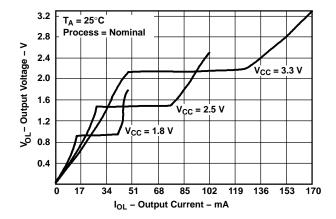
SCES158H-DECEMBER 1998-REVISED MARCH 2005

FEATURES

- Member of the Texas Instruments Widebus™
 Family
- EPIC™ (Enhanced-Performance Implanted CMOS) Submicron Process
- DOC™ (Dynamic Output Control) Circuit Dynamically Changes Output Impedance, Resulting in Noise Reduction Without Speed Degradation
- Dynamic Drive Capability Is Equivalent to Standard Outputs With I $_{OH}$ and I $_{OL}$ of ± 24 mA at 2.5-V V $_{CC}$

- Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data Communications
- I_{off} Supports Partial-Power-Down Mode Operation
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- Package Options Include Plastic Thin Shrink Small-Outline (DGG) and Thin Very Small-Outline (DGV) Packages


DESCRIPTION/ORDERING INFORMATION

A Dynamic Output Control (DOC) circuit is implemented, which, during the transition, initially lowers the output impedance to effectively drive the load and, subsequently, raises the impedance to reduce noise. Figure 1 shows typical V_{OL} vs I_{OL} and V_{OH} vs I_{OH} curves to illustrate the output impedance and drive capability of the circuit. At the beginning of the signal transition, the DOC circuit provides a maximum dynamic drive that is equivalent to a high-drive standard-output device. For more information, refer to the TI application reports, *AVC Logic Family Technology and Applications*, literature number SCEA006, and *Dynamic Output Control (DOC) Circuitry Technology and Applications*, literature number SCEA009.

ORDERING INFORMATION

T _A	PACK	AGE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	TSSOP – DGG	Tape and reel	SN74AVC16374DGGR	AVC16374
-40°C to 85°C	-40°C to 85°C TVSOP - DGV Tape and reel		SN74AVC16374DGVR	CVA374
	VFBGA – GQL	Tape and reel	SN74AVC16374GQLR	CVA374

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

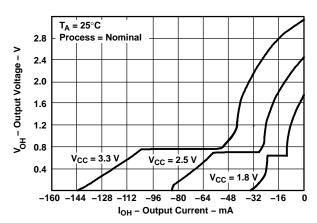


Figure 1. Output Voltage vs Output Current

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus, EPIC, DOC are trademarks of Texas Instruments.

SCES158H-DECEMBER 1998-REVISED MARCH 2005

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

This 16-bit edge-triggered D-type flip-flop is operational at 1.2-V to 3.6-V V_{CC} , but is designed specifically for 1.65-V to 3.6-V V_{CC} operation.

The SN74AVC16374 is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. It can be used as two 8-bit flip-flops or one 16-bit flip-flop. On the positive transition of the clock (CLK) input, the Q outputs of the flip-flop take on the logic levels at the data (D) inputs. \overline{OE} can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

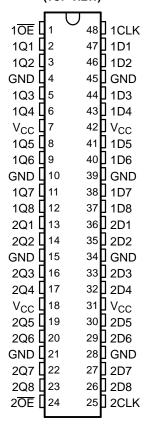
To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using loff. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The SN74AVC16374 is characterized for operation from -40°C to 85°C.

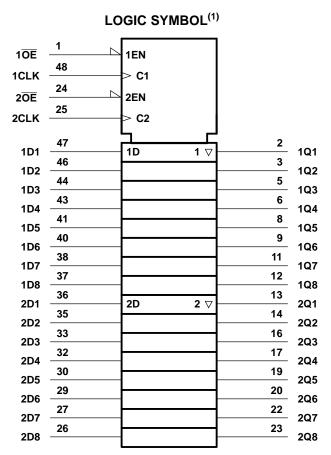
GQL PACKAGE (TOP VIEW) 1 2 3 4 5 6 000000 В 000000 000000 С 000000 D \circ Ε \circ OOF CC000000 G 000000 Н 000000 J 000000

TERMINAL ASSIGNMENTS(1)

