

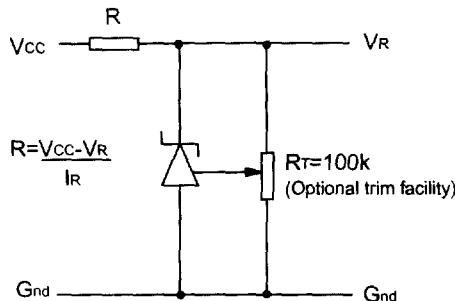
# 2.5V LOW POWER PRECISION REFERENCE SOURCE

ZRT025

ISSUE 1 - OCTOBER 1995

## DEVICE DESCRIPTION

The ZRT025 is a monolithic integrated circuit providing a precise stable reference voltage of 2.5V at 500 $\mu$ A.


The circuit features a knee current of 150 $\mu$ A and operation over a wide range of temperatures and currents.

The ZRT025 is available in a 3-pin metal can package for through hole applications as well as SOT223 and SO8 packages for surface mount applications. Each package option offers a trim facility whereby the output voltage can be adjusted as shown in Fig.1. This facility is used when compensating for system errors or setting the reference output to a particular value. When the trim facility is not used, the pin should be left open circuit.

## FEATURES

- Trimmable output
- Excellent temperature stability
- Low output noise figure
- Available in two temperature ranges
- 1 and 2% initial voltage tolerance versions available
- No external stabilising capacitor required in most cases
- Low slope resistance
- No derating required at low temperatures
- TO18 package
- SOT223 and SO8 small outline packages

## SCHEMATIC DIAGRAM



This circuit will allow the reference to be trimmed over a wide range. The device is specified over a  $\pm 5\%$  trim range.

CONNECTION TABLE

| Pin  | SO8      | SOT223   | TO18     |
|------|----------|----------|----------|
| 1    | Trim     | Trim     | $V_R$    |
| 2    | N/C      | $G_{nd}$ | Trim     |
| 3    | N/C      | $V_R$    | $G_{nd}$ |
| 4    | $G_{nd}$ | -        | -        |
| 5    | N/C      | -        | -        |
| 6    | N/C      | -        | -        |
| 7    | N/C      | -        | -        |
| 8    | $V_R$    | -        | -        |
| Pack | N8       | G        | -        |

