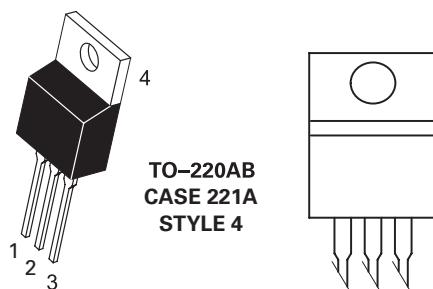


MAC9DG, MAC9MG, MAC9NG


Description

Designed primarily for full-wave ac control applications, such as motor controls, heating controls and power supplies; or wherever half-wave silicon gate-controlled, solid-state devices are needed.

Features

- Blocking Voltage to 800 Volts
- On-State Current Rating of 8.0 Amperes RMS at 100°C
- Uniform Gate Trigger Currents in Three Quadrants
- High Immunity to dv/dt – 500 V/ μ s minimum at 125°C
- Minimizes Snubber Networks for Protection
- Industry Standard TO-220 Package
- High Commutating di/dt – 6.5 A/ms minimum at 125°C
- These Devices are Pb-Free and are RoHS Compliant

Pin Out

Functional Diagram

Additional Information

Datasheet

Resources

Samples

Maximum Ratings ($T_j = 25^\circ\text{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (Gate Open, Sine Wave 50 to 60 Hz, $T_j = 25^\circ$ to 100°C)	V_{DRM} V_{RRM}	400	V
		600	
		800	
On-State RMS Current (Full Cycle Sine Wave, 60 Hz, $T_c = 100^\circ\text{C}$)	$I_{\text{T(RMS)}}$	8.0	A
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, $T_j = 125^\circ\text{C}$)	I_{TSM}	80	A
Circuit Fusing Consideration ($t = 8.3$ ms)	I^2t	26	A^2sec
Peak Gate Power (Pulse Width ≤ 1.0 μs , $T_g = 80^\circ\text{C}$)	P_{GM}	16	W
Average Gate Power ($t = 8.3$ ms, $T_c = 80^\circ\text{C}$)	$P_{\text{G(AV)}}$	0.35	W
Operating Junction Temperature Range	T_j	-40 to +125	$^\circ\text{C}$
Storage Temperature Range	T_{stg}	-40 to +150	$^\circ\text{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Thermal Characteristics

Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case (AC)	R_{gJC}	2.2	$^\circ\text{C}/\text{W}$
	R_{gJA}	62.5	
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	T_L	260	$^\circ\text{C}$

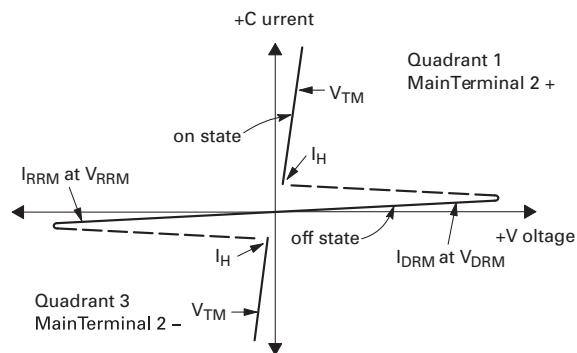
Electrical Characteristics - OFF ($T_J = 25^\circ\text{C}$ unless otherwise noted ; Electricals apply in both directions)

Characteristic		Symbol	Min	Typ	Max	Unit
Peak Repetitive Blocking Current ($V_D = V_{\text{DRM}} = V_{\text{RRM}}$; Gate Open)	$T_J = 25^\circ\text{C}$	I_{DRM}	-	-	0.01	mA
	$T_J = 125^\circ\text{C}$	I_{RRM}	-	-	2.0	

