()
	9.4.2.6 USB_CDC_ReadTimed() USB_CDC_ReadTimedEx()
	9.4.2.7 USB_CDC_Receive() USB_CDC_ReceiveEx()
	9.4.2.8 USB_CDC_ReceiveTimed() USB_CDC_ReceiveTimedEx()
	9.4.2.9 USB_CDC_SetOnBreak() USB_CDC_SetOnBreakEx()
	9.4.2.10 USB_CDC_SetOnLineCoding() USB_CDC_SetOnLineCodingEx()
	9.4.2.11 USB_CDC_UpdateSerialState() USB_CDC_UpdateSerialStateEx()
	9.4.2.12 USB_CDC_Write() USB_CDC_WriteEx()
	9.4.2.13 USB_CDC_WriteOverlapped() USB_CDC_WriteOverlappedEx()
	9.4.2.14 USB_CDC_WriteTimed() USB_CDC_WriteTimedEx()
	9.4.2.15 USB_CDC_WaitForRX() USB_CDC_WaitForRXEx()
	9.4.2.16 USB_CDC_WaitForTX() USB_CDC_WaitForTXEx()
	9.4.2.17 USB_CDC_WriteSerialState() USB_CDC_WriteSerialStateEx()

	9.4.3 Data structures
	9.4.3.1 USB_CDC_INIT_DATA
	9.4.3.2 USB_CDC_ON_SET_BREAK
	9.4.3.3 USB_CDC_ON_SET_LINE_CODING
	9.4.3.4 USB_CDC_LINE_CODING
	9.4.3.5 USB_CDC_SERIAL_STATE



	Human Interface Device Class (HID)
	10.1 Overview
	10.1.1 Further reading
	10.1.2 Categories
	10.1.2.1 “True HIDs”
	10.1.2.2 “Vendor specific HIDs”


	10.2 Background information
	10.2.1 HID descriptors
	10.2.1.1 HID descriptor
	10.2.1.2 Report descriptor
	10.2.1.3 Physical descriptor


	10.3 Configuration
	10.3.1 Initial configuration
	10.3.2 Final configuration

	10.4 Example application
	10.4.1 HID_Mouse.c
	10.4.1.1 Running the example

	10.4.2 HID_Echo1.c
	10.4.2.1 Running the example
	10.4.2.2 Compiling the PC example application


	10.5 Target API
	10.5.1 Target interface function list
	10.5.2 USB-HID functions
	10.5.2.1 USB_HID_Add()
	10.5.2.2 USB_HID_Read()
	10.5.2.3 USB_HID_Write()

	10.5.3 Data structures
	10.5.3.1 USB_HID_INIT_DATA


	10.6 Host API
	10.6.1 Host API function list
	10.6.2 USB-HID functions
	10.6.2.1 USBHID_Close()
	10.6.2.2 USBHID_Open()
	10.6.2.3 USBHID_Init()
	10.6.2.4 USBHID_Exit()
	10.6.2.5 USBHID_GetNumAvailableDevices()
	10.6.2.6 USBHID_GetProductName()
	10.6.2.7 USBHID_GetInputReportSize()
	10.6.2.8 USBHID_GetOutputReportSize()
	10.6.2.9 USBHID_GetProductId()
	10.6.2.10 USBHID_GetVendorId()
	10.6.2.11 USBHID_RefreshList()
	10.6.2.12 USBHID_SetVendorPage()



	Printer Class
	11.1 Overview
	11.1.1 Configuration

	11.2 The example application
	11.3 Target API
	11.3.1 Interface function list
	11.3.2 API functions
	11.3.2.1 USB_PRINTER_Init()
	11.3.2.2 USB_PRINTER_Task()

	11.3.3 Data structures
	11.3.3.1 USB_PRINTER_API



	Remote NDIS (RNDIS)
	12.1 Overview
	12.1.1 Working with RNDIS
	12.1.2 Additional information

	12.2 Configuration
	12.2.1 Initial configuration
	12.2.2 Final configuration
	12.2.3 Class specific configuration
	12.2.3.1 USB_RNDIS_GetVendorId()
	12.2.3.2 USB_RNDIS_GetDescription()
	12.2.3.3 USB_RNDIS_GetDriverVersion()

	12.2.4 Compile time configuration

	12.3 Running the sample application
	12.3.0.1 IP_Config_RNDIS.c in detail

	12.4 RNDIS + embOS/IP as a "USB Webserver"
	12.5 Target API
	12.5.1 API functions
	12.5.1.1 USB_RNDIS_Add()
	12.5.1.2 USB_RNDIS_Task()

	12.5.2 Data structures
	12.5.2.1 USB_RNDIS_INIT_DATA
	12.5.2.2 USB_RNDIS_EVENT_API
	12.5.2.3 USB_RNDIS_DRIVER_API
	12.5.2.4 USB_RNDIS_DRIVER_DATA
	12.5.2.5 USB_RNDIS_EVENT_API in detail



