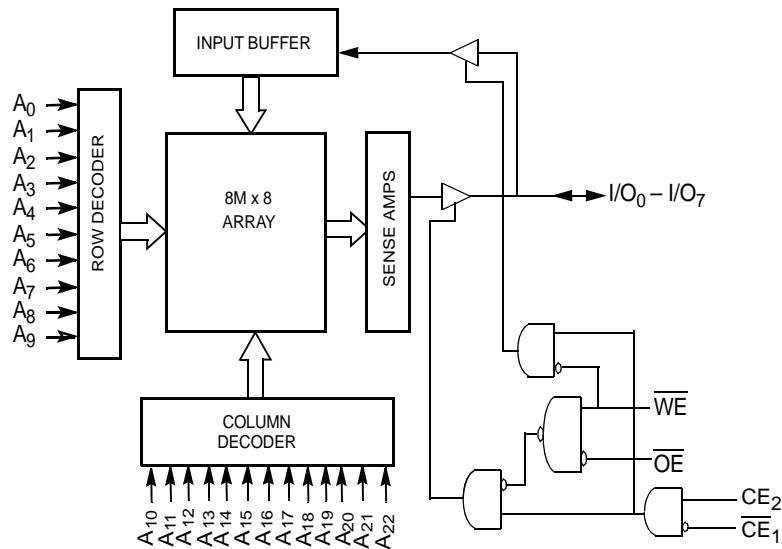


Features

- High speed
 - $t_{AA} = 12$ ns
- Low active power
 - $I_{CC} = 300$ mA at 12 ns
- Low complementary metal oxide semiconductor (CMOS) standby power
 - $I_{SB2} = 100$ mA
- Operating voltages of 3.3 ± 0.3 V
- 2.0-V data retention
- Automatic power-down when deselected
- Transistor-transistor logic (TTL)-compatible inputs and outputs
- Easy memory expansion with \overline{CE}_1 and CE_2 features
- Available in Pb-free 48-ball fine ball grid array (FBGA) package

Functional Description


The CY7C1089DV33 is a high-performance CMOS static RAM organized as 8,388,608 words by 8 bits.

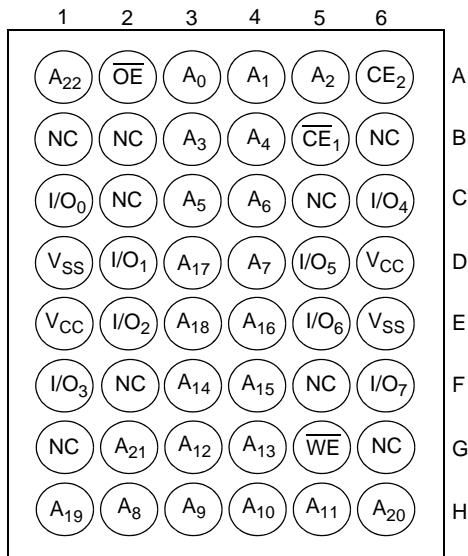
To write to the device, take Chip Enables (\overline{CE}_1 LOW and CE_2 HIGH) and Write Enable (WE) input LOW. Data on the eight I/O pins (I/O_0 through I/O_7) is then written into the location specified on the address pins (A_0 through A_{22}).

To read from the device, take Chip Enables (\overline{CE}_1 LOW and CE_2 HIGH) LOW and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins appear on the I/O pins. See [Truth Table on page 9](#) for a complete description of Read and Write modes.

The input and output pins (I/O_0 through I/O_7) are placed in a high impedance state when the device is deselected (\overline{CE}_1 LOW or CE_2 HIGH), the outputs are disabled (OE HIGH), or during a write operation (\overline{CE}_1 LOW, CE_2 HIGH and WE LOW).