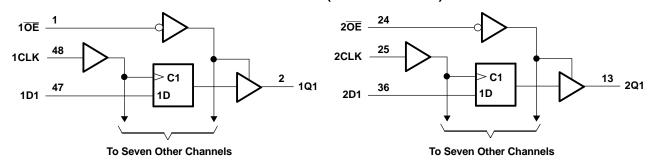

	1	2	3	4	5	6
Α	1 OE	NC	NC	NC	NC	1CLK
В	1Q2	1Q1	GND	GND	1D1	1D2
С	1Q4	1Q3	V _{CC}	V _{CC}	1D3	1D4
D	1Q6	1Q5	GND	GND	1D5	1D6
E	1Q8	1Q7			1D7	1D8
F	2Q1	2Q2			2D2	2D1
G	2Q3	2Q4	GND	GND	2D4	2D3
Н	2Q5	2Q6	V _{CC}	V _{CC}	2D6	2D5
J	2Q7	2Q8	GND	GND	2D8	2D7
K	2 OE	NC	NC	NC	NC	2CLK

(1) NC - No internal connection

SCES158H-DECEMBER 1998-REVISED MARCH 2005


DGG OR DGV PACKAGE (TOP VIEW)

FUNCTION TABLE (EACH 8-BIT FLIP FLOP)


	INPUTS	OUTPUT	
ŌĒ	CLK	D	Q
L	1	Н	Н
L	\uparrow	L	L
L	H or L	Χ	Q_0
Н	X	Χ	Z

(1) This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

LOGIC DIAGRAM (POSITIVE LOGIC)

SCES158H-DECEMBER 1998-REVISED MARCH 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT		
V _{CC}	Supply voltage range		-0.5	4.6	V		
VI	Input voltge range ⁽²⁾		-0.5	4.6	V		
Vo	Voltage range applied to any output in the	he high-impedance or power-off state ⁽²⁾	-0.5	4.6	V		
Vo	Voltage range applied to any output in the	he high or low state (2)(3)	-0.5	V _{CC} + 0.5	V		
I _{IK}	Input clamp current	Input clamp current V _I < 0					
I _{OK}	Output clamp current		-50	mA			
Io	Continuous output current			±50	mA		
	Continuous current through each V _{CC} or	r GND		±100	mA		
		DGG package		70			
θ_{JA}	Package thermal impedance (4)		58	°C/W			
			42				
T _{stg}	Storage temperature range	Storage temperature range					

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

³⁾ The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current ratings is observed.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51.

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
\/	Cupply voltage	Operating	1.4	3.6	V
V_{CC}	Supply voltage	Data retention only	1.2		V
		V _{CC} = 1.2 V	V _{cc}		
		V _{CC} = 1.4 V to 1.6 V	0.65 × V _{CC}		
V_{IH}	High-level input voltage	V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}		V
		V _{CC} = 2.3 V to 2.7 V	1.7		
		V _{CC} = 3 V to 3.6 V	2		
		V _{CC} = 1.2 V		GND	
		V _{CC} = 1.4 V to 1.6 V		$0.35 \times V_{CC}$	
V_{IL}	Low-level input voltage	V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	V
		V _{CC} = 2.3 V to 2.7 V		0.7	
		V _{CC} = 3 V to 3.6 V		0.8	
V_{I}	Input voltage		0	3.6	V
\/	Output valtage	Active state	0	V_{CC}	V
Vo	Output voltage	3-state	0	3.6	V
		V _{CC} = 1.4 V to 1.6 V		-2	
	Static high-level output current ⁽²⁾	V _{CC} = 1.65 V to 1.95 V		-4	A
I _{OHS}	Static high-level output current	V _{CC} = 2.3 V to 2.7 V		-8	mA
		V _{CC} = 3 V to 3.6 V		-12	
		V _{CC} = 1.4 V to 1.6 V		2	
	Static law layer output ourrent(2)	V _{CC} = 1.65 V to 1.95 V		4	A
I _{OLS}	Static low-level output current ⁽²⁾	V _{CC} = 2.3 V to 2.7 V		8	mA
		V _{CC} = 3 V to 3.6 V		12	
Δt/Δν	Input transition rise or fall rate	V _{CC} = 1.4 V to 3.6 V		5	ns/V
T _A	Operating free-air temperature		-40	85	°C

 ⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.
 (2) Dynamic drive capability is equivalent to standard outputs with I_{OH} and I_{OL} of ±24 mA at 2.5-V V_{CC}. See Figure 1 for V_{OL} vs I_{OL} and V_{OH} vs I_{OH} characteristics. Refer to the TI application reports, *AVC Logic Family Technology and Applications*, literature number SCEA006, and *Dynamic Output Control (DOC™) Circuitry Technology and Applications*, literature number SCEA009.