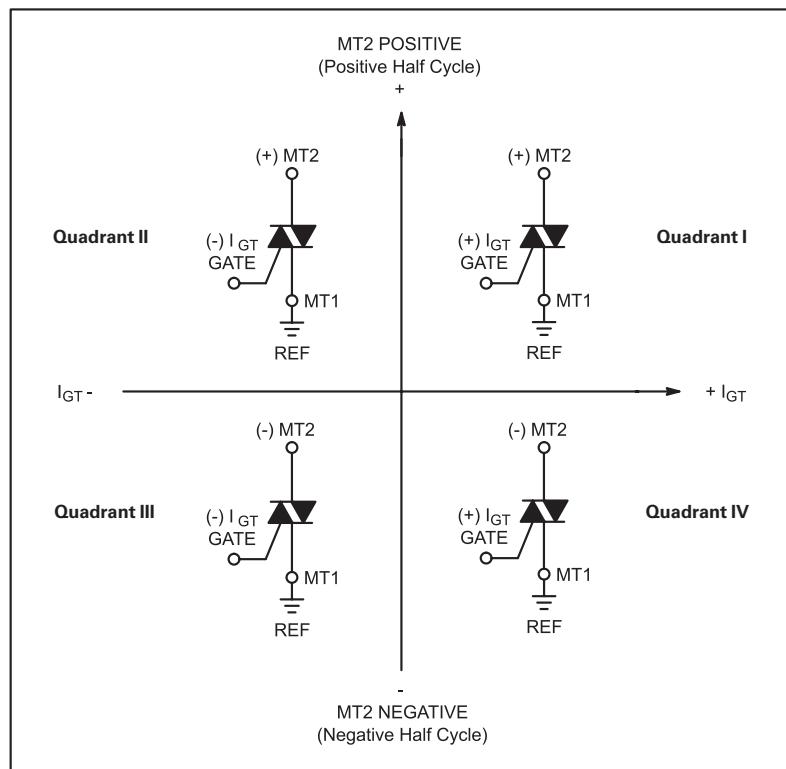
Electrical Characteristics - ON ($T_J = 25^\circ\text{C}$ unless otherwise noted; Electricals apply in both directions)

Characteristic	Symbol	Min	Typ	Max	Unit	
Peak On-State Voltage (Note 2) ($I_{\text{TM}} = \pm 11\text{ A}$)	V_{TM}	-	1.2	1.6	V	
Gate Trigger Current (Continuous dc) ($V_D = 12\text{ V}$, $R_L = 100\text{ }\Omega$)	MT2(+), G(+)	I_{GT}	10	16	50	mA
	MT2(+), G(-)		10	18	50	
	MT2(-), G(-)		10	22	5.0	
Holding Current ($V_D = 12\text{ V}$, Gate Open, Initiating Current = $\pm 150\text{ mA}$)	I_H	-	30	50	mA	
Latching Current ($V_D = 24\text{ V}$, $I_G = 50\text{ mA}$)	MT2(+), G(+)	I_L	-	20	50	mA
	MT2(+), G(-)		-	30	80	
	MT2(-), G(-)		-	20	50	
Gate Trigger Voltage ($V_D = 12\text{ V}$, $R_L = 100\text{ }\Omega$)	MT2(+), G(+)	V_{GT}	0.5	0.69	1.5	V
	MT2(+), G(-)		0.5	0.77	1.5	
	MT2(-), G(-)		0.5	0.72	1.5	
Gate Non-Trigger Voltage ($V_D = 12\text{ V}$, $R_L = 100\text{ }\Omega$, $T_J = 125^\circ\text{C}$)	MT2(+), G(+)	V_{GD}	0.2	-	-	V
	MT2(+), G(-)		0.2	-	-	
	MT2(-), G(-)		0.2	-	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