Logic Block Diagram

Selection Guide


Description	-12	Unit
Maximum access time	12	ns
Maximum operating current	300	mA
Maximum CMOS standby current	100	mA

Contents

Pin Configuration	3	Package Diagram	10
Maximum Ratings	4	Acronyms	10
Operating Range	4	Document Conventions	10
DC Electrical Characteristics	4	Units of Measure	10
Capacitance	4	Document History Page	11
Thermal Resistance	4	Sales, Solutions, and Legal Information	11
Data Retention Characteristics	5	Worldwide Sales and Design Support	11
AC Switching Characteristics	6	Products	11
Switching Waveforms	7	PSoC Solutions	11
Truth Table	9		
Ordering Information	9		
Ordering Code Definition	9		

Pin Configuration

Figure 1. 48-Ball FBGA (Top View) ^[1]

Note

1. NC pins are not connected to the die.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. These user guidelines are not tested.

Storage temperature -65°C to $+150^{\circ}\text{C}$

Ambient temperature with power applied -55°C to $+125^{\circ}\text{C}$

Supply voltage on V_{CC} relative to GND^[2] -0.5 V to $+4.6\text{ V}$

DC voltage applied to outputs in high-Z state^[2] -0.5 V to $V_{\text{CC}} + 0.5\text{ V}$

DC input voltage^[2] -0.5 V to $V_{\text{CC}} + 0.5\text{ V}$

Current into outputs (LOW) 20 mA

Static discharge voltage $>2001\text{ V}$

(MIL-STD-883, Method 3015)

Latch up current $>140\text{ mA}$

Operating Range

Range	Ambient Temperature	V_{CC}
Industrial	-40°C to $+85^{\circ}\text{C}$	$3.3\text{V} \pm 0.3\text{V}$