SCES158H-DECEMBER 1998-REVISED MARCH 2005

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

Р	ARAMETER	TEST	CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT
		$I_{OHS} = -100 \mu A$		1.4 V to 3.6 V	$V_{CC} - 0.2$			
		$I_{OHS} = -2 \text{ mA},$	V _{IH} = 0.91 V	1.4 V	1.05			
V_{OH}		$I_{OHS} = -4 \text{ mA},$	V _{IH} = 1.07 V	1.65 V	1.2			V
		$I_{OHS} = -8 \text{ mA},$	V _{IH} = 1.7 V	2.3 V	1.75			
		$I_{OHS} = -12 \text{ mA},$	V _{IH} = 2 V	3 V	2.3			
		$I_{OLS} = 100 \mu\text{A}$		1.4 V to 3.6 V			0.2	
		$I_{OLS} = 2 \text{ mA},$	V _{IL} = 0.49 V	1.4 V			0.4	
V_{OL}		$I_{OLS} = 4 \text{ mA},$	V _{IL} = 0.57 V	1.65 V			0.45	V
		$I_{OLS} = 8 \text{ mA},$	V _{IL} = 0.7 V	2.3 V			0.55	
		I _{OLS} = 12 mA,	V _{IL} = 0.8 V	3 V			0.7	
I _I		$V_I = V_{CC}$ or GND		3.6 V			±2.5	μΑ
I _{off}		V_I or $V_O = 3.6 \text{ V}$		0			±10	μΑ
I _{OZ}		$V_O = V_{CC}$ or GND		3.6 V			±10	μΑ
I _{CC}		$V_I = V_{CC}$ or GND,	I _O = 0	3.6 V			40	μΑ
	Control innute	V V or CND		2.5 V		3		
_	Control inputs	$V_I = V_{CC}$ or GND		3.3 V		3		
C _i	Data innuta	\/ \/ == CND		2.5 V		2.5		pF
	Data inputs	$V_I = V_{CC}$ or GND		3.3 V		2.5		
_	Outrotte	V V as CND		2.5 V		6.5		
C _o	Outputs	$V_O = V_{CC}$ or GND		3.3 V		6.5		pF

⁽¹⁾ Typical values are measured at V_{CC} = 2.5 V and 3.3 V, T_A = 25°C.

Timing Requirements

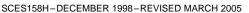
over recommended operating free-air temperature range (unless otherwise noted)

		V _{CC} = 1.2 V		V _{CC} = 1 ± 0.1	V _{CC} = 1.5 V ± 0.1 V		V _{CC} = 1.8 V ± 0.15 V		2.5 V 2 V	V _{CC} = 3.3 V ± 0.3 V		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{clock}	Clock frequency						160		200		200	MHz
t _w	Pulse duration, CLK high or low					3.1		2.5		2.5		ns
t _{su}	Setup time, data before CLK↑	4.1		2.7		1.9		1.4		1.4		ns
t _h	Hold time, data after CLK↑	1.7		1.3		1.2		1.1		1.1		ns