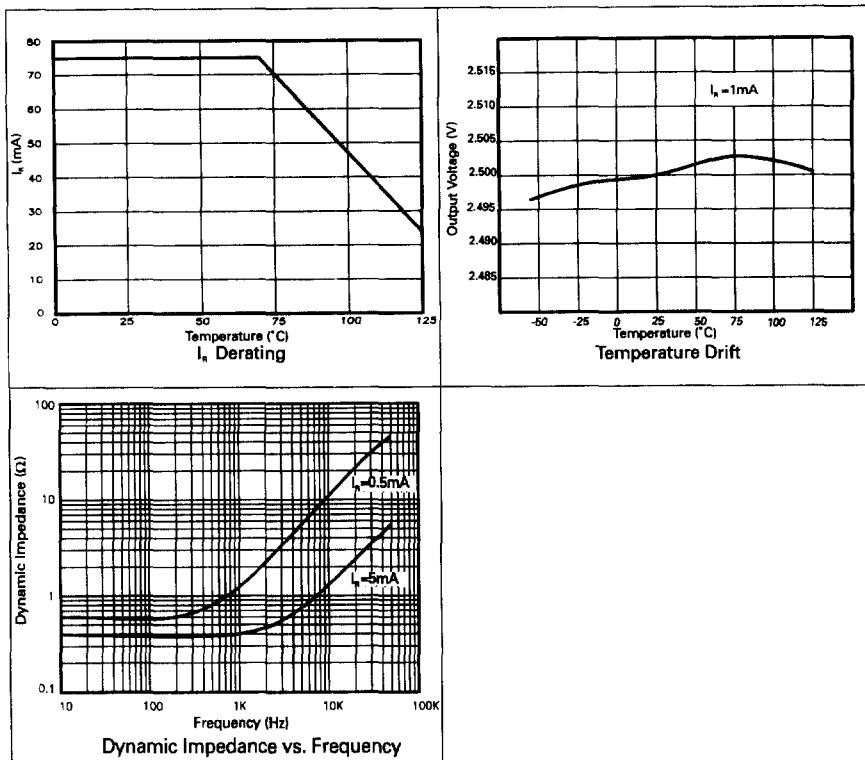
see Diagrams Page 1 - 8

# ZRT025

## ABSOLUTE MAXIMUM RATING

|                       |                                                                           |                                            |       |
|-----------------------|---------------------------------------------------------------------------|--------------------------------------------|-------|
| Reverse Current       | 75mA $\phi$                                                               | Power Dissipation ( $T_{amb}=25^\circ C$ ) |       |
| Operating Temperature |                                                                           | TO18                                       | 300mW |
| A grade               | -55°C to 125°C                                                            | SO8                                        | 625mW |
| C grade               | 0°C to 70°C                                                               | SOT223                                     | 2W    |
| Storage Temperature   | $\phi$ Above 72°C this figure should be linearly derated to 25mA at 125°C |                                            |       |
| TO18                  | -55 °C to 175 °C                                                          |                                            |       |
| SO8, SOT223           | -55 °C to 125 °C                                                          |                                            |       |

## TEMPERATURE DEPENDENT ELECTRICAL CHARACTERISTICS


| SYMBOL       | PARAMETER                                                            | INITIAL VOLTAGE TOLERANCE<br>% | GRADE A<br>-55°C TO 125°C |      | GRADE C<br>0°C TO 70°C |      | UNITS  |
|--------------|----------------------------------------------------------------------|--------------------------------|---------------------------|------|------------------------|------|--------|
|              |                                                                      |                                | TYP                       | MAX  | TYP                    | MAX  |        |
| $\Delta V_R$ | Output voltage change over relevant temperature range (See note (a)) | 1 & 2                          | 6.8                       | 22.5 | 2.7                    | 8.8  | mV     |
| $T_C V_R$    | Output voltage temperature coefficient (See note (b))                | 1 & 2                          | 15.0                      | 50.0 | 15.0                   | 50.0 | ppm/°C |

## ELECTRICAL CHARACTERISTICS

( at  $T_{amb}=25^\circ C$  and Pin 2 o/c unless otherwise stated)

| SYMBOL                | PARAMETER                                                   | MIN.           | TYP.           | MAX.           | UNITS    | Comments                           |
|-----------------------|-------------------------------------------------------------|----------------|----------------|----------------|----------|------------------------------------|
| $V_R$                 | Output voltage<br>1% tolerance (A1,C1)<br>2% tolerance (C2) | 2.475<br>2.450 | 2.500<br>2.500 | 2.525<br>2.550 | V        | $I_R=500\mu A$                     |
| $\Delta V_{TRIM}$     | Output voltage adjustment range                             |                | $\pm 5$        |                | %        | $R_T=100k\Omega$                   |
| $T_C \Delta V_{TRIM}$ | Change in $T_C V_R$ with output adjustment                  |                | 2.5            |                | ppm/°C/% |                                    |
| $I_R$                 | Operating current range                                     | 0.15           |                | 75             | mA       |                                    |
| $t_{on}$<br>$t_{off}$ | Turn-on time<br>Turn-off time                               |                | 10<br>0.3      |                | $\mu s$  | $R_L=1k\Omega$                     |
| $\theta_{np-p}$       | Output voltage noise (over the range 0.1 to 10Hz)           |                | 50             |                | $\mu V$  | Peak to peak measurement           |
| $R_S$                 | Slope resistance                                            |                | 0.85           | 2.0            | $\Omega$ | $I_R$ 0.5mA to 5mA<br>See note (c) |

## TYPICAL CHARACTERISTICS



## NOTES

## (a) Output change with temperature

The absolute maximum difference between the maximum output voltage and the minimum output voltage over the specified temperature range

$$\Delta V_R = V_{max} - V_{min}$$

(b) Output temperature coefficient ( $T_c V_R$ )

The ratio of the output change with temperature to the specified temperature range expressed in  $\text{ppm}/^{\circ}\text{C}$

$$T_c V_R = \frac{\Delta V_R \times 10^6}{V_R \times \Delta T} \text{ ppm}/^{\circ}\text{C}$$

$\Delta T$  = Full temperature range

(c) Slope resistance ( $R_S$ )

The slope resistance is defined as :

$$R_S = \frac{\text{change in } V_R}{\text{specified current range}}$$

$$\Delta I = 5 - 0.5 = 4.5\text{mA} \text{ (typically)}$$

## (d) Line regulation

The ratio of change in output voltage to the change in input voltage producing it.

$$\frac{R_S \times 100}{V_R \times R_{source}} \% / V$$