DC Electrical Characteristics

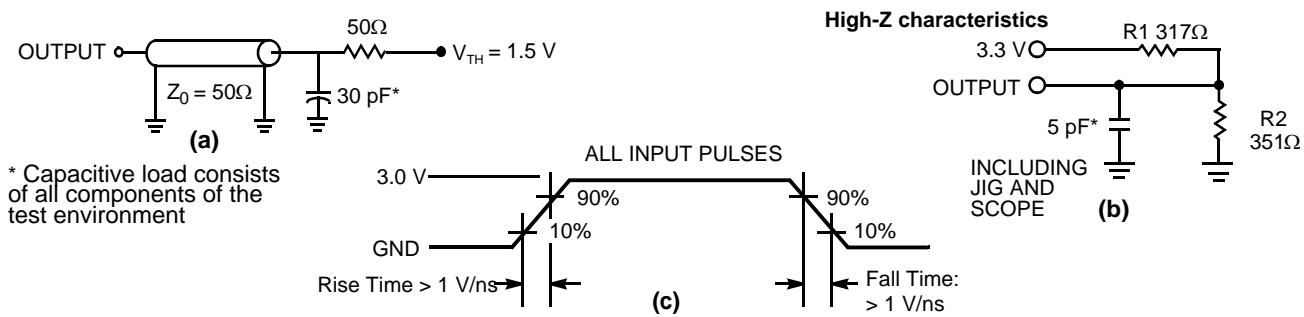
Over the Operating Range

Parameter	Description	Test Conditions	-12		Unit
			Min	Max	
V_{OH}	Output HIGH voltage	$V_{\text{CC}} = \text{Min}$, $I_{\text{OH}} = -4.0\text{ mA}$	2.4	—	V
V_{OL}	Output LOW voltage	$V_{\text{CC}} = \text{Min}$, $I_{\text{OL}} = 8.0\text{ mA}$	—	0.4	V
V_{IH}	Input HIGH voltage		2.0	$V_{\text{CC}} + 0.3$	V
V_{IL}	Input LOW voltage ^[2]		-0.3	0.8	V
I_{IX}	Input leakage current	$\text{GND} \leq V_{\text{IN}} \leq V_{\text{CC}}$	-1	+1	μA
I_{OZ}	Output leakage current	$\text{GND} \leq V_{\text{OUT}} \leq V_{\text{CC}}$, Output disabled	-1	+1	μA
I_{CC}	V_{CC} operating supply current	$V_{\text{CC}} = \text{Max}$, $f = f_{\text{MAX}} = 1/t_{\text{RC}}$, $I_{\text{OUT}} = 0\text{ mA}$ CMOS levels	—	300	mA
I_{SB1}	Automatic CE power-down current — TTL inputs	$\text{Max } V_{\text{CC}}, \overline{\text{CE}}_1 \geq V_{\text{IH}}, \text{CE}_2 \leq V_{\text{IL}}, V_{\text{IN}} \geq V_{\text{IH}} \text{ or } V_{\text{IN}} \leq V_{\text{IL}}, f = f_{\text{MAX}}$	—	120	mA
I_{SB2}	Automatic CE power-down current — CMOS inputs	$\text{Max } V_{\text{CC}}, \overline{\text{CE}}_1 \geq V_{\text{CC}} - 0.3\text{V}, \text{CE}_2 \leq 0.3\text{V}, V_{\text{IN}} \geq V_{\text{CC}} - 0.3\text{V}, \text{ or } V_{\text{IN}} \leq 0.3\text{V}, f = 0$	—	100	mA

Capacitance

Tested initially and after any design or process changes that may affect these parameters.

Parameter	Description	Test Conditions	FBGA	Unit
C_{IN}	Input capacitance	$T_A = 25^{\circ}\text{C}$, $f = 1\text{ MHz}$, $V_{\text{CC}} = 3.3\text{ V}$	32	pF
C_{OUT}	I/O capacitance		40	pF


Thermal Resistance

Tested initially and after any design or process changes that may affect these parameters.

Parameter	Description	Test Conditions	FBGA	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still air, soldered on a 3 x 4.5 inch, four layer printed circuit board	55	$^{\circ}\text{C/W}$
Θ_{JC}	Thermal resistance (junction to case)		23.04	$^{\circ}\text{C/W}$

Note

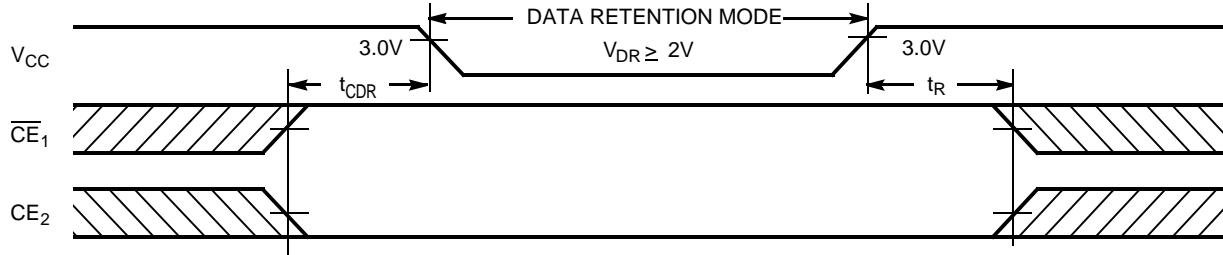

2. $V_{\text{IL}}(\text{min}) = -2.0\text{V}$ and $V_{\text{IH}}(\text{max}) = V_{\text{CC}} + 2\text{V}$ for pulse durations of less than 20 ns.

Figure 2. AC Test Loads and Waveforms^[3]

Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Typ	Max	Unit
V_{DR}	V_{CC} for data retention		2	—	—	V
I_{CCDR}	Data retention current	$V_{CC} = 2\text{ V}$, $\overline{CE}_1 \geq V_{CC} - 0.2\text{ V}$, $CE_2 \leq 0.2\text{ V}$, $V_{IN} \geq V_{CC} - 0.2\text{ V}$ or $V_{IN} \leq 0.2\text{ V}$	—	—	100	mA
t_{CDR} ^[4]	Chip deselect to data retention time		0	—	—	ns
t_R ^[5]	Operation recovery time		12	—	—	ns

Figure 3. Data Retention Waveform

Notes

3. Valid SRAM operation does not occur until the power supplies have reached the minimum operating V_{DD} (3.0V). 100 μs (t_{power}) after reaching the minimum operating V_{DD} , normal SRAM operation begins including reduction in V_{DD} to the data retention (V_{CCDR} , 2.0V) voltage.
4. Tested initially and after any design or process changes that may affect these parameters.
5. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(\text{min.})} \geq 50\text{ }\mu\text{s}$ or stable at $V_{CC(\text{min.})} \geq 50\text{ }\mu\text{s}$.