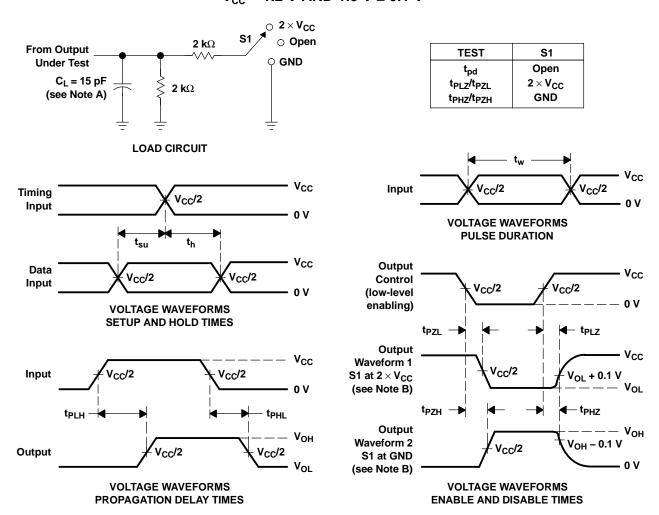
Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2 through Figure 5)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.2 V	V _{CC} = ± 0.	1.5 V 1 V	V _{CC} = ± 0.7		V _{CC} = ± 0.		V _{CC} = ± 0.		UNIT
	(INPUT)	(OUTPUT)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}						160		200		200		MHz
t _{pd}	CLK	Q	7.3	1.5	8.4	1.2	6.7	0.8	4.1	0.7	3.3	ns
t _{en}	ŌĒ	Q	7.4	1.6	8.5	1.6	6.7	0.9	4.3	0.7	3.4	ns
t _{dis}	ŌĒ	Q	8.4	2.5	9.4	2.3	7.8	1	4.2	1.5	3.9	ns

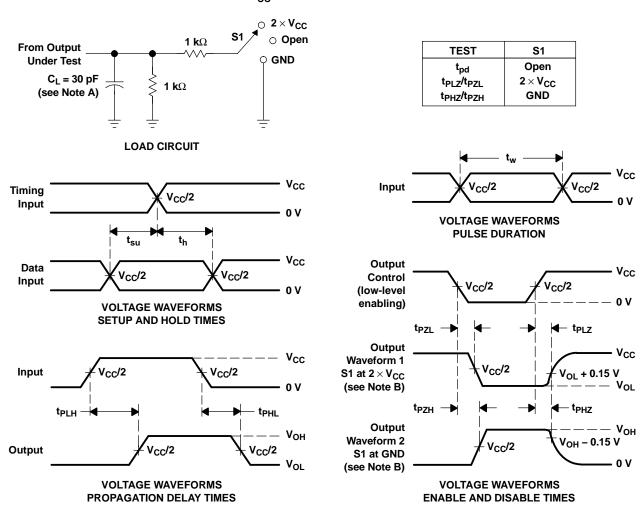

SCES158H-DECEMBER 1998-REVISED MARCH 2005

Operating Characteristics


 $T_A = 25^{\circ}C$

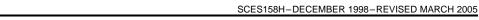
	PARAMETER			CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT	
_	Power dissipation	Outputs enabled	0	f 10 MH-	74	81	89	~F	
C_{pd}	capacitance	Outputs disabled	$C_L = 0$,	f = 10 MHz	52	57	63	pF	

PARAMETER MEASUREMENT INFORMATION V_{cc} = 1.2 V AND 1.5 V \pm 0.1 V


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \ \Omega$, $t_f \leq 2 \ ns$, $t_f \leq 2 \ ns$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 2. Load Circuit and Voltage Waveforms