	Combining different USB components (Multi-Interface)
	13.1 Overview
	13.1.1 Single interface device classes
	13.1.2 Multiple interface device classes
	13.1.3 IAD class

	13.2 Configuration
	13.3 How to combine
	13.4 emUSB component specific modification
	13.4.1 BULK communication component
	13.4.1.1 Device side
	13.4.1.2 Host side

	13.4.2 MSD component
	13.4.2.1 Device side
	13.4.2.2 Host side

	13.4.3 CDC component
	13.4.3.1 Device side
	13.4.3.2 Host side

	13.4.4 HID component
	13.4.4.1 Device side
	13.4.4.2 Host side



	Target OS Interface
	14.1 General information
	14.1.1 Operating system support supplied with this release

	14.2 Interface function list
	14.2.1 USB_OS_Delay()
	14.2.2 USB_OS_DecRI()
	14.2.3 USB_OS_GetTickCnt()
	14.2.4 USB_OS_IncDI()
	14.2.5 USB_OS_Init()
	14.2.6 USB_OS_Panic()
	14.2.7 USB_OS_Signal()
	14.2.8 USB_OS_Wait()
	14.2.9 USB_OS_WaitTimed()

	14.3 Example

	Target USB Driver
	15.1 General information
	15.1.1 Available USB drivers

	15.2 Adding a driver to emUSB
	15.2.1 USB_X_HWAttach()
	15.2.2 USB_X_AddDriver()

	15.3 Interrupt handling
	15.3.1 ARM7 / ARM9 based cores
	15.3.1.1 ARM specific IRQ handler
	15.3.1.2 Device specifics ATMEL AT91CAP9x
	15.3.1.3 Device specifics ATMEL AT91RM9200
	15.3.1.4 Device specifics ATMEL AT91SAM7A3
	15.3.1.5 Device specifics ATMEL AT91SAM7S64, AT91SAM7S128, AT91SAM7S256
	15.3.1.6 Device specifics ATMEL AT91SAM7X64, AT91SAM7X128, AT91SAM7X256
	15.3.1.7 Device specifics ATMEL AT91SAM7SE
	15.3.1.8 Device specifics ATMEL AT91SAM9260
	15.3.1.9 Device specifics ATMEL AT91SAM9261
	15.3.1.10 Device specifics ATMEL AT91SAM9263
	15.3.1.11 Device specifics ATMEL AT91SAMRL64, AT91SAMR64
	15.3.1.12 Device specifics NXP LPC214x
	15.3.1.13 Device specifics NXP LPC23xx
	15.3.1.14 Device specifics NXP (formerly Sharp) LH79524/5
	15.3.1.15 Device specifics OKI 69Q62
	15.3.1.16 Device specifics ST STR71x
	15.3.1.17 Device specifics ST STR750
	15.3.1.18 Device specifics ST STR750


	15.4 Writing your own driver
	15.4.1 Structure USB_HW_DRIVER
	15.4.2 USB initialization functions
	15.4.2.1 (*pfInit)()

	15.4.3 General USB functions
	15.4.3.1 (*pfAttach)()
	15.4.3.2 (*pfEnable)()
	15.4.3.3 (*pfControl)()
	15.4.3.4 (*pfSetAddress)()

	15.4.4 General endpoint functions
	15.4.4.1 (*pfAllocEP)()
	15.4.4.2 (*pfGetMaxPacketSize)()
	15.4.4.3 (*pfSetClrStallEP)()
	15.4.4.4 (*pfUpdateEP)()
	15.4.4.5 (*pfResetEP)()

	15.4.5 Endpoint 0 (control endpoint) related functions
	15.4.5.1 (*pfStallEP0)()

	15.4.6 OUT-endpoint functions
	15.4.6.1 (*pfDisableRxInterruptEP)()
	15.4.6.2 (*pfEnableRxInterruptEP)()

	15.4.7 IN-endpoint functions
	15.4.7.1 (*pfStartTx)()
	15.4.7.2 (*pfSendEP)()
	15.4.7.3 (*pfDisableTx)()

	15.4.8 USB driver interrupt handling


	Support
	16.1 Problems with tool chain (compiler, linker)
	16.1.1 Compiler crash
	16.1.2 Compiler warnings
	16.1.3 Compiler errors
	16.1.4 Linker problems

	16.2 Problems with hardware/driver
	16.3 Contacting support

	Certification
	17.1 What is the Windows Logo Certification and why do I need it?
	17.2 Certification offer
	17.3 Vendor and Product ID
	17.4 Certification without SEGGER Microcontroller

	Performance & resource usage
	18.1 Memory footprint
	18.1.1 ROM
	18.1.2 RAM

	18.2 Performance

	FAQ
	Index