AC Switching Characteristics

Over the Operating Range [6]

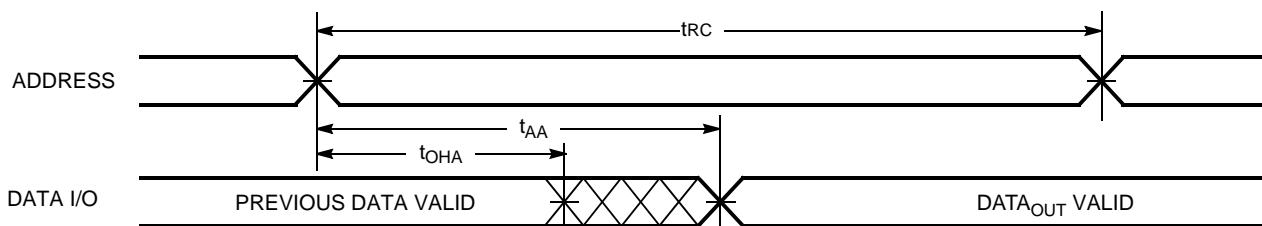
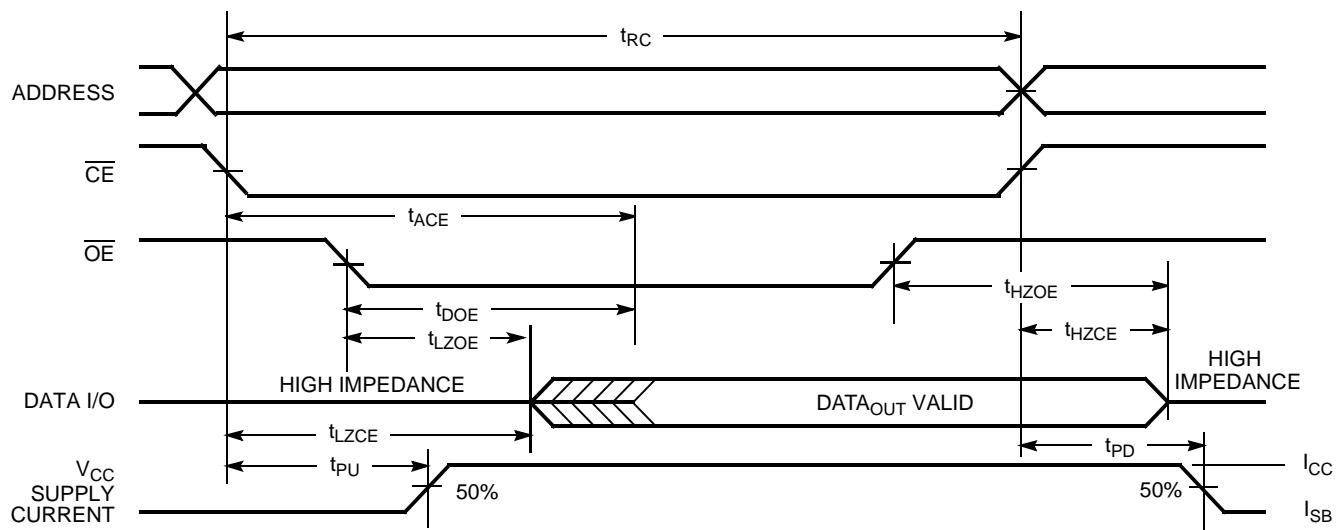
Parameter	Description	-12		Unit
		Min	Max	
Read Cycle				
t_{power}	V_{CC} (typical) to the first access ^[7]	100	–	μs
t_{RC}	Read cycle time	12	–	ns
t_{AA}	Address to data valid	–	12	ns
t_{OHA}	Data hold from address change	3	–	ns
t_{ACE}	CE_1 LOW and CE_2 HIGH to data valid	–	12	ns
t_{DOE}	OE LOW to data valid	–	7	ns
t_{LZOE}	OE LOW to low-Z	1	–	ns
t_{HZOE}	OE HIGH to high-Z ^[8]	–	7	ns
t_{LZCE}	CE_1 LOW and CE_2 HIGH to low-Z ^[8]	3	–	ns
t_{HZCE}	CE_1 HIGH and CE_2 LOW to high-Z ^[8]	–	7	ns
t_{PU}	CE_1 LOW and CE_2 HIGH to power-up ^[9]	0	–	ns
t_{PD}	CE_1 HIGH and CE_2 LOW to power-down ^[9]	–	12	ns
Write Cycle ^[10, 11]				
t_{WC}	Write cycle time	12	–	ns
t_{SCE}	CE_1 LOW and CE_2 HIGH to write end	9	–	ns
t_{AW}	Address setup to write end	9	–	ns
t_{HA}	Address hold from write end	0	–	ns
t_{SA}	Address setup to write start	0	–	ns
t_{PWE}	WE pulse width	9	–	ns
t_{SD}	Data setup to write end	7	–	ns
t_{HD}	Data hold from write end	0	–	ns
t_{LZWE}	WE HIGH to low-Z ^[8]	3	–	ns
t_{HZWE}	WE LOW to high-Z ^[8]	–	7	ns