PARAMETER MEASUREMENT INFORMATION V_{CC} = 1.8 V \pm 0.15 V

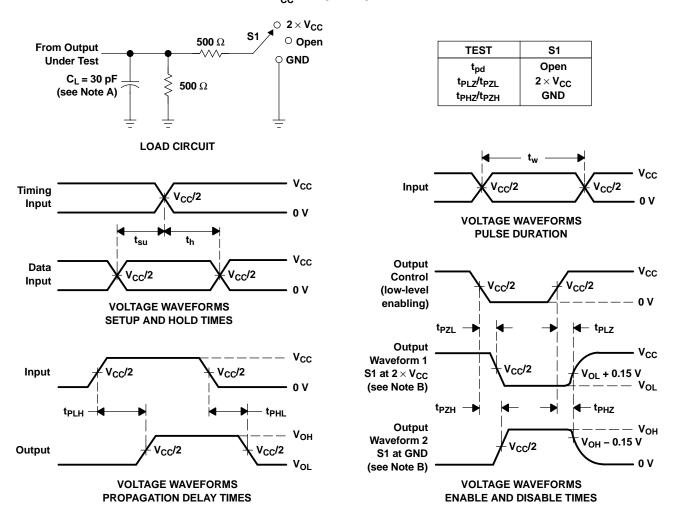
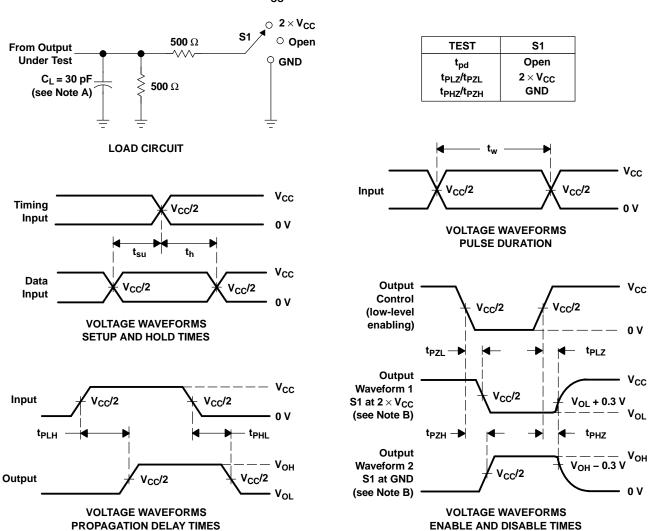

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r \leq 2$ ns, $t_f \leq 2$ ns.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
 - F. t_{PZL} and t_{PZH} are the same as t_{en}.
 - G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 3. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.5 V \pm 0.2 V


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 4. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}$

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_r \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 5. Load Circuit and Voltage Waveforms

3-Dec-2012

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Samples
	(1)		Drawing			(2)		(3)	(Requires Login)
74AVC16374DGGRE4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
74AVC16374DGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
74AVC16374DGVRE4	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
74AVC16374DGVRG4	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74AVC16374DGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74AVC16374DGVR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74AVC16374GQLR	OBSOLETE	BGA MICROSTAR JUNIOR	GQL	56		TBD	Call TI	Call TI	
SN74AVC16374ZQLR	ACTIVE	BGA MICROSTAR JUNIOR	ZQL	56	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

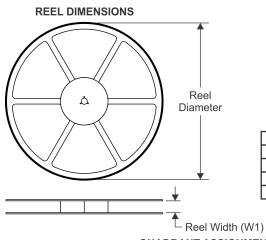
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

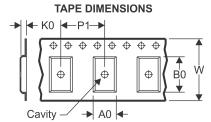
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

3-Dec-2012

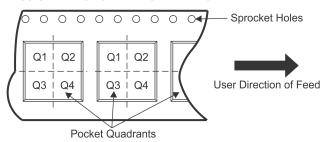
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

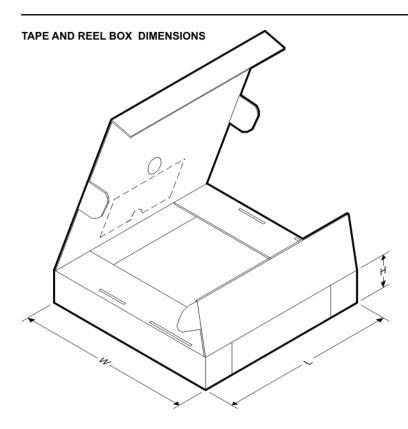

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE MATERIALS INFORMATION

www.ti.com 10-Oct-2012


TAPE AND REEL INFORMATION

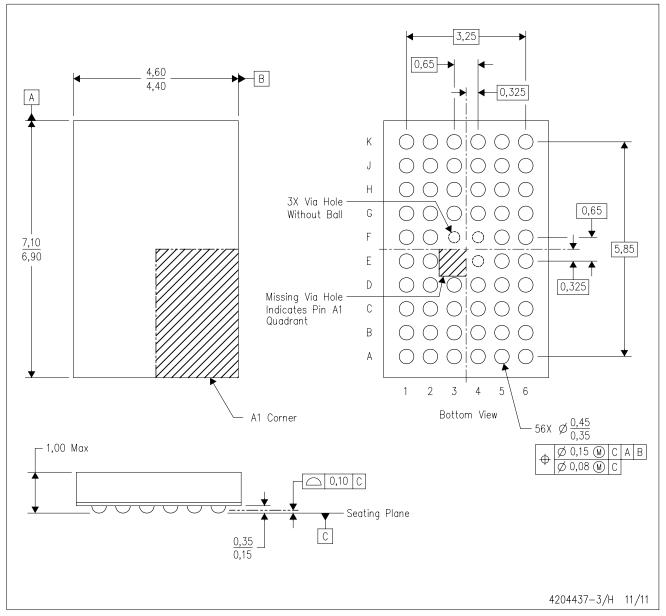
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AVC16374DGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	15.8	1.8	12.0	24.0	Q1
SN74AVC16374DGVR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1
SN74AVC16374ZQLR	BGA MI CROSTA R JUNI OR	ZQL	56	1000	330.0	16.4	4.8	7.3	1.5	8.0	16.0	Q1