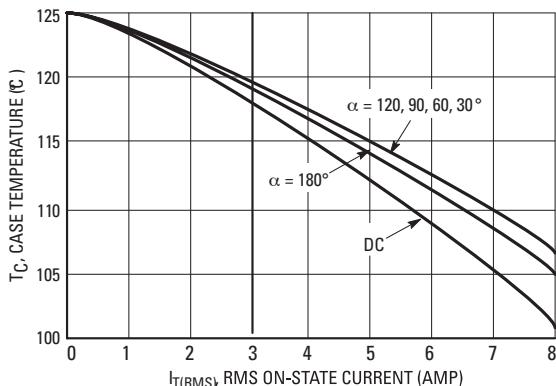
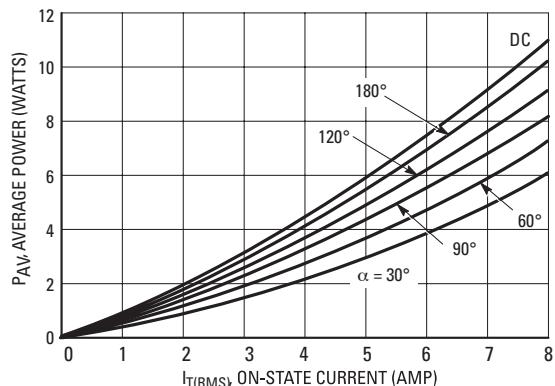
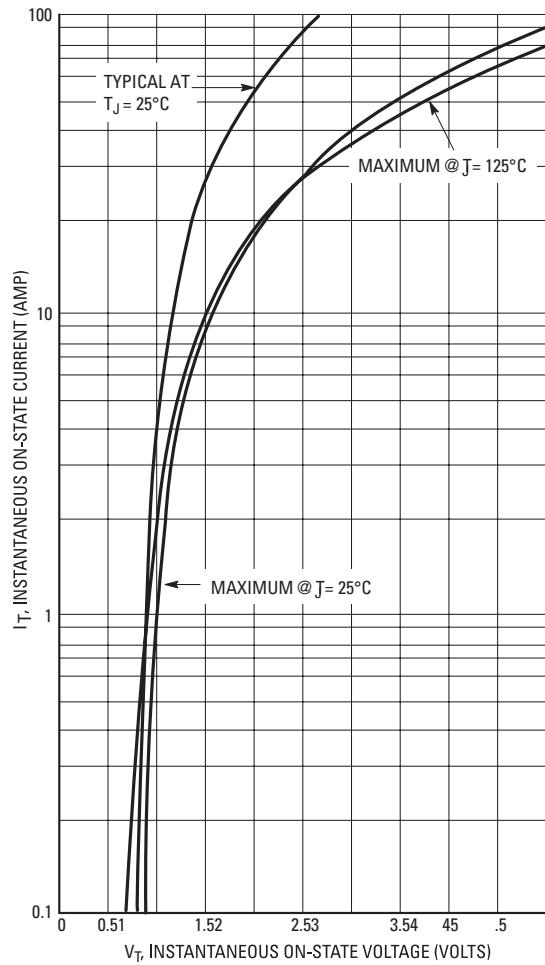
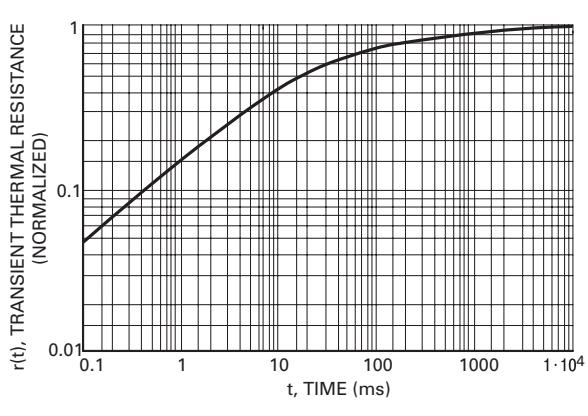
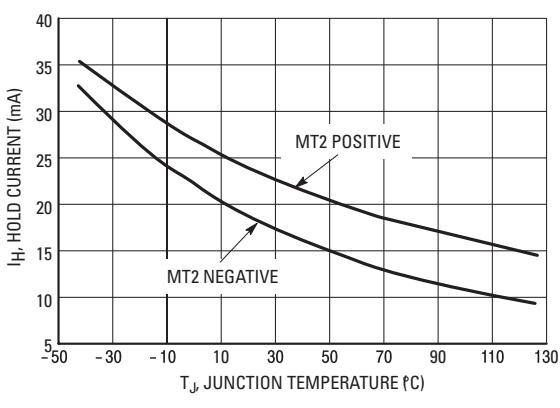