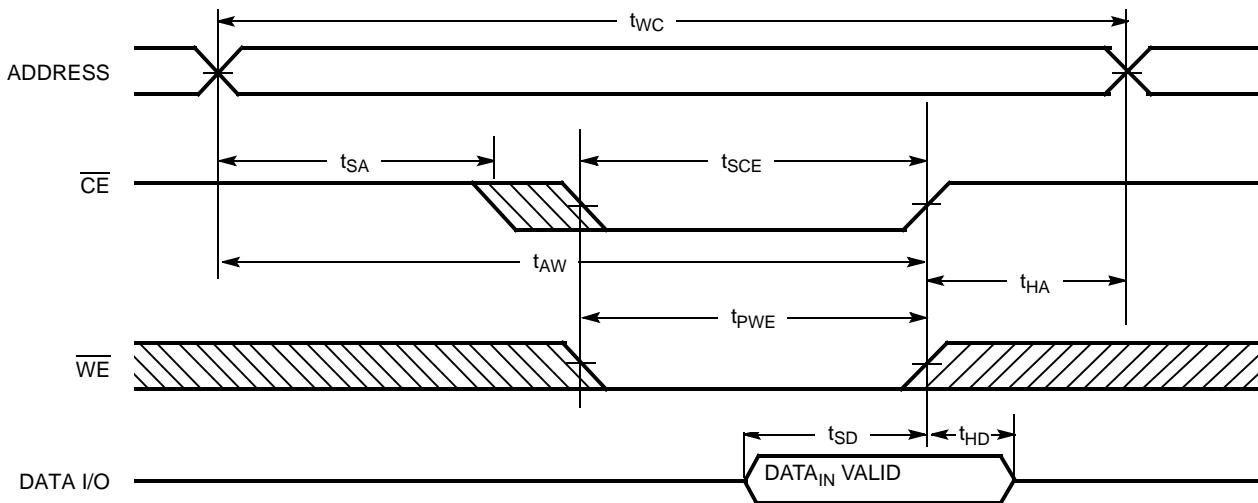
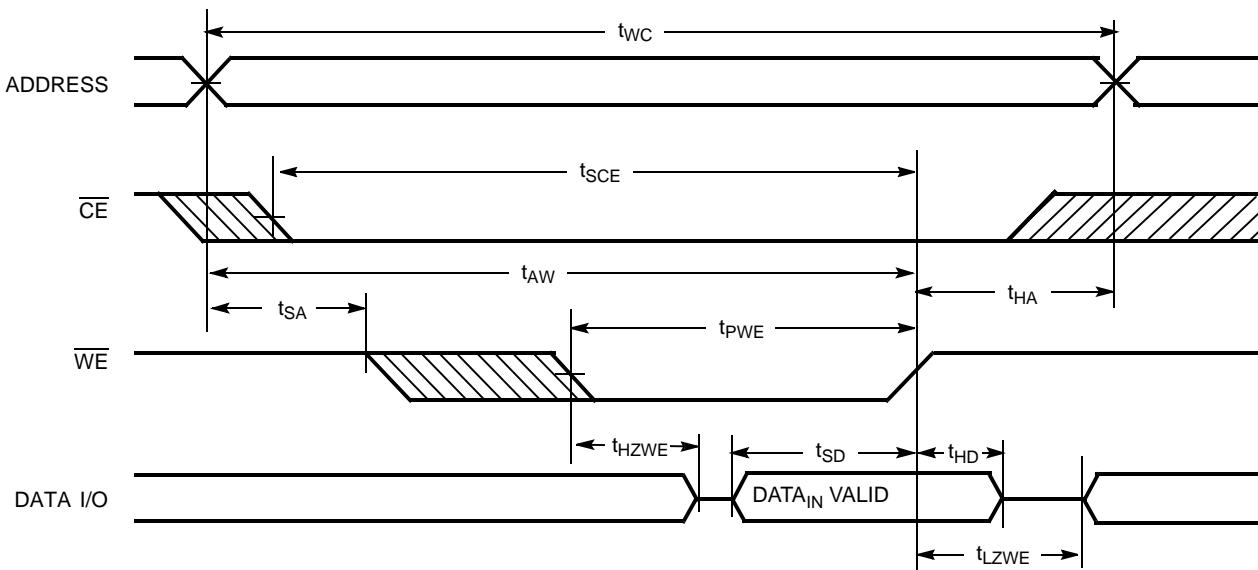
Notes