www.ti.com 10-Oct-2012



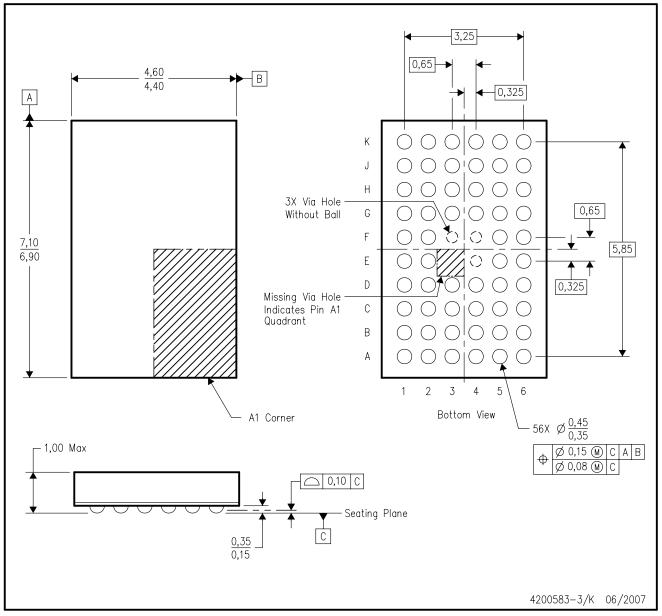
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AVC16374DGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0
SN74AVC16374DGVR	TVSOP	DGV	48	2000	367.0	367.0	38.0
SN74AVC16374ZQLR	BGA MICROSTAR JUNIOR	ZQL	56	1000	333.2	345.9	28.6

ZQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

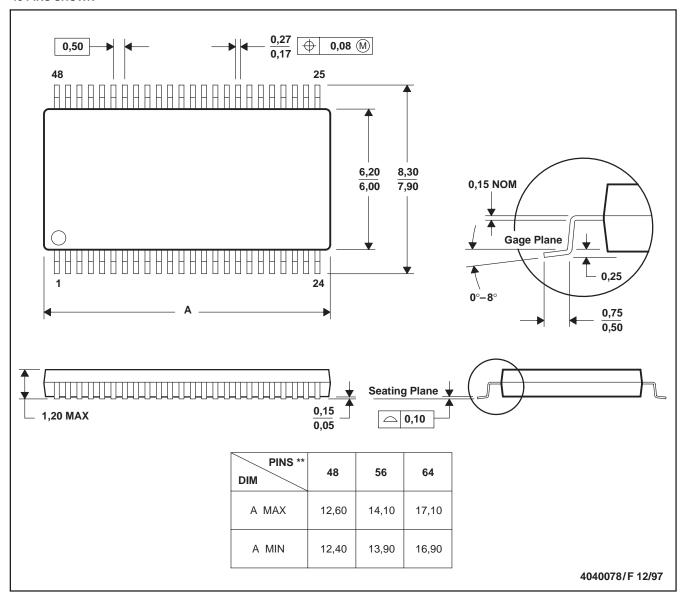

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BA-2.
- D. This package is Pb-free. Refer to the 56 GQL package (drawing 4200583) for tin-lead (SnPb).

MicroStar Junior is a trademark of Texas Instruments

GQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BA-2.
- D. This package is tin-lead (SnPb). Refer to the 56 ZQL package (drawing 4204437) for lead-free.

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID <u>www.ti-rfid.com</u>

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>