2. Indicates Pulse Test: Pulse Width $\leq 2.0\text{ ms}$, Duty Cycle $\leq 2\%$.

Dynamic Characteristics

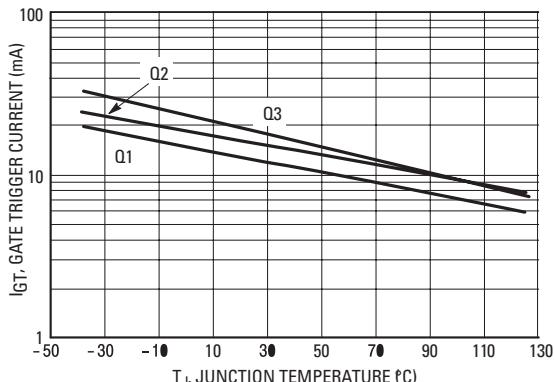
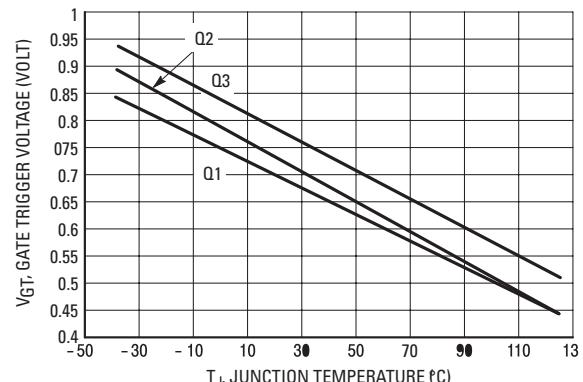
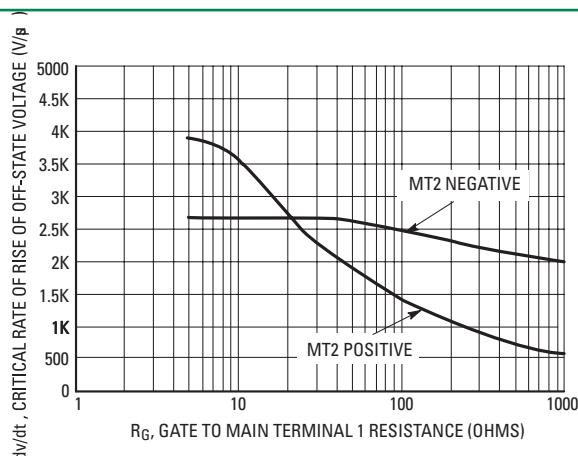
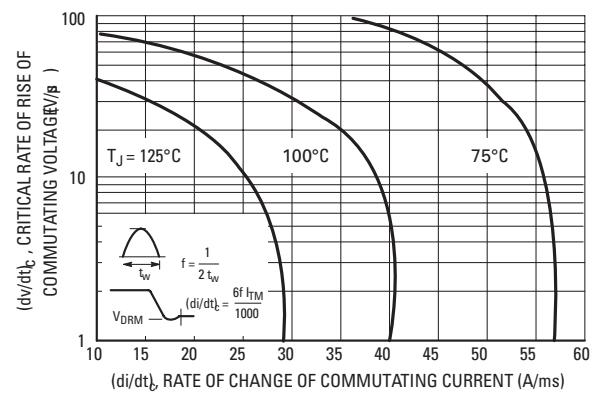
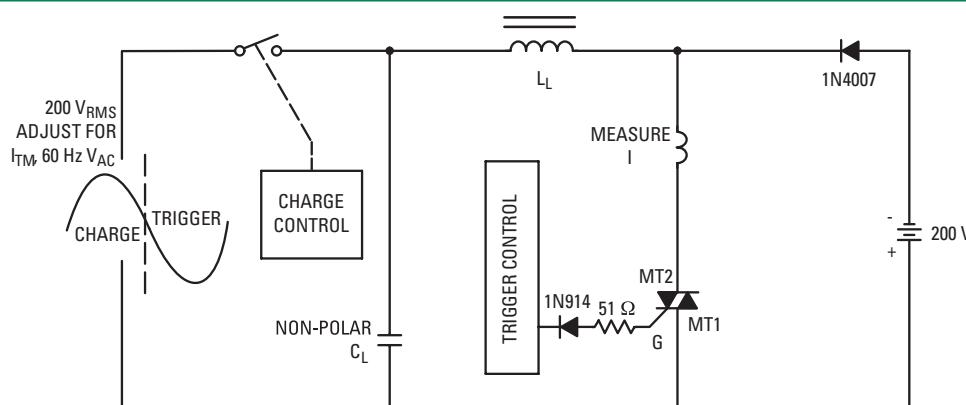