6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, and input pulse levels of 0 to 3.0V. Test conditions for the read cycle use output loading shown in part a) of [AC Test Loads and Waveforms](#)[3], unless specified otherwise.
7. t_{POWER} gives the minimum amount of time that the power supply is at typical V_{CC} values until the first memory access is performed.
8. t_{HZOE} , t_{LZCE} , t_{HZWE} , t_{LZOE} , t_{LZCE} , and t_{LZWE} are specified with a load capacitance of 5 pF as in (b) of [AC Test Loads and Waveforms](#)[3].
9. These parameters are guaranteed by design and are not tested.
10. The internal write time of the memory is defined by the overlap of WE , $\text{CE}_1 = V_{\text{IL}}$, and $\text{CE}_2 = V_{\text{IH}}$. Chip enables must be active and WE must be LOW to initiate a write, and the transition of any of these signals can terminate. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
11. The minimum write cycle time for Write Cycle No. 2 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD} .

Switching Waveforms

Figure 4. Read Cycle No. 1 [12, 13, 14]



Figure 5. Read Cycle No. 2 (\overline{OE} Controlled) [12, 14, 15]

Notes

12. \overline{CE} refers to the internal logical combination of \overline{CE}_1 and CE_2 such that when \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW. For all other combinations, \overline{CE} is HIGH.
13. The device is continuously selected. $\overline{CE} = V_{IL}$.
14. WE is HIGH for read cycle.
15. Address valid before or similar to \overline{CE} transition LOW.

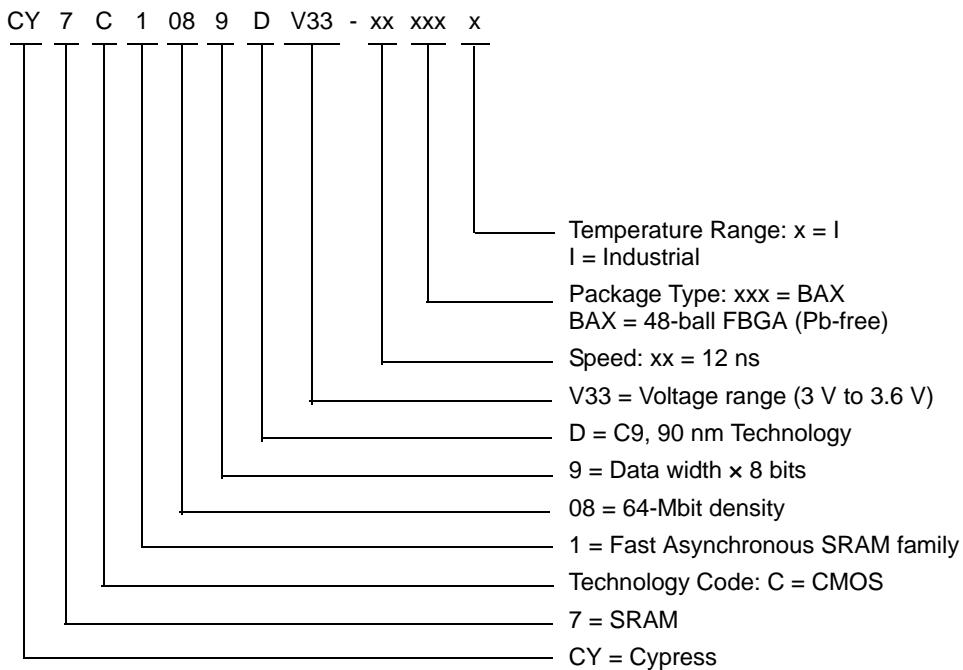
Switching Waveforms (continued)

Figure 6. Write Cycle No. 1 (\overline{CE} Controlled) [16, 17, 18]

Figure 7. Write Cycle No. 2 (\overline{WE} Controlled, \overline{OE} LOW) [16, 17, 18]

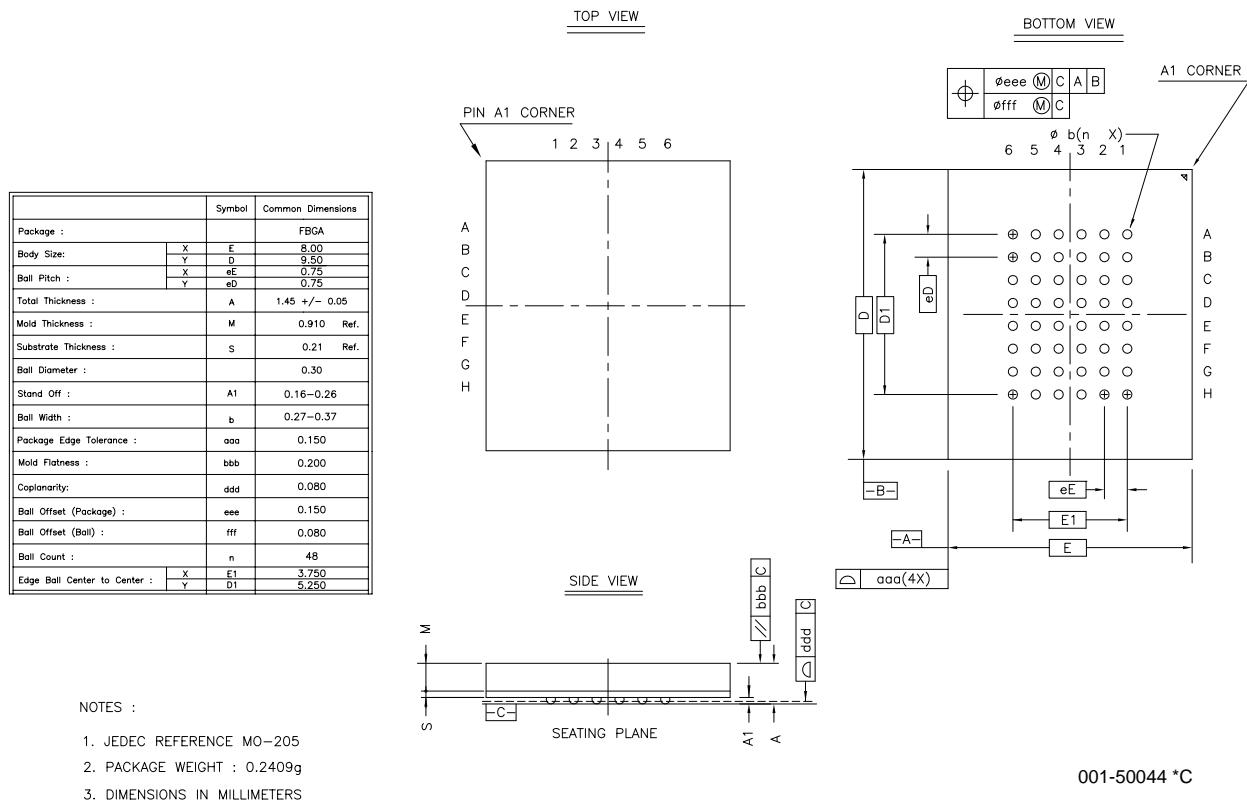
Notes

16. \overline{CE} refers to the internal logical combination of \overline{CE}_1 and CE_2 such that when \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW. For all other combinations, \overline{CE} is HIGH.
17. Data I/O is high impedance if $OE = V_{IH}$.
18. If CE goes HIGH simultaneously with \overline{WE} going HIGH, the output remains in a high impedance state.


Truth Table

CE₁	CE₂	OE	WE	I/O₀–I/O₇	Mode	Power
H	X	X	X	High-Z	Power down	Standby (I _{SB})
X	L	X	X	High-Z	Power down	Standby (I _{SB})
L	H	L	H	Data Out	Read all bits	Active (I _{CC})
L	H	X	L	Data In	Write all bits	Active (I _{CC})
L	H	H	H	High-Z	Selected, Outputs disabled	Active (I _{CC})

Ordering Information


Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
12	CY7C1089DV33-12BAXI	001-50044	48-ball FBGA (8 × 9.5 × 1.4 mm) (Pb-free)	Industrial

Ordering Code Definition

Package Diagram

Figure 8. 48-Ball FBGA (8 x 9.5 x 1.4 mm) (001-50044)

Acronyms

Acronym	Description
CMOS	complementary metal oxide semiconductor
FBGA	fine ball grid array
I/O	input/output
SRAM	static random access memory
TTL	transistor-transistor logic

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
µA	microampere
mA	milliampere
MHz	megahertz
ns	nanosecond
pF	picofarad
V	volt
Ω	ohm
W	watt

Document History Page

Document Title: CY7C1089DV33, 64-Mbit (8 M x 8) Static RAM
Document Number: 001-53993

Revision	ECN	Submission Date	Orig. of Change	Description of Change
**	2746867	07/31/2009	VKN/AESA	New Data sheet
*A	3100499	12/02/2010	PRAS	Updated Note 12. Changed datasheet status from Preliminary to Final. Updated Package Diagram and Sales, Solutions, and Legal Information . Added Acronyms , Document Conventions and Ordering Code Definition .
*B	3178259	21/02/2011	PRAS	Post to external web.
*C	3720118	08/22/2012	TAVA	Minor Text edits.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at [Cypress Locations](#).

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc cypress.com/go/plc
Memory	cypress.com/go/memory
Optical & Image Sensing	cypress.com/go/image
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions
PSoC 1 PSoC 3 PSoC 5

© Cypress Semiconductor Corporation, 2009-2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Cypress Semiconductor:](#)

[CY7C1089DV33-12BAXI](#) [CY7C1089DV33-12BAXIT](#)