Characteristic	Symbol	Min	Typ	Max	Unit
Rate of Change of Commutating Current See Figure 10. ($V_D = 400\text{ V}$, $I_{\text{TM}} = 4.4\text{ A}$, Commutating $dv/dt = 18\text{ V}/\mu\text{s}$, Gate Open, $T_J = 125^\circ\text{C}$, $f = 250\text{ Hz}$, No Snubber) $C_L = 10\text{ }\mu\text{F}$ $L_L = 40\text{ mH}$	dV/dt	6.5	-	-	A/ms
Critical Rate of Rise of Off-State Voltage ($V_D = \text{Rated } V_{\text{DRM}}$, Exponential Waveform, $R_{\text{GK}} = 510\text{ }\Omega$, $T_J = 125^\circ\text{C}$)	dV/dt	500	-	-	V/ μs

Voltage Current Characteristic of SCR

Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I_{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I_{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I_H	Holding Current

Quadrant Definitions for a Triac






All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used.

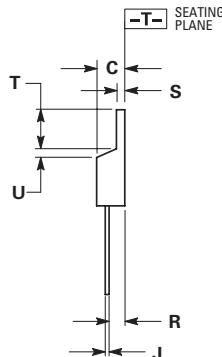
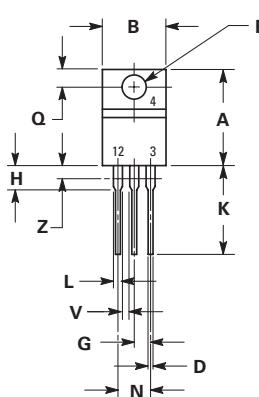


Figure 1. RMS Current Derating

Figure 2. On-State Power Dissipation

Figure 3. On-State Characteristics

Figure 4. Thermal Response

Figure 5. Hold Current Variation

Thyristors

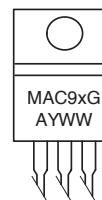
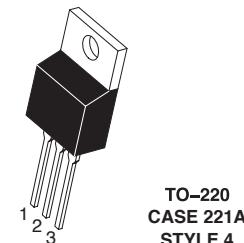


Surface Mount – 400V - 800V > MAC9DG, MAC9MG, MAC9NG

Figure 6. Gate Trigger Current Variation

Figure 7. Gate Trigger Voltage Variation

Figure 8. Critical Rate of Rise of Off-State Voltage (Exponential)

Figure 9. Critical Rate of Rise of Commutating Voltage

Figure 10. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)

Dimensions

Part Marking System

TO-220
CASE 221A
STYLE 4

x= D, M, or N
 A= Assembly Location
 Y= Year
 WW = Work Week
 G = Pb-Free Package

Pin Assignment

1	Main Terminal 1
2	Main Terminal 2
3	Gate
4	Main Terminal 2

Ordering Information

Device	Package	Shipping
MAC9DG		
MAC9MG	TO-220 (Pb-Free)	50 Units / Rail
MAC9NG		

Dim	Inches		Millimeters	
	Min	Max	Min	Max
A	0.570	0.620	14.48	15.75
B	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
H	0.110	0.155	2.80	3.93
J	0.014	0.022	0.36	0.55
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	---	1.15	---
Z	---	0.080	---	2.04

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics